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A Common Framework Using Expected Types
for Several Type Debugging Approaches

Kanae Tsushima Olaf Chitil

National Institute of Informatics, Japan University of Kent, UK
k tsushima@nii.ac.jp O.Chitil@kent.ac.uk

Abstract. Many different approaches to type error debugging were de-
veloped independently. In this paper, we describe a new common frame-
work for several type error debugging approaches. For this purpose, we
introduce expected types from the outer context and propose a method
for obtaining them. Using expected types, we develop three type error
debugging approaches: enumeration of type error messages, type error
slicing and (improved) interactive type error debugging. Based on our
idea we implemented prototypes and confirm that the framework works
well for type debugging.

1 Introduction

The Hindley-Milner type system is the core of the type systems of many statically
typed functional programming languages such as ML, OCaml and Haskell. The
programmer does not have to write any type annotations in the program; instead
most general types are inferred automatically. Functions defined in the program
can be used with many different types.

However, type error debugging is a well-known problem: When a program
cannot be typed, the type error messages produced by the compiler often do not
help much with locating and fixing the cause(s). Consider the following OCaml
program:

let rec f lst n = match lst with

| [] -> []

| fst :: rest -> (fst ^ n) :: (f rest n) in

f [2]

We assume that the programmer intended to define the function that maps
a list of numbers to a list of squared numbers (e.g., f [3] 2 = [9]). Hence the
programmer’s intended type of f is int list → int → int list. However, in OCaml
^ is the string concatenation function. Therefore, the type of the function f is
inferred as string list → string → string list. The OCaml compiler returns the
following type error message:

f [2] ;;

Error: This expression has type int but

an expression was expected of type string



The message states that the underlined expression 2 has type int, but it
is expected to have type string because of other parts of this program. The
message does not substantially help the programmer: they will wonder why 2

should have type string.

The starting point for our work is the principal typing tree that was intro-
duced by Chitil [2] for interactive type error debugging.

A principal typing Γ ⊢ τ of some expression e consists of a type τ and
an environment Γ which gives types to all free variables of e. All typings for an
expression are instances of its principal typing. For example, the principal typing
for a variable x is {x : α} ⊢ α, where α is a type variable. In contrast, the better
known principal type τ is just the most general type for a given expression e

and given environment Γ .

The principal typing tree is the syntax tree of a program where each node
describes a subexpression of the program and includes the principal typing for
this subexpression. Chitil applied algorithmic debugging [9] to the tree to locate
the source of a type error. Tsushima and Asai proposed an approach to construct
the principal typing tree using the compiler’s type inferencer and implemented
a type error debugger for OCaml [12]. The implemented type debugger has been
used in classes at Ochanomizu University for the past 5 years by approximately
200 novice programmers [5].

In this paper we claim that expected typings are also useful for type debug-
ging. Expected typings are duals to principal typings. Let us consider a program
C[e] that consists of an expression e and its context C. The expression e on its
own has a principal typing. The expected typing of e is the type of the hole of
the context C, disregarding e. In the previous example the principal type of 2
is int, but its expected type, according to the context, is string. The type error
message of the OCaml compiler actually stated both types.

In this paper we introduce the type debugging information tree. The
tree for our example program is shown in Figure 1. The tree includes for each
subexpression both its principal and expected typing (Section 3).

We show how the tree can be used to realise the following type error debug-
ging approaches:

1. Enumeration of type error messages.
Type error messages show two conflicting types. We can obtain both types
from the type debugging information tree (Section 4.1).

2. Type error slicing.
Only well-typed contexts yield expected typings. Hence program parts that
do not yield expected typings do not contribute to a conflict between prin-
cipal and expected typing (Section 4.2).

3. Interactive type error debugging.
We can use the programmer’s intended types to derive expected types. With
expected types, we can efficiently narrow the area to debug (Section 4.3).
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. . .

