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Stringy invariants for horospherical varieties

of complexity one

Kevin Langlois, Clélia Pech and Michel Raibaut

Abstract

We determine the stringy motivic volume of log terminal horospherical varieties of
complexity one and obtain a smoothness criterion using a comparison of stringy and
usual Euler characteristics.

1. Introduction

Motivic integration is a natural geometric counterpart to p-adic integration. It is a powerful
tool for creating new invariants for algebraic varieties, such as stringy invariants, see [Bat98]. In
[BM13], stringy invariants were instrumental in simplifying a smoothness criterion for embeddings
of horospherical homogeneous spaces; however for general spherical varieties the formulation of
this criterion remains a conjecture, see [BM13, Conjecture 6.7].

In this paper, we study stringy invariants of Q-Gorenstein horospherical varieties of complex-
ity one with log terminal singularities. One of our results, Theorem 5.16, provides an explicit
formula for stringy invariants in terms of their combinatorial description. We also obtain a ra-
tional form for the stringy motivic volume and, using convex geometry, an explicit finite set of
candidate poles, see Theorem 5.23. Finally, under additional assumptions, we rephrase in Theo-
rem 6.4 a smoothness criterion for these varieties in terms of the stringy Euler characteristic.

Throughout, we work over complex numbers. We denote by G a connected simply connected
reductive linear algebraic group and by B a Borel subgroup. By ‘simply connected’ we mean that
G = Gss × F , where Gss is a simply connected semisimple group in the usual sense and F is an
algebraic torus. A G-homogeneous space G/H, where H is a closed subgroup, is horospherical

if H contains a maximal unipotent subgroup of G. These spaces are locally trivial torus fiber
bundles G/H → G/P over flag varieties, where P is the parabolic subgroup normalizing H. The
fibers are isomorphic to the algebraic torus T = P/H. The character lattice of T and the set of
simple roots indexing the Schubert divisors in G/P entirely describe G/H, see Section 3.1.

A horospherical G-variety is a normal G-variety such that every orbit is horospherical. Its
complexity is the minimum of the codimensions of its G-orbits. Horospherical varieties of com-
plexity at most one admit a combinatorial description in terms of objects coming from convex
geometry, almost analogous to the classical situation for toric varieties. This combinatorial de-

2010 Mathematics Subject Classification 14L30, 14M27, 14E18
Keywords: horospherical variety, arc space, motivic integration.

This research is supported by the Max Planck Institute for Mathematics of Bonn, the LABEX MILYON (ANR-
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scription was introduced by Timashev in [Tim97], and adapted from Luna–Vust theory [Tim11,
Chapter 3], see also [LT16]. It goes as follows.

Consider a simple G-variety X, i.e., a G-variety which contains an open affine B-stable subset
which intersects every G-orbit of X. Any simple horospherical G-variety X of complexity one
is described by a 4-tuple (C,G/H,D,F), where C is a smooth projective curve and G/H is a
horospherical G-homogeneous space. The pair (C,G/H) encodes the birational equivariant type
of X. The third datum D is a polyhedral divisor on C, i.e., a Weil divisor on C whose coefficients
are polyhedra, see Definition 3.1. Finally F denotes the set of B-stable prime divisors on X which
are not G-stable and which contain a G-orbit of X. We call the pair (D,F) a colored polyhedral

divisor.

It follows from [Sum74] that any normal G-variety possesses a finite open covering by stable
subsets which are simple G-varieties. Thus any horospherical G-variety of complexity one can
be described by a triple (C,G/H,E ), where E is a colored divisorial fan consisting in a certain
finite collection of colored polyhedral divisors, see Definition 3.1.

The goal of this paper is to compute the stringy motivic volume of X in terms of (C,G/H,E ),
under the assumption that X is a normal Q-Gorenstein variety with log terminal singularities.
For such X, let f : X ′ → X be a log resolution of singularities. The stringy motivic volume of
X is the integral

Est(X) =

∫

L (X′)
L− ordKX′/XdµX′ . (1)

Here L is the class of the affine line, KX′/X the relative canonical divisor, L (X ′) the arc space

of X ′, and the measure µX′ takes values in a modification of the Grothendieck ring K0(VarC)
of complex algebraic varieties.

The measure µX′ can be explicitly described on particular subsets of L (X ′). Denote by πn
the truncation morphism sending an arc of X ′ to its n-jet. A subset Z ⊂ L (X ′) is a cylinder if
there is n0 ∈ N such that for any n > n0, the subset πn(Z) is a constructible set in the space of
n-jets of X ′, and Z = π−1

n (πn(Z)). On the cylinders the motivic volume is defined as

µX′(Z) = [πn(Z)]L
−n dimX′

and does not depend on the choice of n > n0. Measurable subsets of L (X ′) are approximations
of cylinders. The integral of a measurable function F : L (X ′) → Z with respect to µX′ is the
sum (if it exists) of the series

∑

s∈Z µX′(F−1(s))L−s.

Note that the stringy motivic volume has a rational form (see the alternative expression in
Definition 2.5) and it is independent of the choice of a resolution of singularities, see [Bat98].

If X is toric with lattice N and fan Σ, let θX : |Σ| → Q be the piecewise linear function which
takes value −1 on each primitive generator of the one-dimensional cones of Σ. Here |Σ| denotes
the reunion of all cones of Σ. Then

Est(X) = (L− 1)r
∑

ν∈|Σ|∩N

LθX(ν). (2)

Equation (2) was proved in [BM13, Theorem 4.3], albeit in a more general setting. We follow the
proof of loc. cit. which consists of two main steps.

Let K be a field extension of C. The set L (X)(K) of K-points in the arc space L (X) of the
toric variety X identifies with X(O), where O = OK := K[[t]]. The torus T (O) naturally acts
on X(O) ∩ T (K), where K is the fraction field of O, and X(O), T (K) are viewed as subsets of
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X(K). The set of orbits of X(O) ∩ T (K) is in bijection with |Σ| ∩N [Ish04]. This yields natural
cylinders Cν ⊂ L (X) for any ν ∈ |Σ| ∩N .

In the second step, we study the integral
∫

L− ordKX′/XdµX′ along each cylinder Cν , where
X ′ → X is a desingularisation given by a fan subdivision. Since X ′(O) ∩ T (K) identifies with
X(O) ∩ T (K) and the complement in L (X ′) has motivic measure zero, we obtain an equality

∫

L (X′)
L− ordKX′/XdµX′ =

∑

ν∈|Σ|∩N

∫

Cν

L− ordKX′/XdµX′ . (3)

Equation (2) is then obtained by computing each summand of the right-hand side.

When adapting these two steps to horospherical varieties of complexity one we encounter
significant differences. For simplicity, let us explain these differences in the complexity one toric

case, i.e., assume that X is a normal Q-Gorenstein T -variety of complexity one with log terminal
singularities. We denote by (C, T,E ) the combinatorial data associated with X. The first step
is then modified as follows. The variety X contains an open subset of the form Γ × T , where
Γ ⊆ C is an open dense subset. Thus comparing with the toric setting it is natural to consider
the action of T (O) on

X(O) ∩ (Γ× T )(K). (4)

However, when we follow the almost similar approach of Ishii [Ish04], we find uncountably many
T (O)-orbits. To solve this problem, we cut the set (4) in two disjoint pieces, namely, the subset
of horizontal arcs and the subset of vertical arcs. Thus we obtain a partition of the set (4) by
parts C(y,ν,ℓ) which are T (O)-stable and indexed by a countable set |E |Γ ∩ N combinatorially
determined by E .

The second step consists in checking that each C(y,ν,ℓ) is measurable, see Lemmas 4.14 and 4.15,
and to compute

∫

L (X′)
L− ordKX′/XdµX′ =

∑

(y,ν,ℓ)∈|E |∩N

∫

C(y,ν,ℓ)

L− ordKX′/XdµX′ , (5)

where X ′ is obtained by an explicit desingularization determined by E , see Section 5.3.

The function θX : |Σ| → Q introduced above in the toric setting is a support function
of a torus-invariant canonical divisor. This analogy between support functions and Cartier Q-
divisors persists for horospherical varieties of complexity one, see Section 5.2. However it is
not possible, adapting the proofs in [BM13], to directly obtain a version involving the support
function of an invariant canonical divisor. Instead we need to introduce an auxiliary function

ωX , see Proposition-Definition 5.10. This ωX does not define in the usual sense a Cartier Q-
divisor (see Section 6.1 for further details). Note that in [Lan17] we use ωX for characterizing
singularities related to the minimal model program.

Our main result can be stated as follows.

Theorem 1.1. Let X be a Q-Gorenstein horospherical variety of complexity one with log termi-
nal singularities and combinatorial data (C,G/H,E ). Assume that Γ ⊂ C is a dense open subset
which does not contain any special point (see Definition 3.11). Then

Est(X) = [G/H]





∑

(y,ν,ℓ)∈|E |Γ∩N

[Xℓ]L
ωX(y,ν,ℓ)



 ,

where X0 = Γ and Xℓ = A1 \ {0} if ℓ > 1.
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Let us give a brief summary of the contents of each section. In the second and third sections, we
introduce notations from motivic integration and horospherical varieties that we use throughout
this paper. In the fourth section, we study the arc space of a horospherical variety of complexity
one. To do this we proceed in two steps. First, we give a description in the case where the acting
group is an algebraic torus, this corresponds to Sections 4.1 and 4.2. The last step concerns the
general case, where we reduce to the case of torus actions by parabolic induction. We believe
that the study in the first step, independently, might be interesting for the study of singularities
of T -varieties.

In the fifth section, we prove Theorem 1.1. One of the main ingredients of the proof is the
construction by combinatorial methods of an explicit desingularization of X. This construction
is explained in Section 5.3. Then we give a precise description of the rational form of the stringy
motivic volume in terms of ωX . In the last section, we provide examples and applications. In
particular, for a certain class of log terminal horospherical varieties of complexity one we give
a simple expression of another invariant called the stringy Euler characteristic, see Lemma 6.1.
This allows us to rephrase for this class the smoothness condition in terms of the stringy Euler
characteristic, see Theorem 6.4.

2. Arc spaces and motivic integration

Motivic integration was developed by Batyrev in the smooth case [Bat98] and by Denef and Loeser
[DL99] in full generality. In this section, we recall main facts on this theory used throughout the
paper (see also [Loo02, Loe09, Bli11] for survey articles).

2.1 The arc space of a variety

Let X be a variety. For any integer m we denote by Lm(X) the m-jet scheme of arcs of X.
It is a scheme of finite type, and for any field extension K of C, its K-rational points are
the K[t]/(tm+1)-rational points of X. We will consider it with its reduced structure. For any
m > ℓ > 0 we denote by jm,l : Lm(X) → Lℓ(X) the transition morphism induced by the
Weil restriction morphism from C[t]/(tℓ+1) to C[t]/(tm+1). The arc space of X is the limit of
the projective system (Lm(X), (jm,l)). It is a scheme and for any field extension K of C each
K-rational point of L (X) corresponds to a unique K[[t]]-rational point of X, and vice-versa.
We write πℓ : L (X) → Lℓ(X) for the natural truncation morphisms. They commute with the
transition morphisms.

2.2 The Grothendieck ring K0(VarC)

We denote by [S] ∈ K0(VarC) the class of an algebraic variety S, and let L = [A1
C]. We write M̂C

for the completion of K0(VarC)[L
−1] with respect to the usual filtration ensuring that L−n → 0

(see [DL99], [Bli11] and [NS11]).

2.3 Motivic integration

Let X be a smooth d-dimensional variety.

Definition 2.1. A subset C ⊂ L (X) is a cylinder if C = π−1
m0

(πm0(C)), for some m0, and the
set πm0(C), called the m0-basis of C, is constructible in Lm0(X). Note that L (X) itself is a
cylinder (see [Gre66, Corollary 2]). The motivic measure of C is defined as

µX(C) = [πm(C)]L−md, for any m > m0.
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This does not depend on m > m0 since if m > ℓ > 0, the map jm,ℓ |πm(C): πm(C) → πℓ(C) is a

piecewise trivial fibration with fiber A(m−ℓ)d.

Remark 2.2. A larger family of measurable sets can be considered (see [Bat98, DL99], [DL02,
Appendix]). For instance, if Y ( X is a closed reduced subscheme, then L (Y ) is measurable,
and µX(L (Y )) = 0 (see [DL99, Equation (3.2.2)] or [Bli11, Proposition 4,5]).

Definition 2.3. A function F : L (X) → Z ∪ {∞} is measurable if for any s ∈ Z ∪ {∞} the
subset F−1(s) is measurable. In that case, L−F is integrable over a measurable set C of L (X)
if µX(F−1(∞)) = 0 and the series

∑

s∈Z µX(C ∩ F−1(s))L−s converges in M̂C. Then, we let
∫

C
L−FdµX :=

∑

s∈Z

µX(C ∩ F−1(s))L−s.

Example 2.4 [Bli11, Section 2.4]. Let Y be a proper closed subscheme of X defined by the sheaf
of ideals IY . Let γ be a point in L (X) and γ∗ : OX → OSpec(kγ [[t]]) be its sheaf homomorphism.
The order of γ along Y is ordY (γ) := sup {e ∈ N ∪ {∞} | γ∗(IY ) ⊆ (te)}. The function ordY
is measurable and the set ord−1

Y (∞), equal to L (Y ), has zero measure. Thus, for a divisor
D =

∑s
i=1 aiDi in X (where ai ∈ Q and the Di are prime divisors) and for an arc γ ∈ L (X),

we set ordD(γ) =
∑s

i=1 ai ordDi(γ) with, value ∞ if one of the ordDi(γ) is infinite. The function
ordD is then measurable.

2.4 Stringy invariants of varieties with log terminal singularities

Let X be an irreducible normal Q-Gorenstein variety, namely, X is a normal variety and a (thus
any) canonical divisor KX is Q-Cartier. We say that a morphism f : X ′ → X is a resolution of

singularities if X ′ is smooth, f is birational and proper, and the exceptional locus is the reunion
of finitely many normal crossings irreducible smooth divisors.

Definition 2.5. Let X be a normal Q-Gorenstein algebraic variety with log terminal singulari-
ties. Let f : X ′ → X be a resolution of singularities of X and let (Ei)i∈I be the set of irreducible
components of its exceptional locus. Let KX (resp. KX′) be a canonical divisor of X (resp. of
X ′) and (νi)i∈I be the multiplicities of the relative canonical divisor

KX′/X := KX′ − f∗KX =
∑

i∈I

νiEi.

