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ABSTRACT 

A general theoretical framework is described to obtain the advantages and the drawbacks of two novel Fourier Domain 

Optical Coherence Tomography (OCT) methods denoted as Master/Slave Interferometry (MSI) and its extension 

denoted as Complex Master/Slave Interferometry (CMSI). Instead of linearizing the digital data representing the 

channeled spectrum before a Fourier transform can be applied to it (as in OCT standard methods), channeled spectrum is 

decomposed on the basis of local oscillations. This replaces the need for linearization, generally time consuming, before 

any calculation of the depth profile in the range of interest. In this model two functions, g and h, are introduced. The 

function g describes the modulation chirp of the channeled spectrum signal due to nonlinearities in the decoding process 

from wavenumber to time. The function h describes the dispersion in the interferometer. The utilization of these two 

functions brings two major improvements to previous implementations of the MSI method. The paper details the steps to 

obtain the functions g and h, and represents the CMSI in a matrix formulation that enables to implement easily this 

method in LabVIEW by using parallel programming with multi-cores.  

Keywords: Optical coherence tomography; Medical optics instrumentation; Multiple imaging; Ophthalmic optics and 

devices. 

 

1. INTRODUCTION 

Spectrometer based Optical Coherence Tomography (Sp-OCT) and Swept Source based Optical Coherence Tomography 

(SS-OCT) [1,2] are technologies based on analyzing the spectrum of the interference signal produced between optical 

signal from an object under investigation and a local optical reference signal. OCT can produce in real time a cross 

section image of the object, i.e. a two dimensional image. The prior art executes spectral analysis using a Fourier 

transform (FT) of the spectrum of the interference I
chirped

, which necessitates to remove the chirp of the channeled spectra 

before any FT can be applied to it. This chirp has two origins: 1) the nonlinear dependence of the pixel position in the 

spectrometer versus the optical frequency or the non-linear frequency sweeping of the swept-source, 2) the unbalanced 

dispersion in the interferometer arms that also affects the regularity of maxima and minima in the readout channeled 

spectrum. Nevertheless numerical methods to correct chirping before FT are time consuming. 

Master-Slave Interferometry (MSI) [3] and Complex Master-Slave Interferometry (CMSI) [4] are new approaches to 

Fourier domain OCT that do not require the step of linearization. They are tolerant to any chirping of the spectrum and 

can proceed to calculation of the depth information profile (A-scan) on the depth of interest. In certain circumstances, as 

detailed below, this is more time efficient than using resampling followed by a FT. The MSI and CMSI methods proceed 

in two stages. In a first stage (Master), a mirror is used as an object and experimental channeled spectra (CSexp) are 

measured. In a second stage (Slave), the object replaces the mirror and the channeled spectrum is compared with local 

oscillations determined during the Master stage. These local oscillations characterize the system in terms of its chirp, due 

to nonlinearities and dispersion. Each local oscillation associated to a required depth is mixed with the channeled 

spectrum (obtained using the sample) and the result is in fact the value of the A-Scan at these required depths. For MSI, 

the local oscillations are the CSexp measured at different values of the optical path difference (OPD) in the interferometer, 

and the comparison operation is a correlation product [3] or several simplified dot product procedures for faster 

implementation of correlation [5,6]. For CMSI, the local oscillations are synthesized functions evaluated from a reduced 



 

 
 

 

 

 

set of acquired experimental channeled spectra. These functions incorporate the non-linearity of the spectrometer (or the 

swept source) and the unbalanced dispersion in the interferometer. The comparison operation for CMSI is only a simple 

dot product. 

In this proceeding, the theoretical framework on MSI and CMSI is presented. 

2. PROPERTIES OF MSI  

Let us consider a non-uniform distribution of wave number kɶ  along the pixels of the line array detector when using a 

spectrometer, or along time when using a tunable laser (swept source). The relationship between the optical wave 

number k and kɶ  is given by the function g( kɶ ) = k.  

For each depth of interest, z, the MSI method consists in mixing the channeled spectrum I
chirped

 collected when the 

sample is placed in the object arm (Slave stage) with the channeled spectrum CSexp collected at the Master stage for an 

OPD = 2z, when the mirror is used as an object. The comparison operation is then the maximum of the correlation 

product between I
chirped 

and CSexp as follows: 

( ) ( ) ( )exp ,
chirped

T
MSI T zz Max I k CS k dk

+∞

−∞

+
 

=  
 
∫ ɶ ɶ ɶ .    (1) 

The correlation product is affected by the random phase shift jrand induced by the fluctuations of the OPD between the 

step of acquiring the channeled spectra CSexp to be used as local oscillations and the step of measuring the channeled 

spectrum I
chirped

 associated to the object. Without random variation, MSI can be written as the dot product between I
chirped

