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Abstract—Policy design is an important part of software
development. As security breaches increase in variety, designing
a security policy that addresses all potential breaches becomes a
nontrivial task. A complete security policy would specify rules to
prevent breaches. Systematically determining which, if any, policy
clause has been violated by a reported breach is a means for
identifying gaps in a policy. Our research goal is to help analysts
measure the gaps between security policies and reported breaches
by developing a systematic process based on semantic reasoning.
We propose SEMAVER, a framework for determining coverage of
breaches by policies via comparison of individual policy clauses
and breach descriptions. We represent a security policy as a set of
norms. Norms (commitments, authorizations, and prohibitions)
describe expected behaviors of users, and formalize who is
accountable to whom and for what. A breach corresponds to
a norm violation. We develop a semantic similarity metric for
pairwise comparison between the norm that represents a policy
clause and the norm that has been violated by a reported breach.
We use the US Health Insurance Portability and Accountability
Act (HIPAA) as a case study. Our investigation of a subset of
the breaches reported by the US Department of Health and
Human Services (HHS) reveals the gaps between HIPAA and
reported breaches, leading to a coverage of 65%. Additionally,
our classification of the 1,577 HHS breaches shows that 44%
of the breaches are accidental misuses and 56% are malicious
misuses. We find that HIPAA’s gaps regarding accidental misuses
are significantly larger than its gaps regarding malicious misuses.

Index Terms—Security and privacy breaches, social norms,
breach ontology, semantic similarity

I. INTRODUCTION

A security policy describes the requirements, regulations,

and standards that an organization should meet to protect

its assets, and enables technical and social protocols to be

implemented accordingly. Designing a comprehensive policy

is the first step for implementing security controls, though not

a trivial task, especially for modern information systems where

users play an important role. As a result, policies are often

stated in an ambiguous manner [16], [27], and fail to address

specific breaches that happen in real life. A security breach

may be an accidental misuse or a malicious misuse. Malicious

misuses correspond to outsider attacks, whereas accidental

misuses correspond to insider attacks or human errors, some

of which are unavoidable given the needed functionality.

Gaps between (design time) security policies and (run time)

breaches are common in healthcare [20], [25]. Consider the

following breach and the corresponding US Health Insurance

Portability and Accountability Act (HIPAA) [8] clause:

Example 1. In 2010, a failure to erase data contained on

disposed photocopiers’ hard drives led to the disclosure of

patient records [9]. HIPAA clause 45 CFR 164.310–(d)(2)(i)

describes disposal of electronic records as follows: “Implement

policies and procedures to address the final disposition of

electronic protected health information, and/or the hardware

or electronic media on which it is stored.”

Identifying the commonalities and differences between pol-

icy clauses and breach descriptions is important for determin-

ing which, if any, policy clause has been violated by a reported

breach and identifying the gaps in between. In Example 1,

HIPAA states that electronic media on which patient records

are stored must be properly disposed of. According to the

breach, a specific incident occurred regarding photocopiers’

hard drives. A domain ontology captures relationships be-

tween such concepts, e.g., hard drives are electronic media.

Our research goal is to help analysts measure the gaps

between security policies and reported breaches by developing

a systematic process based on semantic reasoning.

Accordingly, we propose SEMAVER, a semantic reasoning

framework for measuring the gaps between a security policy

and reported breaches. We represent a security policy as

a set of norms. Norms (commitments, authorizations, and

prohibitions) describe the expectations of users from each

other regarding their social interactions, and formalize who

is accountable to whom and for what [13], [34]. For example,

healthcare employees are prohibited by their hospital from dis-

closing a patient’s medical condition. Norms may be violated

since the actions of users are unpredictable, e.g., an employee

shares a patient’s condition with a friend. A security breach

corresponds to a norm violation [15]. Therefore, we represent

a breach via a norm that has been violated in the breach.

We seek to address the following research questions:

RQ1: How can we formalize security policies and breaches

to bring out their mutual correspondence?

RQ2: What are the commonalities and differences between



concepts in security policies and breach descriptions?

RQ3: How do commonalities and differences between in-

dividual concepts correspond to gaps between security

policies and breaches?

RQ4: How prevalent are accidental misuses among reported

breaches, and do security policies account for them?

Current efforts on identifying potential breaches and elic-

iting security requirements propose visual representations to

assist in policy design [12], [17], [28], [36]. However, these

representations are either informal or not rich enough to per-

form semantic reasoning. A normative representation enables

us to build a correspondence between policies and breaches

(RQ1). We develop a healthcare breach ontology using breach

descriptions reported by the US Department of Health and

Human Services (HHS) [9]. We propose a semantic similarity

metric to understand how various breach concepts relate to

each other (RQ2). We extend the similarity metric for pairwise

comparison between a norm that represents a policy clause

and a norm that represents a breach. We further extend norm

similarity as a general metric (policy coverage) to measure

the gaps between a security policy and breaches (RQ3). We

provide a classification of breaches to differentiate between

accidental and malicious misuses (RQ4).

Our contributions include (i) a formal representation of

security policies and breaches via norms; (ii) a semantic

similarity metric for the pairwise comparison of norms; (iii) a

policy coverage metric to measure the gaps between a policy

and breaches; and (iv) a classification of breach types.

The rest of the paper is structured as follows. Section II

reviews the technical background for our framework. Sec-

tion III describes the elements of the SEMAVER framework.