The stringy motivic volume Est(X) is usually defined following [Bat98] as

Est(X) :=
∑

J⊂I

[E◦
J ]

∏

j∈J

L− 1

Lνj+1 − 1
∈ M̂C(L

1
m ),

where m is the g.c.d of the denominators of the νi, the ring M̂C(L
1
m ) is defined as the localization

and completion of K0(VarC) with respect to L
1
m , and E◦

J is
⋂

j∈J Ej \
⋃

i∈I\J Ei for every subset
J of I.

The theorem below follows from the appendix of [Bat98], see also [DL02] and [Yas04] :

Theorem 2.6. The stringy motivic volume is equal to

Est(X) =

∫

L (X′)
L
− ordKX′/X dµX′ ∈ M̂C(L

1
m )

and does not depend on the resolution f : X ′ → X. If X is smooth, then Est(X) = [X].
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Kevin Langlois, Clélia Pech and Michel Raibaut

From Est(X) we can deduce two new invariants for log terminal varieties. These invariants are
defined by Batyrev ([Bat98]) and also studied by several authors such as Denef–Loeser [DL02],
Yasuda [Yas04] and Schepers–Veys ([Vey03, SV07]).

Definition 2.7. The E-function of a log terminal variety X is defined as

Est(X;u, v) :=
∑

J⊂I

E(EJ ;u, v)
∏

j∈J

uv − 1

(uv)νj+1 − 1
,

where for any variety V , E(V ;u, v) is the usual Hodge-Deligne polynomial of V in the variables
u and v. The stringy Euler characteristic of X is

est(X) :=
∑

J⊂I

e(EJ)
∏

j∈J

1

νj + 1
,

where e(EJ) = E(EJ ; 1, 1) denotes the usual Euler characteristic.

3. Horospherical actions

Throughout, let G be a connected simply connected reductive algebraic group over C with Borel
subgroup B, maximal torus Q, and maximal unipotent subgroup U such that B = QU .

3.1 Horospherical transformations

An (G/H-)embedding of a horospherical homogeneous space G/H is a pair (X,x) such that X is
a normal G-variety containing x, the orbit G ·x of x is open, and the stabilizer Gx of x is H. For
brevity, we denote such an embedding simply by X. The subgroup H is called a horospherical

subgroup.

Description of horospherical subgroups of G. Let Φ be the set of simple roots of G and
W = NG(Q)/Q be the Weyl group of G. We denote by sα ∈ W the simple reflection associated
with α ∈ Φ and by ṡα a lift of sα to G. We also denote by w0 the longest element of W . If I ⊂ Φ
we set ẆI := 〈ṡα | α ∈ I〉 and we let PI be the parabolic subgroup generated by B and ẆI . The
map I 7→ PI between subsets of Φ and closed subgroups of G containing B is bijective.

By [Pas08, Proposition 2.4], there is a bijection between subgroups H of G containing U and
pairs (M, I), where M is a sublattice of the character group X(Q), and I ⊂ Φ, subject to the
property that for any α ∈ I, the associated coroot α∨ satisfies 〈m,α∨〉 = 0 for any m ∈M . The
bijection is constructed as follows. First consider the normalizer NG(H) of H in the group G. It
is a parabolic subgroup P = PI , where I ⊂ Φ. The subset I constitutes the first part of the data.
Now the quotient T := P/H is a torus, and our second datum M is the character lattice of T .

Colors and charts. Let Y be a horospherical G-variety of arbitrary complexity and L ⊂ G
be a closed subgroup of G. An L-divisor is an L-stable prime divisor, and a color is a B-divisor
which is not G-stable.

A B-chart of Y is a dense open B-stable affine subset of Y . We say that the horospherical
variety Y is simple if Y possesses a B-chart which intersects every G-orbit of Y . Since Y is
normal, it is the reunion of simple G-stable open subsets, see [Sum74, Theorem 1] and [Kno91,
Theorem 1.3]. Moreover every normal simple horospherical G-variety is quasi-projective.
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Models. Let Y be a variety with a horospherical G-action. We say that a G-variety Z is a
model of Y if Z is normal and there exists a G-equivariant birational map Z 99K Y . For instance,
any horospherical G-variety Y has a model of the form C × G/H, where H is a horospherical
subgroup of G, C is a smooth variety, and G acts by left multiplication on G/H and trivially on
C (see [Tim11, Proposition 7.7]). This implies that the dimension of C is equal to the complexity
of the action of G on Y .

Let Y be a horospherical G-variety with model Z = C × G/H. The variety Y contains a
G-stable open subset which is identified with Γ × G/H ⊂ Z, where Γ ⊂ C is open dense. Let
(M, I) be the lattice/subset pair parameterizing H. To any α ∈ Φ \ I we associate a color by
letting Dα denote the set Γ× p−1(Xα) ⊂ Y , where p : G/H → G/P is the natural projection,
P = NG(H), and Xα is the corresponding Schubert variety. The map α 7→ Dα between Φ\ I and
the set FY of colors of Y is bijective, see [FMSS95, Lemma 3]. We will use the same notation
Dα for the colors of G/H and the colors of Y .

3.2 Colored polyhedral divisors

In this subsection we consider horospherical varieties of complexity one, which as we have seen
are G-equivariantly birational to direct products Z = C ×G/H, where C is a smooth projective
curve and H is a horospherical subgroup of G. Here we introduce some combinatorial data which
describes all the models of Z. We refer to [Tim11, Section 16].

Let (M, I) be the pair associated with the horospherical subgroupH, andN be the dual lattice
Hom(M,Z). Denote by MQ and NQ the dual associated vector spaces Q⊗ZM and Q⊗ZN . The
dual σ∨ ⊂MQ of a polyhedral cone σ ⊂ NQ is

σ∨ = {m ∈MQ | ∀v ∈ σ, 〈m, v〉 > 0} .

The polyhedral cone σ is strongly convex (i.e., {0} is a face of σ) if and only if σ∨ generates MQ.

Definition 3.1 [AH06]. Let σ be a strongly convex polyhedral cone in NQ and C0 be a smooth
curve.

(i) A σ-polyhedral divisor on C0 is a formal sum

D =
∑

y∈C0

∆y · [y],

where ∆y ⊂ NQ is a σ-polyhedron (that is, the Minkowski sum of the cone σ and a non-
empty polytope Π ⊂ NQ), with the property that ∆y = σ for all but finitely many y ∈ C0.
The set of special points of D is Sp(D) := {y ∈ C0 | ∆y 6= σ}. The cone σ is called the tail

of D and the curve C0 is its locus.

(ii) The degree of D is defined, if C0 is complete, as the Minkowski sum degD :=
∑

y∈C0
∆y

inside NQ, and as the empty set otherwise.

(iii) For m ∈ σ∨ we define a Q-divisor on C0, called the evaluation of D at m, by setting

D(m) :=
∑

y∈C0

min{〈m, v〉 | v ∈ ∆y} · [y].

Definition 3.2. (i) For any subsemigroup S ofM we let C[S] =
⊕

m∈S Cχm be the C-algebra

subject to the relations χm · χm′
= χm+m′

for all m,m′ ∈ S.
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(ii) Let D be a polyhedral divisor. The associated M -graded algebra of D is the subalgebra

A(C0,D) :=
⊕

m∈σ∨∩M

H0(C0,OC0(⌊D(m)⌋))⊗ χm ⊂ C(C0)⊗C C[M ],

where ⌊D(m)⌋ is obtained by taking the integral part of the coefficients of D(m).

Definition 3.3. A σ-polyhedral divisor D is proper if either C0 is affine, or it is projective and
the two following conditions are satisfied:

(i) degD ( σ;

(ii) If min{〈m, v〉 | v ∈ degD} = 0 for some m ∈ σ∨, then D(rm) is principal for some r ∈ Z>0.

If D is proper then A(C0,D) and C(C0)⊗C C[M ] have the same field of fractions.

The next definition introduces the coloration map ̺ of the horospherical homogeneous space
G/H.

Definition 3.4. Let (M, I) be the lattice/subset pair associated with the horospherical subgroup
H. For any color D of G/H there exists a unique root α ∈ Φ such that D = Dα. In particular,
the coroot α∨ is an element of Hom(X(Q),Z). Thus its restriction to M , α∨

|M : M → Z, is an

element of N = Hom(M,Z), and we define ̺(D) as α∨
|M .

Definition 3.5. A pair (D,F) is a colored σ-polyhedral divisor (see [LT16, Section 1.3]) on C0

if F is a subset of FG/H such that ̺(F) ⊂ σ and 0 6∈ ̺(F), and if D is a proper σ-polyhedral
divisor on C0.

We now give a combinatorial description of the simple models of the product C×G/H, which
follows from a general classification result for normal G-varieties of complexity one, see [Tim97,
Theorem 3.1].

Theorem 3.6. Let G be a connected simply connected reductive algebraic group and H be a
horospherical subgroup associated with a lattice/subset pair (M, I). Define Z := C×G/H, where
C is a smooth projective curve.

(i) Let (D,F) be a colored polyhedral divisor on an open dense subset C0 ⊂ C. Then there
exists a simple G-model X(D) := X(D,F) of Z containing a B-chart which is determined
by (D,F). The construction of X(D) will be specified in Equation (7).

(ii) Let X be a simple G-model of Z. Then there exists an open dense subset C0 ⊂ C, a colored
polyhedral divisor (D,F) on C0, and a G-isomorphism X → X(D).

Let us sketch the construction of the G-variety X(D) from item (i). Denote by PF the
parabolic subgroup of G containing the Borel subgroup B and corresponding to the set of roots

IF = {α ∈ Φ \ I | Dα ∈ F} ∪ I.

Let L be the Levi subgroup of PF containing the maximal torus Q and BL be the Borel subgroup
of L containing Q, such that IF is the set of simple roots of L. We also write HL := H ∩ L and
UL := U∩L. The subgroupHL contains UL, hence the homogeneous space L/HL is horospherical.
It is quasi-affine, see [Tim11, Corollary 15.6]. Note that L/HL is constructed so that the set of
B-divisors in L/HL exactly identifies with F . Moreover the lattice of BL-weights in C(L/HL) is
the lattice M .

8
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Denote by X+(Q) ⊂ MQ the cone generated by the dominant weights of C[L/HL]. Recall
that the rational L-module C[L/HL] admits a C-algebra graduation

C[L/HL] =
⊕

m∈X+(Q)∩M

V (m),

where V (m) denotes the irreducible rational representation corresponding to m ∈ X+(Q) ∩M
(see [Tim11, Proposition 7.6]).

Since by definition of (D,F) we have ̺(F) ⊂ σ, it follows that σ∨ ⊂ X+(Q). Thus we may
define a subalgebra of C(C)⊗C C[L/HL] by

A(C0,D,F) :=
⊕

m∈σ∨∩M

H0(C0,OC0(⌊D(m)⌋))⊗C V (m) (6)

Set Y (D,F) := SpecA(C0,D,F). Since D is proper, Y (D,F) is a well-defined affine L-model of
the product C × L/HL. To conclude, consider the parabolic induction:

X(D) = X(D,F) := G×PF Y (D,F). (7)

The notation G ×PF Y (D,F) means that X(D) is the quotient (G × Y (D,F))/PF , where PF

acts by p · (g, y) := (gp−1, φ(p) · y) for all p ∈ PF , g ∈ G, and y ∈ Y (D,F). Here φ : PF → L is
the usual projection. Note that X(D) is a fiber bundle over G/PF with fiber Y (D,F).

The original construction of the simple G-models X(D) from [Tim97] generalized the ap-
proach of [Kno91] in complexity one. Let us recall here how this construction relates to the one
explained above.

Definition 3.7. Let Y be a horospherical G-variety. A locality of C(Y ) is a local ring Rp, where
p ⊂ R is a prime ideal in a subalgebra R of C(Y ) of finite type with fraction field C(Y ). The set
of localities S(Y ) is naturally endowed with a C-scheme structure, and it is called the scheme

of geometric localities. We denote by SG(Y ) ⊂ S(Y ) the maximal normal open subset where
the G-action (induced by the G-action on C(Y )) is a morphism of C-schemes; we will call it the
equivariant scheme of geometric localities.

According to the previous definition, a G-model of a horospherical G-variety Y is nothing
but a G-stable separated open dense subset of SG(Y ) which is also of finite type over C.

Now consider a horospherical G-variety of the form Z = C × G/H, where C is a smooth
projective curve and H is a horospherical subgroup.

Definition 3.8. The hyperspace NQ is the set C ×NQ ×Q>0 modulo the equivalence relation

(y, ν, ℓ) ∼ (y′, ν ′, ℓ′) ⇔ (y = y′, ν = ν ′, ℓ = ℓ′) or (ℓ = ℓ′ = 0, ν = ν ′).

Since an element (y, ν, 0) ∈ NQ does not depend on y ∈ C, in the sequel we will denote it by
(C, ν, 0). We also write N ⊂ NQ for the subset of integral points

N = { (y, ν, ℓ) ∈ NQ | ν ∈ N, ℓ ∈ Z>0 }.

Let D =
∑

y∈C0
∆y · [y] be a σ-polyhedral divisor on an open dense subset C0 ⊂ C. For y ∈ C0,

the Cayley cone Cy(D) is defined as the cone generated by the subsets σ × {0} and ∆y × {1} in
NQ ×Q>0. The hypercone associated with D is the subset C(D) ⊂ NQ defined by

C(D) =
⋃

y∈C0
{y} × Cy(D)

/

∼ .

We denote by C(D)(1) the subset of elements [y, ν, ℓ] ∈ C(D)∩N such that (ν, ℓ) is an integral
primitive generator of a one-dimensional face of Cy(D).

9
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Each triple ξ = (y, ν, ℓ) ∈ NQ induces a unique discrete G-invariant valuation w(ξ) : C(Z)∗ →
Q, whose restriction to the subalgebra C(C)⊗C C[M ] ⊂ C(Z) satisfies

w(ξ)(f ⊗ χm) = ℓ ordy(f) + 〈m, ν〉

for all f ∈ C(C)∗ and m ∈ M . Here we identify the algebra C[M ] with C[Bx0]
U , where Bx0 is

the open B-orbit in G/H. From this description it follows that the set of G-invariant discrete
valuations of C(Z) with values in Q is in one-to-one correspondence with the hyperspace NQ

(see [Tim11, Corollary 19.13, Theorems 20.3 and 21.10]).