 

and CSexp 

( ) ( ) ( )exp
,chirpedMSI z I k CS k dz k

+∞

−∞

= ∫ ɶ ɶ ɶ ,    (2) 

that represents the correlation product for argument zero. For a single-layer sample whose reflection is R at an axial 

distance z0, the MSI signal can be expressed according to the Parseval theorem, as follows 

( ) ( ) ( ) ( ) ( )2

0 0

dG k
MSI z e R z z z FT A k

dk
δ

   = ℜ − ⊗  
    

,   (3) 

where A(k) represents the interference contrast, ≈ is the convolution product, d is the Dirac function and G is defined as 

the inverse function of g, G(g) ≡ 1. 

The MSI method is independent of the amount of dispersion left uncompensated in the interferometer, meaning that the 

axial resolution is not affected. This property has already been demonstrated in [7]. Additionally, as the decoding non-

linearity described by dG/dk is the same at all OPD values, the axial resolution is also independent on z but it is not 

optimal, as Eq. (3) involves the square of A than simply A (if the chirp is removed before the FT). For instance if A has a 

Gaussian shape, the axial resolution is 2  poorer than the axial resolution obtained with the FT method without any 

unbalanced dispersion and nonlinearities. Equation (3) also shows that combination of phase in the complex R with the 

random phase impedes the recovery of the complex R. 

3. PROPERTIES OF CMSI  

3.1 Synthesized local oscillations 

The experimental channeled spectra CSexp measured during the Master stage depend on the non-linearity of the 

spectrometer or the swept-source ( )g k k=ɶ , and the function ( )h kɶ  related to the unbalanced dispersion of the 

interferometer according to the following expression: 

( ) ( )( ) ( )( ) ( ) ( )( ) ( )
p

2

ex
,

randi g k k

DC

z h
CS I g k A g k ez Ck C

ϕ π+ += + +
ɶ ɶ

ɶɶ ɶ ,   (4) 

where IDC follows the shape of the power spectrum of the optical source and CC means complex conjugate.  



 

 
 

 

 

 

A simple way to extract the functions g and h consists in following three steps as described below. 

1
st
 step: extraction of the phase 

Figure 1 shows how to extract the phase of the experimental channeled spectra CSexp measured during the Master stage.  

The procedure is based on a Fourier transform calculation, a high-pass filter to remove the DC component and the 

conjugate term , and the argument calculation of complex values. 

 

Figure 1. Diagram explaining the process of extracting the phase of a real channeled spectrum related to a mirror as sample. 

Arg means argument calculation. 

The measured phase f related to CSexp is then equal to 

( ) ( ) ( ) ( ), 2
rand

k z g k z h k zφ ϕ= + +ɶ ɶ ɶ .    (5) 

2
nd

 step: random phase removed 

The phase is then subtracted from the value of the phase measured at the centre of the spectrum 
0

kɶ . This procedure 

removes the random phase induced by the fluctuations of the OPD during the Master stage: 

( ) ( ) ( ) ( )( ) ( ) ( )( )0 0 0
, , 2k z k z g k g k z h k h kφ φ− = − + −ɶ ɶ ɶ ɶ ɶ ɶ .   (6) 

3
rd

 step: linear regression 

A linear regression applied to the phase experimental phase for each value of kɶ , according to z, permits to extract the 

functions g( kɶ ) and h( kɶ ). As a further simplification, we consider that g( kɶ ) and h( kɶ ) are equal to zero at the center of 

the spectrum. A minimum of n = 2 CSexp are needed to extract the functions g( kɶ ) and h( kɶ ), while in practice, for 

enhanced accuracy, we normally acquire n = 5 CSexp . The linear regression can be expressed in matrix format as:  

( ) ( )
( ) ( )

( ) ( )

( ) ( )

1 0 1

0

0

0

, ,

, ,n n

k z k z
g k g k

P
h k h k

k z k z

φ φ

φ φ

+

 −
 −  
   =
   −  −  

ɶ ɶ
ɶ ɶ

⋮
ɶ ɶ

ɶ ɶ

,    (7) 

where P
+
 is the pseudo-inverse matrix of P defined by:  

12 1

2 1
n

z

P

z

 
 =  
  

⋮ ⋮ ,      (8) 

z1, .., zn being the different positions of the mirror used at the Master stage for which CSexp are collected.  

