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Observer-Based Fuzzy Integral Sliding Mode

Control For Nonlinear Descriptor Systems
Jinghao Li, Qingling Zhang, Xing-Gang Yan, and Sarah K. Spurgeon, Senior Member, IEEE

Abstract—This paper investigates observer-based stabilization
for nonlinear descriptor systems using a fuzzy integral sliding
mode control approach. Observer-based integral sliding mode
control strategies for the T-S fuzzy descriptor systems are
developed. A two step design is first developed to obtain the
observer gains and coefficients in the switching function using
linear matrix inequalities, and the results are used to facilitate
the development of a single step design approach, which is seen
to be convenient but introduces some conservatism in the design.
The potential application to a class of mechanical systems is
also considered. Since the descriptor system representation of
mechanical systems is adopted, it is shown that in contrast to the
existing fuzzy sliding mode control methods based on the normal
system representation, the resulting T-S fuzzy system does not
contain different input matrices for each local subsystem and
the required number of fuzzy rules is consequently markedly
reduced. Finally, the balancing problem of a pendulum on a car
is numerically simulated to demonstrate the effectiveness of the
proposed method.

Index Terms—Observer-based stabilization, T-S fuzzy descrip-
tor systems, integral sliding mode control, mechanical systems.

I. INTRODUCTION

The Takagi-Sugeno (T-S) fuzzy model [1] has been ex-

tensively utilized as a popular and convenient tool to deal

with complex nonlinear systems. With the T-S fuzzy model,

nonlinear systems with smooth nonlinearities can be exactly

represented in a compact set of the state space by a set of linear

subsystems connected by corresponding normalized weighted

coefficients. Then approaches to systematic analysis and syn-

thesis for the resulting T-S fuzzy systems can be developed

within the frame of conventional control technology and fuzzy

logic control. As a result, this T-S fuzzy approach has attracted

significant attention from the control community [2]-[12].

Despite the superiority of the T-S fuzzy model, the fuzzy rules

will exponentially increase with the nonlinearities arising in

the system representation. This increase in the number of fuzzy

rules can produce a linear matrix inequality (LMI) condition

which is infeasible or unnecessarily complicated. Recently,
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[13] presented a T-S fuzzy descriptor model which can be

regarded as a generalization of the T-S fuzzy normal model

(E = I). The advantages of the T-S fuzzy descriptor model are

a reduction in the number of fuzzy rules and a tighter nonlinear

system representation [14]. Over recent years, a great deal of

effort has been devoted to the study of T-S fuzzy descriptor

systems and many significant results have been achieved in

diverse areas, for example, stability and stabilization [15]-[23],

observer-based control [24]-[25], guaranteed cost control [26]-

[27], H∞ and dissipative control [28]-[31], and fault-tolerant

control [32].

Sliding mode control (SMC) [33]-[36], as an effective robust

control approach, has been widely applied to control and

observe complex practical systems. The attractive features of

SMC are its strong robustness properties and fast response.

Recently, [7] gives a first attempt to remove the assumption

that each local subsystem model shares the same input matrix

in the sliding mode control problems for T-S fuzzy systems.

Subsequently, by dividing the state space into several regions,

the T-S fuzzy system is transformed into a linear uncertain

system in each region. Then, using the sliding mode control

method for each linear system and considering the continuity

of the state trajectories over the region border, a piecewise in-

tegral sliding mode control for T-S fuzzy systems is presented

in [8] to relieve the assumption pointed out in [7]. However,

it is not a straightforward task to implement this sliding mode

control strategy due to its high complexity. [11] formulates

new states by incorporating the inputs and presents a dynamic

integral sliding mode strategy to remove the assumption that

each local subsystem shares the same input matrix for T-S

fuzzy systems as pointed out in [7], but the dimension of the

closed-loop system increases since the inputs are also a subset

of the new states. Consideration of mechanical systems shows

that they are generally in the form of nonlinear descriptor

systems with a constant input matrix. The traditional approach

[2], [7], [9], [35], [36] to the control of mechanical systems

is to transform the system to an equivalent nonlinear normal

system (E = I) by performing the inverse operation of the

derivative-term coefficient. This inverse operation will make

the input matrix of the equivalent nonlinear normal system

become nonlinear. When a T-S fuzzy model is used, the

corresponding T-S fuzzy system will contain different input

matrices for each local subsystem. A motivational example to

illustrate this is the balancing problem of a pendulum on a cart

in [7]. From this observation, it can be seen that the different

input matrices of certain T-S fuzzy systems may not be an

inherent system characteristic, but may be introduced artifi-

cially as a result of the modelling paradigm. In this paper, the
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first motivation is to study sliding mode control problems for

mechanical systems in descriptor form. Mechanical systems

are always described by T-S fuzzy descriptor systems where

the derivative-term coefficients are different for each local

subsystem [23]. In this case, the sliding mode control methods

in [19], [31] for T-S fuzzy descriptor systems that share the

same derivative-term coefficient for each local subsystem can

not be directly applied. Moreover, the sliding mode control

methods in [19], [31] are based on state feedback designs.

In practice, it may be expensive or sometimes impossible to

obtain precise measurements of all the system states. For the

purpose of controller design, only the outputs are accessible

[37]-[39]. In this case, an alternative approach is to use a state

observer [40]-[41] to reconstruct the system states. It should be

emphasized that when the T-S fuzzy descriptor systems contain

parameter uncertainties, the separation principle usually does

not hold [25], [32]. As a result, designing an observer-based

sliding mode control strategy for T-S fuzzy descriptor systems

with parameter uncertainties is the second motivation. To the

best of the authors’ knowledge, the observer-based sliding

mode control problem for nonlinear descriptor system using a

T-S fuzzy model has not been previously studied.

This paper is concerned with observer-based integral sliding

mode control problems for nonlinear descriptor systems based

on a T-S fuzzy model. Then an observer-based sliding mode

control strategy is designed for the T-S fuzzy descriptor

system. It is shown that the observer gains and coefficients in

the switching function can be obtained by a proposed single-

step or two-step design approach, where although the single-

step design approach may introduce some conservatism in

the design, it is more convenient than the two-step design

approach. Moreover, the proposed methods in this paper are

also utilized to control a class of mechanical systems. Since

the nonlinear descriptor system is adopted to represent the

mechanical system, the inverse operation of the derivative-

term coefficient of the nonlinear descriptor system is avoided.

It is shown that, compared with the existing fuzzy sliding

mode control methods [7], [9], [12], the resulting T-S fuzzy

system does not contain different input matrices for each

local subsystem and the required number of fuzzy rules is

consequently markedly reduced. The contributions of this

paper are threefold: 1) a systematic way to design an observer-

based controller for a T-S fuzzy descriptor system with pa-

rameter uncertainties is presented via integral sliding modes;

2) considering that the separation principle is usually not

satisfied for T-S fuzzy descriptor systems containing parameter

uncertainties [25], [32], in this paper, a single-step approach

and two-step approach are respectively proposed to evaluate

the observer gains and coefficients in the switching function;

3) based on the proposed methods in this paper, an alternative

way to control mechanical systems is presented. It is seen

that with the descriptor representation, each subsystem of the

resulting T-S fuzzy descriptor system shares the same input

matrix and the artificial introduction of the different input

matrices of each subsystem is avoided.

The paper is organized as follows: Section II defines the

problem under consideration and gives some essential def-

initions and lemmas. Section III focuses on observer-based

sliding mode control for T-S fuzzy descriptor systems. Section

IV considers a class of mechanical systems and with the

descriptor representation and the proposed methods in Section

III, a new fuzzy integral sliding mode control method is

presented for this class. Section V provides three examples

to show the validity of the results proposed. Finally, Section

VI concludes the paper.

Notation: The notation used throughout this paper is quite

standard. R
n represents the n-dimensional Euclidean space,

and R
m×n represents the set of all m × n real matrices.