Let us now consider the morphism X(D) → G/PF induced by projecting on the first factor
in Equation (7); its fibers are isomorphic to Y (D,F). The inverse image of the open B-orbit By0
of G/PF is a B-chart which we denote by X0. This B-chart intersects all the G-orbits in X(D).
Note that By0 is isomorphic to the affine space Ar

C, where r = dimG/PF . Since the fibration
restricted to By0 is trivial, the chart X0 is identified with Y (D,F)× Ar

C. The ring of functions
on X0 can be described as

C[X0] = (C(C)⊗C C[Bx0]) ∩
⋂

ξ∈C(D)(1)

Ov(ξ) ∩
⋂

D∈F

OvD , (8)

where vD is the valuation associated with the divisor D ∈ F and OvD , Ov(ξ) are the valuation
rings respectively of vD and v(ξ).

Remark 3.9. The variety X(D) is a reunion of G-orbits

X(D) = G ·X0 = {g · x | g ∈ G, x ∈ X0} ⊂ SG(Z). (9)

Thus Equations (8) and (9) yield another more conceptual construction of the G-variety X(D),
see [Tim11, Section 16]. From now on we identify X(D) with an open subset of SG(Z).

3.3 Colored divisorial fans

Here we introduce the combinatorial objects describing horospherical G-varieties of complexity
one. The idea is to consider ‘fans of colored polyhedral divisors’ in order to describe these varieties
as a gluing of simple G-models.

Definition 3.10 [LT16, § 1.3.4]. Let C be a smooth projective curve and G/H be a horospherical
homogeneous space. A colored divisorial fan on the pair (C,G/H) is a finite set E = {(Di,F i) |
i ∈ J} of colored polyhedral divisors, where

Di =
∑

y∈Ci

∆i
y · [y].

Here Ci is an open dense subset of C, F i ⊂ FG/H , and Di,F i are subject to the following
conditions:

(i) For all i, j ∈ J , we have (Di ∩Dj ,F i ∩ F j) ∈ E , where the intersection is given by

Di ∩Dj :=
∑

y∈Ci,j

(∆i
y ∩∆j

y) · [y],

and the curve Ci,j by the equality Ci,j := {y ∈ Ci ∩ Cj | ∆i
y ∩∆j

y 6= ∅}.

(ii) For all i, j ∈ J , y ∈ Ci,j , the polyhedron ∆i
y ∩∆j

y is a common face to ∆i
y and ∆j

y.

(iii) For all i, j ∈ J we have

F i ∩ F j = ̺−1(σi ∩ σj) ∩ F i = ̺−1(σi ∩ σj) ∩ F j ,

10
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where σi, σj are the respective tails of Di, Dj .

(iv) The intersection of the degree of Di with the tail σij of D
i ∩Dj is equal to the intersection

of the degree of Dj with σij .

To any colored divisorial fan E one can attach some combinatorial objects as follows.

Definition 3.11. The set

H(E ) := {(C(D),F) | (D,F) ∈ E }

is the associated colored hyperfan (see [Tim11, Definition 16.18]). The support of E is defined as

|E | :=
⋃

(D,F)∈E

C(D) ⊂ NQ

and the set of special points as

Sp(E ) :=
⋃

(D,F)∈E

Sp(D).

We refer to 3.1 for the definition of Sp(D). The tail fan of E is the fan Σ(E ) generated by all
the tails σ of polyhedral divisors D with (D,F) ∈ E .

When G = T is a torus, we write E = {Di | i ∈ J} instead of E = {(Di, ∅) | i ∈ J}, and we
recover the usual divisorial fans of [AHS08, Definition 5.2]. The following result provides a full
description of horospherical varieties of complexity one.

Theorem 3.12 [Tim11, Theorems 12.13 and 16.19]. Let C be a smooth projective curve, G/H
be a horospherical homogeneous space, and Z be the product C ×G/H. Denote by E a colored
divisorial fan on (C,G/H). Then the open reunion

X(E ) :=
⋃

(D,F)∈E

X(D,F)

inside the equivariant scheme of geometric localities SG(Z) is a G-model of Z. Conversely, every
G-model of Z arises in this way. Moreover X(E ) is a complete variety if and only if |E | = NQ.

Let us now recall the construction of the discoloration morphism associated with a colored
divisorial fan from [LT16, Section 2.2]. This construction will allow us to provide specific equiv-
ariant desingularizations of X(E ). If E is a colored divisorial fan, we denote by

Edis := {(D, ∅) | (D,F) ∈ E }

its discoloration, that is the colored divisorial fan obtained from E by removing the colors. For any
(D,F) in E (respectively (D, ∅) in Edis) we consider X0 (respectively Xdis) the B-chart associated
with (D,F) (respectively with (D, ∅)). The inclusions of C-algebras C[X0] ⊂ C[Xdis] induce
morphisms X(D, ∅) → X(D,F) which glue into a birational proper G-equivariant morphism

πdis : X(Edis) → X(E ). (10)

Writing P = PI = NG(H), T = P/H and M = X(T ), we define the T -variety associated with E :

V (E ) :=
⋃

i∈J

SpecA(Ci,Di) ⊂ ST (C × T ), (11)

where ST (C × T ) is the T -equivariant scheme of geometric localities of C × T , and A(Ci,Di)
denotes the M -graded algebra associated with Di, see Definition 3.2. From [LT16, Proposition
2.9] it follows thatX(Edis) is G-isomorphic to G×P V (E ), where P acts on V (E ) via the canonical
surjection P → T .

11
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4. The arc space of a horospherical variety of complexity one

In this section we describe the arc space of a horospherical variety X of complexity one, in order
to compute its stringy E-function via motivic integration in Section 5.

Let K be a field extension of C and O := OK , K := KK be the corresponding ring of
power series and its fraction field. Denote by 0 and η the closed and generic point of SpecOK ,
respectively. Our goal is to describe the set of K-valued points of L (X) – that is, the set X(OK).
To do this we restrict ourselves to the study of a subset LΓ(X) of L (X) which has the same
motivic measure as L (X), and we decompose it into horizontal and vertical arcs, see 4.1, 4.2
for the case of T -varieties of complexity one. We give a parametrization of the G(O)-orbits in
Theorem 4.12. Finally, in 4.4 we show that the corresponding pieces in LΓ(X) are cylinders,
hence measurable, and we compute their motivic measure in Theorem 4.16.

Notation 4.1. We keep the same notations M,N,C,G/H,E , ... as in the previous section for
describing a horospherical variety X = X(E ) of complexity one. Especially, for the colored
divisorial fan E = {(Di,F i)}i∈J , and for any i ∈ J , we write

Di =
∑

y∈Ci

∆i
y · [y],

where Ci ⊂ C is open dense. The symbol σi denotes the tail of D
i, and Γ is an open dense affine

subset of C which does not intersect Sp(E ).

4.1 Horizontal and vertical arcs

In this subsection we also assume that G = T is a torus, that H = {e} is trivial, and that E

consists in a single colored divisorD with tail σ and affine locus C0 containing Γ. The construction
following Theorem 3.6 shows that X is the T -variety SpecA(C0,D).

Let Xσ be the toric variety SpecC[σ∨ ∩M ] associated with the cone σ. The product Γ×Xσ

is a dense open T -stable subset of X, and so is its subset Γ× T . Define

XΓ = XK
Γ := X(O) ∩ (Γ× T )(K) := {α : SpecOK → X | α(η) ∈ Γ× T} ⊂ X(O),

where X(O) and (Γ× T )(K) are both viewed as subsets of X(K).

Remark 4.2. The subspace

LΓ(X) := {α ∈ L (X) | α̃(η) ∈ Γ× T}

has the same motivic measure as L (X). Indeed, its complement in L (X) identifies with the
arc space of X1 := X \ (Γ × T ), which has zero measure, see Remark 2.2. Hence for purposes
of motivic integration we may study LΓ(X) instead of the whole arc space L (X). Clearly
LΓ(X)(K) = XK

Γ .

Any K-valued arc α in LΓ(X)(K) induces morphisms C[M ] → K and C[Γ] → K. Indeed, as
Γ× T is an open subset of X we have a commutative diagram

C[Γ]⊗C C[M ] K

C[X] O.
α∗

ᾱ∗

12
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We denote by α∗
Γ (resp. by α∗

M ) the restriction of ᾱ∗ to C[Γ] (resp. to C[M ]). Clearly α is uniquely
determined by the data of α∗

Γ and α∗
M . Conversely, if we are given two C-algebra morphisms

βΓ : C[Γ] → K and βM : C[M ] → K such that βΓ ⊗ βM (C[X]) ⊂ O, then there exists an arc
α ∈ XΓ such that α∗

Γ = βΓ and α∗
M = βM .

Remark 4.3. Following [Ish04, Proof of Theorem 4.1], if α ∈ XΓ we parametrize the map α∗
M using

the group homomorphisms να : M → Z and ωα : M → O∗ defined by the equality α∗
M (χm) =

t〈m,να〉ωα(m) for any m ∈M . We also parametrize α∗
Γ using the valuation vα : C[Γ] → Z and the

function Rα : C[Γ] → O∗ such that α∗
Γ(f) = tvα(f)Rα(f). Since C(Γ) is of transcendence degree

one over C, there exists unique ℓα ∈ Z>0 and yα ∈ Γ = C such that vα = ℓα ordyα .

The next lemma is a direct consequence of the classification of invariant valuations in [Tim11,
Section 16] for toric varieties of complexity one.

Lemma 4.4. Let w : C(X)∗ → Q be a T -invariant discrete valuation. The following statements
are equivalent.

(i) The restriction w |C[X]\{0} is non-negative.

(ii) There exists (y, ν, ℓ) ∈ C(D) such that for any homogeneous element f ⊗ χm in C[X], we
have

w(f ⊗ χm) = ℓ ordy(f) + 〈m, ν〉.

Hence if α ∈ XΓ is an arc, then the triple (yα, να, ℓα) defined above is a point of the hypercone
C(D) ∩ N .

The following disjoint subsets of XΓ are defined according to the position of the image of
0 ∈ SpecO.

Definition 4.5. Define the horizontal part of XΓ by

Xhor := {α : SpecO → X | α(0) ∈ Γ×Xσ and α(η) ∈ Γ× T}

and its vertical part by Xver := XΓ \ Xhor, that is

Xver = {α : SpecO → X | α(0) 6∈ Γ×Xσ and α(η) ∈ Γ× T}.

The condition α(0) 6∈ Γ×Xσ means that the closed point α(0) belongs to the fiber over a point
of C0 \ Γ of the quotient map X → C0.

We may characterize elements α ∈ Xver in terms of their associated maps α∗
Γ.

Lemma 4.6. Let α ∈ XΓ be an arc. The following properties are equivalent:

(i) α ∈ Xver,

(ii) α∗
Γ(C[Γ]) 6⊂ O,

(iii) yα ∈ C0 \ Γ and ℓα 6= 0,

where yα and ℓα are as in Remark 4.3. In particular, if one of the above conditions is satisfied,
then α∗

Γ is injective.

Proof. The equivalence between (2) and (3) is clear. Let us now prove that (1) and (3) are
equivalent.

If yα ∈ Γ, then να ∈ σ ∩ N by definition of C(D). Moreover ordyα is non-negative on C[Γ],
the image of C[Γ] ⊗C C[Xσ] by α∗

Γ ⊗ α∗
M is contained in O, hence α ∈ Xhor. So α ∈ Xver
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implies yα ∈ C0 \ Γ. Conversely if yα ∈ C0 \ Γ and ℓα 6= 0, then there exists f ∈ C[Γ] such that
ℓα ordyα(f) < 0, so that α∗

Γ(C[Γ]) 6⊂ O. In particular α∗
Γ⊗α

∗
M (C[Γ]⊗CC[Xσ]) 6⊂ O, and α ∈ Xver.

Now assuming α∗
Γ is not injective, its kernel is the ideal of a C-point, so ℓα = 0 and να ∈ σ.

This implies that α∗
Γ ⊗ α∗

M (C[Γ]⊗C C[Xσ]) ⊂ O, which means that α ∈ Xhor.

Let us now study the T (O)-action on the space XΓ. Consider

val : XΓ → C(D) ∩ N ,

which to an arc α associates the point (yα, να, ℓα) from Lemma 4.4. Our goal is to decompose
into T (O)-orbits the fibers of val above points of Xhor and Xver. In the case of Xhor the result is
immediate from [Ish04, Theorem 4.1].

Lemma 4.7. We have a decomposition

Xhor = Γ(O)× (Xσ(O) ∩ T (K)) = Γ(O)×
⊔

ν∈σ∩N

Cν ,

where α ∈ Xhor is identified with the pair (α∗
Γ, α

∗
M ) ∈ Γ(O)× (Xσ(O) ∩ T (K)), and

Cν := {α∗
M | α ∈ Xhor, να = ν}

is a T (O)-orbit of Xσ(O) ∩ T (K). Moreover

val(Xhor) = {(C, ν, 0) | ν ∈ σ ∩N}

and val−1(C, ν, 0) = Γ(O)× Cν for any ν ∈ σ ∩N .

We now state a similar result for the subset Xver.

Lemma 4.8. Let α be an arc in Xver and π ∈ C(C)∗ be a uniformizer of yα. There exists a
one-to-one correspondence between

Xver,α := val−1(val(α)) = {β ∈ Xver | yβ = yα, νβ = να, lβ = lα}

and the set of pairs (ω, u), where ω : M → O∗ is a group homomorphism and u ∈ O∗. The
correspondence is given by β 7→ (ωβ , Rβ(π)), where Rβ is the function from Remark 4.3. It
identifies the fiber Xver,α with the product Cνα ×O∗. Furthermore, we have

val(Xver) = {(y, ν, ℓ) ∈ C(D) ∩ N | y ∈ C0 \ Γ and ℓ > 1}. (12)

Proof. We first prove the surjectivity of the correspondence. Fix a pair (ω, u) ∈ T (O) × O∗

and write y = yα, ν = να, and ℓ = ℓα. From [Eis95, Theorem 7.16], we know that there
exists a unique morphism φ : Ôy = C[[π]] → O such that φ(π) = tℓu, where Ôy is the formal
completion of (Oy, πOy). Restricting to C[C0], since ℓ 6= 0, φ induces an injective homomorphism
C[C0] → O, see Lemma 4.6. Extending it to the fraction field we obtain a homomorphism
C(C0) → K, whose restriction to C[Γ] is denoted by λ. We define an arc β ∈ Xver by setting
β̄∗(f ⊗ χm) = λ(f)t〈m,ν〉ω(m) for any homogeneous element f ⊗ χm ∈ C[Γ]⊗C C[σ∨ ∩M ]. The
arc β is in Xver since ℓβ = ℓ 6= 0 and yβ = y ∈ C0 \ Γ.

