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Abstract—Recent data breaches in domains such as healthcare
where confidentiality of data is crucial indicate that breaches
often originate from misuses, not only from vulnerabilities in
the technical (software or hardware) architecture. Current re-
quirements engineering (RE) approaches determine what access
control mechanisms are needed to protect sensitive resources
(assets). However, current RE approaches inadequately charac-
terize how a user is expected to interact with others in relation
to the relevant assets. Consequently, a requirements analyst
cannot readily identify misuses by legitimate users. We adopt
social norms as a natural, formal means of characterizing user
interactions whereby potential misuses map to norm violations.
Our research goal is to help analysts identify misuse cases by
formal reasoning about norm enactments. We propose NANE,
a formal framework for identifying such misuse cases using
a semiautomated process. We demonstrate how NANE enables
monitoring of potential misuses on a healthcare scenario.

Index Terms—Security requirements, sociotechnical systems

I. INTRODUCTION

Data breaches pose a major threat to stakeholders of modern

software systems. Healthcare IT systems are no exception, and

millions of patients have suffered from compromised health

records in the recent years [22], [26]. Although some breaches

arise due to vulnerabilities in the software, an increasing

number of them are caused by misuse. For example, a failure

to erase patient data contained on photocopiers’ hard drives

led to the disclosure of 350,000 patient files, and resulted in

a fine of $1.2 million from the US Department of Health and

Human Services (HHS). Example 1 describes a typical misuse.

Example 1. A physician, Alice, and a nurse, Don, are

reviewing the electronic health records (EHR) of a patient

together on Alice’s computer. Each of them is authorized to

review EHRs of patients they are treating, and prohibited from

reviewing the EHRs of other patients. Alice receives a call and

leaves the room without ending her EHR session. Don knows

that Alice is treating one of his neighbors. He accesses his

neighbor’s EHR using Alice’s session.

The leading current approach for implementing security

requirements is role-based access control (RBAC) [23], which

provides an effective way of protecting access to sensitive

resources (assets). In Example 1, in regular (nonemergency)

practice, the hospital software does not allow any staff member

to access the EHR of a patient he or she is not treating.

However, Don circumvents these technical controls by using

Alice’s computer. That is, a breach occurs here because Alice

fails to end her EHR session, thereby inadvertently giving

(otherwise prohibited) access to Don.

This example illustrates the key limitation of RBAC: it is

impossible to prevent misuse because it occurs outside of the

technical realm. The only way to tackle misuse is through

social mechanisms, specifically, by making users accountable

for correct use. For example, Alice should be accountable for

ending her EHR session when her computer is unattended.

Logging is the established computational means to support

accountability of users. We define an event as a discrete

occurrence such as a user action (e.g., a physician accessing

a patient’s EHR) or an environment condition (e.g., a medical

emergency) becoming true or false. Logging seeks to record

each relevant event and its time of occurrence. However, cur-

rent logging approaches suffer from two shortcomings. First,

they do not guarantee that all events necessary to assess misuse

are logged, thereby inadequately supporting accountability.

Second, they do not guarantee that only events necessary to

assess misuse are logged, thereby creating avoidable vulner-

abilities through the log data itself [1]. These shortcomings

arise because of a lack of a suitable formal model based on

which to log events.

Accordingly, we propose NANE (from the Turkish slang

for shenanigans), a framework for identifying misuse cases.

NANE is based on a sociotechnical conception [29] that brings

together technical considerations such as how users access

assets via RBAC and social considerations such as the norms

that characterize users’ expectations of each other. We define

an enactment as a possible history of the system, including all

events along that history. We adopt a formal model for norms

(including conditional commitments, authorizations, and pro-

hibitions, as explained below) that precisely describes (i) the

enactments in which each norm may be satisfied or violated,

and (ii) who is accountable for the norm. For example, Alice

accessing her patient’s EHR complies with the authorization

and prohibition of Example 1 for which she is accountable.

Our research goal is to help analysts identify misuse cases

by formal reasoning about norm enactments.

Usage: A typical NANE episode proceeds as follows. First, a

requirements analyst specifies norms based upon stakeholder



requirements. Second, NANE applies the formal semantics of

norms to generate all possible enactments of each stated norm,

differentiating between compliant and violating enactments.

For example, Don accessing his neighbor’s EHR is a violating

enactment of the norm that prohibits Don from accessing

EHRs of patients he is not treating. Third, an analyst modifies

the stated norms based on a review of these enactments.

Fourth, Nane produces formal representations of violating

enactments to enable the monitoring of potential misuses.

Contributions: We address two main questions.

RQ1 Identification: How can we systematically enumerate the

potential misuse cases of a software system?

RQ2 Monitoring: How can we formally represent violations

of norms so as to enable monitoring of potential misuses?

We give a formal representation of norms and misuse

cases in the Event Calculus [20], a first-order logic with

primitives for events and temporal reasoning. We provide a

semiautomated process for identifying misuse cases. A formal

representation of norms enables us to automatically determine

which of the possible enactments violate norms (potential

misuse). We demonstrate how NANE enables monitoring of

potential misuses based on the proposed representation. These

contributions differentiate our work from the literature on

misuse, as discussed throughout the paper.

Structure: Section II reviews the relevant background.

Section III describes temporal norms and their enactments.