The superscripts T and −1 denote matrix transposition and

matrix inverse respectively. R+ represents the set of positive

real numbers. ∥ · ∥ denotes the Euclidean norm of a vector or

the induced norm of a matrix. The notation P > 0 (P ≥ 0)

implies that P is a real symmetric and positive definite (semi-

positive definite) matrix. He(A) stands for A+AT . The star ⋆
in a matrix block implies that it can be induced by symmetric

position. Matrices, if their dimensions are not explicitly stated,

are assumed to be compatible for algebraic operations.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider a class of uncertain nonlinear descriptor systems

which can be represented by the following uncertain T-S fuzzy

descriptor system

re∑

k=1

vk(z(t))(Ek +∆E)ẋ(t)

=

r∑

i=1

hi(z(t))(Ai +∆A)x(t) +Bu(t)

y(t) = Cx(t)

(1)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the

control input vector, y(t) ∈ R
l is the measurable output vector.

z(t) = [z1(t), z2(t), · · · , zp(t)] is the premise vector and is

measurable. vk(z(t)), k = 1, 2, · · · , re and hi(z(t)), i =
1, 2, · · · , r, are fuzzy membership functions in the left side and

in the right-hand side, respectively. Ek, k = 1, 2, · · · , re, and

Ai, B, C, i = 1, 2, · · · , r, are constant matrices of appropriate

dimensions defining the kth right-hand side subsystem and the

ith left-hand side subsystem of the T-S fuzzy descriptor system

respectively. ∆E = MEFE(t)NE and ∆A = MAFA(t)NA

with FT
E (t)FE(t) ≤ 0, FT

A (t)FA(t) ≤ 0 are parameter

uncertainties. It is assumed that
∑re

k=1 vk(z(t)) (Ek +∆E)
is nonsingular.

Remark 1: The T-S fuzzy descriptor system (1) has a wide

range of applications in the domain of mechanical systems

and electro-mechanical systems [35]. A class of mechanical

systems in descriptor form will be considered in Section IV

to justify the potential applications of the T-S fuzzy descriptor

system (1).

Define η(t) = [xT (t) ẋT (t)]T , the T-S fuzzy descriptor

system (1) can be rewritten by its equivalent representation

[14]

Eη̇(t) =

re∑

k=1

r∑

i=1

vk(z(t))hi(z(t)) (Aki +∆A) η(t)

+Bu(t)

y(t) = Cη(t)

(2)
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where E =

[
I 0
0 0

]
, Aki =

[
0 I
Ai −Ek

]
, B =

[
0
B

]
, C =

[
C 0

]
, ∆A =

[
0 0

∆A −∆E

]
=

[
0 0

MA −ME

]

︸ ︷︷ ︸
M

[
FA(t) 0
0 FE(t)

]

︸ ︷︷ ︸
F(t)

[
NA 0
0 NE

]

︸ ︷︷ ︸
N

.

Define sets H = {1, 2, · · · , r}, V = {1, 2, · · · , re} and

W = {1, 2, · · · , rre}, and the bijection ϕ : V ⊗ H → W
where ⊗ is the Cartesian product operator. Then the T-S fuzzy

descriptor system (2) can be transformed into the following

system

Eη̇(t) =
( rre∑

i=1

wi(z(t))Ai +∆A
)
η(t) +Bu(t)

y(t) = Cη(t)

(3)

where wi(z(t)) ≥ 0, i = 1, 2, · · · , rre, is the normalized fuzzy

membership function with the property
∑rre

i=1 wi(z(t)) = 1.

Remark 2: Without loss of generality, the bijection ϕ can be

defined as j = ϕ(k, i) = i+(k−1)re, j = 1, 2, · · · , rre, k =
1, 2, · · · , re, i = 1, 2, · · · , r, and the fuzzy membership

function is defined as wj(z(t)) = vk(z(t))hi(z(t)) with

(k, i) = ϕ−1(j). It is straight forward to check that wj(z(t)) ≥
0 and

∑rre
j=1 wj(z(t)) = 1.

Based on the definition of multiple sum in [23], the follow-

ing definitions can be formulated, see [23] for further details.

Definition 1: (Multiple sums) Multiple sums with

nHΛ terms in h(z(t)) and nV Λ terms in v(z(t))
at time t are of the following form ΛHΛ =∑r

i1=1

∑r
i2=1 · · ·

∑r
in

HΛ
=1 hi1(z(t))hi2(z(t)) · · ·hin

HΛ
(z(t))

Λi1i2···in
HΛ

, ΛV Λ =
∑re

j1=1

∑re
j2=1 · · ·

∑re
jn

V Λ
=1 vj1(z(t))

vj2(z(t)) · · · vjn
V Λ

(z(t))Λj1j2···jn
V Λ

, where HΛ =

{0, 0, · · · , 0︸ ︷︷ ︸
n
HΛ

} and V Λ = {0, 0, · · · , 0︸ ︷︷ ︸
n
V Λ

} are multisets.

The cardinality of a multiset H , |H| = nH is defined as the

number of elements in H . The union of two multisets ΛA and

ΛB is ΛC = ΛA∪ΛB , such that nΛC
= max{nΛA

, nΛB
}. The

intersection of two multisets ΛA and ΛB is ΛC = ΛA ∩ ΛB ,

such that nΛC
= min{nΛA

, nΛB
}. The sum of two

multisets ΛA and ΛB is ΛC = ΛA ⊕ ΛB , such that

nΛC
= nΛA

+ nΛB
. The index set of a multiple sum ΛH

is IH = {i1i2 · · · inH
: i1, i2, · · · , inH

= 1, 2, · · · , r}, the

set of all indices that appear in the sum. An element i is

a multiindex. The projection of the index i ∈ IHA
to the

multiset HB , priHB
, is the part of the index that corresponds

to the index in HA ∩HB .

Based on Definition 1, define WA = {0}, the descriptor

system (3) is further rewritten as

Eη̇(t) = (AWA +∆A) η(t) +Bu(t)

y(t) = Cη(t)
(4)

Lemma 1: (Finsler’s Lemma) [42] Let x ∈ R
n, Ω =

ΩT ∈ R
n×n, W ∈ R

m×n. The followings are equivalent:

1) xTΩx < 0, ∀ Wx = 0, x ̸= 0; 2) ∃X ∈ R
n×m:

Ω+XW +WTXT < 0.

Lemma 2: [28] Suppose a piecewise continuous matrix

A(t) ∈ R
n×n, and a matrix X ∈ R

n×n satisfy the following

inequality A(t)TX + XTA(t) ≤ −αI for all t and some

positive number α. Then the following statements hold: 1)

A(t) is invertible; 2) ∥A−1(t)∥ ≤ a for some a > 0.

III. OBSERVER-BASED SMC FOR T-S FUZZY DESCRIPTOR

SYSTEMS

In this section, an observer-based sliding mode control

strategy is developed for the T-S fuzzy descriptor system

with parameter uncertainties, where a two step design method

and a single step design method are respectively proposed to

determine the observer gains and coefficients in the switching

function.

To estimate the states of the system (4), the following state

observer is designed

E ˙̂η(t) = AWA η̂(t) +Bu(t) + LWL (y(t)−Cη̂(t)) (5)

where LWL is the observer gain which will be determined

later.

Define e(t) = η(t) − η̂(t). Then the error system can be

obtained as

Eė(t) = (AWA − LWLC) e(t) + ∆Aη(t) (6)

Construct a sliding surface based on the state estimates from

the observer (5) as follows

S = {η̂(t) : s(t) = SEη̂(t)− SEη̂(0)

− S

∫ t

0

(
AWA +BKWKX−1

WX

)
η̂(τ)dτ = 0}

(7)

where KWK , XWX are the coefficients in the switching func-

tion to be determined, and S is a parameter matrix satisfying

det(SB) ̸= 0.

As e(t) = η(t) − η̂(t), then s(t) = sη(t) −
se(t), where sη(t) = SEη(t) − SEη(0) −

S
∫ t

0

(
AWA +BKWKX−1

WX

)
η(τ)dτ and se(t) =

SEe(t)− SEe(0)− S
∫ t

0

(
AWA +BKWKX−1

WX

)
e(τ)dτ .

Therefore, the sliding surface (7) defined in the space η̂(t)
can be described in the augmented space by

S = {(η(t), e(t)) : sη(t)− se(t) = 0} (8)

When the system exhibits an ideal sliding mode, it is

necessary that sη(t)− se(t) = 0 and ṡη(t)− ṡe(t) = 0. Based

on (4), (6) and (8), it can be computed that

ṡ(t) = SBu(t)− SBKWKX−1
WXη(t)

+ SBKWKX−1
WXe(t) + SLWLCe(t)

(9)

Next, the reachability problem will be solved in order to

determine the sliding mode controller.

Theorem 1: Assume that matrices Xi, i ∈ IWX
, Kj, j ∈

IWK
, Lk, k ∈ IWL

satisfy Theorem 2 or Theorem 3 and

ε > 0. The sliding mode controller

u(t) = KWKX−1
WX η̂(t)− (SB)

−1

× (∥SLWL (y(t)− ŷ(t)) ∥+ ε)
s(t)

∥s(t)∥

(10)
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can drive the T-S fuzzy descriptor system (4) to the sliding

surface (7) and maintain a sliding motion.