To prove that the correspondence is injective, it is enough to check that for β ∈ Xver, the
map λ : C[Γ] → K above is uniquely determined by ℓ = ℓβ , y = yβ , and Rβ(π), where π ∈ C(C)∗

is a uniformizer of y. Clearly λ induces a continuous morphism λ̄ : (Oy, πOy) → (O, tO), i.e., a

morphism such that λ̄(πOy) ⊂ tO. Taking formal completions we also get a morphism λ̃ : Ôy =
C[[π]] → O, see [Mat80, § (23.H)]. Using again [Eis95, Theorem 7.16] we see that λ̃ is the unique
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morphism sending π to tℓRβ(π). We conclude by noticing that λ is uniquely determined by λ̃,
which proves the injectivity.

To conclude the proof we check Equation (12). The direct inclusion of val(Xver) has been
proved by combining Lemmas 4.4 and 4.6. For the other inclusion, consider (y, ν, ℓ) ∈ C(D)∩N

with y ∈ C0 \ Γ and ℓ 6= 0. Choose a uniformizer π of y and consider the unique morphism
Ôy = C[[π]] → O which sends π to tℓ. By the same argument as before it implies the existence
of a morphism β̄∗ : A(C0,D) → O such that β̄∗(f ⊗ χm) := tℓ ordy(f)+〈m,ν〉, hence the existence
of an arc β ∈ Xver such that val(β) = (y, ν, ℓ).

4.2 The arc space of a normal T -variety of complexity one

In this section we generalize the results of 4.1 to the non-affine case. We still assume that G = T
is a torus and H = {e} is trivial.

We want to describe the arc space of X = X(E ) in terms of the arc spaces of the affine charts
X(D) for polyhedral divisors D ∈ E , which may have non-affine loci. So to apply the previous
results we need to replace X with a T -variety X̃ associated with a divisorial fan Ẽ such that all
the polyhedral divisors in Ẽ are defined on open dense affine subsets of C. We call this process
affinization:

Notation 4.9. Keeping the same notations as in 4.1, for any Di ∈ E , we consider a finite open
dense affine covering (Ci

j)j∈Ji of the curve Ci. Denote by Di
j the polyhedral divisor obtained as

the restriction of Di to the open affine subset Ci
j , and by Ẽ the divisorial fan constituted of all

the Di
j . Then the T -variety X̃ = X(Ẽ ) does not depend on the choices of the affine coverings,

and its support |Ẽ | coincides with that of E .

From [AH06, Theorem 3.1] it follows that the inclusions A(Ci,Di) →֒ A(Ci
j ,D

i
j) induce a

proper T -equivariant birational morphism

q : X(Ẽ ) → X(E ). (13)

As in Section 4.1, we introduce a morphism val defined on XΓ, whose image will be contained
in

|E |Γ :=
⋃

D∈E

CΓ(D) ⊂ NQ, (14)

where CΓ(D) = C(D) \ {(y, ν, ℓ) | y ∈ Γ, ν ∈ NQ, ℓ > 0}. Clearly |E |Γ = |Ẽ |Γ.

The next result extends Lemmas 4.7 and 4.8 to the T -variety X.

Proposition 4.10. Let E be a divisorial fan on (C, T ) and write X = X(E ). Consider a dense
open subset Γ ⊂ C which does not contain any special point. There exists a surjective map

val : XΓ → |E |Γ ∩ N

α 7→ (yα, να, ℓα),
(15)

where |E |Γ is as in Equation (14), and N as in Definition 3.8. Moreover

val−1(yα, να, ℓα) =

{

Γ(O)× Cνα if ℓα = 0,

O∗ × Cνα if ℓα > 1.

Proof. Recall the morphism q : X̃ → X from Equation (13). We first check that XΓ identifies
with

X̃Γ := {α ∈ X̃(O) | α(η) ∈ Γ× T}.
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Indeed, we know that q |Γ×T is the identity map. Write X1 := X \ (Γ × T ). By the valuative
criterion of properness, the morphism q induces a bijection

L (X̃) \ L (q−1(X1)) L (X) \ L (X1).
∼

This implies that XΓ
∼= X̃Γ, so we will assume in the rest of the proof that E = Ẽ .

We now prove that val is well-defined and surjective. Clearly the arc space has a covering

XΓ =
⋃

D∈E

X(D)Γ,

where X(D)Γ := {α ∈ XΓ | α(0) ∈ X(D)}. Fixing a uniformizer for each point of C \ Γ and
combining Lemmas 4.7 and 4.8 we get well-defined surjective maps

valD : X(D)Γ → CΓ(D) ∩ N ,

which are clearly compatible and glue into val. Finally, the description of the fibers of val is a
consequence of Lemma 4.7 when ℓα = 0 and of Lemma 4.8 when ℓα > 1.

4.3 The general case

Let us now treat the case of a horospherical G-variety X of complexity one. We start by recalling
the complexity zero case.

Let G/H be a horospherical homogeneous space and P , I, T ,M and N be as in Notation 4.1.
A horospherical embedding Y of G/H is parametrized by a colored fan Σ on NQ, see [Kno91,
Theorem 3.3]. Let |Σ| be the support of Σ, that is, the reunion |Σ| :=

⋃

(σ,F)∈Σ σ, where σ is a
strongly convex cone and F ⊂ FG/H is a subset of colors. The next theorem describes the arc
space of Y in terms of |Σ|.

Theorem 4.11 [BM13, Theorem 3.1]. Let Y be a horospherical G/H-embedding defined by a
colored fan Σ. Then there exists a surjective map

V : Y (O) ∩ (G/H)(K) → |Σ| ∩N

whose fiber over ν ∈ |Σ| ∩N is a G(O)-orbit Ων . In particular we obtain a one-to-one correspon-
dence between the lattice points in |Σ| ∩N and the G(O)-orbits in Y (O) ∩ (G/H)(K).

Let us sketch the construction of the map V. After discoloring, using the valuative criterion
of properness we may assume that Y = G ×P YΣ, where YΣ is the T -variety with fan Σ. Since
T = P/H ⊂ G/H, the closure YΣ = T embeds into Y . We have a commutative diagram:

YΣ(O) ∩ T (K) |Σ| ∩N

Y (O) ∩ (G/H)(K)

Ψ

V
(16)

where the map Ψ comes from [Ish04, Corollary 4.3]. Denote by Cν the fiber over ν ∈ |Σ| ∩N of
Ψ. The map V extends Ψ in such a way that Ων is the unique G(O)-orbit containing Cν .

For the following theorem, which deals with the complexity one case, we use the setting of
Notation 4.1.
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Theorem 4.12. Let X := X(E ), where E is a colored divisorial fan on (C,G/H). Let Γ be a
dense open affine subset of C which does not contain any special point. There exists a surjective
map

val :
XΓ = X(O) ∩ (Γ×G/H)(K) → |E |Γ ∩ N

α 7→ (yα, να, ℓα)
where |E |Γ :=

⋃

(D,F)∈E

CΓ(D) ⊂ NQ

and N ,NQ are as in Definition 3.8. Moreover it satisfies

val−1(yα, να, ℓα) =

{

Γ(O)× Ωνα if ℓα = 0,

O∗ × Ωνα if ℓα > 1,

where the Ωνα are as in Theorem 4.11.

Proof. First we discolor X using the map πdis : Xdis → X from Equation (10). We have Xdis =
G×P V (E ), where V (E ) is as in Equation (11). Then we replace the colored divisorial fan E with
another fan Ẽ using the affinization map q from Equation (13), obtaining a proper birational
morphism Θ : G ×P V (Ẽ ) → X which restricts to the identity on Γ × G/H. By the valuative
criterion of properness, it is equivalent to consider arcs on X or on G×P V (Ẽ ), so from now on
we assume X = G×P V (Ẽ ).

Next we compare XΓ, the set of K-valued formal arcs on X with generic point in Γ×T , with

V (Ẽ )Γ = {α : SpecO → V (Ẽ ) | α(η) ∈ Γ× T} ⊂ L (V (Ẽ ))(K).

By construction of X = G×P V (Ẽ ), the closure of Γ×T embeds in X and identifies with V (Ẽ ).
The variety V (Ẽ ) will play the same role as YΣ in Equation (16). We have a map Ψ : V (Ẽ )Γ →
|Ẽ |Γ ∩ N , which is the map val from Proposition 4.10.

From the proof of [BM13, Theorem 3.1] we obtain a map V : (G/H)(K) → N which is
constant on the G(O)-orbits, and whose restriction to T (K) ⊂ (G/H)(K) is constructed from
the standard valuation map ord : K∗ → Z as in [BM13, Lemma 3.2]. We use it to build part of
a map from (Γ×G/H)(K) to N , which we will then restrict to XΓ.

To get the other part of the map, as in Remark 4.3 we parametrize α ∈ Γ(K) by the pair
(yα, ℓα), where α

∗(f) = tℓα ordyα (f)Rα(f) for any f ∈ C[Γ]. Finally

val : (Γ×G/H)(K) → N

(α, β) 7→ (yα, νβ , ℓα),

where νβ = V(β). Restricted to V (Ẽ )Γ this map is simply Ψ, and it is constant on the G(O)-
orbits.

We now study the restriction of val to XΓ, which we denote again in the same way. Consider
the quotient map ϕ : X → G/P and the corresponding map X(O) → (G/P )(O) on the set of
O-valued points. We denote by ϕ∞ : XΓ → (G/P )(O) its restriction to XΓ. It extends to the
natural map

ϕ̄∞ : Γ(K)× (G/H)(K) → (G/P )(K).

Since (G/P )(K) = (G/P )(O) by the valuative criterion of properness, the image of ϕ̄∞ is in fact
contained in (G/P )(O), which is equal to G(O)/P (O) by the local triviality of the quotient map
G→ G/P . Moreover the map ϕ∞ is G(O)-equivariant. If α ∈ XΓ, then by transitivity and G(O)-
equivariance there exists g ∈ G(O) such that ϕ∞(g · α) = p0, where p0 = P (O) ∈ (G/P )(O).
Hence

g · α ∈ ϕ−1
∞ (p0) ⊂ ϕ̄−1

∞ (p0) = (Γ× T )(K).
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It follows that g·α ∈ (Γ×T )(K)∩XΓ, and (Γ×T )(K)∩XΓ ⊂ V (Ẽ )Γ. Indeed if β ∈ (Γ×T )(K)∩XΓ,
then β(0) ∈ β(η) ⊂ Γ× T = V (Ẽ ), thus β is an element of V (Ẽ )Γ. As a result g · α ∈ V (Ẽ )Γ,
and val(α) = val(g · α) = Ψ(g · α). This implies that val(XΓ) = Ψ(V (Ẽ )Γ) = |Ẽ |Γ ∩ N .

To conclude we compute the fibers of the restriction val : XΓ → |Ẽ |Γ∩N . Consider (y, ν, ℓ) ∈
|Ẽ |Γ ∩ N . For any α ∈ val−1(y, ν, ℓ), by a previous argument there exists g ∈ G(O) such that
g · α ∈ V (Ẽ )Γ ∩ val−1(y, ν, ℓ). Finally, by Proposition 4.10, we know that

V (Ẽ )Γ ∩ val−1(y, ν, ℓ) =

{

Γ(O)× Cν if ℓ = 0,

O∗ × Cν if ℓ > 1.

4.4 Motivic volumes

Assuming that X is smooth, we now compute the motivic measure of the fibers of the map val
from Theorem 4.12.

We start by studying truncations of arcs in XΓ. Using the discoloration morphism, we may
assume that E has trivial coloration, so that X = G ×P V (E ). Recall that there is a surjective
quotient map ϕ : X → G/P . The next result, obtained from Theorem 4.12, gives a comparison
between the jet spaces of X and those of the flag variety G/P .

Lemma 4.13. Consider ξ := (y, ν, ℓ) ∈ |E |Γ ∩ N and q ∈ N, where |E |Γ is as in Equation (14).
Then the restriction to πq(val

−1(ξ)) of the bundle of q-jets ϕq : Lq(X) → Lq(G/P ) is a bun-
dle with fiber isomorphic to π′q

(

V (E )Γ ∩ val−1(ξ)
)

, where π′q : L (V (E )) → Lq(V (E )) is the
truncation map.

Proof. We have a commutative diagram

val−1(ξ) L (G/P )

πq(val
−1(ξ)) Lq(G/P )

where the vertical maps are arc truncations and the horizontal maps are induced by ϕ : X →
G/P . The vertical map on the left-hand side is clearly surjective, and the other also is since G/P
is smooth (see [Gre66]). Finally, the top horizontal map is surjective by the proof of Theorem 4.12,
hence so is the bottom map. The last claim in the lemma follows from the description of the
fibers of the top map.

Using Lemma 4.13 we now show that the fibers of val are cylinders, hence measurable.
Lemma 4.14 deals with the horizontal fibers, while Lemma 4.15 takes care of the vertical fibers.

Lemma 4.14. Let X be as in Notation 4.1. Assume that X is smooth of dimension d and that
E has trivial coloration. Consider ξ := (y, ν, 0) ∈ |E |Γ ∩ N . Let n be the rank of the lattice
N , σ ∈ Σ(E ) be a cone containing ν and r := dimσ. The linear part σ∨ ∩ (−σ∨) of σ∨ is a
(d − 1 − r)-dimensional vector space VQ. Let WQ be a complement of VQ in MQ and u1, . . . , ur
be an integral basis of σ∨ ∩WQ.

Then for any q > max({〈uj , ν〉 | 1 6 j 6 r}), the set val−1(ξ) ∩ V (E )Γ is a cylinder with
q-basis

Lq(Γ)× (A1 \ 0)n × Aqn−
∑r

j=1〈uj ,ν〉.

18



Stringy invariants for horospherical varieties

Proof. By the smoothness criterion of [KKMSD73, Chap. II], any cone σ ∈ Σ(E ) is generated by
part of a basis of N . Consider α ∈ val−1(ξ)∩V (E )Γ and the morphisms α∗

Γ : C[Γ] → O and α∗
M :

C[σ∨∩M ] → O from Remark 4.3. The maps α∗
Γ and α∗

M induce arcs on Γ and Xσ, which can be
truncated to q-jets α′

Γ ∈ Lq(Γ) and α
′
M ∈ Lq(Xσ). Moreover the set {α′

Γ | α ∈ val−1(ξ)∩V (E )Γ}
is isomorphic to Lq(Γ)(K) since Γ is smooth. To conclude we use an adapted version of [BM13,
Lemma 3.4] where we do not assume the cone to be full-dimensional. The result of the lemma
implies that

{α′
M | α ∈ val−1(ξ) ∩ V (E )Γ} ≃ (A1(K) \ 0)n × Aqn−

∑r
j=1〈uj ,ν〉(K).