(::):

{

{} ⊢ α → [α] → [α]

×

^ :

{

{} ⊢ string→string→string

Γ2 ⊢ int → β → γ
fst:

{

{fst : ǫ} ⊢ ǫ

Γ2 ⊢ string
n:

{

{n : ζ} ⊢ ζ

×

(fst ^ n):

{

{fst : string, n : string} ⊢ string

Γ2 ⊢ γ

f:

{

{f : α} ⊢ α

×
rest:

{

{rest : β} ⊢ β

×
n:

{

{n : γ} ⊢ γ

×

(f rest n):

{

{f : β → γ → δ, rest : β, n : γ} ⊢ δ

×

(fst ^ n) :: (f rest n):

{

Γ3 ⊢ [string]

Γ2 ⊢ [γ]

match-exp:

{

Γ1 ⊢ [string]

{f : [int] → α, lst : [int], n : β} ⊢ θ

(fun lst n → ...):

{

{} ⊢ [string] → string → [string]

{} ⊢ [int] → α

f:

{

{} ⊢ [string] → string → [string]

{} ⊢ [int] → α

:: :

{

{} ⊢ µ → [µ] → [µ]

{} ⊢ int → [η] → [string]
2:

{

{} ⊢ int

{} ⊢ string
[]:

{

{} ⊢ [η]

×

[2]:

{

{} ⊢ [int]

{} ⊢ [string]

f [2]:

{

×

{} ⊢ α

Γ1 = {f : [string] → string → [string], n : string, lst : [string]}

Γ2 = {f : [int] → α, lst : [int], n : β, fst : int, rest : [int]}

Γ3 = {f : β → string → [string], n : string, rest : β, fst : string}

Fig. 1. Type debugging information tree for the program from the Introduction
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p ::= c (constant)
| v (variable)
| p :: p (cons pattern)
| (p, p) (tuple pattern)

M ::= cl (constant)

| vl (variable)

| funl x → M (function)

| (M M)l (application)

| (M,M)l (tuple)

| ifl M then M else M (if expression)

| matchl M with | p → M (match expression)

l ::= location number

S ::= let rec x = M in S (let expression)
| M

τ ::= int | bool | ... (constant type)
| α (type variable)
| τ → τ (function type)
| τ ∗ τ (tuple type)
| [τ ] (list type)

Fig. 2. OCaml-like functional language

2 Language and Principal Typing Tree (PTT)

We describe our framework for a core functional language, a small subset of
OCaml, as defined in Figure 2. Every expression construct is annotated with
some unique location information l. To save space, we use Haskell’s notation
for list types (e.g., instead of int list we write [int]). A program S consists of
a sequence of function definitions defined by a recursive let construct. However,
this let-rec construct does not appear in any of the trees that we define in the
following sections. Instead, we unfold the definition of a let-rec defined variable
at every use occurrence in the tree. Note that this ‘unfolding’ is only conceptual
to obtain a simple tree structure; the actual implementation handles each let-rec
construct only once and actually constructs a directed graph, which, unfolded,
yields a tree.

Figure 1 demonstrates this unfolding for the program in the Introduction. It
shows part of the type debugging information tree where the tree node for f has
the definition of f as child node.

A typing consists of a type environment Γ , a finite mapping from free vari-
ables to types, and a type τ . Instead of the more common Γ ⊢ M : τ we write
M : Γ ⊢ τ to state that expression M has typing Γ ⊢ τ . The special typing ×
indicates that no typing of the form Γ ⊢ τ exists; so × indicates a type error.
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y:{x : int, y : int} ⊢ int +:{x : int, y : int} ⊢ int → int → int x:{x : int, y : int} ⊢ int

y + x:{x : int, y : int} ⊢ int

(fun y → y + x):{x : int} ⊢ int → int

(fun x → (fun y → y + x)):{} ⊢ int → int → int true:{} ⊢ bool

(fun x → (fun y → y + x)) true:×

Fig. 3. Standard type inference tree of (fun x -> (fun y -> y + x)) true

y:{y : β} ⊢ β +:{} ⊢ int → int → int x:{x : α} ⊢ α

y + x:{x : int, y : int} ⊢ int

(fun y → y + x):{x : int} ⊢ int → int

(fun x → (fun y → y + x)):{} ⊢ int → int → int true:{} ⊢ bool

(fun x → (fun y → y + x)) true:×

Fig. 4. Most general type tree of (fun x -> (fun y -> y + x)) true

We obtain expected typings from principal typings. For a program a syntax
tree where each node is annotated with a principal typing can be constructed1;
details are given by Chitil, Tsushima and Asai [2, 12].