Proof: Choose the Lyapunov function candidate

V (s(t)) = 1
2s

T (t)s(t). The time derivative of V (s(t)) along

with (9) is

V̇ (s(t)) = sT (t)(SBu(t) + SLWL (y(t)− ŷ(t))

− SBKWKX−1
WX η̂(t)) ≤ −ε∥s(t)∥

(11)

Furthermore, it follows from (11) that

d∥s(t)∥

dt
=

sT (t)ṡ(t)

∥s(t)∥
≤ −ε (12)

which implies that ∥s(t)∥ is decreasing function on time t.
Assume that it takes time ts to reach the sliding surface (7),

integrating (12) from 0 to ts gives ∥s(ts)∥ − ∥s(0)∥ ≤ −εts.

Thus, the time taken to reach the sliding surface (7) satisfies

ts ≤ ∥s(0)∥
ε Note that s(0) = 0, then ∥s(0)∥ = 0, therefore,

the sliding surface (7) is attained from the beginning.

In the sliding phase, ṡη(t) − ṡe(t) = 0 holds and conse-

quently, the equivalent control can be obtained as

ueq(t) = KWKX−1
WXη(t)−KWKX−1

WXe(t)

− (SB)−1SLWLCe(t)
(13)

Substituting (13) into (4), the ideal sliding mode dynamics are

Eη̇(t) =
(
AWA +∆A+BKWKX−1

WX

)
η(t)

−B(KWKX−1
WX + (SB)−1SLWLC)e(t)

Eė(t) = (AWA − LWLC) e(t) + ∆Aη(t)

(14)

Due to η̂(t) = η(t)−e(t), then by the following nonsingular

transformation[
η̂(t)
e(t)

]
=

[
I −I
0 I

]

︸ ︷︷ ︸
T

[
η(t)
e(t)

]
, (15)

the stability of the system (14) is equivalent to that of the

following system

E ˙̂η(t) =
(
AWA +BKWKX−1

WX

)
η̂(t)

+
(
I −B (SB)

−1
S
)
LWLCe(t)

Eė(t) = (AWA +∆A− LWLC) e(t) + ∆Aη̂(t)

(16)

Next, the stability of the ideal sliding mode dynamics will

be proved and the two steps in determining the observer gains

and coefficients in the switching function are provided.

Theorem 2: The system (1) has an asymptotically stable

sliding motion with respect to the sliding surface (7) if the

following two conditions hold:

1: there exist positive definite matrix R1, a set of matrices

R4, Yki, and scalars ζEki, ζ
A
ki, k = 1, 2, · · · , re, i = 1, 2, · · · , r

such that the following LMIs hold for k = 1, 2, · · · , re, i =
1, 2, · · · , r


He
(
RT

4 Ai − YkiC
)
+ ζAkiN

T
ANA

R1 − ET
k R4 +RT

4 Ai − YkiC
MT

AR4

−MT
ER4

⋆ ⋆ ⋆
−He

(
RT

4 Ek

)
+ ζEkiN

T
ENE ⋆ ⋆

MT
AR4 −ζAkiI ⋆

−MT
ER4 0 −ζEkiI


 < 0

(17)

The observer gains in the observer (5) can be obtained

as LWL =

[
0

LV EHA

]
with Lki = R−T

4 Yki, k =

1, 2, · · · , re, i = 1, 2, · · · , r, HA = {0}, V E = {0};

2: for a given constant τ > 0, there exist positive def-

inite matrices P1, Q1, a set of matrices P3ki, P4ki, Q3i,

Q4i, X1k, X2k, X3i, X4i, K1ki, K2ki, and scalars ξEki, ξ
A
ki,

k = 1, 2, · · · , re, i = 1, 2, · · · , r such that the following LMIs

hold for k = 1, 2, · · · , re, i = 1, 2, · · · , r




He (X3i) ⋆ ⋆ ⋆
Λ1 Λ2 ⋆ ⋆
Λ3 Λ4 −τHe (P1) ⋆
Λ5 Λ6 −τP3ki Λ7

0 Λ8 0 τΛ8

0 0 0 0
NAX1k NAX2k 0 0
NEX3i NEX4i 0 0

⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆

He (Q3i) ⋆ ⋆ ⋆
Λ9 Λ10 ⋆ ⋆

NAQ1 0 −ξAkiI ⋆
NEQ3i NEQ4i 0 −ξEkiI




< 0

(18)

where Λ1 = AiX1k − EkX3i + XT
4i + BK1ki, Λ2 =

He (AiX2k − EkX4i +BK2ki), Λ3 = X1k − P1 +
τX3i, Λ4 = X2k + τX4i, Λ5 = X3i − P3ki +
τ (AiX1k − EkX3i +BK1ki), Λ6 = X4i − P4ki +
τ (AiX2k − EkX4i +BK2ki), Λ7 = −τHe (P4ki), Λ8 =
Q1C

TLT
kiB̄

T , Λ9 = (Ai − LkiC)Q1 −EkQ3i +QT
4i, Λ10 =

−He (EkQ4i) + ξEkiMEM
T
E + ξAkiMAM

T
A , B̄ = I − BB+,

and Lki, k = 1, 2, · · · , re, i = 1, 2, · · · , r, are obtained

from condition 1. Then coefficients in switching function

(7) are KWK =
[
K1V EHA K2V EHA

]
and XWX =[

X1V E X2V E

X3HA X4HA

]
.

Proof: Suppose that there exist matrices and scalars

satisfying (17) and (18) in Theorem 2, the asymptotic stability

of the sliding motion (16) will be derived. Define R =[
R1 0n×n

R4 R4

]
, ζWζ

=

[
ζAV EHAI 0

0 ζEV EHAI

]
, YWY =

[
YV EHA

YV EHA

]
, PWP =

[
P1 0n×n

P3V EHA P4V EHA

]
, QWQ =

[
Q1 0n×n

Q3HA Q4HA

]
, ξWξ

=

[
ξAV EHAI 0

0 ξEV EHAI

]
, S =

B+. (17) and (18) are equivalent to

[
He

(
RTAWA −YWYC

)
+NT ζWζ

N ⋆
MTR −ζWζ

I

]
< 0

(19)
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and



He (AWAXWX +BKWK) ⋆
Ξ1 −τHe (PWP)

QT
WQC

TLT
WL S̄

T τQT
WQC

TLT
WL S̄

T

NXWX 0

⋆ ⋆
⋆ ⋆
Ξ2 ⋆

NQWQ −ξWξ
I


 < 0

(20)

where Ξ1 = XWX − PWP + τ (AWAXWX +BKWK),
Ξ2 = He ((AWA − LWLC)QWQ) + MξWξ

MT , S̄ = I −
B(SB)−1S, Wζ = WA ∪ WY and Wξ =

(
WA ⊕WX

)
∪

WK ∪WP ∪
((
WA ∪WL

)
⊕WQ

)
.

The observer gain LWL = R−TYWY can be solved by (19)

which is a sufficient condition for the asymptotic stability of

the following system

Eė(t) = (AWA +∆A− LWLC) e(t) (21)

The asymptotic stability of the system (21) can be similarly

derived from that of sliding motion (16) and thus is omitted.

In the sequel, it will show that if (20) holds, the sliding motion

(16) is asymptotically stable.

Using the Schur complement, (20) holds if and only if the

following is satisfied

Ξ + M̂T ξWξ
M̂+ N̂T ξ−1

Wξ
N̂ < 0 (22)

where M̂ =
[
0 0 MT

]
, N̂ =[

NXWX 0 NQWQ

]
,

Ξ =




He (AWAXWX +BKWK) ⋆
Ξ1 −τHe (PWP)

QT
WQC

TLT
WL S̄

T τQT
WQC

TLT
WL S̄

T

⋆
⋆

He ((AWA − LWLC)QWQ)


 .

Note that He (MF(t)N) < MξWξ
MT+NT ξ−1

Wξ
N, simple

algebraic manipulation on (22) implies

Ξ + X1 < 0 (23)

where X1 = He






0 0 0
0 0 0

∆AXWX 0 ∆AQWQ




.

Pre- and post-multiplying (23) by

diag{X−T
WX ,P

−1
WP ,Q

−T
WQ} and its transpose yields

X2+He
(
X3

[
AWA +BKWKX−1

WX −I S̄LWLC
])

< 0
(24)

where X2 =




0 ⋆ ⋆
0 0 ⋆

0 0 He
(
Q−T

WQ (AWA +∆A− LWLC)
)




+




0 ⋆ ⋆
P−1

WP 0 ⋆

Q−T
WQ∆A 0 0


, X3 =




X−T
WX

τP−1
WP

0


.