Lemma 4.15. Let X be as in Notation 4.1. Assume that X is smooth of dimension d, that E has
trivial coloration, and denote by n the rank of the lattice N . Consider ξ := (y, ν, ℓ) ∈ |E |Γ ∩ N

such that ℓ > 1. Let (D,F) ∈ E be such that ξ ∈ CΓ(D) and let σ be the tail of D. Denote
by r the dimension of σ and by s > r + 1 that of the Cayley cone Cy(D). The linear part
Cy(D)∨∩(−Cy(D)∨) of Cy(D)∨ is a (d−s)-dimensional vector space VQ. LetWQ be a complement
of VQ in ΛQ = MQ ⊕ Q and denote by {(u1, 0), . . . , (ur, 0), w1, . . . , ws−r} an integral basis of
Cy(D)∨ ∩WQ, where the ui are in σ∨ ∩M .

Then for any q greater than max ({〈uj , ν〉 | 1 6 j 6 r} ∪ {〈wj , (ν, ℓ)〉 | 1 6 j 6 s− r}), the set
val−1(ξ) ∩ V (E )Γ is a cylinder with q-basis

(A1 \ 0)n+1 × Aq(n+1)−(
∑r

j=1〈uj ,ν〉+
∑s−r

j=1〈wj ,(ν,ℓ)〉).

Proof. Let π ∈ C(C)∗ be a uniformizer of y. Writing Λ =M ⊕ Z we have

C[Cy(D)∨ ∩ Λ] = {πk ⊗ χm | (m, k) ∈ Cy(D)∨ ∩ Λ}.

Denote by XCy(D) := SpecC[Cy(D)∨ ∩ Λ] the associated toric variety. The restricted fiber

val−1(ξ) ∩ V (E )Γ identifies with the (T ×Gm)(O)-orbit Cν,ℓ of XCy(D)(O) ∩ (T ×Gm)(K) given
in [Ish04, Theorem 4.1].

Indeed, as in the proof of Lemma 4.8, any arc α in the restricted fiber induces a morphism
C[[π]] ⊗C C[M ] → K, which restricts to C[Cy(D)∨ ∩ Λ] → O. Conversely, if we have an arc
β ∈ L (XCy(D))(K) with the property above, it induces a morphism C[π, π−1] ⊗C C[M ] → K.
Since the completion of (C[π, π−1], πC[π, π−1]) is C((π)), by [Eis95, Theorem 7.16] β gives a
morphism C[[π]]⊗C C[M ] → K which restricts to a co-morphism of an arc in val−1(ξ) ∩ V (E )Γ.
The rest of the proof follows from the suitably modified version of [BM13, Lemma 3.4] already
used in Lemma 4.14.

The next result gives the motivic volume of the fibers of the surjective map val : XΓ →
|E |Γ ∩ N . Thus we obtain, up to a subset of motivic measure zero, a decomposition of the arc
space of X as a disjoint union of measurable subsets of known motivic volume, which concludes
our study of L (X).

Theorem 4.16. Let E be a colored divisorial fan on (C,G/H) such that X = X(E ) is smooth
of dimension d. Without loss of generality, we may assume that E has trivial coloration.

Consider ξ := (y, ν, ℓ) ∈ |E |Γ ∩ N , where |E |Γ :=
⋃

(D,F)∈E
CΓ(D) ⊂ NQ and N ,NQ are

as in Definition 3.8. Let (D,F) ∈ E be such that ξ ∈ CΓ(D) and let σ be the tail of D.
Denote by r the dimension of σ and by s > r + 1 be that of the Cayley cone Cy(D). The linear
part Cy(D)∨ ∩ (−Cy(D)∨) of Cy(D)∨ is a (d − s)-dimensional vector space VQ. Let WQ be a
complement of VQ in ΛQ =MQ ⊕Q and denote by {(u1, 0), . . . , (ur, 0), w1, . . . , ws−r} an integral
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basis of Cy(D)∨ ∩WQ, where the ui are in σ∨ ∩M . Then

µX(val−1(ξ)) =

{

[Γ][G/H]L−
∑r

j=1〈uj ,ν〉 if ℓ = 0,

[G/H](L− 1)L−
∑s

j=1〈uj ,ν〉−
∑s−r

j=1〈wj ,(ν,ℓ)〉 if ℓ > 1.

Proof. For ℓ = 0, since G/P is smooth, by Lemmas 4.13 and 4.14 it follows that for large enough
q > 0,

µX(val−1(C, ν, 0)) = [π′q
(

V (E )Γ ∩ val−1(ξ)
)

][Lq(G/P )]L
−qd

= [Lq(Γ)](L− 1)n[G/P ]Lq(n+dim(G/P )−d)−
∑r

j=1〈uj ,ν〉

The result for ℓ = 0 follows from the equalities dim(G/P ) = d− 1− n, [G/H] = (L− 1)n[G/P ],
and Lq(Γ) = [Γ]Lq. For the case ℓ > 1, we have by Lemmas 4.13 and 4.15 the equality

µX(val−1(ξ)) = (L− 1)n+1[G/P ]Lq(n+1+dim(G/P )−d)−
∑s

j=1〈uj ,ν〉−
∑s−r

j=1〈wj ,(ν,ℓ)〉

which simplifies to our desired formula.

5. Computing the stringy E-function

Let X = X(E ) be a log-terminal horospherical variety of complexity one. In Theorem 5.16,
we compute the stringy motivic volume of X. As in the complexity zero case, see [BM13],
Theorem 5.16 requires X to be Q-Gorenstein and log terminal; we introduce the related notions
in 5.2. In 5.3 we construct a desingularization of X in terms of its colored divisorial fan, and
in 5.4, we put the previous results to use by computing the discrepancy. This enables us to prove
Theorem 5.16 in 5.5. Throughout this section we follow the conventions of 4.1.

5.1 Canonical class

The canonical class KX of X can be expressed as a linear combination of B-invariant divisors,
see [LT16, Sections 2.3, 2.4]. By the description in [Tim11, Section 16] there are two types of
G-divisors called vertical and horizontal, depending on whether the G-action has complexity zero
or one. The set of vertical G-divisors on X is parametrized by

Vert(E ) :=
⋃

i∈J

Vert(Di)

where for any i in J , Vert(Di) (equal to Vert(Di,F i)) is the set of pairs (y, p) such that y is in Ci

and p is a vertex of ∆i
y. The rest of the G-invariant divisors of X are horizontal and parametrized

by

Ray(E ) :=
⋃

i∈J

Ray(Di,F i)

where for any i in J , we denote by Ray(Di,F i) the set of rays ρ of σi such that ρ ∩ ̺(F i) is
empty (namely the ray ρ is uncolored) and ρ∩deg(Di) is empty if Ci is projective. Here we used
the same notation ρ for a ray and for the corresponding primitive generator.

Theorem 5.1 [LT16, Theorem 2.11]. Let Div(E ) denote the set of G-divisors of X. There exists
a bijection

Vert(E )
⊔

Ray(E ) → Div(E )

where we denote by D(y,p) – respectively Dρ the G-divisor corresponding to the pair (y, p) ∈
Vert(E ) – respectively ρ ∈ Ray(E ).
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We may now describe the canonical class of X as a Weil divisor.

Theorem 5.2 [LT16, Theorem 2.18]. With the same notation as in Theorem 5.1, the divisor

KX =
∑

(y,p)∈Vert(E )

(κ(p)by + κ(p)− 1) ·D(y,p) −
∑

ρ∈Ray(E )

Dρ −
∑

α∈Φ\I

aα ·Dα

is a canonical divisor of X. Here KC =
∑

y∈C by · [y] is a canonical divisor on C, and aα :=
∑

β∈R+\RI
〈β, α∨〉, where R+ is the set of positive roots of G and RI is the set of roots of

P = NG(H).

5.2 Cartier divisors and support functions

We recall the combinatorial description of invariant Cartier divisors on horospherical varieties of
complexity one from [Tim11, Section 17] and [LT16, Corollary 2.17], via functions on hypercones
called support functions. We refer to [PS11] for the setting of torus actions. Then, we give a
criterion for these varieties to have Q-Gorenstein or log terminal singularities.

Denote by C(X)(B) the set of B-eigenfunctions in the function field C(X) of X, which iden-
tifies with a subset of the tensor product C(C) ⊗C C[M ]. The principal divisor associated with
a B-eigenfunction f ⊗ χm in C(C)⊗C C[M ] is given by

div(f⊗χm) =
∑

(y,p)∈Vert(E )

κ(p) (〈m, p〉+ ordy(f))·D(y,p)+
∑

ρ∈Ray(E )

〈m, ρ〉·Dρ+
∑

D∈FG/H

〈m, ̺(D)〉·D,

where κ(p) = min{λ ∈ Z>0 | λ · p ∈ N}. Cartier divisors are locally principal divisors. Invariant
Cartier divisors on X will be associated to some support functions defined on the Cayley cones
Cy(D

i).

Definition 5.3. An integral linear function on Di is a map ϑ : C(Di) → Q such that

(i) for every y ∈ Ci there exist my ∈M and by ∈ Z such that for any (ν, ℓ) ∈ Cy(D
i)

ϑ(y, ν, ℓ) = 〈my, ν〉+ ℓcy.

(ii) if Ci is projective, there exists m ∈ M such that my = m for any y ∈ C, and f ∈ C(C)∗

such that

div f =
∑

y∈C

cy · [y].

Denote by FE the reunion of all the sets F i for i ∈ J . A colored integral piecewise linear

function on E is a pair θ = (ϑ, (rα)), where ϑ : |E | → Q is a function such that the restriction
ϑ |C(Di) is integral linear for every i in J , ϑ |C(Di) and ϑ |C(Dj) coincide on C(Di) ∩ C(Dj) for
all i and j in J , and where (rα) is a sequence of integers with α running over simple roots in
Φ \ I such that Dα 6∈ FE . More generally we say that θ = (ϑ, (rα)) is a colored piecewise linear

function on E if there exists k ∈ Z>0 such that kθ is a colored integral piecewise linear function.
We denote by PL(E ) (resp. PL(E ,Q)) the set of colored integral piecewise linear functions (resp.
colored piecewise linear functions) on E .

Now the Cartier divisor associated with a colored piecewise linear function θ in PL(E ) is

Dθ =
∑

(y,p)∈Vert(E )

ϑ(y, κ(p)p, κ(p))D(y,p)+
∑

ρ∈Ray(E )

ϑ(C, ρ, 0)Dρ+
∑

D∈FE

ϑ(C, ̺(D), 0)D+
∑

Dα 6∈FE

rαDα.
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Proposition 5.4 [LT16, Corollary 2.19]. The variety X(E ) is Q-Gorenstein (i.e. KX is Q-
Cartier) if and only if there exists θ = (ϑ, (rα)) in PL(E ,Q) such that the following conditions
are satisfied.

(i) There exists a canonical divisor KC =
∑

y∈C by · [y] on C where for every (y, p) in Vert(E )
we have

ϑ(y, κ(p)p, κ(p)) = κ(p)by + κ(p)− 1.

(ii) For every ρ in Ray(E ) we have ϑ(C, ρ, 0) = −1.

(iii) For every Dα in FE we have ϑ(C, ̺(Dα), 0) = −aα.

Let θX be the colored piecewise linear function on X satisfying the conditions of Proposi-
tion 5.4 and such that rα = −aα for any α with Dα 6∈ FE . The uniqueness follows from [Tim11,
Equations (17.1-2)].

The support function ̟ used in Theorem 5.16 is constructed by gluing the following linear
functions.

Lemma 5.5. Let (D,F) be a colored σ-polyhedral divisor on (C,G/H) such that Y = X(D,F) is
Q-Gorenstein. Let z be a point in the locus of D, and denote by X(Cz(D),F) the horospherical
(G× C∗)-variety associated with the pair (Cz(D),F) and the horospherical homogeneous space
G/H × C∗. Then there exists a linear function ωY,z on Cz(D) such that

(i) ωY,z(ρ, 0) = ϑY (z, ρ, 0) for any uncolored ray ρ of σ,

(ii) ωY,z(τ) = −1 for any ray τ of Cz(D) not contained in NQ,

(iii) ωY,z(̺(Dα), 0) = −aα for any color Dα ∈ F .

In particular, if the locus of D is affine, we have

X(D,F) Q-Gorenstein ⇒ X(Cz(D),F) Q-Gorenstein.

Proof. As Y is Q-Gorenstein, by Proposition 5.4 there exists on (D,F) a colored piecewise
linear function θY = (ϑY , (rα)) satisfying the conditions (i)-(iii) of the proposition. We construct
the function ωY,z by modifying θY . To do so we construct a function f in C(C)∗ such that
− ordz(f) = bz+1, for any (z, p) in Vert(D), where KC =

∑

y∈C by · [y] is a canonical divisor of C.
Since C is smooth, any divisor on C is locally principal. Hence there exists an open neighborhood
C ′ of z in C and a function f in C(C ′)∗ equal to C(C)∗ such that (KC + [z])|C′ = (div f−1)|C′ .
The divisor DθY +div(f) is a Cartier Q-divisor in X. The restriction ωY,z of its support function
to Cz(D) is the required function. Indeed, as required, using Proposition 5.4 we get that

ωY,z(κ(p)p, κ(p)) = ϑ(z, κ(p)p, κ(p)) + κ(p) ordz(f) = −1.

Let us now assume the locus of D is affine. The variety X(Cz(D),F) being horospherical,
it is Q-Gorenstein if and only if there exists a (restricted) linear function ω : Cz(D) → Q such
that ω(τ) = −1 for any uncolored ray τ of Cz(D) (i.e. τ ∩ ̺(F) = ∅) and ω(̺(Dα), 0) = −aα for
any color Dα in F (see [Bri93, Proposition 4.1]). These conditions are satisfied by the function
ωY,z. Indeed, since the locus of D is affine, for any uncolored ray ρ of σ we have ωY,z(ρ, 0) =
ϑY (z, ρ, 0) = −1.

In Theorem 5.16 we will need to assume X is log terminal to ensure the convergence of the
integral of the stringy motivic volume. We recall the following criterion.
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Theorem 5.6 [LS13], [LT16, Theorem 2.22]. Suppose X = X(E ) is Q-Gorenstein. Then X has
only log terminal singularities if and only if for any (D,F) ∈ E , one of the following assertions
holds.