Section IV describes the details of the NANE framework and

how misuse cases are generated. Section V demonstrates how

NANE is used for monitoring of misuses. Section VI describes

the limitations of our work. Section VII reviews the relevant

literature. Section VIII presents future directions.

II. BACKGROUND

We review the necessary background for developing our

formalization on misuse cases, and demonstrating how this

formalization enables monitoring of potential misuse.

A. Temporal Reasoning

We use first-order logic to represent and reason about

misuse cases. Event Calculus (EC) [20] is an extension of

first-order logic to interpret and reason about events in time.

Table I summarizes the domain-independent axioms of EC.

TABLE I
DOMAIN-INDEPENDENT AXIOMS OF THE EVENT CALCULUS.

Predicate Description

happens(E, T) Event E happens at Time T

initially(F) Fluent F is true at Time 0

holds at(F, T) Fluent F is true at Time T

broken(F, Ts, Te) Fluent F is made false between times Ts and Te

initiates at(E, F, T) Event E initiates fluent F at Time T

terminates at(E, F, T) Event E terminates fluent F at Time T

The happens predicate records events and the time points at

which they occur. The initially predicate specifies fluents that

hold at the beginning of time. A fluent is a predicate whose

value can be changed in time due to the occurrence of events.

The holds at predicate queries the happened events to check

whether a fluent holds at a given time. The broken predicate

checks whether a fluent is made false (i.e., terminated) during

a time period (Ts and Te are both exclusive). The initiates

predicate states that an event makes a fluent true at a given

time. The terminates predicate states that an event makes a

fluent false at a given time. Briefly, a normative temporal

theory in EC consists of the following components:

• the domain-independent axioms of EC (Table I);

• the domain-independent normative theory that describes

the norm lifecycle (Section III-A);

• a domain model that describes which events initiate or

terminate which fluents in the domain; and

• an enactment given in the form of a list of happens

assertions (Listing 1) that describes what has occurred.

Note that the normative theory is relevant only to norm-

based EC formalizations like ours. The domain model contains

a list of initiates and terminates rules, e.g., the event of

a patient leaving a physician’s office terminates the fluent

regarding patient’s visit. An enactment in our formalization

corresponds to a narrative in the EC literature. Listing 1

demonstrates a sample enactment in EC.

Listing 1
SAMPLE ENACTMENT IN EC.

1 happens(give_consent(drBob, john), 1).

2 happens(access_EHR(drBob, john), 4).

3 happens(visit(drBob, john), 5).

4 happens(emergency(hospitalNC), 12).

5 happens(access_EHR(drBob, kate), 13).

6 happens(access_EHR(drAlice, adam), 13).

Each event is represented with a happens predicate describ-

ing the event and when the event happened. For example,

patient John gives physician Bob consent to view his EHR

at Time 1 (Line 1), or there is an emergency at hospitalNC at

Time 12 (Line 4). EC supports concurrent events in discrete

time. That is, multiple events can happen at the same time

point. For example, physicians Bob and Alice access patients’

EHR during the emergency (Lines 5–6). Such an enactment

can be extracted using the logs of EHR software (see the open

source OpenEMR project [2] for an example).

B. Norms

We capture the interactions among users via social norms.

Definition 1 describes a norm. We adopt Singh’s [29] model of

social norms, and extend it with temporal constraints. Below,

N is a placeholder for C, A, P, signifying a commitment,

authorization, and prohibition, respectively.

Definition 1. A norm N(SUBJECT, OBJECT, antecedent, conse-

quent) is a directed relationship between its subject and object

about its consequent to be satisfied when its antecedent holds.

Table II describes the formal syntax of norms. For sim-

plicity, we describe norm syntax and semantics via exam-
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Fig. 1. Lifecycle of norms. Double rectangles represent terminal states (i.e., the norm’s lifecycle ends in those states). To highlight the differences, we use
the same layout of states in each diagram.

TABLE II
SYNTAX OF NORMS.

Norm → Commitment | Authorization | Prohibition

Commitment → C(ROLE, ROLE, Expr, Expr)

Authorization → A(ROLE, ROLE, Expr, Expr)

Prohibition → P(ROLE, ROLE, Expr, Expr)

Expr → true | φ | never Expr | ¬Expr | Expr ∧ Expr

ples. Below, PHYSICIAN, HOSPITAL, and PATIENT represent

roles to be instantiated with actual agent names at run time.

Authorization A(PHYSICIAN, HOSPITAL, treat(PHYSICIAN,

PATIENT), access EHR(PHYSICIAN, PATIENT)) means that

physicians are authorized by a hospital to access their pa-

tients’ EHR. Commitment C(PHYSICIAN, HOSPITAL, true,

operate(PATIENT)) means that a physician is (uncondition-

ally) committed to the hospital to operating upon patients.

Prohibition P(PHYSICIAN, HOSPITAL, ¬consent(PHYSICIAN,

PATIENT), access EHR(PHYSICIAN, PATIENT)) means that a

physician is prohibited from accessing a patient’s EHR without

consent in regular practice (nonemergency) mode.