When (24) holds, it follows from Lemma 1 that

x̄TX2x̄ < 0 (25)

for ∀x̄ =
[
xT
1 xT

2 xT
3

]T
̸= 0 satisfying

x2 =
(
AWA +BKWKX−1

WX

)
x1 + S̄LWLCx3 (26)

Substituting (26) into (25), by congruent transformation,

it is obtained that for ∀x̃ =
[
xT
1 xT

3

]T
̸= 0, x̃TΥx̃ < 0,

where Υ =

[
He

(
P−T

WP

(
AWA +BKWKX−1

WX

))
⋆(

S̄LWLC
)T

P−1
WP +Q−T

WQ∆A 0

]
+

[
0 ⋆

0 He
(
Q−T

WQ (AWA +∆A− LWLC)
)
]

, which implies

Υ < 0 (27)

Define

AWA +BKWKX−1
WX =

[
Â1

1 Â1
2

Â1
3 Â1

4

]
, η̂(t) =

[
η̂1(t)
η̂2(t)

]
,

S̄LWLC =

[
Â2

1 Â2
2

Â2
3 Â2

4

]
, ∆A =

[
Â3

1 Â3
2

Â3
3 Â3

4

]
,

AWA +∆A− LWLC =

[
Â4

1 Â4
2

Â4
3 Â4

4

]
, e(t) =

[
e1(t)
e2(t)

]

(28)

where Â1
4 ∈ R

n×n, Â2
4 ∈ R

n×n, Â3
4 ∈ R

n×n, Â4
4 ∈ R

n×n,

η̂1(t) ∈ R
n, e1(t) ∈ R

n.

Substituting (28) into (27), by Lemma 2, it can be proved

that Ĝ4 is invertible and ∥Ĝ−1
4 ∥ is bounded where Ĝ4 =[

Â1
4 Â2

4

Â3
4 Â4

4

]
. Furthermore, define Ĝ3 =

[
Â1

3 Â2
3

Â3
3 Â4

3

]
, from

(16) and (28), it is shown that
[

η̂2(t)
e2(t)

]
= −Ĝ−1

4 Ĝ3

[
η̂1(t)
e1(t)

]
(29)

Now, the asymptotic stability of the system (16) will be

derived. Select the Lyapunov function candidate as follows

V (η̂1(t), e1(t)) = η̂T1 (t)P
−1
1 η̂1(t) + eT1 (t)Q

−1
1 e1(t)

= η̂T (t)ETP−1
WP η̂(t)

+ eT (t)ETQ−1
WQe(t)

(30)

The time-derivative of the Lyapunov function along with

the systems (16) can be obtained as

V̇ (η̂1(t), e1(t)) =
[
η̂T (t) eT (t)

]
Υ

[
η̂(t)
e(t)

]
(31)

From (27), then V̇ (η̂1(t), e1(t)) < 0. Based on Lyapunov

stability theory [1], (η̂1(t), e1(t)) is asymptotically stable.

Note that ∥Ĝ−1
4 ∥ and ∥Ĝ3∥ are bounded, by (29), the asymp-

totic stability of (η̂2(t), e2(t)) can also be proved. Therefore,

if the conditions (19) and (20) in Theorem 2 are solvable

simultaneously, the system (16) is asymptotically stable, then

the asymptotic stability of the ideal sliding mode dynamics

(14) is proved.

Remark 3: It is noteworthy that the observer gains and

the coefficients in the switching function for observer-based

sliding mode control of T-S fuzzy descriptor systems (1)

can be determined by the two-step approach in Theorem 2.

Since the redundancy of derivative matrix E is used in this

paper, the block matrices P3V EHA , P4V EHA in PWP are

dependent of membership functions vk(z(t)) and hi(z(t)), the
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conservativeness will be consequently reduced. Furthermore,

by Finsler’s Lemma, the system matrices and the Lyapunov

matrices are decoupled, which facilitates the design.

Remark 4: It is noted that each local subsystem of the T-S

fuzzy descriptor system shares the same input matrix and out-

put matrix, when considering the resulting LMI conditions, the

condition with one sum in vk(z(t)) and one sum in hi(z(t))
is used due to its simplicity. When more sums in vk(z(t))
and hi(z(t)) are considered, the solution space will enlarge,

but more variables and LMIs will be involved. Therefore,

Theorem 2 only provides the criterion by considering one sum

in vk(z(t)) and one sum in hi(z(t)).

Consider the T-S fuzzy descriptor system in the form of (4),

from the proof of Theorem 2, the following corollary can be

obtained.

Corollary 1: The system (4) has an asymptotically stable

sliding motion with respect to the sliding surface (7) if the

following two conditions hold:

1: there exist matrices R, YjY , jY ∈ prj
WY , ζj, j ∈ IWζ

sat-

isfying (19) with Wζ = WA∪WY and R =

[
R1 0n×n

R3 R4

]

with R1 > 0. The observer gains can be obtained from

LjY = R−TYjY , jY ∈ prj
WY , j ∈ IWζ

;

2: for a given constant τ > 0, there exist matrices PiP ,

iP ∈ priWP , XiX , iX ∈ priWX , KiK , iK ∈ priWK , QiQ ,

iQ ∈ priWQ , ξi, i ∈ IWξ
satisfying (20) with S̄ = I −

B(SB)−1S, Ξ1 = XWX−PWP+τ (AWAXWX +BKWK),
Ξ2 = He ((AWA − LWLC)QWQ) + MξWξ

MT , PWP =[
P1 0n×n

P3WP P4WP

]
, QWQ =

[
Q1 0n×n

Q3WQ Q4WQ

]
with P1 >

0 and Q1 > 0, Wξ =
(
WA ⊕WX

)
∪ WK ∪ WP ∪((

WA ∪WL
)
⊕WQ

)
, and the observer gain LWL defined

from condition 1.

Remark 5: Based on the definition of multiple sums in [23],

Corollary 1 provides a general framework of the conditions

with multiple sums for T-S fuzzy descriptor systems (4) in

continuous time. By selecting the numbers of zeros in the

multisets WR, WK, WP, WQ, conditions with different

conservativeness will be obtained. The more zeros the mul-

tisets WR, WK, WP, WQ contain, the less conservative the

conditions will be, but at the same time, the more decision

variables and LMIs will be involved. For the design purpose,

only one sum in wi, i = 1, 2, · · · , rre, is considered.

Although Theorem 2 (or Corollary 1) presents an LMI-

based method to determine the observer gains and the coeffi-

cients in the switching function, the two-step design approach

[3] seems less convenient than the single-step approach [5].

However, when uncertainties are involved in the system matri-

ces of the system (1) (or system (4)), the separation principle

does not hold [10]. As a result, by appropriately applying

Finsler’s Lemma, the following single-step design approach

for the observer-based stabilization problem is given.

Theorem 3: The system (1) has an asymptotically stable

sliding motion with respect to the sliding surface (7) if for a

given constant τ > 0, there exist positive definite matrices P1,

Q1, a set of matrices P3ki, P4ki, Q3i, Q4i, X1k, X2k, X3i,

X4i, K1ki, K2ki, Yki, R
1
1, R3

1ki, R
4
1ki, R

1
2ki, R3ki, R4ki, and

scalars ξEki, ξ
A
ki, k = 1, 2, · · · , re, i = 1, 2, · · · , r, such that

the following LMIs hold for k = 1, 2, · · · , re, i = 1, 2, · · · , r,




He(X3i) ⋆ ⋆ ⋆ ⋆
Π1 Π2 ⋆ ⋆ ⋆
Π3 Π4 Π5 ⋆ ⋆
Π6 Π7 −τP3ki Π8 ⋆
0 Π9 0 τΠ9 He(Q3i)
0 0 0 0 Π10

0 υΠ9 0 τυΠ9 Π12

0 0 0 0 Π15

NAX1k NAX2k 0 0 NAQ1

NEX3i NEX4i 0 0 NEQ3i

⋆ ⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆ ⋆

Π11 ⋆ ⋆ ⋆ ⋆
Π13 Π14 ⋆ ⋆ ⋆
Π16 Π17 Π18 ⋆ ⋆
0 0 0 −ξAkiI ⋆

NEQ4i 0 0 0 −ξEkiI




< 0

(32)

where Π1 = AiX1k − EkX3i + XT
4i + BK1ki, Π2 =

He (AiX2k − EkX4i +BK2ki), Π3 = X1k − P1 + τX3i,

Π4 = X2k + τX4i, Π5 = −τHe (P1), Π6 = X3i −
P3ki + τ (AiX1k − EkX3i +BK1ki), Π7 = X4i − P4ki +
τ (AiX2k − EkX4i +BK2ki), Π8 = −τHe (P4ki), Π9 =
Ȳ T
ki B̄

T , Π10 = AiQ1 − Ȳki − EkQ3i + QT
4i, Π11 =

−He (EkQ4i)+ξEkiMEM
T
E+ξAkiMAM

T
A , Π12 = Q1−UR1ki,

Π13 = −υȲ T
ki −UR2ki, Π14 = −υHe (UR1ki), Π15 = Q3i−

R3ki, Π16 = Q4i−R4ki, Π17 = −υ
(
R3ki +RT

2kiU
T
)
, Π18 =

−υHe (R4ki), B̄ = I−BB+, U =
[
CT

(
CCT

)−1
C⊥

]
,

Ȳki =
[
Yki 0n×(n−l)

]
, R1ki =

[
R1

1 0l×(n−l)

R3
1ki R4

1ki

]
,

R2ki =

[
0l×n

R1
2ki

]
. Moreover, the observer gain in the

observer (5) and coefficient in the switching function (7)

can be obtained as LWL =

[
0

LV EHA

]
, KWK =

[
K1V EHA K2V EHA

]
and XWX =

[
X1V E X2V E

X3HA X4HA

]

with Lki = Yki

(
R1

1

)−1
, k = 1, 2, · · · , re, i = 1, 2, · · · , r,

HA = {0}, V E = {0}.