Section IV presents a HIPAA case study. Section V describes

the limitations of our framework. Section VI reviews the

relevant literature. Section VII presents future directions.

II. TECHNICAL BACKGROUND

We now review the necessary background for SEMAVER.

A. Norms

Definition 1 describes a norm as a directed relation between

two parties [34]. We consider three types of norms: commit-

ments, authorizations, and prohibitions.

Definition 1. A norm is a tuple 〈n, SBJ, OBJ, ant, con〉, where

n, its type, is one of {c, a, p}; SBJ is its subject; OBJ is its

object; ant is its antecedent; and con is its consequent. Here,

SBJ and OBJ are roles adopted by people or organizations;

ant and con are propositional conditions. We write a norm as

n(SBJ, OBJ, ant, con).

A norm is detached when its antecedent holds, meaning that

the norm is active. Violation conditions differ according to the

type of norm, as we describe next.

A commitment means that its subject is committed to its

object to bringing about the consequent if the antecedent

holds. For example, healthcare workers are committed to

their hospital to properly disposing of patients’ electronic

health records (EHRs) from any media that is obsolete. The

healthcare worker is accountable for improper disposal of

EHRs. If a patient’s protected health information (PHI) is

improperly disposed of, the commitment is violated.

An authorization means that its subject is authorized by its

object to bring about the consequent if the antecedent holds.

For example, physicians are authorized by their hospital to

access all patients’ EHRs when there is an emergency. The

hospital is accountable for not allowing physicians to do so.

If a physician tries to access a patient’s EHR in an emergency,

but is denied access, the authorization is violated.

A prohibition means that its subject is prohibited by its

object from bringing about the consequent if the antecedent

holds. For example, physicians are prohibited by their hospital

from sharing patients’ PHI with outsiders. A physician is

accountable for disclosure of a patient’s PHI. If a patient’s

PHI is disclosed to outsiders, the prohibition is violated.

B. Ontologies

An ontology is a conceptualization of a particular domain

[6]. By having a formal ontology, one can specify domain con-

cepts and relations among them to perform semantic reasoning.

Ontology concepts are tied together via relations. Two domain-

independent relations are important. The is-a relation denotes

that a concept is a type of another concept, e.g., an Accidental

Misuse is a Breach. Certain properties of a concept can be

described via the has-a relation, e.g., an Accidental Misuse

has an Actor. Here, we can specify the property hasActor for

the concept Accidental Misuse. The range of the property is

another concept User, and its arity is 1..N as an accidental

misuse may involve one or more actors. Additional relations

can be added to the ontology to make a domain representation

richer. Once a domain is represented as an ontology, one can

perform semantic reasoning on it using inference rules. A

sample rule is that a physician needs a valid license to operate

upon patients. Now, the type of license (which may also be

given as a taxonomy in the ontology) may depend upon the

type of operation.

From a security and privacy perspective, the nature of

information content can be represented in an ontology. For

example, if a hospital prohibits its employees from disclos-

ing patients’ PHI, then given an ontology for healthcare

information, semantic reasoning can discover that a patient’s

laboratory results are part of the patient’s PHI and should not

be disclosed, whereas the state the patient resides in is not

part of the patient’s PHI and disclosing it would not violate

the prohibition.

Ontologies for security and privacy are emerging. Souag et

al. [36] propose a security ontology to anticipate cybersecurity

attacks during early requirements elicitation stage. They gather

related knowledge from security standards and analyze other

(incomplete) security ontologies to develop their ontology.

We share the motivation that a formal ontology would help

security analysts design security policies with wider coverage

of concepts. We adopt some of Souag et al.’s concepts,

including organizations (sociotechnical systems with people



and software) and methods of attack. Moreover, we take

a more practical approach and focus on reported security

breaches. Our ontology can be used to understand the common

properties of breaches as well as to compute how well they

are covered by security policies.

Slavin et al. [35] propose a privacy-policy-phrase ontology

to detect misalignments between privacy policies and API

methods of Android applications. They aim to understand

which applications that have access to sensitive information

violate the stated privacy policies. Slavin et al.’s approach

provides a mapping between the API methods and policy

terminology, and detects whether there is no violation, a

potential weak violation, or a potential strong violation. Their

ontology is limited to a taxonomy. Apart from the fact that

their domain and ours are different, our ontology is enriched

with properties that enable us to perform semantic reasoning.

C. Semantic Similarity

A formal ontology enables semantic reasoning over con-

cepts and relationships, especially to determine how various

breach concepts relate to each other. We extend this reasoning

to provide a formal comparison of norms, which is used to

measure how much a security policy differs from breaches.

Resnik [29] proposes a measure to compute similarity of

concepts given in a taxonomy with is-a relations. A common

way to compute similarity is to calculate the distance between

concepts, with the shorter path indicating a higher similarity

between them. However, links in a taxonomy (is-a relations)

do not always represent uniform distances. Resnik proposes

an alternative way to compute similarity based on information

content. Empirical evaluation shows that Resnik’s measure is

the closest to human judgment among other taxonomy based

distance metrics such as node distance and edge counting

[32]. Lin [21] builds upon Resnik’s information theoretic

metric to compare concepts in a taxonomy by identifying the

commonalities as well as the differences between the concepts.

We go beyond similarity in a taxonomy, and use properties of

concepts to provide a richer similarity metric.