(i) The locus of D is affine.

(ii) The locus of D is the projective line P1 and
∑

y∈P1

(

1− 1
κy

)

< 2, where

κy := max ({κ(p) | p is a vertex of ∆y}) .

Here the polyhedron ∆y is defined by D =
∑

y∈C0
∆y · [y].

5.3 Desingularization

Here we explain how to desingularize X in terms of combinatorial data. The desingularization
involves three proper birational morphisms:

X(E ′) X(Ẽ ) X(Edis) X(E ) = X.
q′ q πdis

ψ

(17)

The discoloration morphism πdis and the affinization morphism q have already been defined in
Equations (10) and (13). Let us now construct the morphism q′. Let Sp(Ẽ ) be the set of special
points of Ẽ and denote its elements by y1, . . . , yr. Up to refining the affine coverings (Ci

j)j∈Ji in

the construction outlined in Notation 4.9, we may assume that each element of Ẽ contains at
most one special point. For 1 6 i 6 r, we let Ẽi be the set of all polyhedral divisors D in E which
have yi as a special point and we define a fan Σi on NQ ⊕Q as the fan generated by the Cayley
cones Cyi(D) for any D in Ẽ . Clearly the fans Σi all contain the tail fan Σ(Ẽ ) as a subfan. Now
following [CLS11, Section 11.1] we will consider a star subdivision of Σ(Ẽ ) and compatible star
subdivisions of the Σi.

Definition 5.7. Consider a fan Σ in NQ and an element ν of |Σ| ∩N in the support of Σ. The
star subdivision of Σ associated with ν is the fan consisting of the cones

(i) σ ∈ Σ such that ν 6∈ σ,

(ii) Cone(τ, ν) for τ ∈ Σ such that ν 6∈ τ and there exists σ ∈ Σ with {ν} ∪ τ ⊂ σ.

A star subdivision is a subdivision of the original fan Σ (see [CLS11, Lemma 11.1.3]).

We say a fan Σ is smooth if any cone in Σ is generated by a subset of a lattice basis of N . This
is equivalent to the toric variety XΣ being smooth. By [CLS11, Theorem 11.1.9] any fan Σ has a
smooth refinement Σ′ containing every smooth cone of Σ and obtained from Σ by a sequence of
star subdivisions. Geometrically this implies that there is a projective desingularization of toric
varieties XΣ′ → XΣ.

Let Σ′(Ẽ ) be a smooth refinement of the tail fan Σ(Ẽ ), corresponding to a sequence of star
subdivisions associated with an element (ν1, . . . , νs) ∈ N s. For any 1 6 i 6 r define Σ̂i as the fan
obtained from Σ after applying star subdivisions with respect to ((ν1, 0), . . . , (νs, 0)) in (N ⊕Z)s.
Clearly Σ′(Ẽ ) is a smooth subfan of Σ̂i. Finally, there exists a refinement Σ′

i of Σ̂i such that Σ′
i

contains every smooth cone of Σ̂i, including in particular every cone of Σ′(Ẽ ).

23
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For any D in Ẽi consider the set Σi,D of cones τ in Σ′
i such that τ ⊂ Cyi(D). For τ ∈ Σi,D we

denote by στ,i the cone τ ∩ (NQ × {0}), and by ∆τ,i the set τ ∩ (NQ × {1}) when τ 6⊂ NQ × {0}.
Since τ ⊂ Cyi(D) it follows that τ ∩ (NQ ×{1}) is a στ,i-polyhedron. We define a στ,i-polyhedral
divisor

Dτ,i :=
∑

y∈C0

∆y · [y]

where C0 ⊂ C is the locus of D and ∆y = στ,i for any y ∈ C0 \ {yi}. In addition, ∆yi = στ,i
if τ ⊂ NQ × {0} and ∆yi = ∆τ,i otherwise. The set ẼD := {Dτ,i | τ ∈ Σi,D} is a divisorial fan.
Moreover, the C-algebras embeddings A(C0,D) ⊂ A(C0,Dτ,i) for Dτ,i ∈ ẼD induce a proper
T -equivariant birational morphism V (ẼD) → V (D), see [Tim11, Theorem 12.13]. Since the set
E ′ :=

⋃

D∈Ẽ
ẼD is a divisorial fan, the previous morphisms glue together into a proper birational

morphism q′ : X(E ′) → X(Ẽ ). To prove that X(E ′) is indeed smooth we use [KKMSD73, Chap.
II], [LS13, Proof of 2.6], and [LT16, Theorem 2.5].

This concludes our construction of the desingularization of X.

5.4 Discrepancy

The aim of this section is to compute the discrepancy of the G-equivariant morphism ψ : X ′ → X
from Equation (17), whose definition we recall below.

X ′ := X(E ′) X(Ẽ ) X(Edis) X.
q′ q πdis

ψ

The exceptional divisors of ψ are particular G-divisors of X ′, that is, they correspond to some
elements of Vert(E ′) ⊔ Ray(E ′).

Exceptional divisors of πdis. As Vert(Edis) is equal to Vert(E ) the exceptional divisors of
πdis are in one-to-one correspondence with the elements of Ray(Edis) which do not come from
Ray(E ), i.e., the elements of

⋃

i∈J

Ray(Di, ∅) \ Ray(Di,F i). (18)

By the lemma, the associated divisors Dρ1 , . . . , Dρt ⊂ X(Edis) in (18) are the exceptional divisors
of πdis.

Exceptional divisors of q. The morphism q : X(Ẽ ) → X(Edis) is obtained via parabolic
induction on the T -equivariant morphism V (Ẽ ) → V (E ) from Equation (13), so the exceptional
divisors of q are the parabolic inductions of the exceptional divisors of the latter map. By [AH06,
Theorem 10.1], the set Ray(Ẽ ) \ Ray(Edis) is equal to the reunion over all colored polyhedral
divisors (D, ∅) in Ẽ with projective locus, of the rays ρ of the tails of polyhedral divisors D

with the property that degD ∩ ρ 6= ∅. We denote the associated exceptional divisors of q by
Dρt+1 , . . . , Dρs ⊂ X(Ẽ ).
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Exceptional divisors of q′. As before the map q′ : X ′ = X(E ′) → X(Ẽ ) is obtained from
the map q′′ : V (E ′) → V (Ẽ ). Denote by {y1, . . . , yu} the set of special points of Ẽ . For 1 6 i 6 u
consider the fans Σi and Σ′

i constructed in Section 5.3. The exceptional divisors of q′′ (or equiv-
alently of q′) are in bijection with the triples [yi, ν, ℓ], where (ν, ℓ) is a ray of Σ′

i \ Σi. When
ℓ = 0 the triple (yi, ν, 0) corresponds to an element of Ray(E ′), otherwise it corresponds to
an element of Vert(E ′). We denote the associated exceptional divisors by D′

ρs+1
, . . . , D′

ρe and
D′

(y1,p1)
, . . . , D′

(yu,pu)
, respectively.

Relative canonical class of ψ. Since Σ(Ẽ ) = Σ(Edis) = Σ(E ) and Σ(E ′) is a fan subdivision of
Σ(Ẽ ), we may identify the pullbacks of Dρ1 , . . . , Dρs with the corresponding divisors D′

ρ1 , . . . , D
′
ρs

in X ′. By the previous paragraphs, the exceptional divisors of ψ are the (D′
ρi)16i6e and the

(D′
(yj ,pj)

)16j6u.

Proposition 5.8. If X(E ) is Q-Gorenstein, then the relative canonical class of ψ is represented
by

KX′/X =

u
∑

j=1

(

κ(pj)byj + κ(pj)− 1− ϑX(y, κ(pj)pj , κ(pj))
)

D′
(yj ,pj)

+

e
∑

i=1

(−1− ϑX(C, ρi, 0))D
′
ρi ,

where
∑

y∈C by · [y] is a canonical divisor of C, θX = (ϑX , (rα)) is the support function from
Section 5.2, and κ : NQ → Z is defined by κ(p) = min{λ ∈ Z>0 | λ · p ∈ N}.

Proof. A canonical divisor of X ′ is given by

KX′ =
∑

(y,p)∈Vert(E ′)

ϑX′(y, κ(p)p, κ(p))D′
(y,p) +

∑

ρ∈Ray(E ′)

ϑX′(C, ρ, 0)D′
ρ −

∑

α∈Φ\I

aαD
′
α,

while the pullback by ψ of a canonical divisor of X is

ψ∗KX =
∑

(y,p)∈Vert(E ′)

ϑX(y, κ(p)p, κ(p))D′
(y,p) +

∑

ρ∈Ray(E ′)

ϑX(C, ρ, 0)D′
ρ −

∑

α∈Φ\I

aαD
′
α,

where we choose KX as in Theorem 5.6. Hence

KX′/X =

u
∑

j=1

(ϑX′ − ϑX)(y, κ(pj)pj , κ(pj))D
′
(yj ,pj)

+

e
∑

i=1

(ϑX′ − ϑX)(C, ρi, 0)D
′
ρi .

We conclude by computing the values of ϑX′ using Proposition 5.4.

5.5 Stringy invariants

This section is devoted to determine the stringy motivic volume of a log terminal horospherical
variety of complexity one by using the discrepancy calculation from Section 5.4. We use the
notations of the previous section, and denote by Γ ⊂ C an open dense affine subset which does
not contain any special point. Let d be the dimension of X.

Decomposition of the motivic integral. We decompose the motivic volume Est(X) along
the fibers of the map val : X ′

Γ → |E ′|Γ∩N from Equation (15). The next statement immediately
follows from the measurability results of Lemmas 4.14 and 4.15.
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Lemma 5.9. With above notations, the stringy motivic volume can be decomposed as

Est(X) =
∑

(y,ν,ℓ)∈|E ′|Γ∩N

∫

val−1(y,ν,ℓ)
L
− ordKX′/X dµX′ .

The stringy support function. Now we want to calculate the right-hand side of the identity
in Lemma 5.9, depending on whether ℓ = 0 or ℓ > 1. As we did in Lemma 5.5 for a single
hypercone, we need to introduce a new support function ωX inspired from the definition of the
function θX .

Proposition-Definition 5.10. Denote by (Di,F i) the elements of E for i ∈ J . There exists a
pair ̟X = (ωX , (rα)), where ωX : |E | → Q is a function and rα ∈ Z for any α ∈ Φ \ I, such that

– for any i ∈ J and any y in the locus of Di, we have

(i) ωX(y, ρ, 0) = ϑX(y, ρ, 0) for any uncolored ray ρ of the tail of Di,
(ii) ωX(y, τ) = −1 for any ray τ of Cy(D

i) not contained in NQ,
(iii) ωX(y, ̺(Dα), 0) = −aα for any color Dα ∈ F i,
(iv) rα = −aα for any α ∈ Φ \ I such that Dα 6∈ FE ,
(v) ωX(y, ν, ℓ) = 〈mi

y, ν〉+ ℓciy for some mi
y ∈M and ciy ∈ Q.

– If (y, ν, ℓ) ∈ C(Di) ∩ C(Dj), then 〈mi
y, ν〉+ ℓciy = 〈mj

y, ν〉+ ℓcjy.

We call the pair ̟X = (ωX , (rα)) the stringy support function.

Proof. Since X is Q-Gorenstein, by Lemma 5.5, for any i ∈ J and y in the locus of Di, there
exists a linear function ωi,y on Cy(D

i) satisfying Conditions (i)-(iii) above. It is enough to check
that ωi,y and ωj,y coincide on Cy(D

i) ∩ Cy(D
j). Indeed Cy(D

i) ∩ Cy(D
j) is a common face to

both Cy(D
i) and Cy(D

j). It generated by colored or uncolored rays. Moreover both ωi,y and ωj,y

are linear on the common face and coincide on the rays, which concludes the proof.

Motivic volume for horizontal arcs. We compute the motivic integral over subsets of the
form val−1(C, ν, 0).

Lemma 5.11. Let (y, ν, 0) be an element of |E ′|Γ = |E |Γ. We have
∫

val−1(C,ν,0)
L
− ordKX′/X dµX′ = [G/H][Γ]LϑX(C,ν,0).

Proof. We only prove the result for a T -variety. The general case is obtained by parabolic induc-
tion. Let σ ∈ Σ(E ′) be a cone containing ν and D be a σ-polyhedral divisor of E ′ with (affine)
locus C0. The rays of σ either correspond to exceptional divisors of ψ : X ′ → X, or are elements
of Ray(E ). For the exceptional divisors we use the notation of Section 5.4. Up to renumbering
we may assume that the exceptional rays of σ are ρ1, . . . , ρa, and we denote the remaining rays
by τa+1, . . . , τr. Write VQ := σ∨ ∩ (−σ∨) and choose a basis (v1, . . . , vd−1−r) of VQ ∩ M . Let
u1, . . . , ua, ua+1, . . . , ur be the duals of ρ1, . . . , ρa, τa+1, . . . , τr.

From [PS11, Remark 3.16 (2)] we know that the ideal of a T -stable divisor D′
ρj is given by

I(D′
ρj ) =

⊕

m∈(σ∨\ρ⊥j )∩M

H0(C0,OC0(⌊D(m)⌋))⊗ χm. (19)

If α ∈ val−1(C, ν, 0) and f ⊗ χm is a homogeneous element of degree m in A(C0,D), we have

α∗(f ⊗ χm) = tν(m)ω(m)R(f),
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where we use the notation of Remark 4.3. Hence sup
{

k ∈ N | α∗(f ⊗ χm) ∈ (tk)
}

= 〈m, ν〉.

Write ν = ν1ρ1+ · · ·+νaρa+νa+1τa+1+ · · ·+νrτr. We have νi ∈ N for 1 6 i 6 r. An element
m of (σ∨ \ ρ⊥j )∩M can be decomposed as m = m1u1 + · · ·+mrur +m′

1v1 + · · ·+m′
d−1−rvd−1−r

with mi ∈ N for 1 6 i 6 r, mj 6= 0, and m′
1, . . . ,m

′
d−1−r in Z. Hence 〈m, ν〉 =

∑r
i=1mi〈ui, ν〉.

Finally we have

min{〈m, ν〉 | m ∈ (σ∨ \ ρ⊥j ) ∩M} = 〈uj , ν〉.