Proof: From the proof of Theorem 2, (23) is a sufficient

condition for the asymptotic stability of the ideal sliding mode

dynamics (14). Therefore, if (23) can be guaranteed by the

LMIs in (32), then the asymptotic stability of the ideal sliding

mode dynamics (14) will be proved.

Define PWP =

[
P1 0n×n

P3V EHA P4V EHA

]
, QWQ =

[
Q1 0n×n

Q3HA Q4HA

]
, RWR =

[
R1V EHA R2V EHA

R3V EHA R4V EHA

]
,

ξWξ
=

[
ξAV EHAI 0

0 ξEV EHAI

]
, YWY =

[ (
0n×l

YV EHA

)
02n×(2n−l)

]
, U =

[
U 0
0 In

]
, S = B+,



7

simple matrix manipulation implies that (32) is equivalent to



He (AWAXWX +BKWK) ⋆
Ψ1 −τHe(PWP)

YT
WY S̄

T τYT
WY S̄

T

υYT
WY S̄

T υτYT
WY S̄

T

NXWX 0

⋆ ⋆ ⋆
⋆ ⋆ ⋆
Ψ2 ⋆ ⋆
Ψ3 −He (υURWR) ⋆

NQWQ 0 −ξWξ
I



< 0

(33)

where Ψ1 = XWX − PWP + τ (AWAXWX +BKWK),
Ψ2 = He (AWAQWQ −YWY )+MξWξ

MT , Ψ3 = QWQ −
υYT

WY−URWR , S̄ = I−B(SB)−1S, Wξ =
(
WA ⊕WX

)
∪

WK ∪WP ∪
(
WA ⊕WQ

)
∪WY ∪WR. U satisfies CU =[

Il 0
]
.

By the Schur complement, (33) is equivalent to

Ψ+ M̃T ξWξ
M̃+ ÑT ξ−1

Wξ
Ñ < 0 (34)

where M̃ =
[
0 0 MT 0

]T
, Ñ =[

NXWX 0 NQWQ 0
]
,

Ψ =




He (AWAXWX +BKWK) ⋆
Ψ1 −τHe (PWP)

YT
WY S̄

T τYT
WY S̄

T

υYT
WY S̄

T υτYT
WY S̄

T

⋆ ⋆
⋆ ⋆

He (AWAQWQ −YWY ) ⋆
Ψ3 −He (υURWR)


 .

Note that ∆A = MF(t)N, then (34) implies

Ψ+ Y1 < 0 (35)

where Y1 = He







0 0 0 0
0 0 0 0

∆AXWX 0 ∆AQWQ 0
0 0 0 0





.

Since CU =
[
Il 0

]
and YWY =

[
LWLR1 0

]
=

LWL

[
Il 0

]
RWR , (35) can be rearranged as

He(Y3[C
TLT

WL S̄
T τCTLT

WL S̄
T −CTLT

WL − I])

+ Y1 + Y2 < 0
(36)

where Y3 =
[
0 0 URWR υURWR

]T
and

Y2 =




He (AWAXWX +BKWK) ⋆(
τ (AWAXWX +BKWK)

+XWX −PWP

)
−τHe (PWP)

0 0
0 0

⋆ ⋆
⋆ ⋆

He (AWAQWQ) ⋆
QWQ 0


 .

If (36) holds, then the following can be obtained by Lemma

1

xT (Y1 + Y2)x < 0 (37)

for ∀x =
[
xT
1 xT

2 xT
3 xT

4

]T
̸= 0 satisfying

x4 = CTLT
WL S̄

Tx1 + τCTLT
WL S̄

Tx2 −CTLT
WLx3 (38)

Substituting (38) into (37), the following result can be obtained

for ∀x̄ =
[
xT
1 xT

2 xT
3

]T
̸= 0

x̄T (Ξ + X1) x̄ < 0

which implies that (23) holds. Then the asymptotic stability of

the ideal sliding mode dynamics (14) can be directly derived

from the proof of Theorem 2. Therefore, it suffices to know

that if the LMIs in (32) hold, the ideal sliding mode dynamics

(14) are asymptotically stable.

Based on the proof of Theorem 3, the following corollary

can be obtained for the T-S fuzzy descriptor system in the

form of (4).

Corollary 2: The system (4) has an asymptotically stable

sliding motion with respect to the sliding surface (7) if

for given constants τ > 0, υ > 0 there exist matrices

PiP , iP ∈ priWP , XiX , iX ∈ priWX , KiK , iK ∈ priWK ,

QiQ , iQ ∈ priWQ , RiR , iR ∈ priWR , YiY , iY ∈ priWY ,

ξi, i ∈ IWξ
satisfying (33) where S̄ = I − B(SB)−1S,

Ψ1 = XWX − PWP + τ (AWAXWX +BKWK), Ψ2 =
He (AWAQWQ −YWY ) + MξWξ

MT , Ψ3 = QWQ −
υYT

WY −URWR , YWY =
[
Y1WY 02n×(2n−l)

]
, PWP =[

P1 0n×n

P3WP P4WP

]
, QWQ =

[
Q1 0n×n

Q3WQ Q4WQ

]
, RWR =

[
R1 0l×(2n−l)

R3WR R4WR

]
with P1 > 0 and Q1 > 0, Wξ =

(
WA ⊕WX

)
∪WK∪WP∪

(
WA ⊕WQ

)
∪WY∪WR. U is

a nonsingular matrix such that CU =
[
Il 0

]
. The observer

gains can be obtained by LiY = Y1iYR
−1
1 , iY ∈ priWY ,

i ∈ IWξ
.

Remark 6: Theorem 3 (or Corollary 2) gives a single-

step design approach to simultaneously determine the observ-

er gains and coefficients in the switching function for the

observer-based stabilization of the T-S fuzzy descriptor system

(1) (or the T-S fuzzy descriptor system (4)). Compared with

Theorem 2 (or Corollary 1), the single-step design approach

in Theorem 3 (or Corollary 2) is more straightforward to

implement. It is also worth mentioning that since the matrix

RUR is selected as a lower triangular matrix, the single-step

design approach may be more conservative than the two-step

design approach. As a result, if the LMIs in Theorem 3 (or

Corollary 2) are infeasible, the two-step approach in Theorem

2 (or Corollary 1) can be applied.

When the states of the system (4) are accessible, construct

the following sliding surface

S = {η(t) : s(t) = SEη(t)− SEη(0)

− S

∫ t

0

(AWA +BKWKX−1
WX)η(τ)dτ = 0}

(39)

where KWK , XWX and S share the same meanings with that

in (7).

The sliding mode controller can be designed using the

following result.
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Corollary 3: Assume that matrices Xi, i ∈ IWX
, Kj,

j ∈ IWK
satisfy Corollary 4 and ε > 0. The sliding mode

controller

u(t) = KWKX−1
WXη(t)−(∥SM∥∥Nη(t)∥+ ε) (SB)

−1 s(t)

∥s(t)∥
(40)

can drive the T-S fuzzy descriptor system (4) to the sliding

surface (39) and maintain a sliding motion.

The sliding mode dynamics are obtained as

Eη̇(t) = (AWA +BKWKX−1
WX

+ (I −B(SB)−1S)∆A)η(t)
(41)

In this case, the unknown coefficients in the switching

function can be solved by the followings.