C. Requirements

We consider three types of requirements [7]: Must, Must

Not, and May. A Must requirement indicates a commitment for

its user. Consider the following requirement from HIPAA [32]:

a physician must obtain consent before accessing the patient’s

EHR. A Must Not requirement indicates a prohibition for its

subject (e.g., regarding security and privacy). Consider the

following: a physician must not disclose a patient’s protected

health information (PHI), which means that physicians are pro-

hibited from performing any action that discloses the patient’s

PHI. A May requirement indicates an authorization. Consider

the following: a physician may access a patient’s EHR without

consent in emergencies. We assume that the requirements are

explicit, and do not tackle requirements elicitation.

III. TEMPORAL NORM ENACTMENTS

We describe how to formalize norms and their enactments.

A. Temporal Norms

We incorporate deadlines in all norm types, extending

previous work on commitments [9], [16]. Listing 2 provides

the rules defining a norm’s lifecycle (as Figure 1 shows).

Listing 2
NORM LIFECYCLE IN THE EVENT CALCULUS.

1 %%% states %%%

2 conditional(N, T):-

3 holds_at(status(N, conditional), T).

5 expired(N, T):-

6 holds_at(status(N, expired), T).

8 detached(N, T):-

9 holds_at(status(N, detached), T).

11 satisfied(N, T):-

12 holds_at(status(N, satisfied), T).

14 violated(N, T):-

15 holds_at(status(N, violated), T).

17 %%% transitions %%%

18 terminates(E, status(N, conditional), T):-

19 expire(E, N, T).

21 initiates(E, status(N, expired), T):-

22 expire(E, N, T).

24 terminates(E, status(N, conditional), T):-

25 detach(E, N, T).

27 initiates(E, status(N, detached), T):-

28 detach(E, N, T).

30 terminates(E, status(N, detached), T):-

31 discharge(E, N, T).

33 initiates(E, status(N, satisfied), T):-

34 discharge(E, N, T).

36 terminates(E, status(N, detached), T):-

37 violate(E, N, T).

39 initiates(E, status(N, violated), T):-

40 violate(E, N, T).

Listing 2 considers four norm states: conditional, detached,

satisfied, and violated. Each state is described via a status

predicate (Lines 2–15). Transitions among states are described

via initiates and terminates predicates. An expire event ter-

minates the conditional state (Lines 18–19), and initiates the

expired state (Lines 21–22). A detach event terminates the



conditional state (Lines 24–25), and initiates the detached

state (Lines 27–28). A discharge event terminates the detached

state (Lines 30–31), and initiates the satisfied state (Lines 33–

34). A violate event terminates the detached state (Lines 36–

37), and initiates the violated state (Lines 39–40). Note that

the lifecycle rules of Listing 2 apply to all norm types. The

lifecycle operations expire, detach, discharge, and violate are

specified for each norm type according to the lifecycle of that

norm type (Figure 1).

Listing 3
PROHIBITION LIFECYCLE IN THE EVENT CALCULUS.

1 expire(E,p(S,O,Ant,[Ts,Te],Con,Tc),T):-

2 conditional(p(S,O,Ant,[Ts,Te],Con,Tc),T),

3 T > Te.

5 detach(E,p(S,O,Ant,[Ts,Te],Con,Tc),T):-

6 conditional(p(S,O,Ant,[Ts,Te],Con,Tc),T),

7 initiates(E, Ant, T),

8 T >= Ts, T =< Te.

10 discharge(E,p(S,O,Ant,Ta,Con,[Ts,Te]),T):-

11 detached(p(S,O,Ant,Ta,Con,[Ts,Te]),T),

12 T > Te.

14 violate(E,p(S,O,Ant,Ta,Con,[Ts,Te]),T):-

15 detached(p(S,O,Ant,Ta,Con,[Ts,Te]),T),

16 initiates(E, Con, T),

17 T >= Ts, T =< Te.

Listing 3 describes the lifecycle operations that are specific

to a prohibition. A prohibition is expired (Line 1) if no event

that satisfies its antecedent happens within the antecedent

deadline, i.e., Te passes (Line 3) when the prohibition is

conditional (Line 2). This corresponds to the “never ant”

transition shown in Figure 1(c), i.e., the antecedent is never

initiated before the deadline. An event detaches a prohibition

(Line 5) if the prohibition is conditional (Line 6), the event

initiates the antecedent of the prohibition (Line 7), and the

event happens within the antecedent deadline [Ts, Te] (Line 8).

A prohibition is satisfied (Line 10) if no event that satisfies its

consequent happens within the consequent deadline, i.e., Te

passes (Line 12) when the prohibition is detached (Line 11).

This corresponds to the “never con” transition shown in

Figure 1(c), i.e., the consequent is never initiated before the

deadline. An event violates a prohibition (Line 14) when

the prohibition is detached (Line 15), the event initiates the

consequent of the prohibition (Line 16), and the event happens

within the consequent deadline [Ts, Te] (Line 17). Lifecycle

operations for commitments and authorizations are analogous.

With respect to a prohibition, a commitment reverses the

transitions from detached to satisfied and violated. An au-

thorization is violated when the antecedent holds but the

consequent fails to hold. A subject who is authorized for

performing a consequent is not committed to doing so. Im-

portantly, whereas the subject of a commitment or prohibition

is accountable to its object, it is the object of an authorization

that is accountable to its subject. This understanding of au-

thorizations as privileges of the authorized party agrees with

established approaches [29], [33].