We have ordD′
ρj
α = 〈uj , ν〉 and ordD′

(yi,pi)
α = 0 since α ∈ val−1(C, ν, 0). We obtain

ordKX′/X
(α) =

a
∑

i=1

(−1− ϑX(C, ρi, 0))〈ui, ν〉. (20)

Now by Equation (20) and Theorem 4.16 we get
∫

val−1(C,ν,0)
L
− ordKX′/X dµX′ = µX′(val−1(C, ν, 0))L

∑a
i=1(1+ϑX([C,ρi,0]))〈ui,ν〉

= [Γ][G/H]L−
∑r

j=1〈uj ,ν〉+
∑a

i=1(1+ϑX(C,ρi,0))〈ui,ν〉.

By linearity of ϑX on each Cayley cone and the decomposition of ν on the integral basis, we
obtain

ϑX(C, ν, 0) =

a
∑

i=1

〈ui, ν〉ϑX(C, ρi, 0) +

r
∑

j=a+1

〈uj , ν〉ϑX(C, τj , 0).

Finally, by definition of ϑX , we have ϑX(C, τj , 0) = −1 for a + 1 6 j 6 r, which concludes the
proof.

Corollary 5.12. With the notations of Lemma 5.11, we have
∫

val−1(C,ν,0)
L
− ordKX′/X dµX′ = [G/H][Γ]LωX(C,ν,0).

Motivic volume for vertical arcs. We now consider motivic integrals over vertical compo-
nents of the arc space LΓ(X

′). Let ξ = (y, ν, ℓ) be an element of |E ′|Γ ∩ N such that ℓ > 1. As
in the previous lemma we assume G = T and H = {e}. Let D be a polyhedral divisor of E ′ with
(affine) locus C0 such that (ν, ℓ) ∈ Cy(D), and denote by σ the tail of D. Let r be the dimension
of σ and s be the dimension of Cy(D). Up to renumbering the exceptional divisors of Section 5.4,
we may assume that the rays of σ either correspond to exceptional divisors D′

ρ1 , . . . , D
′
ρa of

ψ : X ′ → X, or are elements τa+1, . . . , τr of Ray(E ). Similarly the other rays

λ1 := (κ(p1)p1, κ(p1)), . . . , λs−r := (κ(ps−r)ps−r, κ(ps−r))

of Cy(D) include those associated with the exceptional divisors D′
(y,p1)

, . . . , D′
(y,pu)

.

Let Λ =M⊕Z. Write VQ := Cy(D)∨∩(−Cy(D)∨) and choose a basis (v1, . . . , vd−s) of VQ∩Λ.
Let u1, . . . , ua, ua+1, . . . , ur be the duals of ρ1, . . . , ρa, τa+1, . . . , τr in N and w1, . . . , ws−r be the
duals of λ1, . . . , λs−r. A set of generators of the semigroup Cy(D)∨ ∩ Λ is given by

(u1, 0), . . . , (ur, 0);±v1, . . . ,±vd−s;w1, . . . , ws−r.

Lemma 5.13. We have
∫

val−1(ξ)
L
− ordKX′/X dµX′ = [G/H](L− 1)LϑX(ξ)−

∑s−r
i=1 (κ(pi)by+κ(pi))〈wi,(ν,ℓ)〉.
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Proof. Let π in C(C)∗ be a uniformizer of y. Recalling the expression of the ideal I(D′
ρj ) from

Equation (19) we can compute ordD′
ρj
(α) by studying α∗(πk ⊗ χm) for all (m, k) in (Cy(D)∨ \

(ρj , 0)
⊥)∩Λ.We may then use the same argument as in Lemma 5.11. We obtain that ordD′

ρj
(α) =

〈uj , ν〉 for any α in val−1(ξ). Let us now recall the description of I(D′
(y,pi)

) from [PS11, Remark

3.16 (i)]:

I(D′
(y,pi)

) =
⊕

m∈σ∨∩M

H0(C0,OC0(⌊D(m)⌋)) ∩ {f ∈ C(C0) | ordy f + 〈m, pi〉 > 0} ⊗ χm.

As before we can compute ordD′
(y,pi)

(α) from the computation of α∗(πk⊗χm) for any pair (m, k)

in (Cy(D)∨\(pi, 1)
⊥)∩Λ. We find ordD′

(y,pi)
(α) = 〈wi, (ν, ℓ)〉. Then it follows from Proposition 5.8

that

ordKX′/X
(α) =

a
∑

j=1

cj〈uj , ν〉+
s−r
∑

i=1

di〈wi, (ν, ℓ)〉 (21)

where cj = −1−ϑX(C, ρj , 0) and di = κ(pi)by+κ(pi)−1−ϑX(y, κ(pi)pi, κ(pi)). Note that di = 0
for u < i 6 s− r. Now by Equation (21) and Theorem 4.16,
∫

val−1(ξ)
L
− ordKX′/X dµX′ = µX′(val−1(ξ))L−

∑a
j=1 cj〈uj ,ν〉−

∑s−r
i=1 di〈wi,(ν,ℓ)〉

= [G/H](L− 1)L−
∑r

j=1〈uj ,ν〉−
∑s−r

i=1 〈wi,(ν,ℓ)〉−
∑a

j=1 cj〈uj ,ν〉−
∑s−r

i=1 di〈wi,(ν,ℓ)〉.

Since ϑX is linear on Cayley cones, decomposing ν on the integral basis, we conclude using the
identity

ϑX(ξ)−
s−r
∑

i=1

(κ(pi)by + κ(pi)) 〈wi, (ν, ℓ)〉 =
a

∑

j=1

(−1− cj)〈uj , ν〉 −
r

∑

j=a+1

〈uj , ν〉 −
s−r
∑

i=1

(1 + di)〈wi, (ν, ℓ)〉.

To rephrase the formula of Lemma 5.13 in terms of the function ωX we need

Proposition 5.14. Let E be a colored divisorial fan on (C,G/H). Assume X := X(E ) is Q-
Gorenstein and let X ′ = X(E ′) be the desingularization of X as defined in Equation (17). Then
for any (y, p) in Vert(E ′)\Vert(E ) we have (ϑX′ −ϑX)(y, κ(p)p, κ(p)) = −1−ωX(y, κ(p)p, κ(p)).

Proof. Since the problem is local we may assume that E = {(D,F)}. We first show the statement
when E = Ẽ , that is, when the coloration F is trivial and the locus C0 of D is affine. By parabolic
induction we may also assume that G = T and H = {e}. Write

D =
∑

z∈C0

∆z · [z]

and let y ∈ C0. Denote E ′ = {Di}i∈J . The cones Cy(D
i) generate a fan Σ′ in NQ⊕Q. Denote by

Xtor (resp. by X ′
tor) the toric (T ×C∗)-variety associated with the cone Cy(D) ⊂ NQ ⊕Q (resp.

with the fan Σ′). By Lemma 5.5 we know that Xtor is Q-Gorenstein. Moreover X ′
tor is smooth,

and the proper birational map X ′
tor → Xtor is a (T ×C∗)-equivariant resolution of singularities.

Define a σ-polyhedral divisor D̂ with locus A1 on (P1, T ) by setting D̂ :=
∑

z∈A1 ∆̂z · [z],
where

∆̂z =

{

∆y if z = 0,

σ otherwise.
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Similarly, for any i ∈ J , we define a polyhedral divisor D̂i with locus A1 associated with Di, and
we let Ê ′ be the corresponding divisorial fan. We have a commutative diagram

X ′
tor Xtor

X(Ê ′) X(D̂).

q′

q′

Indeed, the equality on the right comes from the description of the C-algebra A(A1, D̂) viewed
as the semigroup algebra C[C0(D̂)∨ ∩ (M ⊕ Z)]. The other equality is similar.

Consider the support functions θX = (ϑX , (−aα)) in PL(D) and θX′ = (ϑX′ , (−aα)) in PL(E ′)
satisfying the hypotheses of Proposition 5.4, which induce functions respectively on Cy(D) and
Σ′. To prove the proposition we compute the discrepancy of q′ in two different ways.

Let us first compute the discrepancy of q′ : X(Ê ′) → X(D̂) using the functions ϑX′ and ϑX .
By definition the Weil Q-divisor

K̂ :=
∑

(0,p)∈Vert(Ê ′)\Vert(D̂)

(ϑX(Ê ′) − ϑX(D̂))(0, κ(p)p, κ(p))D
′
(0,p) +

∑

ρ∈Ray(Ê ′)\Ray(D̂)

(ϑX(Ê ′) − ϑX(D̂))(P
1, ρ, 0)D′

ρ

=
∑

(y,p)∈Vert(E ′)\Vert(D)

(ϑX′ − ϑX)(y, κ(p)p, κ(p))D′
(0,p) +

∑

ρ∈Ray(E ′)\Ray(D)

(ϑX′ − ϑX)(C, ρ, 0)D′
ρ

is a relative canonical divisor. Next we compute the discrepancy of q′ : X ′
tor → Xtor using the

function ωX . By [BM13, Proposition 4.2] the Weil Q-divisor

K :=
∑

(y,p)∈Vert(E ′)\Vert(D)

(−1− ωX(y, κ(p)p, κ(p)))D′
(0,p) +

∑

ρ∈Ray(E ′)\Ray(D)

(−1− ωX(y, ρ, 0))D′
ρ

is a relative canonical divisor. The divisors K and K̂ are linearly equivalent. By [KM98, Lemma
3.39] we know that they are in fact equal. Thus

− 1− ωX(y, κ(p)p, κ(p)) = (ϑX(Ê ′) − ϑX(D̂))(0, κ(p)p, κ(p)) (22)

for any (y, p) ∈ Vert(E ′) \Vert(D), which concludes the case where E = Ẽ .

For the case where E is general, we remark that the functions ωX(Ẽ ) + ϑX − ϑX(Ẽ ) and ωX

coincide. Indeed, they are linear on each Cayley cone of E and they have the same values on the
rays. Hence taking this into account we obtain Equation (22) in the general case, which concludes
the proof.

Corollary 5.15. With the notations of Lemma 5.13, when ℓ > 1, we have
∫

val−1(y,ν,ℓ)
L
− ordKX′/X dµX′ = [G/H](L− 1)LωX(y,ν,ℓ).

Proof. We proved in Lemma 5.13 that
∫

val−1(y,ν,ℓ)
L
− ordKX′/X dµX′ = [G/H](L− 1)LϑX(y,ν,ℓ)−

∑s−r
i=1 (κ(pi)by+κ(pi))〈wi,(ν,ℓ)〉. (23)

By definition of ϑX′ and ϑX , we have

ϑX(y, ν, ℓ)−
s−r
∑

i=1

(κ(pi)by + κ(pi)) 〈wi, (ν, ℓ)〉 = (ϑX − ϑX′)(y, ν, ℓ)−
r

∑

i=1

〈ν, ui〉 −
r

∑

j=1

〈(ν, ℓ), wj〉.
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Kevin Langlois, Clélia Pech and Michel Raibaut

Moreover by linearity

(ϑX − ϑX′)(y, ν, ℓ) =
r

∑

i=1

〈ν, ui〉(ϑX − ϑX′)(y, ρi, 0) +
s−r
∑

j=1

〈(ν, ℓ), wj〉(ϑX − ϑX′)(y, κ(pj)pj , κ(pj)).

(24)
By the proof of Corollary 5.12 and Proposition 5.14 we have

(ϑX−ϑX′)(y, ρi, 0) = ωX(y, ρi, 0)−1and(ϑX−ϑX′)(y, κ(pj)pj , κ(pj)) = 1+ωX(y, κ(pj)pj , κ(pj)).

We obtain

(ϑX − ϑX′)(y, ν, ℓ)−
r

∑

i=1

〈ν, ui〉 −
s−r
∑

j=1

〈(ν, ℓ), wj〉 = ωX(y, ν, ℓ). (25)

Replacing the exponent of L in the right-hand side of Equation (23) by ωX(y, ν, ℓ) using Equa-
tions (24) and (25), we obtain the stated result.

The stringy motivic volume.

Theorem 5.16. Let E be a colored divisorial fan on (C,G/H) such that X = X(E ) is Q-
Gorenstein with log terminal singularities. Then for any open dense subset Γ in C \ Sp(E ) we
have

Est(X) = [G/H]
∑

(y,ν,ℓ)∈|E |Γ∩N

[Xℓ]L
ωX(y,ν,ℓ),

where X0 = Γ and Xℓ = A1 \ {0} if ℓ > 1. The stringy E-function of X is computed as follows

Est(X;u, v) = E(G/H;u, v)
∑

(y,ν,ℓ)∈|E |Γ∩N

E(Xℓ;u, v) (uv)
ωX(y,ν,ℓ),

where E(Xℓ;u, v) = E(Γ;u, v) if ℓ = 0, else E(Xℓ;u, v) = uv − 1.

Proof. This follows from Lemma 5.9 and Corollaries 5.12 and 5.15.

Rational form and candidate poles. We end this section by giving a rational expression of
the stringy motivic volume Est(X) in terms of the combinatorial data E . For a special point y in
Sp(E ), we denote by Ey the fan generated by the Cayley cones of the form Cy(D

i), where i ∈ J .
Let τ belong to Ey. Fix a fan Στ with support τ such that every cone of Στ is simplicial and
the cones of dimension one in Στ are exactly the faces of dimension one of τ . Such a fan always
exists (see [Ewa96, V.4]).

For an arbitrary polyhedral cone λ ⊂ NQ⊕Q, we denote by λ(1) the set of primitive generators
in N ⊕ Z of the rays of λ. The fundamental parallelotope of λ is the set

Pλ :=
{

∑

ρ∈λ(1) µρρ ∈ N ⊕ Z 0 6 µρ < 1, ρ ∈ λ(1)
}

⊂ NQ.

We also denote by the symbol Prop(λ) the set of proper faces of λ. For an element v ∈ N ⊕ Z

we write χv for the Laurent monomial associated with v. We define two functions L1 and L2 via
the equalities

L1(γ) :=





∑

v∈Pγ

χv





∏

ρ∈τ(1)\γ(1)

(1− χρ) and L2(γ) := L1(γ)−
∑

γ′∈Prop(γ)

L1(γ
′),

for every cone γ ∈ Στ . We also introduce Q(τ,Στ ) :=
∑

γ∈Στ\Prop(τ)
L2(γ).
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Theorem 5.17. Let τ ⊂ NQ ⊕Q be a strongly convex simplicial polyhedral cone. Then

∑

u∈τ∩N⊕Z

χu =

∑

n∈Pτ
χn

∏

ρ∈τ(1)(1− χρ)
.

Proof. Follows from Gordan Lemma’s proof, see [CLS11, Proposition 1.2.17] and [Bri88, Section
2].

We give an interpretation of the polynomial Q(τ,Στ ) in terms of the generating function

S(τ) =
∑

u∈τ◦∩(N⊕Z)

χu,

where τ◦ is the relative interior of τ .