Rodrı́guez et al. [31] propose a method to compute similar-

ity of concepts contained in different ontologies. Their method

systematically detects similar concepts across ontologies via

a matching process based on specifications such as synonym

sets and semantic neighborhoods. We currently have a single

breach ontology developed based on the knowledge gathered

from HHS incidents. Finding similarity between random words

such as triangle and breach [21], [29], or identifying syn-

onyms [18], [24] are out of our scope. However, it would

be interesting to extend our ontology with knowledge from

other domains, and compare various breach concepts using

the proposed methods.

III. SEMAVER FRAMEWORK

This section describes our development of SEMAVER: (i)

a breach ontology based on reported breach incidents, (ii) a

formal representation of policies and breaches via norms, (iii)

semantic similarity relations for ontology concepts as well as

norms, and (iv) a methodology for measuring how much a

security policy differs from associated breaches (coverage).

Throughout this section, we use examples from the healthcare

domain to explain elements of SEMAVER.

A. Ontology Development

Figure 1 shows how a breach ontology can be constructed

using both generic and domain-dependent concepts. Under the

general concept Breach, we have its subclasses described via

is-a relations, e.g., Unintentional disclosure is a Breach. The

action Share PHI with family, while performed intentionally by

the physician, does not involve any malicious intent of disclos-

ing patient’s data. Note that some concepts (e.g., Accidental

Misuse) are omitted for brevity. A detailed description of our

healthcare breach ontology is presented in Section IV-B (see

also Figure 4). Having such a hierarchy of breach concepts in

an ontology is helpful for developing semantic similarity based

on the distance between concepts. However, taxonomic dis-

tance itself is not a sufficient measure to determine similarity:

pairs of concepts that have the same taxonomic distance from

each other may have different conceptual similarity. Therefore,

we describe properties of concepts with has-a relations, e.g.,

Malware has actor Adversary. Note that an ontology concept

can have multiple properties: the figure shows only one

property for brevity. Moreover, properties can be related to

each other via is-a relations (see Figure 2 for an ontology of

healthcare users regarding the hasActor property).

Breach

Unintentional
disclosure

Outsider
attack

Insider
attack

Share
PHI with
colleague

Share PHI
with family

hasActor:
Physician

Malware

hasActor:
Adversary

Phishing Share PHI
with outsider

hasActor:
Employee

Fig. 1. Breach concepts. Lines represent subclass (is-a) relations among
concepts. Arrows represent properties of concepts (has-a relations).

B. Representing Policies and Breaches

A norm supports accountability between its subject and ob-

ject, thus provide a natural means of formalizing policy clauses

that capture security and privacy requirements. Examples 2

and 3 describe two clauses of HIPAA together with the norms

that formalize them.

Example 2. HIPAA clause 45 CFR 164.510 describes disclo-

sure conditions of patients’ PHI as follows:

“The covered entity may orally inform the individual of and

obtain the individual’s oral agreement or objection to a use

or disclosure permitted by this section.”

This clause is represented with the following

prohibition: p(PHYSICIAN, COVERED ENTITY, ¬consent,



share PHI family). That is, a physician working in the

covered entity (e.g., a healthcare provider organization) is

prohibited from sharing a patient’s PHI with the patient’s

family unless a consent is obtained from the patient. Note

that the ¬ symbol denotes negation.

Moreover, subclause 45 CFR 164.510–(b) Permitted uses

and disclosures of the above clause states the following:

“The requirements to obtain a patient’s agreement to speak

with family members or friends involved in the patients care

can be waived during national disasters.”

This subclause can be represented with the following autho-

rization: a(PHYSICIAN, COVERED ENTITY, national disaster,

share PHI family). That is, a physician is authorized to share

a patient’s PHI with the patient’s family in a national disaster.

Example 3. Consider HIPAA clause 45 CFR 164.310–

(d)(2)(i) from Example 1, which we represent as the following

commitment: c(HEALTHCARE WORKER, COVERED ENTITY,

media disposal, erase media). That is, healthcare workers

are committed to a covered entity for proper destruction of

patients’ EHRs that are stored on electronic media.

The above examples demonstrate how we can specify norms

to formalize individual clauses of a security policy. Defini-

tion 2 describes a security policy as a set of norms, where

each norm corresponds to a clause of the policy.

Definition 2. A security policy S is a set of norms, S = {n1,

. . . , nk}.

Next, we formalize breaches. Definition 3 describes a breach

as a norm violation.

Definition 3. A breach bi is a violation of a norm ni, i.e., bi
= violated(ni).

Let us see example breaches summarized from the HHS de-

scriptions [9], and corresponding norm violations. Example 4

revisits Example 1 regarding improper disposal of EHRs.

Example 4. Consider the breach in Example 1, where

a healthcare worker did not erase the photocopiers’

hard drives. That breach is a violation of the com-

mitment c(HEALTHCARE WORKER, COVERED ENTITY, me-

dia disposal, erase media), because the commitment is de-

tached when the photocopier (a certain type of media) is

disposed of, but the subject of the commitment failed to bring

about the consequent.

Example 5 describes an incident regarding the use of

personal devices for work purposes.

Example 5. Consider the following breach reported by HHS

regarding Iowa Department of Human Services:

“Employees of the covered entity used personal email

accounts, personal online storage accounts and personal

electronic devices for work purposes. From February 5,

2010 to January 17, 2014, the protected health information

(PHI) of 2,042 individuals was transferred outside of the

covered entity’s secure network in this manner.”