 

The local oscillations (masks) are built to obtain the same point spread function as that delivered by the standard method 

(where the chirp is removed by resampling, followed by application of a TF). The masks are complex and sensitive to the 

phase of R . They are generated for each depth of interest z: 

( ) ( ) ( )2
( ), 2

built

k
M

dg
z i g z h

c
k Exp k k

dk

π  +  
  

=
ɶ

ɶ ɶ ɶ
ɶ

.   (9) 



 

 
 

 

 

 

3.2 Comparison operation between I
chirped

 and Mbuilt 

CMSI involves a similar definition to the MSI except that the CSexp used as local oscillations are replaced by a complex 

function with the adjustable parameter z. CMSI is valid for an object set outside OPD = 0, i.e. CMSI signal is defined 

similarly to Eq. (2) by the following integral: 

( ) ( ) ( )* ,chirped

built
CMS zI z I k M k dk

+∞

−∞

= ∫ ɶ ɶ ɶ .    (10) 

As with the MSI, CMSI has been described above by continuous variables, however practical implementations involve 

digital processing. In this case one point of the A-Scan in depth is equivalent to a dot product between a mask vector and 

the acquired spectrum, I
chirped

. An A-scan from z1 to zZ can be written as a product between a matrix containing Mbuilt for 

different depths and the vector (or array) I
chirped

 as shown below: 

( ) ( )
( ) ( )

( ) ( )

( )

( )

* *

1 1 1 1

1

* *

1

, ,

, ,

, ,

chirped
built built K

Z

chirped

Kbuilt Z built K Z

M k z M k z I k

Ascan z Ascan z

I kM k z M k z

    
    

   = •      
       

ɶ ɶ ɶ⋯

… ⋮ ⋮

ɶɶ ɶ⋯

,  (11) 

where 
1 ,..., Kk kɶ ɶ  correspond to the sampling along the pixels in the spectrometer line camera or along the time slots 

within the sweeping time for a swept source and where z1, .., zZ correspond to the different OPDs required by the user 

independently from the  number of CSexp acquired at the Master stage. 

Due to the matrix expression of CMSI and the reduction of operations according to the depth of interest, CMSI method 

can provide real-time cross-sectional images in LabVIEW [8] thanks to high performance toolboxes that take advantage 

of the multicore design of modern processors. 

 

3.3 Properties of CMSI 

For a single-layer sample whose reflection is R at depth z0, CMSI can be expressed as follows 

( ) ( ) ( ) ( ){ }0 0CMSI z R z z z FT A kδ= − ⊗ .    (12) 

Depth information profile is extracted and expressed as a convolution product between a complex reflectivity function 

and the ideal PSF of the system, which leads to a constant axial resolution in depth irrespective of the non-linearity of the 

decoder and irrespective of the amount of the unbalanced dispersion in the interferometer.  

The drawbacks of the previous implementations of MSI are overcome by CMSI: (i) the depth points of the A-scan are 

now determined by a sampling parameter z, independent of the OPD values used to acquire the CSexp at the Master stage, 

(ii) CMSI operation returns a complex signal, hence phase of R is conserved. (iii) The axial resolution is related to 

FT[A], as for a perfect interferometer. 

 

3.4 Different expressions of the local oscillations 

In order to decrease the amplitude of secondary lobes in Fourier domain and improve the quality of the image in depth, a 

window function W is usually applied with the Fourier transformation of the channeled spectra. With CMSI, the same 

strategy can be used, and the synthesized local oscillations become: 

( ) ( ) ( ) ( ),

2
, 2( )

W built

k
M k W k Ex

dg
z i g z hp k k

dk c

π  +  
  

=
ɶ

ɶ ɶ ɶ ɶ
ɶ

.   (13) 

Another functionality is to have the possibility of removing the DC component of the channeled spectrum I
chirped

. In this 

case, the synthesized local oscillations can be written as: 

( ) ( ) ( ){ }{ }1

,
, ,

F built HighPass built
M k z FT F z FT M k z

−=ɶ ɶɶ ,    (14) 

where FHighPass is a high pass filter to remove the DC component. 

4. CONCLUSION 

The theoretical expression for the operation of CMSI is identical to the Fourier transform of channeled spectra for a 

perfect interferometer (no dispersion) and perfect decoder, such as either a spectrometer linear in wavenumber or a 



 

 
 

 

 

 

linearly tunable swept source, however with the difference that the CMSI delivers a complex signal without random 

phase shift. This allows CMSI to eliminate the process of window integration practiced in the MSI, integration that has 

lead to worsening the axial resolution. Having access to the phase, CMSI method can be further explored to measure the 

phase of signal acquired from the object. Lastly CMSI method can provide real-time cross-sectional images in LabVIEW 

thanks to high performance toolboxes that take advantage of the multicore design of processors. 
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