Corollary 4: The system (1) has an asymptotically stable

sliding motion with respect to the sliding surface (39) if for

a given constant τ > 0, there exist positive definite matrix

P1, a set of matrices P3ki, P4ki, X1k, X2k, X3i, X4i, K1ki,

K2ki, and scalars ξEki, ξ
A
ki, k = 1, 2, · · · , re, i = 1, 2, · · · , r,

such that the following LMIs hold for k = 1, 2, · · · , re, i =
1, 2, · · · , r




He(X3i) ⋆ ⋆
Φ1 Φ2 ⋆
Φ3 Φ4 −τHe (P1)
Φ5 Φ6 −τP3ki

NAX1k NAX2k 0
NEX3i NEX4i 0

⋆ ⋆ ⋆
⋆ ⋆ ⋆
⋆ ⋆ ⋆
Φ7 ⋆ ⋆
0 −ξAkiI ⋆
0 0 −ξEkiI



< 0

(42)

where Φ1 = AiX1k − EkX3i + XT
4i + BK1ki,

Φ3 = X1k − P1 + τX3i, Φ4 = X2k + τX4i,

Φ2 = He (AiX2k − EkX4i +BK2ki) +
B̄
(
ξEkiMEM

T
E + ξAkiMAM

T
A

)
B̄T , Φ5 = X3i − P3ki +

τ (AiX1k − EkX3i +BK1ki), Φ7 = −τHe (P4ki) +
τ2B̄

(
ξEkiMEM

T
E + ξAkiMAM

T
A

)
B̄T , B̄ = I − BB+,

Φ6 = X4i − P4ki + τ (AiX2k − EkX4i +BK2ki) +
τB̄

(
ξEkiMEM

T
E + ξAkiMAM

T
A

)
B̄T . Then coeffi-

cients in switching function (39) are KWK =
[
K1V EHA K2V EHA

]
and XWX =

[
X1V E X2V E

X3HA X4HA

]
.

Proof: The proof can be directly derived from that of

Theorem 2 and thus is omitted.

Remark 7: It is noted that when the T-S fuzzy descriptor

system (1) is considered, Corollaries 3 and 4 provide a propor-

tional and derivative feedback sliding mode control strategy

to stabilize the T-S fuzzy descriptor system (1). When the

derivatives of the states are unavailable, by setting K2ki = 0,

X2k = 0, k = 1, 2, · · · , re, i = 1, 2, · · · , r, a proportional

feedback sliding mode control strategy can be obtained.

Remark 8: As pointed out in [20], a logarithmically spaced

search τ, υ ∈ {10−6, 10−5, · · · , 106} is used in this paper to

avoid optimization technique to search for τ and υ.

IV. APPLICATION TO A CLASS OF MECHANICAL SYSTEMS

Consider a class of mechanical systems in the following

nonlinear descriptor system representation

(E(x(t)) + ∆E1)ẋ(t) = (A(x(t)) + ∆A1)x(t) +Bu(t)

y(t) = Cx(t)
(43)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the

control input vector, y(t) ∈ R
l is the measurable output vector.

E (x(t)), A (x(t)) are smooth nonlinear matrix functions

defined in a compact set Ω of the state space containing the

origin and E (x(t)) + ∆E1 is nonsingular for ∀ x(t) ∈ Ω.

B and C are known constant matrices of full rank. ∆E1 =
ME1

FE1
(t)NE1

and ∆A1 = MA1
FA1

(t)NA1
are parameter

uncertainties where FT
E1

(t)FE1
(t) ≤ 0, FT

A1
(t)FA1

(t) ≤ 0.

In practice, some mechanical systems, such as, double

inverted pendulum model of human standing in [43], two-

wheeled self-balanced transporter in [44] and 2-DOF planar

parallel robot in [45], can be modelled as nonlinear descriptor

systems (43). Applying the established sliding mode control

methodology [7], [9], [12], [35], [36] to system (43) involves

transformatiom to the nonlinear normal system described by

ẋ(t) = (E(x(t)) + ∆E1)
−1(A(x(t)) + ∆A1)x(t)

+ (E(x(t)) + ∆E1)
−1Bu(t)

(44)

Then the following T-S fuzzy representation of the nonlinear

normal system (44) can be obtained

ẋ(t) =

s∑

i=1

ϖi(z(t))((Ãi+∆Ã)x(t)+(B̃i+∆B̃)u(t)) (45)

Since the input matrices arising in the system (45) are

different, the traditional sliding mode control strategy [4] for

a T-S fuzzy normal system can not be applied. Consequently,

[7], [8], [11] respectively presented effective ways to solve

this problem assuming that full state information is available.

For mechanical systems, this assumption may be restrictive

because it may be possible to only measure a sub-set of the

states in practice. It should be noted that the difference in the

input matrices in (45) results from the inverse operation of the

derivative-term coefficient E(x(t)), which makes the sliding

mode control problem difficult. In addition, the descriptor

model of the system (43) has a more simple structure than

its normal model (44) and inverse operation of derivative-term

matrix is avoid.

Based on the methods proposed in Section III, a sliding

mode control synthesis for the class of mechanical systems

(43) can be developed without the requirement of the above

inverse operation and the availability of full state information.

Assume that there exist pe nonlinear functions on the left-

hand side and p nonlinear functions on the right-hand side.

Using the sector nonlinear approach, the pe nonlinear functions

in the left-hand side can be exactly captured in the compact set

Ω by the membership functions vk(z(t)), k = 1, 2, · · · , 2pe ,

and the p nonlinear functions in the right-hand side by the

membership functions hi(z(t)), i = 1, 2, · · · , 2p. Define

re = 2pe , r = 2p, the membership functions vk(z(t)) ≥ 0,

k = 1, 2, · · · , re, and hi(z(t)) ≥ 0, i = 1, 2, · · · , r, satisfy∑re
k=1 vk(z(t)) = 1 and

∑r
i=1 hi(z(t)) = 1, respectively.
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Then the nonlinear descriptor system (43) can be exactly

represented in the compact set Ω by the T-S fuzzy descriptor

system (1).

Remark 9: As pointed out in [14], using the T-S descriptor

representation, the number of fuzzy rules will decrease so

that the number of LMI conditions for controller design is

significantly reduced. In this paper, the advantage of the

adoption of the T-S descriptor representation is that inherent

characteristics of the original system are kept and yet different

input matrices for each local subsystem of the T-S fuzzy

system are not introduced.

Remark 10: Since the sector nonlinearity approach is used

to exactly represent the nonlinear descriptor system (43) in

a compact set by a T-S fuzzy descriptor system (1), the

obtained T-S fuzzy descriptor system (1) is only a local

representation of the nonlinear descriptor system (43). When

the obtained results in Section III are applied to the mechanical

systems in Section IV, the resulting closed-loop system is

locally asymptotically stable. An alternative estimate of the

domain of attraction is the outmost Lyapunov level contained

in the domain of validity Ω of the T-S fuzzy model. This

also coincides with the analysis and synthesis for a nonlinear

system that usually may not provide a global solution [46]-

[48].

V. EXAMPLES

In this section, three examples will be provided to show the

effectiveness and superiority of the results proposed. To avoid

the chattering, the term
s(t)

∥s(t)∥ in the sliding mode controller

will be replaced by
s(t)

∥s(t)∥+0.001 for the simulation.

Example 1: Consider the problem of balancing the inverted

pendulum on a cart shown in Fig. 1. The equations of motion

are given by

(
J +ml2

)
θ̈ +ml cos(θ)¨̃x = mgl sin(θ)

(M +m)¨̃x+mlθ̈ cos(θ) = u+mlθ̇2 sin(θ)
(46)

where θ is the angular displacement of the stick from the

vertical position; x̃ is the horizontal displacement of the cart;

u is the control force applied to the car; M and m denote the

mass of the car and the mass of the stick respectively; 2l is the

length of the stick; J = ml2

3 is the moment of inertia of the

stick with respect to its center of gravity; g is the acceleration

due to gravity;

Define x(t) = [x1(t) x2(t) x3(t) x4(t)]
T

, x1(t) = θ,

x2(t) = θ̇, x3(t) = x̃, x4(t) = ˙̃x, the motion equation (46) can

be represented by the following descriptor nonlinear system




1 0 0 0

0 4ml2

3 0 ml cos(x1(t))
0 0 1 0
0 ml cos(x1(t)) 0 M +m


 ẋ(t)

=




x2(t)
mgl sin(x1(t))

x4(t)
mlx2

2(t) sin(x1(t))


+




0
0
0
1


u(t)

(47)

Fig. 1. A car with an inverted pendulum

To make the motion equation (46) tractable, the traditional

method [2], [7] is transforms (46) into the following normal

form

ẋ(t) =




x2(t)
g sin(x1(t))

4l/3−mla cos2(x1(t))
x4(t)

−mag sin(2x1(t))/2

4/3−ma cos2(x1(t))




+




0
−a cos(x1(t))

4l/3−mla cos2(x1(t))
0

4a/3

4/3−ma cos2(x1(t))



(u(t) + f(x(t)))

(48)

where a = 1
M+m , f(x(t)) = mlx2

2(t) sin(x1(t)).
Note that the coefficient matrices corresponding to

the input vector u(t) in the system (47) and the sys-

tem (48) are B1 = [0 0 0 1]
T

and B2(x(t)) =[
0 −a cos(x1(t))

4l/3−mla cos2(x1(t))
0 4a/3

4/3−ma cos2(x1(t))

]T
, respectively. It

can be seen that the inverse operation around the derivative-

term coefficient results in a nonlinear coefficient B2(x(t)).
Therefore, the nonlinear coefficient B2(x(t)) arises purely

from mathematical operations required to obtain a specific

canonical form.