Most type inference algorithms try to construct a tree based on the Hindley-
Milner rules. To see how the PTT differs, consider the following ill-typed OCaml
program: (fun x -> (fun y -> y + x)) true

The function + adds two integers; its type is int → int → int. The constant
true has type bool. Hence the program is ill-typed.

Figure 3 shows a Hindley-Milner type inference tree and Figure 4 shows the
PTT for this program. In the PTT each subexpression appears with its principal
typing. For example, in the left upper part of Figure 4, y has type β not int

because there is no constraint to have type int in y itself; also the variable
x does not appear in this type environment at all. In contrast in Figure 3, the
subexpression y has the type environment {x : int, y : int}, because of constraints
in other parts of the tree.

3 Expected Typings & Type Debugging Information Tree

We obtain the type debugging information tree from the PTT by adding an
expected typing to every node of the tree. So in every tree node an expression
is annotated with both its principal and its expected typing.

At first we focus on programs that have only a single type error. Afterwards
we show why we have to obtain expected typings from principal typings, not the
typings of a standard Hindley-Milner type inference tree. Finally we show how

1 It is actually a tree of principal monomorphic typings; let-bound potentially poly-
morphic variables do not appear in the type environment [2].

5



we can obtain expected typings from programs that have multiple type errors,
the normal case in practice.

3.1 How to Obtain Expected Types

For simplicity we assume that we have an ill-typed program with a PTT that
has only one type error node. Let us reconsider the example from the preced-
ing section: (fun x -> (fun y -> y + x)) true The PTT of this program is
shown in Figure 4.

Inference of expected typings starts from the root of the tree. We assume
that the expected type of the whole program is some type variable α, which
means that there is no type constraint. Because the whole program has no free
variables, its type environment is empty. Our next goal is to infer the expected
typings shown as black boxes below. The first box is the expected typing of the
function (fun x -> (fun y -> y + x)) and the second box is the expected
typing of true.

(fun x -> (fun y -> y + x)):

{

{} ⊢ int → (int → int)

aaaaaa
true:

{

{} ⊢ bool

aaaaaa

(fun x -> (fun y -> y + x)) true:

{

×

{} ⊢ α

The idea for obtaining the expected typing of an expression M is that we do
not use the typing of M itself but use the typing of its sibling nodes and parent
node.

Here the type environments are empty and we are solely concerned with
types. We obtain the expected type of (fun x -> (fun y -> y + x)) from
the principal type of the argument true and the expected type of the whole
program. We can visualize the constraint of the function application as follows:

(fun x -> (fun y -> y + x)): aaa ) (true:bool) : α

Thus we see that the black box must be bool → α. Similarly we can obtain
the expected type of true, namely int.

3.2 Inferring Expected Typings

Figure 5 shows our inference rules for expected typings. We assume that all
principal typings and the expected typing of an expression at the bottom of a
rule are known. The rules define the expected typings for the subexpressions on
top of the rules. In the figure these inferred expected typings are boxed.

For many language constructs we need to compose several type environments
and solve a set of equational type constraints. Hence we define and use a most
general unifier function called mgu. The function call

mgu({Γ1, . . . , Γn}, {τ1 = τ ′1, . . . , τn = τ ′n}, τ)
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nl :

{

(Γi ⊢ τi, {l})

(Γe ⊢ τe, Le)
vl :

{

(Γi ⊢ τi, {l})

(Γe ⊢ τe, Le)

M :

{

(Γi′ ⊢ τi′ , L0)

(mgu({Γe}, {τe = α → β}, β), Le ∪ {l})

funl x → M :

{

(Γi ⊢ τi, L0 ∪ {l})

(Γe ⊢ τe, Le)

M0 :

{

(Γ0 ⊢ τ0, L0)

(mgu({Γe, Γ1}, {}, τ1 → τe), Le ∪ L1 ∪ {l})

M1 :