This breach is a violation of the prohibition

p(HEALTHCARE WORKER, COVERED ENTITY, true,

use personal device), because healthcare workers are

prohibited from using personal devices for work at all times

(the prohibition is detached since the antecedent is true).

C. Similarity Metric

We develop a similarity metric to compare ontology con-

cepts and norms. Our similarity metric adopts ideas from the

literature on ontologies [29], [32], [33], [39], and extends it

for pairwise comparison of norms. Moreover, our similarity

metric uses the specified properties of concepts as well as the

relations among properties to enable a deeper understanding

of similarity.

Equation 1 describes the distance between two ontology

concepts c1 and c2 via edge count(c1, c2), which is the

number of edges connecting concepts c1 and c2.

∆c1,c2 = edge count(c1, c2) (1)

Assumption 1. There are no multiple inheritance relations in

the healthcare breach ontology.

Assumption 2. Subclass (is-a) relationships in the healthcare

breach ontology are of equal importance.

Equation 1 computes distance for tree-like taxonomies,

and does not work when multiple inheritance is allowed

(Assumption 1). Edges have uniform weights (Assumption 2).

Therefore, we count each edge as one.

Equation 2 describes our similarity metric between two

ontology concepts c1 and c2 (simc1,c2 ). We denote taxonomy-

based distance between concepts c1 and c2 via ∆c1,c2 , and

property similarity between concepts c1 and c2 via sim
prop
c1,c2

.

simc1,c2 =
1

1 +∆c1,c2

× sim
prop
c1,c2

(2)

The maximum possible similarity value, of one, is only

achieved when two concepts are identical. Let us revisit

Example 1. HIPAA states that electronic media on which

patient records are stored must be properly disposed of.

According to the breach, a specific incident occurred regarding

photocopiers’ hard drives. HIPAA states the parent concept

(electronic media), which provides maximum coverage for

photocopiers.

Equation 3 describes property similarity between concepts

c1 and c2 based on the set of common properties (P) of c1
and c2, and distances between the values of those properties.



User

Individual Organization

Covered
entity

Insurance
company

Delivery
company

Hospital

Employee End User Operational
staff

Adversary

Healthcare
worker

hasEmployer:
Covered entity

Physician

hasEmployer:
Hospital

Patient
Personal

representative

Delivery
courier

Insurance
agent

hasEmployer:
Insurance company

Contractor

Hacker Thief

Fig. 2. Ontology of healthcare users. Lines represent subclass (is-a) relations among concepts. Arrows represent properties of concepts (has-a relations).

sim
prop
c1,c2

=











min sim if P = ∅
∏

pi∈P

1

1 + ∆pi

otherwise (3)

Equation 3 resembles Lin’s [21] commonality measure in

the sense that we explore the common properties of concepts to

determine their similarity. Lin’s commonality and differences

measures rely on information content derived from instances

of concepts (e.g., a probability distribution). We look at the

similarity between generic concepts such as Breach and Ad-

versary. Deriving such a probability distribution from breach

descriptions is left for future work.

Assumption 3. min sim = 0.001.

When two concepts have no common properties, we assign

a minimum value (min sim) to the similarity between them

according to Assumption 3. Note that min sim can be defined

based on the size of the ontology. For example, for an ontology

containing 100 to 1,000 concepts, min sim = 10−3 = 0.001.

Let us revisit the ontology of Figure 1 and see examples

of how taxonomy-based distance and property similarity are

calculated.

Example 6. Consider concepts Share PHI with family and

Share PHI with colleague. These concepts have the same

parent. Thus, simShare PHI with family,Share PHI with colleague = 0.33 ×
sim

prop
Share PHI with family,Share PHI with colleague.

Example 7. Consider concepts Share PHI with fam-

ily and Share PHI with outsider. These concepts are

not as similar as the concepts in Example 6, be-

cause there are three concepts in between the two con-

cepts. Thus, simShare PHI with family,Share PHI with outsider = 0.2 ×
sim

prop
Share PHI with family,Share PHI with outsider.

Taxonomy distance gives a good estimate of how similar the

concepts are (Examples 6 and 7). However, taxonomy distance

alone is not always adequate for determining similarity when

several concepts have the same distance from each other.

Example 8 calculates property similarity using the ontology

of healthcare users shown in Figure 2.

Example 8. The distance between concepts Share PHI

with family and Share PHI with outsider and the distance

between concepts Share PHI with family and Malware are

the same. However, Share PHI with outsider and Malware are

not necessarily similar concepts. Therefore, we need to take

into account the properties of those concepts to determine

similarity. Let us assume that the only common property

of the concepts Share PHI with family, Share PHI with

outsider, and Malware is hasActor. According to Equation 3,

similarity between the actors Physician (for Share PHI with

family) and Employee (for Share PHI with outsider) is 0.5.

Thus, simShare PHI with family,Share PHI with outsider = 0.2 × 0.5 = 0.1.

Likewise, similarity between the actors Physician (for Share

PHI with family) and Adversary (for Malware) is 0.25. Thus,

simShare PHI with family,Malware = 0.1 × 0.25 = 0.025.

We build upon Equation 2 to compare norms based on their

individual elements. Note that the subject and object of a norm

correspond to concepts given in Figure 2, and the antecedent

and consequent correspond to concepts given in Figure 1.