Definition 2 describes the EC proof procedure. Queries

can be given in the form of (i) ground predicates such as

“holds at(consent(drBob, john), 3).” for which the solution

is either true or false, or (ii) nonground predicates such as

“holds at(consent(drBob, Patient), 5).” for which the solution

consists of all patients who have given Bob consent.

Definition 2. Given EC axioms Ax, a normative theory Th,

a domain model D, an enactment N , and a query Q, an EC

reasoner returns a solution set S , denoted S ⇐ EC(Ax, Th,

D, N , Q), based on the Prolog proof procedure [20].

B. Enactments

Definition 3 formally defines an enactment.

Definition 3. An enactment N is a finite set of 〈event, time〉
pairs {〈e1, t1〉, . . . , 〈em, tm〉}.

Recall that an EC formalization supports concurrent events.

Definition 4 describes a compliant enactment with regards to

an enactment (Definition 3) and the EC reasoner (Definition 2).

An enactment N of a norm n is compliant if the events

contained in N discharge n, i.e., n is satisfied at tm+1, which

is the next point in time after N ends.

Definition 4. Let N = {〈e1, t1〉, . . . , 〈em, tm〉} be an enact-

ment. Let tm+1 = max({t1, . . . , tm}) + 1 be the time point

immediately after N . Then N is a compliant enactment of a

norm n if and only if EC(Ax, Th, D, N , “satisfied(n, tm+1).”)

Consider P(PHYSICIAN, HOSPITAL, ¬consent(PHYSICIAN,

PATIENT) ∧ ¬emergency, access EHR(PHYSICIAN, PA-

TIENT)). Figure 2(a) shows the enactments of the above

prohibition. If the physician views a patient’s EHR without

consent, the norm is violated (S1). If the physician first obtains

consent, then views the EHR, this is a compliant enactment of

the norm (S2). If the physician views a patient’s EHR without

consent, the norm is violated (S3). If there is an emergency

and the physician views a patient’s EHR, this is a compliant

enactment (S4).

We extend such enactments with refinements of a norm.

Consider the following usual practice of viewing EHR:

“EHR is usually accessed during a nonemergency patient

visit.” We implement this practice as a refinement of the

original norm. A refinement of a norm is the general-

ization or specialization of its antecedent or consequent.

The above prohibition is refined into P(PHYSICIAN, HOSPI-

TAL, (¬consent(PHYSICIAN, PATIENT) ∨ ¬visit(PATIENT)) ∧
¬emergency, access EHR(PHYSICIAN, PATIENT)). Figure 2(b)

shows the enactments of the refined norm. Two new compliant

enactments are created where a patient visit precedes the

physician viewing EHR (S5 and S6). Both enactments are

compliant enactments according to the refinement of the norm.

Moreover, S4 remains compliant since the refinement does

not cover emergency situations. However, S2 now represents a

potential misuse since EHR is accessed without a patient visit.
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(a) Enactments of the original prohibition.

visit(PATIENT)

consent(PHYSICIAN,

PATIENT)
S5

access EHR(PHYSICIAN,

PATIENT)

S1

access EHR

(PHYSICIAN, PATIENT)

consent

(PHYSICIAN, PATIENT)

S3

access EHR(PHYSICIAN,
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access EHR
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(b) Enactments of the refined prohibition.

Fig. 2. Norm enactments. The left model shows enactments for the original prohibition P(PHYSICIAN, HOSPITAL, ¬consent(PHYSICIAN, PA-
TIENT) ∧ ¬emergency, access EHR(PHYSICIAN, PATIENT)). The right model shows enactments for the refined prohibition P(PHYSICIAN, HOSPITAL,
(¬consent(PHYSICIAN, PATIENT) ∨ ¬visit(PATIENT)) ∧ ¬emergency, access EHR(PHYSICIAN, PATIENT)). Circles represent alternative points in time that
correspond to various norm states. Edges represent events. The norm is satisfied in a double circle, and violated in a dashed circle.

Time

login(PHYSICIAN)Monday 1:30PM

access EHR(PHYSICIAN, PATIENT)Monday 1:45PM

visit(PATIENT)Monday 2PM

logout(PHYSICIAN)Monday 5PM S1

Fig. 3. Temporal enactments for norm C(PHYSICIAN, HOSPITAL, ac-
cess EHR(PHYSICIAN, PATIENT), logout(PHYSICIAN, one hour)). A dashed
circle represents a nonconformant event (potential misuse).

Having a formal refinement process can improve capturing

misuse cases. However, the enactments in Figure 2 rely

on ordering of events 〈e1, . . . , en〉, not absolute deadlines.

Because such a representation might miss important misuse

cases, we introduce explicit temporal enactments to capture

conformant events (formally described in Section IV). Figure 3

demonstrates an enactment regarding active EHR sessions.

Consider C(PHYSICIAN, HOSPITAL, access EHR(PHYSICIAN,

PATIENT), logout(PHYSICIAN, one hour)), which means that a

physician must logout from the active EHR session within an

hour of accessing a patient’s EHR. On Monday, the physician

logs in to the computer and views the patient’s EHR before

the scheduled visit with the patient. This is usual practice

for physicians to prepare for patient visits, and is compliant

with respect to the prohibition of Figure 2(a). However, the

physician does not log out of the computer after viewing the

patient’s EHR. This is a violation of the commitment, and the

late log out (at 5PM in S1) is a nonconformant event.