{

(Γ1 ⊢ τ1, L1)

(mgu({Γe, Γ0}, {τ0 = α → τe}, α), Le ∪ L0 ∪ {l})

(M0 M1)
l:

{

(Γi ⊢ τi, L0 ∪ L1 ∪ {l})

(Γe ⊢ τe, Le)

M0 :

{

(Γ0 ⊢ τ0, L0)

(mgu({Γe, Γ1}, {τe = α ∗ β}, α), Le ∪ L1 ∪ {l})

M1 :

{

(Γ1 ⊢ τ1, L1)

mgu({Γe, Γ0}, {τe = α ∗ β}, β), Le ∪ L0 ∪ {l})

(M0, M1)
l:

{

(Γi ⊢ τi, L0 ∪ L1 ∪ {l})

(Γe ⊢ τe, Le)

M0 :

{

(Γ0 ⊢ τ0, L0)

(mgu({Γ1, Γ2, Γe}, {τ1 = τe, τ2 = τe}, bool), Le ∪ L1 ∪ L2 ∪ {l})

M1 :

{

(Γ1 ⊢ τ1, L1)

(mgu({Γ0, Γ2, Γe}, {τ0 = bool, τ2 = τe}, τe), Le ∪ L0 ∪ L2 ∪ {l})

M2 :

{

(Γ2 ⊢ τ2, L2)

(mgu({Γ0, Γ2, Γe}, {τ0 = bool, τ1 = τe}, τe), Le ∪ L0 ∪ L1 ∪ {l})

ifl M0 then M1 else M2:

{

(Γi ⊢ τi, L0 ∪ L1 ∪ L2 ∪ {l})

(Γe ⊢ τe, Le)

M0 :

{

((Γ0, τ0), L0)

(mgu({Γe, Γ1, Γp}, {τe = τ1}, τp) \ (fv(p)), Le ∪ L1 ∪ {l})

M1 :

{

((Γ1, τ1), L1)

(mgu({Γe, Γ0, Γp}, {τ0 = τp}, τe), Le ∪ L0 ∪ {l})

where Γp ⊢ τp is the principal typing of p

matchl M0 with | p → M1 :

{

(Γi ⊢ τi, L0 ∪ L1 ∪ {l})

(Γe ⊢ τe, Le)

Fig. 5. Inference rules for expected typings
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y:

{

{x : α, y : β} ⊢ β

×
+:

{

{x : γ, y : δ} ⊢ int → int → int

{x : bool, y : β}, β → bool → γ
x:

{

{x : ǫ, y : η} ⊢ ǫ

{x : bool, y : β} ⊢ int

y + x:

{

{x : int, y : int} ⊢ int

{x : bool, y : β} ⊢ γ

(fun y → y + x):

{

{x : int} ⊢ int → int

{x : bool} ⊢ α

(fun x → (fun y → y + x)):

{

{} ⊢ int → int → int

{} ⊢ bool → α
true:

{

{} ⊢ bool

{} ⊢ int

(fun x → (fun y → y + x)) true:

{

×

{} ⊢ α

Fig. 6. Type debugging information tree of (fun x -> (fun y -> y + x)) true

computes a most general type substitution σ with

Γ1σ = . . . = Γnσ

τ1σ = τ ′1σ, . . . , τnσ = τ ′nσ

and returns the typing
Γ1σ ⊢ τσ

If no such substitution exists, it returns ×.
To understand the function mgu and the inference rule for application, let

us consider the top of Figure 6:

y:

{

{x : α, y : β} ⊢ β

aaaaaa
+:







{x : γ, y : δ} ⊢ int → int → int
:::::::::::::::::::::

aaaaaa
x:







{x : ǫ, y : η} ⊢ ǫ
::::::::::

aaaaaa

y + x







{x : int, y : int} ⊢ int

{x : bool, y : β} ⊢ γ
:::::::::::::

First, let us determine the expected typing of +. We use the underlined typings:
the expected typing of +’s parent node y + x and the principal typings of y and
x. Because these type constraints must be satisfied simultaneously, their environ-
ments must be composed. Because + is a function applied to the two arguments,
we have the additional constraint that its expected type is β → ǫ → γ. In
summary, + has the expected typing

mgu({{x : α, y : β}, {x : ǫ, y : η}, {x : bool, y : β}}, {}, β → ǫ → γ)