Definition 4 describes norm similarity.

Definition 4. The similarity between norms n1(SBJ1, OBJ1,

ant1, con1) and n2(SBJ2, OBJ2, ant2, con2) is the average sim-

ilarity of its elements: simn1,n2
= (simSBJ1,SBJ2 + simOBJ1,OBJ2 +

simant1,ant2 + simcon1,con2
) / 4.

Assumption 4. simφ,true = min sim.

Note that the antecedent of a norm can be true. According

to Assumption 4, we assign the minimum similarity value to

any predicate that is compared with true. Example 9 shows an

example of norm similarity.

Example 9. Consider norms p1(PHYSICIAN,

HOSPITAL, ¬emergency, share PHI family) and

p2(HEALTHCARE WORKER, COVERED ENTITY, true,

share PHI outsider). Similarity between subjects is

simPHYSICIAN,HEALTHCARE WORKER = 0.33× 0.5 = 0.17. Similarity
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Fig. 3. SEMAVER methodology for determining policy coverage.

between objects is simHOSPITAL,COVERED ENTITY = 0.5. Similarity

between antecedents is sim¬emergency,true = 0.001. Similarity

between consequents is simshare PHI family,share PHI outsider =
0.2× 0.5 = 0.1. Thus, simp1,p2

= 0.19.

Norms of different types are not similar. According to

Assumption 5, we assign the minimum similarity value to

comparisons between different norm types.

Assumption 5. simc,a = simc,p = sima,p = min sim.

Now, we are ready to describe our policy coverage metric

based on norm similarity. First, we present a list of reasoning

postulates that transform norms with conjunctive and disjunc-

tive propositions to norms with only atomic propositions.

Postulate 1. A norm whose antecedent is a disjunction of

two propositions can be represented via two norms whose

antecedents are the individual propositions: n(SBJ, OBJ, ant1

∨ ant2, con) if and only if n(SBJ, OBJ, ant1, con) and n(SBJ,

OBJ, ant2, con).

Postulate 2. A commitment whose consequent is a conjunction

of two propositions can be represented via two commitments

whose consequents are are the individual propositions: c(SBJ,

OBJ, ant, con1 ∧ con2) if and only if c(SBJ, OBJ, ant, con1)

and c(SBJ, OBJ, ant, con2).

Postulate 3. An authorization whose consequent is a disjunc-

tion of two propositions can be represented via two autho-

rizations whose consequents are the individual propositions:

a(SBJ, OBJ, ant, con1 ∨ con2) if and only if a(SBJ, OBJ, ant,

con1) and a(SBJ, OBJ, ant, con2).

Postulate 4. A prohibition whose consequent is a disjunction

of two propositions can be represented via two prohibitions

whose consequents are the individual propositions: p(SBJ,

OBJ, ant, con1 ∨ con2) if and only if p(SBJ, OBJ, ant, con1)

and p(SBJ, OBJ, ant, con2).

Definition 5 describes how norm n1 covers norm n2 so that

n2 can be replaced by n1. Simply put, n1 covers n2 if n1 is

satisfied whenever n2 is satisfied [13]. Note that the ⊢ symbol

represents logical consequence.

Definition 5. Commitment c(SBJ, OBJ, ant1, con1) covers

commitment c(SBJ, OBJ, ant2, con2) if and only if ant2 ⊢ ant1

and con1 ⊢ con2. Authorization a(SBJ, OBJ, ant1, con1) covers

authorization a(SBJ, OBJ, ant2, con2) if and only if ant1 ⊢ ant2

and con1 ⊢ con2. Prohibition p(SBJ, OBJ, ant1, con1) covers

prohibition p(SBJ, OBJ, ant2, con2) if and only if ant2 ⊢ ant1

and con2 ⊢ con1.

Note that the subjects and objects must be identical for a

norm to cover another norm. However, we can use the covers

relation in combination with our similarity metric for the

subjects and objects to determine to what extent a norm covers

another norm. That is, if norm n1 covers n2, then the similarity

between their antecedents and consequents is one, which

constitutes half of norm similarity according to Definition 4.

The remaining half is determined by the similarity between

their subjects and objects. Equation 4 describes how similarity

is determined when n1 covers n2.

sim
covers
n1,n2

= 0.5 + (simSBJ1,SBJ2 + simOBJ1,OBJ2)/2 (4)

Equation 5 builds upon the above development to describe

policy coverage that is an average of the similarity values

between the norms representing each breach and the corre-

sponding policy clause. B represents the set of all breaches,

and |B| represents the cardinality of B.

coverage =

∑

bi∈B

{

sim
covers
npolicy,nbi

if npolicy covers nbi

simnpolicy,nbi
otherwise

|B|
(5)

D. Methodology

Figure 3 summarizes our methodology for measuring how

well a security policy covers reported breaches. Steps 1 and 3

presuppose familiarity with conceptual modeling based on

norms. For Steps 1 to 3, we can employ multiple modelers

who work independently. Step 4 is needed only when two or

more modelers are employed. Let us review each step:

1) Represent breach: Specify the relevant norms for each

breach.

2) Identify policy clause: For each breach in Step 1, identify

a clause of the policy that is the most relevant to the

scenario described in the breach. Note that there might

be cases where the incident describes a general privacy

breach, and it might not be clear which HIPAA policy

clause is violated.