Due to physical limitations, it is reasonable to assume

x(t) ∈ Ω := {x(t) : −ξ1 ≤ x1(t) ≤ ξ1,−ξ2 ≤ x2(t) ≤
ξ2,−ξ3 ≤ x3(t) ≤ ξ3,−ξ4 ≤ x4(t) ≤ ξ4}, where ξ1, ξ2,

ξ3 and ξ4 are bounded positive constants. Using the sector

nonlinearity approach, the nonlinear systems (47) and (48)

can be exactly represented by the corresponding T-S fuzzy

system in the compact set Ω. Note that there are 3 nonlinear

functions ( 1
4/3−ma cos2(x1(t))

, sin(x1(t)), cos(x1(t))) in the

nonlinear system (48). This implies that the corresponding T-S

fuzzy system contains 8 = 23 fuzzy rules. While 2 nonlinear

functions (cos(x1(t)), sin(x1(t))) arise in the nonlinear system

(47), thus, only 4 = 22 fuzzy rules are required to represent

the system (47).

Define z1(t) = cos(x1(t)), z2(t) = sin(x1(t)),
z3(t) = mlx2(t) sin(x1(t)). Since the maximum and

minimum values of z1(t), z2(t) and z3(t) in the

set Ω are maxx1(t) z1(t) = b1, minx1(t) z1(t) =
b2, maxx1(t) z2(t) = c1x1(t), minx1(t) z2(t) =
c2x1(t), maxx1(t),x2(t) z3(t) = d1, minx1(t),x2(t) z3(t) = d2.
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z1(t), z2(t) and z3(t) can be respectively rewritten by

z1(t) = cos(x1(t)) = v1(z1(t))b1 + v2(z1(t))b2, z2(t) =
sin(x1(t)) = h1(z2(t))c1x1(t) + h2(z2(t))c2x1(t), z3(t) =
d1+d2

2 + α(t)d1−d2

2 = d3 + α(t)d4, where α(t) ∈ [−1, 1]
and the membership functions are calculated as

v1(z1(t)) =
z1(t)−b2
b1−b2

, v2(z1(t)) = 1−v1(z1(t)), h1(z2(t)) ={
z2(t)−c2 arcsin(z2(t))
(c1−c2) arcsin(z2(t))

, z2(t) ̸= 0

1, otherwise,
, h2(z2(t)) =

1− h1(z2(t)).

Therefore, the nonlinear descriptor system (47) can be

exactly represented by the following T-S fuzzy descriptor

system

2∑

k=1

vk(z(t))Ekẋ(t) =

2∑

i=1

hi(z(t))Aix(t) +Bu(t)

y(t) = Cx(t)

(49)

where z(t) =

[
z1(t)
z2(t)

]
, C =

[
1 0 0 0
0 0 1 0

]
,

NA =
[
0 1 0 0

]
, FA(t) = α(t), Ei =



1 0 0 0

0 4ml2

3 0 mlbi
0 0 1 0
0 mlbi 0 M +m


, Ai =




0 1 0 0
mglci 0 0 0
0 0 0 1
0 d3 0 0


,

i = 1, 2, B =




0
0
0
1


, MA =




0
0
0
d4


.

For the inverted pendulum model, the parameter values are

given by m = 2kg, M = 8kg, g = 9.8m/s2, l = 0.5m, ξ1 =
70◦π/180◦rad, ξ2 = 3rad/s . A state feedback sliding mode

control strategy and an observer-based sliding mode control

strategy will be developed.

Case 1: Assume that θ, θ̇, x̃ and ˙̃x are measurable. In

the compact set Ω, the nonlinear system (48) can be exactly

represented by the corresponding T-S fuzzy system with 8

fuzzy rules. By using the method in [7], the LMIs therein

are found to be infeasible. Whereas, X1k, X2k, K1ki, K2ki,

k, i = 1, 2 can be computed in terms of Corollary 4 with

τ = 1. By the obtained parameters, the sliding variable can

be obtained as follows

s(t) = 10x4(t) + x2(t) cosx1(t)− x2(0) cosx1(0)

− 10x4(0) +

∫ t

0

(x2
2(τ) sinx1(τ)

−
2∑

k=1

2∑

i=1

vk(z(τ))hi(z(τ))K1ki

× (
2∑

k=1

vk(z(τ)))X1k)
−1x(τ))dτ

(50)

Using Corollary 3, the following sliding mode controller can
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Fig. 2. Simulation results for Case 1 in Example 1 under the initial condition

x(0) = [30◦ 0 0 0]T . (a)-(d) States. (e) Sliding variable. (f) Sliding mode
controller.
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Fig. 3. Simulation results for Case 1 in Example 1 under the initial condition

x(0) = [68◦ 0 0 0]T . (a)-(d) States. (e) Sliding variable. (f) Sliding mode
controller.

be designed

u(t) =
2∑

k=1

2∑

i=1

vk(z(t))hi(z(t))K1ki

× (

2∑

k=1

vk(z(t)))X1k)
−1x(t)

− (2.8191∥x2(t)∥+ 0.001)
s(t)

∥s(t)∥

(51)

For different initial conditions, the time responses of the

resulting closed-loop system, sliding variable and sliding mode

controller are shown in Fig. 2 and Fig. 3. This shows that

the resulting closed-loop system is asymptotically stable even

when the initial angular displacement of the stick is 68◦.

It can be seen in Fig. 2 and Fig. 3 that compared with

[7], the control forces seem somewhat larger, whereas, the

maximum horizontal displacement is much smaller and the

rate of convergence of the plant is faster. Moreover, the initial

angular displacement of the inverted pendulum that can be

stabilized by the method in this paper is much larger that that

by [7]. In addition, it can be observed that with the increase

of the initial angular displacements, the control forces that

stabilize the inverted pendulum are also increasing, which is

intuitively reasonable.

Case 2: When only the angular displacement of the stick θ
and the horizontal displacement of the cart x̃ can be measured,

by designing T-S fuzzy descriptor observer (5) and applying

Theorem 2 with τ = 1, The gain matrices Lki, X1k, X2k,

X3i, X4i, K1ki, K2ki, k, i = 1, 2 can be obtained. With these
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Fig. 4. Simulation results for Case 2 in Example 1 under the initial conditions

x(0) = [30◦ 0 0 0]T , x̂(0) = [35◦ 0 0 0]T . (a)-(d) States and their
estimate values. (e) Sliding variable. (f) Sliding mode controller.

parameters, the observer-based sliding variable can be obtained

as

s(t) =

∫ t

0

( ˙̂x2(τ) cosx1(τ) + 10 ˙̂x4(τ)

−
2∑

k=1

2∑

i=1

vk(z(τ))hi(z(τ))[K1ki K2ki]

(

2∑

k=1

2∑

i=1

vk(z(τ))hi(z(τ))

[
X1k X2k

X3i X4i

]
)−1

×

[
x̂(τ)
˙̂x(τ)

]
)dτ

(52)

where x̂(t) = [x̂1(t) x̂2(t) x̂3(t) x̂4(t)]
T

and ˙̂x(t) =[
˙̂x1(t) ˙̂x2(t) ˙̂x3(t) ˙̂x4(t)

]T
are the states of the observer (5)

with the parameters in this example.