= {x : bool, y : β} ⊢ β → bool → γ

Second, let us determine the expected typing of y. in the top of Figure 6.
We use the

:::::::::::::::

curve-underlined
:::::::

typings: the expected typing of y + x and the
principal typings of + and x. We need to combine the type environments of the
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three typings and express the constraint that + is a function with y and x as
arguments. In summary, y has the expected typing

mgu({{x : γ, y : δ}, {x : ǫ, y : η},

{x : bool, y : β}}, {int → int → int = κ → ǫ → γ}, κ)

=×

We obtain ×, because there does not exist any unifying substitution.

Nearly all our inference rules in Figure 5 use the mgu function. The only
exception are the rules for constants and variables, because they have no smaller
components; their own expected typings are determined by their contexts. The
pattern match construct binds new variables in the pattern p. Hence these vari-
ables have to be removed from the typing for the term M0.

3.3 Type Annotations / Signatures

Unlike all real functional programming languages, our core language does not
have type annotations, which allows the user to specify that a function should
have a certain type. However, if we do consider type annotations, then these
naturally contribute to our expected typings. Expected typings propagate the
user’s annotations towards the leaves of the type debugging information tree.
Thus expected typings become more informative and we also have more expected
typings ×.

3.4 Why Obtain Expected Typings from Principal Typings?

We cannot obtain expected typings by means of the standard type inference
tree. Consider again the expression (fun x -> (fun y -> y + x)) true. We
obtain the following tree from the Hindley-Milner type rules:

y:

{

{x : int, y : int} ⊢ int

aaaaaa
+:

{

{x : int, y : int} ⊢ int→ int→ int

aaaaaa
x:

{

{x : int, y : int} ⊢ int

aaaaaa

y + x :

{

{x : int, y : int} ⊢ int

{x : bool, y : β} ⊢ γ

We want to determine the expected typing of +. However, if we now compose
the type environments for y, x and y + x, we get

mgu({{x : int, y : int}, {x : int, y : int}, {x : bool, y : β}}, {}, int → int → γ)

= ×

because the types of x in the type environments are already in conflict. We
cannot use the standard type inference tree, because type information in type
environments includes type constraints of many parts of the program.
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3.5 Expected Typings in the Presence of Multiple Type Errors

If a program has only a single type error, then the expected typing of an ex-
pression is derived from all other parts of the program except the expression. In
the presence of multiple type errors, we should not derive the expected typing
of an expression from all other parts, because these other parts contain type
errors and hence many typings are ×. Note that even in the presence of a single
type error several principal and expected typings are already ×, but we simply
exclude these when inferring expected typings. However, if we applied the same
method in the presence of multiple type errors, then we would lose too much
type information and our expected typings would become useless.

To control which type constraints to include and which not, we need to record
the program parts that contribute to the expected typings, which we represent
with the notation (Γ ⊢ τ, {l1, . . . , ln}). This means that typing Γ ⊢ τ is derived
from type information of the subexpressions with the locations l1, .., ln.

Let us consider the following multiple type error example: ((x 1, y 2), (x

false, y true)). This program includes multiple type errors, because there are
two type conflicts about x and y. Let us focus on (x 1, y 2) in this program.
In the first step we obtain the following PTT.

x 1 : ({x : int → α} ⊢ α,L0) y 2 : ({y : int → β} ⊢ β, L1)

(x 1, y 2)l: ({x : int → α; y : int → β} ⊢ α ∗ β, L0 ∪ L1 ∪ {l})

In the second step we obtain the following tree by the rules in Figure 5.

x 1 :

{

({x : int → α} ⊢ α,L0)

×
y 2 :

{

({y : int → β} ⊢ β, L1)

×

(x 1, y 2)l:







({x : int → α; y : int → β} ⊢ α ∗ β, L0 ∪ L1 ∪ {l})

({x : bool → γ; y : bool → δ} ⊢ ǫ, Le)