3) Represent policy clause: Specify the norms for the iden-

tified policy clauses in Step 2. Note that one would

normally decide whether an incident is a breach by first

representing the policy [15]. Here, a breach is an estab-

lished fact: thus, our reasoning begins by investigating

the breaches. Working backwards from breaches saves



significant effort by investigating only relevant policy

clauses.

4) Resolve disagreements: Discuss and resolve any disagree-

ments for Steps 1–3. For any unresolved disagreement,

employ a more experienced modeler to specify the norms

after reviewing the disagreement.

5) Calculate policy coverage: Feed the norms that represent

breaches and relevant policy clauses together with the

coverage metric (Equation 5) into the semantic reasoner.

The output (policy coverage) shows how much the policy

differs from reported breaches.

IV. CASE STUDY: HHS SECURITY AND PRIVACY

BREACHES

We now evaluate the SEMAVER framework on the HIPAA

policy using the HHS breach reports.1 We are mainly inter-

ested in HIPAA security and privacy clauses that are relevant

to the breaches reported by HHS.

A. HHS Breach Report

We investigate 1,577 security and privacy incidents reported

in an HHS breach report [9]. HHS provides a classification of

the breaches contained in the dataset as shown in Table I. Out

of the 1,577 breaches, 219 incidents are unclassified. Of these,

40 incidents are marked as other, 5 incidents are marked as

unknown, and 174 incidents are unmarked.

TABLE I
HHS BREACH CATEGORIES.

Category Count Description

Hacking 191 Incidents where an adversary exploits a soft-
ware vulnerability to access patients’ EHRs

Theft 642 Incidents where an employee (insider) ac-
cesses patients’ EHRs and discloses their
PHI to outsiders

Loss 129 Incidents where electronic media that con-
tain patients’ PHI are lost from the posses-
sion of an employee

Unauthorized
access/disclosure 338 Incidents where a patients’ EHR is disclosed

due to unauthorized access

Improper
disposal

58 Incidents where a healthcare worker fails to
properly dispose of patients’ EHRs, leaving
their PHI exposed

Unclassified 219 Not classified by HHS

B. Healthcare Breach Ontology

Figure 4 shows a screenshot of our breach ontology from

the Protégé ontology development tool. In addition to the

concepts described in Figures 1 and 2, the complete ontology

contains a total of 104 concepts as well as some instances of

concepts gathered from the HHS incidents. For example, Iowa

Department of Human Services is an instance of the ontology

concept Covered entity (see Example 5).

1Case study materials can be found in https://research.csc.ncsu.edu/mas/
code/security/semaver/.

The complete ontology describes additional concepts and

properties such as the scale of an organization and type

of attack. Correlation among these concepts would help us

understand whether attackers are targeting large organizations

where the potential damage (e.g., the number of affected

people) is large, but the chances of a successful attack may

be low. We can also calculate the frequency of such attacks.

Further investigation in this area is left for future work.

Our breach ontology contains an ontology of norms, which

is connected to the rest of the ontology through the elements

of a norm. For example, the subject and object of a norm are

users from Figure 2, and the antecedent and consequent of a

norm include propositions described in Figure 1.

C. Application of SEMAVER

Now, we describe how we apply the SEMAVER methodology

(Section III-D) for the HIPAA policy and associated HHS

breaches. We randomly selected a subset of the breaches

from the HHS dataset which represent unique cases. Note that

most of the incidents describe similar breach scenarios and

thus correspond to the same HIPAA clauses. Two researchers

(undergraduate students) independently specified the norms. In

a previous study [13], we have shown that users can specify

norms for requirements with minimal training.

Examples 10 and 11 demonstrate sample breaches and the

application of the SEMAVER methodology on them.

Example 10. In 2014, a contractor of a covered entity,

who is also the husband of an employee of the covered

entity, accessed patient records without proper authorization

and disclosed their PHI. The associated HIPAA clause 45 CFR

164.308–(b)(2) states the following regarding business asso-

ciates: “A business associate may permit a business associate

that is a subcontractor to create, receive, maintain, or transmit

electronic protected health information on its behalf only if

the business associate obtains satisfactory assurances.”

The researchers individually specified the following norm

for the breach in Example 10: p1(CONTRACTOR, COV-

ERED ENTITY, ¬consent, access EHR). The researchers

agreed on the following norm regarding the HIPAA

clause: p2(CONTRACTOR, COVERED ENTITY, ¬consent, ac-

cess EHR ∨ disclose PHI). According to Definition 5, p2
covers p1. Moreover, the subjects and objects of the norms

are identical. Thus, simp2,p1
= 1.

Example 11. In 2015, an employee of a covered entity

emailed a questionnaire to patients without using blind carbon

copy (bcc) to hide patient names. The most relevant HIPAA

clause 45 CFR 164.502–(a)(1) states the following regarding

the disclosure of PHI: “A covered entity is permitted to

disclose protected health information to the individual.”

The researchers individually specified the

following norms for the breach in Example 11:

c1(HEALTHCARE WORKER, HOSPITAL, email, bcc)

and c2(EMPLOYEE, COVERED ENTITY, email patients,

bcc). After discussion, c1 and c2 are resolved into the



Fig. 4. Healthcare breach ontology in Protégé. The top left pane shows the class hierarchy, and the top right pane depicts the class hierarchy as a diagram.
In addition to the class hierarchy, concepts can be connected to each other via properties. The bottom left pane shows object properties, and the bottom right
pane shows the domain and range of an object property.

following: c3(HEALTHCARE WORKER, COVERED ENTITY,

email patients, bcc patients). The researchers agreed

on the following norm regarding the HIPAA clause:

a1(HEALTHCARE WORKER, COVERED ENTITY,

request individual, disclose PHI individual). According

to Assumption 5, sima1,c3 = 0.001.