IV. THE NANE FRAMEWORK

We adopt the conception of a sociotechnical system (STS).

An STS is a social organization [29], wherein autonomous

agents representing stakeholders interact with each other

through and about technical components. Figure 4 summarizes

our conception of the NANE framework based on STS ele-

ments: software components and social norms. Requirements

analysts specify norms based on requirements. Some norms

map to software implementations (e.g., RBAC policies). A

software controller realizes these policies, and produces logs

based on user actions and environment conditions. Other

norms regulate the interactions of users. For each norm, NANE

generates enactments that involve only the events relevant

to the norm’s antecedent and consequent. Enactments that

violate a norm are potential misuses. NANE presents each

norm along with any identified potential misuses to the analyst.

The analyst may refine a norm by weakening or strengthening

its antecedent or consequent.

NANE takes as input: (i) a domain model that consists of

misuse cases and RBAC mechanisms represented as temporal

rules, (ii) an enactment extracted from logs, (iii) the normative

theory that computes the progression of norms due to the

enactment, and (iv) a monitoring query. NANE then computes

whether the given enactment contains a potential misuse.

Section V presents details of how NANE enables monitoring of
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Fig. 4. Conception of the NANE framework. Solid arrows represent automated tasks. Dashed arrows represent tasks that require the involvement of the analyst.

potential misuses. Next, we describe each phase of generating

misuse cases.

Step 1: Specification of norms from requirements

Norms formally capture requirements, as shown in Sec-

tion II-C. Let us review some requirements from HIPAA [31]:

“In most cases, parents are the personal representatives for

their minor children. Therefore, in most cases, parents can

exercise individual rights, such as access to the medical

record, on behalf of their minor children.”

We represent this requirement via the authorization

A(PARENT, HOSPITAL, representative(PARENT, MINOR), ac-

cess EHR(PARENT, MINOR)).

“A covered entity must disclose protected health information

to HHS when it is undertaking a compliance investigation.”

We represent this requirement via the commitment

C(COVERED ENTITY, HHS, investigation, disclose PHI).

“A covered entity may not disclose protected health in-

formation, except the individual who is the subject of the

information authorizes in writing.”

We represent this requirement via the prohibition

P(COVERED ENTITY, HOSPITAL, consent(PATIENT),

disclose PHI(PATIENT)).

Step 2a: Generation of norm enactments

Algorithm 1 generates all possible enactments of a norm

that involve the predicates occurring in the norm’s an-

tecedent and consequent. First, the algorithm initializes

the set of enactments E (Line 1), and extracts proposi-

tions from the antecedent and consequent of the norm

(Line 2). Then, the algorithm populates E with permuta-

tions of the set of extracted propositions P (Lines 3–4),

and removes impossible enactments according to the do-

main model (Line 5). For example, a patient visit cannot

happen before the patient is admitted to the hospital. Fi-

nally, the algorithm returns E (Line 6). Consider prohibition

P(PHYSICIAN, HOSPITAL, ¬consent, access EHR). There are

two propositions (consent and access EHR), and thus five

enactments (permutations(2,0) + permutations(2,1) + permu-

tations(2,2)): {〈 〉, 〈consent〉, 〈access EHR〉, 〈consent, ac-

cess EHR〉, 〈access EHR, consent〉}. There are no impossible

enactments in this set of generated enactments. Note that we

do not deal with enactments where an event can be repeated

an infinite number of times. Moreover, our generation process

explores one norm at a time, which reduces its complexity.

Algorithm 1: E ⇐ enactments(n)

Input: n: norm

Output: E: norm enactments

1 E ← ∅;
2 P ← propositions(n);

3 foreach i = 0 . . . size(P) do

4 E ← E ∪ permutations(P, i);

5 E ← prune(E);

6 return E;

Step 2b: Identification of misuse cases

Algorithm 2 identifies which enactments generated by Al-

gorithm 1 are misuse cases. First, the set of misuse cases M

is initialized (Line 1), and enactments are gathered (Line 2).

Then, we compute for each enactment whether it is a compli-

ant enactment of the norm (Definition 4). If the enactment is

not compliant (Line 4), then it is added to M (Line 5). Formal

representation of misuse cases in EC are given in Section V.

Finally, the algorithm returns M (Line 6). Algorithm 2 is run

for each norm to identify potential misuse cases.

Step 3: Refinement of misuse cases

An analyst goes through the stated norms, and specifies

necessary refinements. Let us revisit P(PHYSICIAN,

HOSPITAL, ¬consent(PHYSICIAN, PATIENT) ∧ ¬emergency,



Algorithm 2: M ⇐ misuse(n)

Input: n: norm

Output: M: potential misuses

1 M ← ∅;
2 E ← enactments(n);

3 foreach e ∈ E do

4 if !compliant(e, n) then

5 M ← M ∪ {e};

6 return M;

access EHR(PHYSICIAN, PATIENT)). One refinement

of this prohibition is P(PHYSICIAN, HOSPITAL,

(¬consent(PHYSICIAN, PATIENT) ∨ ¬visit(PATIENT)) ∧
¬emergency, access EHR(PHYSICIAN, PATIENT)). The

consequent of the norm remains the same, whereas its

antecedent is more specific with the inclusion of a patient

visit. This refinement generates additional misuse cases.
A refinement of the above norm does not capture how a

physician’s access to EHR is related to the time a patient visit

happened. Therefore, we need to specify additional temporal

rules to describe time-related properties of events. These

conformance rules check whether (i) an event happened at

an expected point in time (an absolute time temporal rule),

e.g., a conformant patient visit should happen during the day,

and (ii) an event happened at an expected point in time with

respect to another conformant event (a relative time temporal

rule), e.g., a conformant EHR access should happen within

two hours of a patient visit.
First, we describe a conformant patient visit using an abso-

lute time temporal rule. Consider the following expectation: “A

visit happens during normal office hours.” This is represented

with the rule in Listing 4. A patient visit is conformant if it

happens at Time T (Line 1), and T is between the normal

office hours (Lines 2–3). Office hours are given as 9AM to

5PM (Line 5).