The expected typing of (x 1, y 2) is obtained from its sibling (x false,

y true)’s principal typing. We successfully obtain the expected typing for (x

1, y 2) (the boxed part). Because the principal typings of x 1 and y 2 have
conflicts with the expected typing of their parent node, each child has expected
typing ×. We need more expected typings that we could not obtain in this step.
In the third step, we reconstruct the following abstracted PTT using the upper
tree information.

x 1 : ({} ⊢ α′, {}) y 2 : ({} ⊢ β′, {})

(x 1, y 2)l: ({} ⊢ α′ ∗ β′, {l})

The reconstruction rules of PTT is the following. If an expression has an
expected typing × in the past steps, we put the abstracted typing ({} ⊢ γ, {})
(γ is a new type variable that does not appear anywhere. The second {} means
that this typing does not include any constraints) for it. Otherwise we use stan-
dard method in [2, 12] for obtaining their principal typings. So in this case, the
principal typings of x 1 and y 2 are abstracted typings. On the other hand, the
principal typing of (x 1, y 2) is not abstracted and inferred by its children.
This is because (x 1, y 2) has expected typing in the second step. In the fourth
step we apply our rules in Figure 5 to this tree and obtain the following tree.
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x 1 :







({} ⊢ α′, {})

({x : bool → γ; y : bool → δ}, ζ, Le ∪ {l})

y 2 :







({} ⊢ β′, {})

({x : bool → γ; y : bool → δ}, η, Le ∪ {l})

(x 1, y 2)l:

{

({} ⊢ α′ ∗ β′, {l})

({x : bool → γ; y : bool → δ} ⊢ ǫ, Le)

In the fourth step we could obtain the expected typings of x 1 and y 2

(the boxed parts). Thanks to these expected typings, we can obtain their chil-
dren’s expected typings subsequently. Finally we can obtain the following type
debugging information tree.

x 1 :

{

({x : int → α} ⊢ α,L0)

({x : bool → γ; y : bool → δ}, ζ, Le ∪ {l})

y 2 :

{

({y : int → β} ⊢ β, L1)

({x : bool → γ; y : bool → δ}, η, Le ∪ {l})

(x 1, y 2)l:

{

({x : int → α; y : int → β} ⊢ α ∗ β, L0 ∪ L1 ∪ {l})

({x : bool → γ; y : bool → δ} ⊢ ǫ, Le)

The algorithm in presence of multiple type errors is the following.

1 (Re)construct PTT. If the expected typing of an expression in the past steps
is ×, we use abstracted typing ({} ⊢ γ, {}) (γ is a new type variable that
does not appear anywhere). Otherwise we use standard method to infer its
principal typing in [2, 12].

2 By the rules in Figure 5. Infer expected typings that we could not obtain
yet.

3 If we obtain new expected typings in step 2, we repeat step 1. Otherwise
construction of type debugging information tree is finished.

For doing this, we need a restriction: each tree node has at most two children.
Thanks to this restriction we can determine if the sibling node information is
needed or not. So before inferring principal and expected typings we transform
the tree such that every node has at most two children.

4 Using the Type Debugging Information Tree

In this section we show how the type debugging information tree and its typings
can be used to develop different type debugging tools.

4.1 Enumeration of Type Error Messages

The type error messages of a compiler are most familiar to programmers. For
an ill-typed program the OCaml compiler stops after producing one type error
message. From our type error debugging tree we can easily produce many type
error messages: Every tree node where the principal typing and expected typing
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are in conflict, that is, cannot be unified, is a type error node and thus yields a
type error message.

For example, the tree in Figure 1 yields four error messages about leaves (^,
fst, 2, :: (in [2])) and six error messages about inner nodes.

For each type error node we can produce a type error message as follows:

(fst ^ n)

This expression has type string -> string -> string

but an expression was expected of type int -> ’b -> ’c

In practice the order in which the type error messages are shown is important.
The most likely causes, based on some heuristics, should be shown first [1].