D. Results

We now present our findings based on the 1,577 breaches re-

ported in the HHS dataset. We randomly selected 40 breaches

representative of the number of occurrences in the HHS

classification (Table I): seven hacking incidents, 15 theft in-

cidents, five loss incidents, 10 unauthorized access/disclosure

incidents, and three improper disposal incidents.

RQ1 and RQ2: We investigate how policy clauses differ

from breaches with respect to individual elements of a norm.

Figure 5 shows that the similarity between the actors (subjec-

t/object of a norm) stated in policies and breaches is higher

than the assets (antecedent and consequent of a norm). The

similarity of individual norm elements enables us to identify

where commonalities and differences reside between policy

clauses and breach descriptions. Norm similarity (Definition 4)

can be refined according to these findings (e.g., consequent

may be given a higher weight since it has the lowest similarity

value) to provide a more realistic measure of coverage.

RQ3: Using policy coverage (Equation 5), we measure the

gaps between HIPAA and HHS breaches. Based on the 40

incidents, we find that HIPAA has a general coverage of 65%.

Moreover, the fact that consequent similarity is the lowest

(Figure 5) implies that there are gaps in HIPAA policy for

stating what needs to be done or avoided to prevent breaches.

RQ4: We extend the classification provided by HHS for

the 1,577 breaches. We differentiate between two types of

breaches: accidental misuses (due to interactions of health-

care workers) and malicious misuses (outsider attacks). We

confirm via the descriptions of the breaches that the categories

hacking and theft contain malicious misuse incidents, and loss,

unauthorized access/disclosure, and improper disposal contain

accidental misuse incidents. For the remaining unclassified

incidents (other, unknown, and unmarked), we have provided

a classification based on the given descriptions. Out of the

40 incidents in the other category, one is malicious misuse,

10 are accidental misuses, and 29 have no description. Out

of the five incidents in the unknown category, two are ac-

cidental misuses and three have no description. Out of the

174 unmarked incidents, 27 are malicious misuses, 132 are

accidental misuses, and 15 have no description. Excluding

incidents without descriptions, we obtain a total of 1,530

classified breaches, of which 669 are accidental and 861 are

malicious misuses. That is, 44% of the incidents are caused

by accidental misuses, which indicates that regulating the

social interactions of users is as important as developing a
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Fig. 5. Similarity for individual norm elements.

secure software infrastructure to prevent security breaches.

Moreover, we compute coverage for each breach category to

understand which parts of HIPAA contain more gaps and need

revision. Figure 6 shows that HIPAA provides better coverage

for malicious misuses than accidental misuses (except for

the improper disposal category which constitutes the smallest

portion of the breaches). This result reinforces the fact that

designing policies to address all potential accidental misuses

is a nontrivial task as users become central to information

systems. Recent cybersecurity reports [4] and surveys [10]

corroborate our findings that healthcare security and privacy

policies need continual revision, especially due to emerging

threats regarding accidental misuses.

Our coverage metric further breaks down the 65% coverage

result, and uncovers practically valuable information: which

elements of a policy clause (Figure 5) and which policy

categories (Figure 6) need more attention. Although increased

coverage does not necessarily imply superior breach preven-

tion policies with increased coverage of breaches is crucial for

implementing improved security. Semantic reasoning can help

fill the gaps between policies and breaches. For example, if a

policy clause states protection of one asset, and a reported

breach indicates another asset, it would be reasonable to

consider all similar assets in between those two assets.

V. LIMITATIONS AND THREATS TO VALIDITY

We identify the following limitations and threats to valid-

ity for SEMAVER. First, modeling of security policies and

breaches is subjective and inherently error prone. Although we

minimize subjectivity and potential errors by independently

specifying norms with multiple researchers and resolving

disagreements, we cannot completely eliminate subjectivity in

specifying the norms.

Second, we cannot assess the completeness of the breaches

reported in the HHS dataset. Although we classified all inci-

dents into specific breach categories and identified that some

breaches are more common than others and most scenarios

overlap with each other, we cannot construct a theoretical

proof towards completeness that will guarantee no other breach

category will emerge. However, our investigation provides

a thorough study of the reported healthcare breaches and

proposes a realistic measure of policy coverage.
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Fig. 6. Policy clause coverage by breach category.

Third, the coverage of breach concepts by our ontology

is based only on the incidents from the healthcare domain.

While relying upon HHS breaches is fine for measuring the

coverage of the HIPAA policy, not including breaches from

other domains poses a threat to the validity of our framework

for computing similarity in those domains. We will investigate

other domains and extend our ontology to mitigate this threat.

VI. RELATED WORK

Brost and Hoffmann [2] discuss security and privacy re-

lated misuses in eHealth systems and their connection with

the STRIDE threat model [11]. They consider misuse case

diagrams [17] in identifying and mitigating threats, and ex-

periment on a platform that brings together physicians, nurses,

and patients to study cases where patient data can be disclosed

from smartphones via malicious applications. Matulevic̆ius et

al. [23] investigate misuse cases for security modeling using

the Information System Risk Management (ISSRM) model.

