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Phase estimation for global defocus correction in optical

coherence tomography

Mikkel Jensena, Niels M. Israelsena, Adrian Podoleanub, and Ole Banga

aTechnical University of Denmark, DTU Fotonik, Ørsteds Plads 343, 2800 Kongens Lyngby,
Denmark

bSchool of Physical Sciences, University of Kent, CT2 7NH Canterbury, England

ABSTRACT

In this work we investigate three techniques for estimation of the non-linear phase present due to defocus in optical
coherence tomography, and apply them with the angular spectrum method. The techniques are: Least squares
fitting the of unwrapped phase of the angular spectrum, iterative optimization, and sub-aperture correlations.
The estimated phase of a single en-face image is used to extrapolate the non-linear phase at all depths, which
in the end can be used to correct the entire 3-D tomogram, and any other tomogram from the same system.

Keywords: Optical coherence tomography, angular spectrum method, defocus correction

1. INTRODUCTION

Optical coherence tomography (OCT)1 is a well established optical imaging technique, which utilises white light
interferometry in a Michelson interferometer to obtain a non-invasive depth scan (A-scan) of the backscattering
coefficient of the imaged medium. A three dimensional (3-D) tomogram is constructed by assembling adjacent
A-scans obtained e.g. by scanning the beam laterally. In conventional microscopy, the axial (depth) and lateral
resolutions are linked through the numerical aperture (NA), which is a measure of the tightness of focus of the
illuminating beam. In OCT, the axial resolution is determined by the coherence length of the optical source,
and there is thus no need to axially scan the the sample or the probe beam. Therefore the NA can be chosen
small to enlarge the depth of focus (DOF) and increase the penetration depth without sacrificing the axial
resolution. The penetration depth is typically close to 10 times larger than the DOF, so only a small portion of
the obtained tomogram is in focus. This issue can be mitigated by either employing several illuminating beams
focused at different depths,2 or by introducing a movable lens that adjusts the focus.3 Both methods require
a complex and expensive set-up as well as post processing in terms of fusion of the in-focus axial segments.
As an alternative, numerical methods which use the phase information of the complex valued tomogram for
defocus correction have been proposed, of which interferometric synthetic aperture microscopy (ISAM)4 is the
most profiled. ISAM requires solution of the inverse scattering problem for the full 3-D tomogram, but other
methods promise to correct a single axial position at a time, utilising e.g sub-aperture correlations5 or iterative
optimisations.6 We propose to use the defocus correction obtained at a single depth to extrapolate the correction
at other depths. In this work we compare the performance of three different methods for phase estimation for
use by the angular spectrum method to perform en-face corrections: Direct unwrapping of the phase and least
squares fitting, iterative focus optimisation, and sub-aperture correlations, and we apply the resulting phase
corrections to correct defocus for an entire volume of data.

Because OCT is an interferometric imaging modality, the phase of the tomogram is proportional to the phase
of the electric field. By adding a paraboloid phase factor with the opposite sign of the defocus aberration in the
angular spectrum, defocus can be corrected. The task is then to identify the strength of the defocus aberration
to perform the most precise correction. The phase is estimated and applied in the 2-D spectral domain of the
en-face image.
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2. METHODS

Direct unwrapping of 2-D phase values of is an overdetermined problem without an exact solution, and the least
squares solution to the unwrapping problem can be found by solving Poisson’s equation.7 The iterative method
changes the applied paraboloid phase such that the sharpness metric (here the variance of the pixel values are
used) is maximised. The sub-aperture correlation method splits the Fourier transform of the en-face image
into sub-apertures that are cross-correlated to yield the local wavefront slope, mimicking a Shack-Hartmann
wavefront sensor. The phase factor estimated from all three methods are added to the angular spectrum, which
is then inversely Fourier transformed back to the physical domain.

The optical set-up used employ a supercontinuum source, superK Extreme EXR-9 OCT (NKT Photonics,
Denmark), and a longpass filter to select wavelengths 1000 nm - 1750 nm. A customized 50/50 fibre coupler
(Goosch and Housego, Netherlands), split the light into the interferometer arms. Standard achromatic lenses
collimate the light in both arms, and a pair of galvano scanners perform the lateral scanning. The spectrometer
used, C-1070-1470-GL2KL (Wasatch, USA), provide a 400 nm bandwidth, and operate at a line rate of 76 kHz.
Laterally, the system is able to resolve features down to a size of 6 microns.

3. RESULTS AND DISCUSSION

A cucumber slice was imaged and an overview of the 3-D tomogram is seen in figure 1(a). In the top left corner
a B-scan along the fast axis is shown, and to the bottom right a B-scan along the slow axis is shown. The nine
images to the top right are en-face images linearly spaced between the white lines in the B-scan of the fast axis
with the numbers being the pixel position in depth, and 7.8 microns per pixel. The bottom left is a psuedo
confocal image that shows the maximum pixel value through depth at all lateral positions. The en-face images
for pixel 17 - 52 are blurred by defocus, but the remaining images are in focus. The focal point is estimated to be
at pixel 75 (586 microns OPD). The en-face image at pixel 33 (258 microns OPD) is used for phase estimation,
and the raw image is seen in figure 1(b). Figures 1(c-e) show the corresponding corrected images for the direct
unwrapping, the iterative method and the sub-aperture method, respectively. All three images show significant
improvements, and the inset show a zoom-in of a separate feature used to assess the resolution. The larger feature
to the left in the inset is reduced by a factor of 4-5 from 54 microns to 10.8 - 14.8 microns, and the smaller
feature to the right in the inset 6.2 or 6.1 microns in all three cases, being in the order of the lateral resolution.
The obtained non-linear phase is used to extrapolate the phase for all depths, and it is seen applied in figure 1(f).
All the displayed en-face images now show a similar sharpness despite the distance of 548 micron OPD between
them, and the psuedo confocal image is also sharper in figure 1(f) than in figure 1(a). This suggests that the
phase estimated at a single depth can be used to correct an entire volume, and that the volume correction can
also be applied to any other tomogram obtained with the same system. This is demonstrated in figure 2, where
the raw 3-D image is seen in figure 2(a) and the corrected image in figure 2(b). The correction is applied based
on the extrapolated phase extracted from a single en-face image from the cucumber, verifying that the defocus
error, can in fact be corrected without continuous re-optimization of the applied phase. The white arrows in
figure 2 point to features that are sharpened by the correction, and we can appreciate the focal region being
extended to the top en-face image shown here.

4. CONCLUSION

Single en-face defocus correction of a cucumber slice by the angular spectrum method was demonstrated using
three different methods for phase estimation: A direct unwrapping, an iterative procedure and a sub-aperture
correlation method, which all gave similar results with the smallest feature size of 6.1 and 6.2 microns, similar to
the lateral resolution. The estimated phase factor from the iterative method was used to extrapolate the phase
required to correct the entire volume, and the depth of focus was increased to at least 550 microns. Furthermore,
a bell pepper was imaged and defocus was corrected in the entire volume by applying the phase extracted from
the cucumber image.
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(f) Corrected volume

Figure 1: OCT image of a cucumber slice. (a) shows an overview of the raw data, (b) shows a raw en-face image,
(c)-(e) shows correction with direct unwrapping, iterations, and sub-aperture correlations, respectively. (f) show
an overview of the corrected volume.
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Figure 2: Overview of a 3-D image of a bell pepper with (a) being the raw image and (b) the corrected image.
(b) is corrected with the phase estimated with the fitting method from a single en-face image of the cucumber.
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