4.2 Type Error Slicing

A type error slice is a slice of a program that on its own is ill-typed. A type error
slicer receives an ill-typed program and returns one or many type error slices.
For our example

(fun x -> (fun y -> y + x)) true

the type debugging information tree enables us to produce the type error slice

(fun x -> (fun y -> .. + x)) true

In a slice .. denotes any subexpression that does not belong to the slice.
We obtained the type error slice by simply removing any subexpression that

has an expected typing ×, here just the subexpression y. An expected typing ×
indicates that the types of the surrounding program, from which the expected
typing is determined, are already in conflict. This simple method works well
when there is just a single type error slice. When there are several type errors,
we can potentially obtain many slices using the following algorithm:

1. Each node of the type debugging information tree has
– a location l of the programming construct of the node,
– a set of locations Li from which the principal typing was, determined
– a set of locations Le from which the expected typing was determined.

2. We remove elements in Li and Le that are not needed in opposite directions,
obtaining smaller sets L′

i ⊆ Li and L′
e ⊆ Le.

3. If {l} ∪ L′
i ∪ L′

e is not subset of a type error slice that we already have, it is
a new type error slice.

4.3 Improved Interactive Type Error Debugging

An interactive type debugger asks the user for information to determine the
source of a type error. The PTT was originally defined to support algorithmic
debugging of type errors. Here is a short example session, with the user’s input
underlined, demonstrating algorithmic debugging using the PTT of Figure 1:
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1. Is your intended type of f [string] -> string -> [string]?

> No

...

6. Is your intended type of ^ string -> string -> string?

> No

Type error debugger locates the source of a type error: ^

Against intentions, its type is string -> string -> string

The source of the type error is located after six questions.
The questions of algorithmic debugging are based on a walk through the

PTT. The sesssion starts at a node that has a principal typing ×, but all its
child nodes have a principal typing unequal ×. Here the session starts at the
root of the PTT.

Using the type error informatin tree, we start at a type error node instead.
Because leaves of the tree are often sources of type errors and their typings are
easier to understand, we start at a leaf type error node. So in our example we
might start with the node for ^ and thus successful finish algorithmic debugging
after one question.

Adding type annotations (signatures) to a program adds information to the
expected typings. More of them become ×, which excludes the nodes from being
asked about in an algorithm debugging session. If in our example we add that
f should have type [int] → int → [int], then ^ is the only leaf type error node
of the type debugging information tree and hence the algorithmic debugging
session has to start with it.

5 Evaluation

We evaluate our prototype using fifteen programs, each of which has one type
error. Most of them are from the functional programming courses in Ochano-
mizu University. Some examples are from the online demonstration of Skalpel
[13]. Three of them include multiple type conflicts. The OCaml compiler’s error
message locates the cause of a type error correctly for Test 5, 7, 9 and 11.

We rank error messages by giving higher priority to leaves than inner nodes,
and higher priorty to large location sets.

How do expected typings reduce the search space of type debugging?
Figure 7 shows the number of lines of each program and its number of expected
typings. The sum of the expected typings are one third of the sum of the program
sizes. Basically large programs have more locations that do not contribute to type
errors; therefore expected typing will be more effective in large programs.

Are user’s type annotation useful? The Figure 8 shows the number of
expected typings of leaves and inner nodes, respectively. The blue line and green
line show the expected typings without user’s annotations. The other two lines
are with user’s annotations. From this figure we see that user’s annotations
reduce the search space of type debugging. This reduction could not be achieved
without expected type inference.
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Fig. 7. The program sizes and the num-
ber of expected typings

Fig. 8. The number of expected typings
(leaves and inner nodes)

Fig. 9. The numbers of question to anwer
(without and with user’s annotation)

Fig. 10. Comparison with the existing de-
bugger

How many questions does algorithmic debugging ask? Figure 9 shows
the numbers of questions until we locate the type error source. Because the
numbers are small, our strategy looks effective for type debugging. There are
few expected typings; therefore there is no significant difference.

How much does our system improve interactive debugging? In Figure 10
we compare our debugger (adding a type annotation for the whole program) with
an existing implementation [12] (for convenience we call this the IFLdebugger).
In most cases our debugger can locate the source of a type error faster than
the IFLdebugger. In some cases the IFLdebugger locates faster; however, this
depends on the bias, from the bottom of the tree. Especially in the cases that
the source of a type error is far from the type conflicted part (starting point of
debugging) our method is effective (Test 4 and Test 10).