By Theorem 1, the observer-based sliding mode controller

is defined by

u(t) =

2∑

k=1

2∑

i=1

vk(z(t))hi(z(t))Kki

(
2∑

k=1

2∑

i=1

vk(z(t))hi(z(t))Xki)
−1

[
x̂(t)
˙̂x(t)

]

− (∥BT
2∑

k=1

2∑

i=1

vk(z(t))hi(z(t))Lki

× (y(t)− Cx̂(t))∥+ 0.001)
s(t)

∥s(t)∥

(53)

For different initial conditions, the time responses of the

resulting closed-loop system, the observer system, the sliding

variable and the sliding mode controller are depicted in Fig. 4

and Fig. 5. This shows that the resulting closed-loop system

is asymptotically stable and the states of the observer system

can track those of the original system asymptotically even

when the initial conditions of the original system and observer

system are different. It is noted that when only partial state

information is available, the methods in [7], [8], [11] cannot be

adopted because they are only applicable to state-based sliding

mode control problems.

Since the sector nonlinearity approach is employed in this

paper, the T-S fuzzy descriptor system can exactly represent

the nonlinear descriptor system in a compact set of the state
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Fig. 5. Simulation results for Case 2 in Example 1 under the initial conditions

x(0) = [68◦ 0 0 0]T , x̂(0) = [60◦ 0 0 0]T . (a)-(d) States and their
estimate values. (e) Sliding variable. (f) Sliding mode controller.

space including the origin. Then if the LMIs in Theorem 2 or

Corollary 4 are solvable, the proposed sliding mode control

strategy can stabilize the nonlinear descriptor system in such

a compact set. This example is provided as an academic study

to illustrate the obtained results, how to apply the results in

this paper to practical applications needs the further research.

Example 2: Consider the nonlinear system

(1 + a cos θ(t))θ̈(t) = −bθ̇3(t) + cθ(t) + du(t) (54)

Introduce the state vector x(t) = [x1(t) x2(t) x3(t)]
T

with

x1(t) = θ(t), x2(t) = θ̇(t) and x3(t) = θ̈(t), [16] describes

the nonlinear system (54) by the following descriptor model

Eẋ(t) = A(x(t))x(t) +Bu(t) (55)

where E =




1 0 0
0 1 0
0 0 0


 , A(x(t)) =




0 1 0
0 0 1
c −bx2

2 −1− a cosx1(t)


 , B =




0
0
d


 .

When the variables θ, θ̇ and θ̈ are available, [16], [31]

stabilize the descriptor model with time-delay by state feed-

back controller and state feedback sliding mode controller

respectively. Whereas, from the nonlinear system, it is ob-

served that the available variable may be only θ. Since the

variable θ̇ is unavailable, the descriptor system (55) can not

be represented by the T-S fuzzy descriptor system in [16],

[31] and the state-based controllers [16], [31] are invalid.

Assume that θ, θ̇ and θ̈ takes values in the compact set

Υ = {−ϕ1 ≤ θ ≤ ϕ1,−ϕ2 ≤ θ̇ ≤ ϕ2,−ϕ3 ≤ θ̈ ≤ ϕ3}
where ϕ1, ϕ2 and ϕ3 are bounded positive constants. Using the

sector nonlinearity approach [1], the descriptor model (55) can

be exactly represented in the compact set Υ by the following

T-S fuzzy descriptor system

Eẋ(t) =
2∑

i=1

hi(x1(t)) ((Ai +∆A)x(t) +Bu(t))

y(t) = Cx(t)

(56)

where A1 =




0 1 0
0 0 1
c −bϕ2

2/2 −1− a


 , A2 =




0 1 0
0 0 1
c −bϕ2

2/2 −1− a cosϕ1


 ,M1 =




0
0

bϕ2
2/2


, ∆A =



12
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Fig. 6. Simulation results in Example 2 under the initial conditions x(0) =
[0.5 0.3 0]T , x̂(0) = [0.7 0.1 0]T . (a) States. (b) Estimate errors. (c) Sliding
variable. (d) Sliding mode controller.

M1F1(t)N1, N1 = [0 1 0] , C = [1 0 0] ,−1 ≤ F1(t) ≤

1, h1(x1(t)) =
cos x1(t)−cosφ1

1−cosφ1
, h2(x1(t)) = 1− h1(x1(t)).

For the purpose of simulation, it is assumed that a = b =
c = d = 1, ϕ1 = π/3, ϕ2 = 2. By checking the LMIs in

Corollaries 1 and 2, it is found that only the LMIs in Corollary

1 are feasible. The observer gains and controller gains are

obtained with τ = 1 and S = [1 0 1] in Corollary 1. With

the above parameters, the following sliding variable can be

constructed

s(t) = x̂1(t)− x̂1(0)

+

∫ t

0

(h1(x1(τ))[0.8564 19.4584 1.7661]

+ h2(x1(τ))[1.6833 28.7538 1.3580])x̂(τ)dτ

(57)

where x̂(t) = [x̂1(t) x̂2(t) x̂3(t)]
T

is the states of the observer

(5) with the parameters herein.

By Theorem 1, the observer-based sliding mode controller

can be designed as

u(t) = (h1(x1(t))[−1.8564 − 18.4584 0.2339]

+ h2(x1(t))[−2.6833 − 27.7538 0.1420])x̂(t)

− (0.5312∥x1(t)− x̂1(t))∥+ 0.02)
s(t)

∥s(t)∥

(58)

The time responses of the resulting closed-loop system, the

error system, the sliding variable and the sliding mode con-

troller are shown in Fig. 6. It shows that the resulting closed-

loop system is asymptotically stable and the error system is

convergent to zero asymptotically. The control strategies in

[16], [19], [31] are based on the state feedback and are not

applicable when only output information is available.

Example 3: Consider the following T-S fuzzy descriptor

system

Eẋ(t) =

2∑

i=1

hi (Ai +∆A)x(t) +Bu(t)

y(t) = Cx(t)

(59)

where x(t) = [x1(t) x2(t) x3(t)]
T

, the membership func-

tions are h1(x1(t)) = cos(x1(t)), h2(x1(t)) = 1 −
cos(x1(t)), |x1(t)| ≤ π

3 , and the parameters are given

by E =




1 0 0
0 1 0
0 0 0


 , A1 =




1.5 0 0
1 1 0.1
1 0.5 −1


 , A2 =
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Fig. 7. Simulation results in Example 3 under the initial conditions x(0) =
[0.5 0.5 0]T , x̂(0) = [0.7 0.1 0]T . (a) States. (b) Estimate errors. (c) Sliding
variable. (d) Sliding mode controller.




2.5 0 0
1.5 −1 0
1 0.3 −2


 , B =




1
0
0


 ,M1 =




0.2
0.3
0.2


,

C =

[
1 0 0
0 1 0

]
,∆A = M1 sin(x1(t))N1, N1 =

[
0.1 0.2 0.1

]
.

By checking the LMIs in Corollaries 1 and 2, it is found

that both of them are feasible. Without loss of generality, the

observer gains and controller gains by Corollary 2 with τ =
0.1 are used. With the above parameters, the observer-based

sliding variable is constructed by

s(t) = x̂1(t)− x̂1(0)

−

∫ t

0

(cosx1(τ)[27.6402 70.1864 − 8.2461]

+ [−51.5620 − 130.3643 12.8378])x̂(τ)dτ

(60)

where x̂(t) = [x̂1(t) x̂2(t) x̂3(t)]
T

is the states of the observer

(5) with the obtained parameters.

By Theorem 1, the observer-based sliding mode controller

can be designed as follows

u(t) = (cosx1(t)[28.6402 70.1864 − 8.2461]

+ [−54.0620 − 130.3643 12.8378])x̂(t)

− (0.002 + ∥(cosx1(t)[3.3345 4.6251]

+ [8.1272 9.8669])(y(t)− Cx̂(t))∥)
s(t)

∥s(t)∥

(61)

The time responses of the resulting closed-loop system,

the error system, the sliding variable and the sliding mode

controller are shown in Fig. 7. It is seen that the resulting

closed-loop system is asymptotically stable and the state

trajectories of error system asymptotically converges to zero.

Therefore, the single-step design approach in Theorem 2 is

effective to deal with the observer-based sliding mode control

problem for T-S fuzzy descriptor system.

VI. CONCLUSIONS

This paper has studied observer-based fuzzy control of

nonlinear descriptor systems via integral sliding modes. By

virtue of the T-S fuzzy descriptor system, the observer-based

sliding mode control strategy for nonlinear descriptor systems

was presented in terms of LMIs. The two-step approach and

the single-step approach were respectively used to determine
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the observer gains and coefficients in the switching function.

Application of the proposed integral sliding mode control

to a class of mechanical systems was investigated and an

alternative approach to the sliding mode control of mechanical

systems in the form of nonlinear descriptor systems provided.

It was shown that with the descriptor system representation,

different input matrices of the resulting T-S system were not

artificially introduced and the number of fuzzy rules for the

corresponding T-S fuzzy system was reduced.
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