Listing 4
CONFORMANCE WITH RESPECT TO AN ABSOLUTE TIME INTERVAL.

1 conformant(visit(Physician, Patient), T):-

2 office_hours(Ts, Te),

3 T >= Ts, T =< Te.

5 office_hours(9, 17).

Next, we revisit the requirement about accessing a pa-

tient’s EHR: “EHR is usually accessed during a patient

visit in nonemergencies”. We represent this requirement with

P(PHYSICIAN, HOSPITAL, true, access EHR(PHYSICIAN, PA-

TIENT, two hours before visit) ∨ access EHR(PHYSICIAN,

PATIENT, two hours after visit)). That is, the physician is

not supposed to access a patient’s EHR more than two hours

before or after the patient’s visit. We can represent this with a

relative time temporal rule as shown in Listing 5. An access to

a patient’s EHR is conformant with respect to a patient visit

if it happens at Time T (Lines 1–2), there is a conformant

visit from the patient at Time Tv (Lines 3–4), and T is close

enough to Tv (Lines 5–6). For example, two hours before or

after the visit is conformant (Line 8).

Listing 5
CONFORMANCE RELATIVE TO A REFERENCE EVENT.

1 conformant(

2 access_EHR(Physician, Patient),T):-

3 happens(visit(Physician, Patient), Tv),

4 conformant(visit(Physician, Patient), Tv),

5 close_to_visit(Tm),

6 T > Tv-Tm, T < Tv + Tm.

8 close_to_visit(2).

V. MONITORING MISUSE WITH NANE

We now describe how NANE enables monitoring of potential

misuses via temporal reasoning. A misuse corresponds to ei-

ther (i) a norm violation, which can be automatically identified

from an enactment, or (ii) a nonconformant event, as described

by other domain rules. Listing 6 demonstrates each rule. An

event is considered a misuse if it violates a norm (Lines 1–

4), or is not a conformant event (Lines 6–9). The \+ symbol

denotes negation as failure [12].

Listing 6
REPRESENTING MISUSE IN EC.

1 misuse(evt(Event, Te), T):-

2 happens(Event, Te),

3 violate(Event, Norm, Te),

4 Te =< T.

6 misuse(evt(Event, Te), T):-

7 happens(Event, Te),

8 \+ conformant(Event, Te),

9 Te =< T.

Definition 5 formally describes a monitoring task in EC. The

enactment includes a window of events that happened until

the time monitoring takes place. Window-based approaches

[6] are known to improve efficiency of run time tasks such

as monitoring. The purpose of monitoring is to find potential

misuses given such an enactment.

Definition 5. A monitoring task for a domain D is represented

as an EC reasoning task S ⇐ EC(Ax, Th, D, N , Q) at each

time point Tm, where

• N = {〈ei, ti〉 | Tm−w 6 ti 6 Tm}, where w is the window

size;

• Q = “findall(Misuse, misuse(Misuse, Tm), Misuses).”;

• S = {evt(e1, t1), . . . , evt(en, tn)}.

Now, let us revisit Example 1 and formalize its do-

main model in EC. Listings 5–8 constitute the domain

model. We have the following prohibition from earlier:

P(PHYSICIAN, HOSPITAL, ¬consent(PHYSICIAN, PATIENT),

access EHR(PHYSICIAN, PATIENT)), which means that physi-

cians are prohibited from accessing patients’ EHR with-

out consent. Moreover, we have the following commit-

ment: C(PHYSICIAN, HOSPITAL, access EHR(PHYSICIAN,



PATIENT), logout(PHYSICIAN)), which means that physicians

are committed to logging out from their EHR sessions.

Listing 7 describes a temporal rule for the above commit-

ment. A logout by a physician is conformant if it happens at

Time T (Line 1), there is an access to EHR by the physician

at Time Te (Line 2), and the physician is inactive only for

a short period of time in between Te and T (Lines 3–5). For

simplicity, we adopt one hour as the time of inactivity (Line 7).

Listing 7
CONFORMANT LOGOUT EVENT.

1 conformant(logout(Physician), T):-

2 happens(access_EHR(Physician,Patient),Te),

3 inactive(Physician, [Te, T]),

4 active_session(Ts),

5 T-Te < Ts.

7 active_session(1).

In addition to the temporal rules that verify whether an event

is conformant, we model domain facts and access control rules

via initiates and terminates predicates as shown in Listing 8.

The fluent logged in is initiated when a user logs in (Line 1),

and terminated when the user logs out (Line 2). A physician

can access a patient’s EHR only after logging in (Lines 4–

5). Some events are marked conformant using domain facts

(Line 7), and hence they are not misuses.