Lemma 5.18. With the same notation as above,

S(τ) = Q(τ,Στ )
∏

ρ∈τ(1)

(1− χρ)−1.

The polynomial Q(τ,Στ ) does not depend on the choice of Στ and it will be denoted by Q(τ).

Lemma 5.19. Let D be a proper σ-polyhedral divisor on P1. If ρ is a ray of σ such that deg(D)∩
ρ 6= ∅, then there exists λ ∈ Q>0 and a vertex v ∈ deg(D) such that ρ = λv.

Proof. Straightforward.

Using the combinatorial description of the log terminal condition given in Theorem 5.6, we
study the sign of ωX on each cone of the fan Ey, where y is a special point of E .

Lemma 5.20. Let τ ∈ Ey and ρ ∈ τ(1). Then ωX(y, ρ) < 0.

Proof. Consider (D,F) ∈ E such that ρ is a primitive generator of a ray of Cy(D). Assume
first that ρ ∈ σ(1), where σ is the tail of D. If ρ ∈ Ray(E ) or if a color of F is mapped onto
the ray Q>0ρ, then by Proposition 5.10 the rational number ωX(y, ρ) is negative. Otherwise, by
Theorem 5.6 the log terminal condition implies that the locus of D is the projective line P1 and
that deg(D)∩Q>0ρ 6= ∅. By Lemma 5.19, there exists a vertex v of deg(D) such that ρ = µv for
some µ ∈ Q>0.

Let us write D =
∑

z∈P1 ∆z · [z]. Then (see Definition 5.3), we can find e ∈M , α ∈ Q>0 and
f ∈ C(P1)∗ such that for any z ∈ P1 and any vertex v in ∆z we have

θX(z, κ(v)v, κ(v)) = ακ(v)(〈e, v〉+ ordz(f)) = κ(v)bz + κ(v)− 1, (26)

where KP1 =
∑

z∈P1 bz · [z] is a canonical divisor. Let (vz)z∈P1 be a sequence of elements of
NQ such that for any z ∈ P1, vz is a vertex of ∆z and v =

∑

z∈P1 vz. By Equation (26) and
Proposition 5.10 we obtain

ωX(C, v, 0) =
∑

z∈P1

1

ακ(vz)
(κ(vz)(〈e, vz〉+ ordz(f)) =

1

α



deg KP1 +
∑

z∈P1

(

1−
1

κ(vz)

)



 < 0.

(27)
The inequality is a consequence of the fact that deg KP1 = −2 and of the log terminal assumption
on X (see Theorem 5.6). If ρ does not belong to NQ, then ρ = (κ(w)w, κ(w)) for some vertex w
of ∆y, and finally ωX(y, ρ) = θX(y, κ(w)w, κ(w)) = −1.
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Corollary 5.21. Let y ∈ Sp(E ) be a special point and let τ ∈ E . Let C[[τ ∩ (N ⊕ Z)]] be the
formal completion of the ring C[τ ∩ (N ⊕ Z)] with respect to the ideal Iτ generated by the set
{χv | v ∈ τ ∩ (N ⊕ Z) \ {0}}. Elements of Iτ are of the form

∑

v∈τ∩(N⊕Z) av χ
v with av ∈ C. Let

m := min{a ∈ Z>0 | a · ωX takes its values in Z}. Then the map

ϕτ : (C[τ ∩ (N ⊕ Z)], Iτ ) → (C[L− 1
m ],L− 1

m C[L− 1
m ]), χv 7→ LωX(y,v)

is a well-defined continuous morphism, and therefore it extends to the formal completions

ϕ̄τ : C[[τ ∩ (N ⊕ Z)]] → C[[L− 1
m ]], χv 7→ LωX(y,v).

Proof. By Lemma 5.20 we have ϕτ (Iτ ) ⊂ L− 1
m C[L− 1

m ] and ϕ̄τ exists (see [Mat80, § (23.H)]).

Inspired by the theory of Stanley–Reisner rings (see also [BM13, Section 6]), we introduce

Definition 5.22. Let y ∈ Sp(E ) and consider τ ∈ Ey. Let m ∈ Z>0 as in 5.21. According to

loc. cit. we have ϕ̄τ (Q(τ)) ∈ Z[t−1], where t = L
1
m and Q(τ) = Q(τ,Στ ) is the function of

Lemma 5.18. The Stanley–Reisner polynomial associated with the pair (τ, ωX) is the polynomial

P (τ, ωX) := P (τ, ωX)(t) = Lη(τ,ωX) · ϕ̄τ (Q(τ)) ∈ Z[t],

where η(τ, ωX) ∈ 1
mZ is the degree of P (τ, ωX) divided by m.

The following result discribes a rational form of the stringy motivic volume Est(X) in terms
of the function ωX .

Theorem 5.23. For every y ∈ Sp(E ), let us denote by E ∗
y the set of cones τ of Ey such that

τ 6⊂ NQ. Let Γ = C \Sp(E ) and consider the tail fan Σ(E ) of E . Then the stringy motivic volume
of X = X(E ) is

Est(X) =[G/H][Γ]
∑

τ∈Σ(E )

P (τ, ωX)L−η(τ,ωX)
∏

ρ∈τ(1)

(

1− LωX(C,ρ,0)
)−1

+ [G/H](L− 1)
∑

y∈Sp(E )

∑

τ∈E ∗
y

P (τ, ωX)L−η(τ,ωX)
∏

ρ∈τ(1)

(

1− LωX(y,ρ)
)−1

,

where P (τ, ωX) is the Stanley–Reisner polynomial associated with the pair (τ, ωX).

Proof. This follows from Theorem 5.16 and Corollary 5.21.

As a consequence of the theorem, under some assumptions on E , we obtain also a formula
for the stringy Euler characteristic of the variety X.

Corollary 5.24. Let (M, I) be the pair describing the horospherical homogeneous space G/H.
Consider W := NG(Q)/Q the Weyl group of (G,Q) and WI ⊂ W the subset defined in Sec-
tion 3.1. Let r := dim(NQ). Assume that for every tail cone τ ∈ Σ(E ) and every τ ′ ∈ Ey for
y ∈ Sp(E ), we have r > |τ(1)| and r + 1 > |τ ′(1)|. Then

|WI |

|W |
est(X) =e(Γ)

∑

τ∈Σ(E ),dim(τ)=r

P (τ, ωX)(1)
∏

ρ∈τ(1)

1

(−ωX(C, ρ, 0))

+
∑

y∈Sp(E )

∑

τ∈E ∗
y ,dim(τ)=r+1

P (τ, ωX)(1)
∏

ρ∈τ(1)

1

(−ωX(y, ρ))
,

where P (τ, ωX) is the Stanley–Reisner polynomial associated with the pair (τ, ωX).
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∆0 ∆1 ∆∞

1

1

1
2

1
3

6. Stringy Euler characteristic and a smoothness criterion

In this section we start in 6.1 by illustrating Theorem 5.16 on the example of a hypersurface
endowed with a (C∗)2-action which was initially studied by Liendo and Süß [LS13, Example 1.1].
Then, analogously to [BM13, Theorem 5.3], in 6.2 we deduce from Theorem 5.16 a smoothness
criterion for locally factorial horospherical varieties of complexity one.

6.1 An example where the acting group is a torus

Let N = Z2 and σ = Cone((1, 0), (1, 6)) ⊂ NQ = Q2. Define a σ-polyhedral divisor on (P1, (C∗)2)
by D =

∑

y∈P1 ∆y · [y], where

∆y =























Conv((1, 0), (1, 1)) + σ if y = 0,

(−1
2 , 0) + σ if y = 1,

(−1
3 , 0) + σ if y = ∞,

σ otherwise.

The variety X(D) is a hypersurface in A4, given by the equation x32 − x23 + x1x4 = 0, where
the (C∗)2-action is given by

(λ1, λ2) · (x1, x2, x3, x4) = (λ2x1, λ
2
1x2, λ

3
1x3, λ

6
1λ

−1
2 x4).

An easy computation shows that the stringy motivic volume of X(D) is

Est(X) =
L(L− 1)2

(1− L−5)2
(1− 2L−1 + 3L−2 + 3L−3 + 4L−4 + 10L−5 − 10L−6 + 15L−7 + 3L−8 + 2L−9 + L−10).

Thus est(X) = 6/5 > e(X) = 1.

6.2 Stringy Euler characteristic and a smoothness criterion

Lemma 6.1. Let (D,F) be a colored σ-polyhedral divisor on (C,G/H) with affine locus C0.
Assume that X(D) is locally factorial (that is, that any Weil divisor is Cartier), and that σ has
dimension dimX − 1. Then the stringy Euler characteristic is equal to

est(X) = e(C0)
|W |

|WI |
∏

Dα∈F
aα
,

where, as usual, W denotes the Weyl group of (G,Q) and WI denotes the Weyl group of
(NG(H), Q).
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Proof. Let Γ ⊂ C0 \ Sp(D) be an open subset. By Theorem 5.16 we have

Est(X) = [Γ][G/H]
∑

ν∈σ∩N

LωX(C,ν,0) + (L− 1)[G/H]
∑

y∈C0\Γ

∑

(ν,ℓ)∈Cy(D)\(σ×{0})

LωX(y,ν,ℓ)

= [Γ]Est(X(σ,F)) +
∑

y∈C0\Γ

(Est(X(Cy(D),F))− (L− 1)Est(X(σ,F))) ,

where X(σ,F) (respectively X(Cy(D),F)) is the G-equivariant (respectively G×C∗-equivariant)
embedding of the horospherical homogeneous spaceG/H (respectivelyG/H×C∗) associated with
the colored cone (σ,F) (respectively (Cy(D),F)). Here the last equality comes from [BM13,
Theorem 4.3].

Passing to the stringy E-polynomial and evaluating at u = v = 1, we obtain

est(X) = e(Γ)est(X(σ,F)) +
∑

y∈C0\Γ

est(X(Cy(D),F)).

Using [BM13, Proposition 5.11] we see that est(X(Cy(D)),F) = est(X(σ,F)) since the stringy
Euler characteristic only depends on the Weyl groups and the colors, which are unchanged. We
deduce

est(X) = e(C0)est(X(σ,F)) and est(X(σ,F)) =
|W |

|WI |
∏

Dα∈F
aα

which concludes the proof.

The next proposition gives a full description of the G-orbits of a simple G-model of C×G/H
corresponding to a colored σ-polyhedral divisor (D,F) with affine locus C0. For the complexity
zero case we refer to [BM13, Proposition 2.4].

Proposition 6.2. Let (D,F) be a colored σ-polyhedral divisor on (C,G/H) with affine locus
C0. Then X := X(D,F) has two types of G-orbits :

(i) horizontal orbits, which are contained in the G-invariant open subset Γ × X(σ,F) of X,
where Γ = C0 \Sp(D) and X(σ,F) is the G/H-embedding associated with the colored cone
(σ,F),

(ii) vertical orbits, which are the remaining G-orbits.

Moreover, the horizontal G-orbits of X are parametrized by triples (y, τ,Fτ ), where y ∈ Γ,
τ is a face of σ, and Fτ = {D ∈ F | ̺(D) ∈ τ}. The stabilizer Hy,τ,Fτ =: Hτ of such a triple is
given by

Hτ = {g ∈ PIFτ
| χm(g) = 1 for any m ∈ τ⊥ ∩M},

where IFτ ⊂ Φ is the reunion with I of the set of simple roots indexing the colors in Fτ , and χ
m

is the character of PIFτ
associated with m. Finally, the vertical G-orbits of X are parametrized

by triples (y, F,FF ), where y ∈ Sp(D), F is a face of the σ-polyhedron ∆y of D associated with
y, and

FF = {Dα ∈ F | ̺(Dα) ∈ λ(F )}with λ(F ) = {m ∈MQ | 〈m, v−v′〉 > 0 for any v ∈ ∆y, v
′ ∈ F}.

The stabilizer Hy,F,FF
=: Hy,F of a triple (y, F,FF ) is given by

Hy,F = {g ∈ PIFF
| ∀m ∈My, χ

m(g) = 1}withMy =

{

m ∈M ∩ λ(F ) ∩ (−λ(F ))

∣

∣

∣

∣

min
v∈∆y

〈m, v〉 ∈ Z

}

.

Proof. This follows by combining [BM13, Proposition 2.4] and [AH06, Section 7].
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We compute the (usual) Euler characteristic and compare it to the stringy version of Lemma 6.1.

Lemma 6.3. Under the same assumptions as in Lemma 6.1, the Euler characteristic of X is

e(X) = e(C0)
|W |

|WIF |
.

Proof. By Proposition 6.2 we have a decomposition e(X) = e(Γ×X(σ,F))+
∑

O vertical G-orbit e(O).
Using [BM13, Proposition 5.11] and the parametrization of vertical orbits in Proposition 6.2, we
obtain

e(X) = e(Γ)
|W |

|WIF |
+

∑

y∈Sp(D)

∑

v∈∆y

|W |
∣

∣

∣
WIF{v}

∣

∣

∣

.

Thus it only remains to prove that

|W |

|WIF |
=

∑

v∈∆y

|W |
∣

∣

∣WIF{v}

∣

∣

∣

. (28)

Fix a point y0 ∈ C0 and define D̂ :=
∑

z∈A1 ∆̂z · [z] a colored σ-polyhedral divisor (D̂,F) on

(P1, G/H) where ∆̂z = ∆y0 if z = 0 and otherwise ∆̂z = σ. The variety X(D̂) is locally factorial,
horospherical, and it identifies with the (G×C∗)-equivariant embedding of G/H×C∗ associated
with the colored cone (C0(D̂),F) = (Cy(D),F). Thus by [BM13, Proposition 5.11], we obtain

|W |

|WIF |
= e(X(C0(D̂),F)) = e(X(D̂)) = e(C∗)e(X(σ,F)) +

∑

v∈∆y

|W |
∣

∣

∣
WIF{v}

∣

∣

∣

.

Since e(C∗) = 0, this proves Equation (28) and concludes the proof.

Combining Lemmas 6.1 and 6.3 with the smoothness criterion of [LT16, Theorem 2.5], we
obtain

Theorem 6.4. Let (D,F) be a colored σ-polyhedral divisor on (C,G/H) with affine locus
C0 ⊂ C. Assume that X = X(D) is locally factorial and that for any y ∈ C0, the Cayley cone
Cy(D) has dimension d = dimX. Then we have est(X) > e(X). Moreover, if 2−2g−|C \C0| 6= 0,
then X is smooth if and only if est(X) = e(X).
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