6 Related Work

New Type Inference Algorithms. Many researchers designed new type in-
ference algorithms which are better than Milner’s algorithm W for type error
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debugging. For example, Lee and Yi [6] presented algorithm M which finds type
conflicts earlier than algorithms W. Like W, algorithm M is biased: when there
is a type conflict between two subexpressions in a program, it always blames
the subexpression on the right. Both algorithms stop at the first type conflict
that they find. In contrast, Neubauer and Thiemann [7], and Chen and Erwig
[1] define type inference algorithms that succeed for any program. They extend
the type system in different ways to allow an expression to have multiple types.
Otherwise ill-typed expressions are typed with the new ‘multi-types’. As part of
presenting type debugging information to the user, Chen and Erwig formalise
the notion of expected type.

Interactive Type Error Debugging. Chitil [2] emphasises that the cause
of a type error depends on the intentions of the programmer. Hence type error
debugging should be an interactive process involving the programmer. He shows
how to apply algorithmic debugging [9] to type error debugging: the programmer
has to answer a series of questions by the debugger. Chitil defines the PTT as
foundation for algorithmic debugging. Tsushima and Asai [11] implement a type
debugger for OCaml based on Chitil’s idea.

Type Inference as Constraint Solving Problem. Every programming lan-
guage construct puts a constraint on the type of itself and its direct subexpres-
sions. So a program can first be translated into a set of constraints which are
solved in a separate phase. A minimal unsatisfiable subset of constraints ex-
plains a type error. If each constraint is associated with the program locations
that gave rise to it, then a minimal unsatisfiable subset of constraints defines
a slice of the program that explains the type error to the user. Heeren, Hage
and Swierstra [4] annotate a syntax tree of the program with type constraints
such that different algorithms can solve these constraints in different orders.
The Chameleon system [10] fully implemented the type-inference-as-constraint-
solving approach for an expressive constraint language that supports many ex-
tensions of the Hindley-Milner type system, especially Haskell’s classes. Besides
presenting slices, Chameleon also provides interactive type error debugging. Con-
currently Haack and Wells [3] applied the same idea to the Hindley-Milner type
system. They later developed their method into the tool Skalpel for type error
slicing of ML programs [13].

Reusing the Compiler’s Type Inference as Black Box. Instead of in-
venting a new type inference algorithm, several researchers developed methods
for reusing the existing type inference implementation of a compiler for type
error debugging. The central motivation is that implementing type inference for
a real programming language is a major investment already made; besides, the
type systems of some languages such as Haskell continuously evolve. Schilling
[8] developed a type error slicer for a subset of Haskell that produces program
slices similar to Skalpel. Tsushima and Asai [12] built an interactive debugger for
OCaml that provides the user experience of Chitil’s approach (cf. Section 4.3).
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Comparison. To produce the PTT of a program, our implementation uses
the method of Tsushima and Asai, reusing the existing compiler’s type infer-
ence. Hence, even though we have to add expected typings, unlike many other
methods we do not require a reimplementation of type inference. Our framework
supports several type debugging approaches with different user experiences, in-
cluding the program slices of constraint solving methods and interactive type
error debugging. Although constraints support formalising type systems and
type debugging, they are not directly suitable for being shown to the user.

7 Conclusion

In this paper we argue that expected typings, which provide type information
from the context of an expression, are useful for type error debugging. We de-
scribe a common framework for several type error debugging approaches. Our
prototype supports the following claims

– Expected typings reduce the search space of type debugging.
– Propagating user’s type annotations additionally reduces the search space

of type debugging.

Our framework allows for a synergy of previously independent methods. than
with existing type debuggers.

When a program contains many type errors, our expected typings are often
not informative enough. We believe that this is because we use a coarse typing
× to express any kind of type conflict. In the future we want to explore how we
can extend our framework with a more fine-grained language of typings, where
the language of types is extended by a construct × and instead of a typing ×
we have a typing like {x : ×, y : β} ⊢ κ.
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