Listing 8
DOMAIN RULES AND FACTS.

1 initiates(login(User), logged_in(X), T).

2 terminates(logout(User), logged_in(X), T).

4 initiates(access_EHR(X, Y), ehr(X, Y), T):-

5 holds_at(logged_in(X), T).

7 conformant(login(X), T).

Next, we demonstrate how we can perform monitoring by

combining various pieces of the domain model. Listing 9

shows an enactment for a period of 72 hours (the window

size). The time points represent hours from the start of the

work week. For example, 1–24 represents Monday.

Listing 9
SAMPLE ENACTMENT FOR THE MONITORING SCENARIO.

1 % Monday

2 happens(login(drBob), 8).

3 happens(access_EHR(drBob, john), 9).

4 happens(logout(drBob), 10).

5 happens(give_consent(drBob, john), 16).

6 % Tuesday

7 happens(login(drBob), 32).

8 happens(access_EHR(drBob, john), 33).

9 happens(visit(drBob, john), 34).

10 happens(logout(drBob), 35).

11 % Wednesday

12 happens(login(drBob), 56).

13 happens(access_EHR(drBob, kate), 60).

14 happens(logout(drBob), 64).

We use the following query to find potential misuses related

to this enactment: “findall(Misuse, misuse(Misuse, 72), Mis-

uses).” That is, the EC reasoner finds all predicates Misuse that

represent a misuse (Listing 6) that happened before Time 72

(end of Wednesday), and puts them in the list Misuses. The

solution is the following: [evt(access EHR(drBob, john), 9),

evt(access EHR(drBob,kate), 60), evt(logout(drBob), 64)]. Let

us review each misuse:

• Physician Bob’s access to John’s EHR at Time 9 (Line 3)

is a violation of the prohibition because there is no

consent from John.

• Physician Bob’s access to Kate’s EHR at Time 60

(Line 13) is a violation of the prohibition because there

is no consent from Kate.

• Physician Bob does not log out (Line 14) until after four

hours of accessing Kate’s EHR at Time 60. Thus, logout

is a nonconformant event.

Note that physician Bob’s access to John’s EHR at Time 33

is a conformant event (Listing 5) because there is a conformant

visit from John one hour later. Thus, this access is not listed

as a misuse in the solution set.

VI. LIMITATIONS AND THREATS TO VALIDITY

NANE faces the following important limitations.

Modeling: Since NANE captures all and only the stated

norms, a missing norm might lead to a misuse being unnoticed.

Therefore, the correct identification of misuse cases depends

upon how well the requirements analyst captures the norms as

well as the domain model.

Tooling: We did not evaluate how well NANE scales with

increasing number of norms. Although NANE’s enactment

generation process is intended as a design time tool, ineffi-

ciency might be a concern.

Representation of conflicts: Not all norm violations are

misuses. Depending on the context, a norm violation might be

necessary. For example, the consent requirement for accessing

a patient’s EHR might be waived to save a patient’s life. NANE

does not deal with such conflicting norms [3], and may include

such norm violations as false positives in its solution set.

In light of our research goal, we can see that a threat to

validity of NANE achieving that goal is of its applicability.

Specifically, real-life misuse cases may be more subtle than we

can characterize and explore via NANE. An important future

direction, therefore, is to conduct case studies involving real-

life misuses and ideally in more than one domain.

VII. RELATED WORK

The sociotechnical aspects of requirements engineering have

been gaining prominence [10], [34]. NANE demonstrates a

computational approach that goes beyond the conceptual work

in previous approaches. Our recent approach, Revani [15],

provides a temporal logic approach for developing specifica-

tions of sociotechnical systems. NANE goes beyond Revani in

capturing misuse cases and determining what must be logged

to detect such misuses.



Brost and Hoffmann [8] discuss misuse in eHealth systems.

We plan to investigate real misuse incidents in healthcare

to evaluate NANE’s coverage of identifying those via norm

violations. Matulevic̆ius et al. [24] investigate misuse cases

for security modeling using the Information System Risk

Management (ISSRM) model. They propose a conceptual

model and template for representing misuse cases. However,

these works lack a rich temporal representation like ours or

support for monitoring of misuses. Moreover, we incorporate

autonomy and social interactions among users via norms.

Karpati et al. [17] perform an experiment on the usefulness

of misuse case maps (MUCMs). A MUCM extends a tradi-

tional set of use cases with vulnerabilities and exploit paths to

identify security threats. Karpati et al.’s results indicate that

a MUCM promotes understanding of scenarios (e.g., a bank

hacking case) better than system architecture diagrams. How-

ever, MUCMs do not perform significantly better than system

architecture diagrams in identifying vulnerabilities. Whereas

MUCMs are helpful for discovering technical vulnerabilities,

NANE extends MUCM by providing coverage of misuse on

the social level by investigating norm violations.

Jureta et al. [14] present a classification of requirements

for adaptive systems based on the expectations and needs

of stakeholders. They propose a formal method for moni-

toring requirements as well as weakening (relaxation) some

requirements when they cannot be satisfied all the time.

Jureta et al. discuss the details of their conceptual framework.

However, they do not provide its formalization in logic. In

contrast, NANE supports a nonmonotonic logic theory via

EC, and follows a normative approach for incorporating the

social aspects of software systems. Georg et al. [13] use

Activity Theory (AT) to identify the relations between the

elements of a sociotechnical system, and combine it with the

User Requirements Notation (URN) goal modeling tool to

elicit requirements. They do not consider norms for modeling

requirements. Moreover, we do not elicit requirements, but

rather use the stated requirements to identify misuse cases.

However, goal modeling techniques might help represent the

goals of an attacker as misuse cases.

Kafalı and Yolum [16] propose an approach for monitoring

an agent’s interactions to determine whether the agent is

progressing as expected. In particular, they verify whether the

agent’s expectations are satisfiable by its current state. Chesani

et al. [9] propose a monitoring approach for commitments

via the Reactive Event Calculus (REC). We support a more

general model of norms, and provide generation of expecta-

tions from norm enactments. Artikis et al. [6] propose a novel

dialect of EC, called RTEC, for efficient run time recognition

of events. Their approach is based on windowing techniques,

and provide a scalable implementation. RTEC can be used as

the EC reasoner for our monitoring task to enable experiments

on large streams of events.

Chopra and Singh [11] propose Custard, a language to com-

pute the states of norm instances based on happened events.

SQL queries can be generated based on their specification

(tuple relational calculus), and used to query the progression

of norms in a sociotechnical system. Chopra and Singh model

an additional norm, power, to describe institutional authorities

for granting or revoking other norms. Their treatment of events

is similar to ours. Unlike their formalization, we do not give

the details of how norm states are computed from events, but

rely on the EC proof procedure.

Having a formal representation and enumeration of misuse

cases helps establish correct forensic logging, i.e., determining

which user actions need to be logged [4], [21]. King et al.

[19] define a forensicability metric, and develop heuristics for

identifying logging requirements. They perform experiments

on iTrust, an open source electronic health records system.

Peisert et al. [27] propose a forensic logging model based on

the goals of an attacker. The attacker (according to their model)

performs a series of actions to achieve a set of intermediate

goals, which eventually leads to the ultimate goal. Their

framework works backwards from the ultimate goal with a

requires and provides (i.e., preconditions and postconditions)

capability model for goals. We, on the other hand, focus on the

temporal aspects of events without regard to goals. Moreover,

we take a sociotechnical view, where the ultimate goal of the

attacker corresponds to a norm violation. Some approaches

discuss the integrity of logs [35]—how a dishonest user can

modify the logs either to save a malicious user or to frame an

honest user. However, log integrity is beyond our scope.

Arasteh et al. [5] investigate how various attack patterns can

be detected via logs. Their model builds a lifecycle of attacks

as intrusion–compromise–misuse–withdrawal. Khodabandelou

et al. [18] propose Map Miner Method, which uses Hidden

Markov Models to extract users’ intentions from activity logs.

Sindre and Opdahl [28] propose five steps for the integration of

misuse cases into the security requirements elicitation process:

identify critical assets, define security goals, identify threats

(misuse), analyze risks, and define security requirements.

Our approach focuses on the misuse identification step and

provides a rich temporal model to capture such cases.

Amir-Mohammadian et al. [4] propose an audit model based

on information algebra (e.g., treating traces of programs as

information), implement logging specifications via program

rewriting, and prove the correctness of their model. They

provide a case study on the OpenMRS medical records sys-

tem. Their audit mechanism for medical emergencies should

provide the level of accountability equal to the strict access

control rules in regular practice. For example, a physician

is allowed to access any patient’s records, but all access is

logged. Marinovic et al. [23] propose a similar break-glass

access control language, Rumpole, to incorporate exceptions

(e.g., waive some of the access control rules). Rumpole reasons

based on knowledge of relevant facts to determine whether

there is an exception situation. Our model introduces the social

aspects that lack in these approaches via norms, which enables

us to systematically identify potential misuses that arise from

users’ interactions.



VIII. CONCLUSIONS

We proposed NANE, a temporal reasoning framework to

systematically generate norm enactments and identify misuse

cases. We demonstrated how NANE can be used for proactive

monitoring of potential misuses via logs. We identify the

following directions for future work.

Classification: A systematic classification of breaches re-

garding real healthcare incidents would help identify how

user-originated cases (misuse) differ from software-originated

cases. Maintaining such a repository of healthcare-related

incidents would enable us to perform an empirical evaluation

of NANE’s misuse identification process.

Scalability: NANE explores one norm at a time when

generating norm enactments so as to ensure that the generation

process is tractable for practical problems (e.g., norms with

fewer predicates in the antecedent and the consequent). We

will improve the generation process in future work by consid-

ering additional pruning techniques to reduce the number of

generated enactments. Implementations of EC, such as REC
[9], suffer from performance limitation in run time monitoring.

However, recent implementations of EC such as RTEC [6] sup-

port efficient event recognition for both retrospective analysis

(e.g., diagnosis) and monitoring. We will perform experiments

with RTEC to see whether it is helpful for our window-based

misuse monitoring process.

Reasoning: NANE can be extended with probabilistic rea-

soning [25] to calculate the likeliness of identifying a misuse

given a portion of the logs. Using a domain ontology [30]

would greatly simplify the requirements analyst’s effort in

refining norms. In addition, the process of norm extraction

from requirements can be automated via adopting a natural

language processing approach.
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