Misuse case diagrams are helpful in visually representing

the vulnerabilities of a software system. However, they are

often given in general terms, and can cause misinterpretation.

Therefore, Matulevic̆ius et al. take into account risk-related

concepts, i.e., the likelihood of a threat occurring. Kökciyan

and Yolum [19] investigate and categorize privacy breaches

in online social networks via a semantic understanding of the

events that lead to the breaches. Such breaches mostly corre-

spond to accidental misuses where the users’ commitments are

violated. We investigate cases where the interactions among

healthcare users lead to misuses. In SEMAVER, we represent

misuse cases (breaches) as norm violations, which enables us

to formally reason about them.

Hao et al. [7] propose a method for designing minimal

effective normative models to coordinate agents in an open

system. It would be interesting to apply their method to

security policy design, and come up with a minimal policy

that fills the gaps regarding associated breaches.

Elahi et al. [5] propose an ontology for analyzing attacks

and vulnerabilities regarding security requirements. They pro-

vide a catalog for vulnerabilities based on knowledge gathered

from portals such as the National Vulnerability Database



or Common Weakness Enumeration. Their ontology includes

formal definitions of concepts such as attack, risk, and counter-

measure, and is integrated into misuse case diagrams and other

conceptual modeling frameworks. In contrast, we develop a

richer sociotechnical model of policies and breaches that is

centered on norms. Such a formal representation can enable

further kinds of reasoning. Moreover, we introduce concepts

regarding accidental misuse.

Yskout et al. [41] show that although teams tasked with

implementing the security requirements of a banking system

prefer security patterns although they do not perform con-

clusively better than teams with no pattern aid. We posit

that patterns can be helpful for security design, provided

these patterns are expressed in high-level terms closer to

stakeholder requirements than to technical specifications. Our

representation centered on norms can potentially provide a

basis for the appropriate patterns and tools.

We have proposed design patterns for the revision of (social)

system specifications with respect to changing requirements

[13]. It would be interesting to drive how the patterns apply

from observed breaches placed in a breach ontology. We have

also developed a way to compare sociotechnical specifications

in terms of their liveness and safety [14]. It would be interest-

ing to identify the underlying requirements that lead users to

accidentally or knowingly cause security breaches, as a way of

specifying policies that accommodate user needs and reduce

the temptation for workarounds.

Alrajeh et al. [1] propose requirements revision in the case

of risks that hinder expected behavior of software. They pro-

pose a goal-driven risk analysis method via obstacle analysis.

Rashid et al. [28] perform multi incident analysis to discover

unknown known security requirements, which represent emer-

gent requirements that implicitly appear in security incidents

(known), but are not familiar to requirements engineers (un-

known). Our investigation of HHS breaches reveals important

risks in the healthcare domain that need to be addressed,

especially regarding interactions among healthcare employees.

Natural language requirements documents are helpful in

providing a high level understanding of stakeholder require-

ments. However, they create ambiguity for requirements engi-

neering [16], where a requirement is interpreted differently by

individual stakeholders. Detecting and resolving such ambi-

guities in earlier stages of software development is crucial as

ambiguities may lead to greater problems in later stages. Our

work aims at identifying gaps between policies and breaches,

which would enable analysts to resolve ambiguities in specific

policy clauses. Popescu et al. [27] propose a semiautomated

process and a tool, Dowser, for identifying ambiguities in

natural language software requirements specifications. Dowser

relies on a semantic model and a formal grammar, and aims

at overcoming the difficulties humans have when identifying

ambiguities. Human judgment is still needed to determine

whether a produced model represents a good set of require-

ments. Yang et al. [40] propose a machine learning method

for detecting whether an ambiguity is nocuous (potentially

harmful) or not. Riaz et al. [30] propose a framework to infer

implied security requirements from functional requirements

written in natural language via security goal patterns. They

evaluate the usability and efficiency of their patterns via a

user study on various security scenarios. We do not classify

ambiguities in policy clauses based on their harmfulness.

However, our approach helps understand which policy clauses

need revision with respect to the severity of the associated

breaches. Our foundation in norms can help reason about

security requirements from a higher-level perspective that is

closer to stakeholders’ understanding.

VII. CONCLUSIONS AND FUTURE WORK

We proposed SEMAVER, a semantic reasoning framework

for identifying gaps between security policies and breaches.

We investigated breaches reported by HHS, and found that ac-

cidental misuses are almost as prevalent as malicious misuses,

which indicates that human factors are as important as fixing

vulnerabilities for preventing breaches. To our best knowledge,

SEMAVER is the first attempt to investigate real breaches for

evaluating policies. A natural next step is to perform formal

revision of policies based the identified gaps.

We found that HIPAA has better coverage for malicious mis-

uses than accidental misuses. HIPAA is a dominant healthcare

standard, and our findings would illustrate similar concerns

in other domains. In essence, our coverage metric measures

whether the incident described by a breach description has

been considered by policy designers. Validation of the cover-

age metric is left for future work, which would involve addi-

tional breach incidents from other domains [22]. In particular,

we plan to investigate the Verizon Data Breach Investigations

Reports [38], the DataLoss Database [3], and the Principedia

privacy incidents database [37].

Most parts of SEMAVER can be automated. First, norm

similarity can be used to identify the most relevant policy

clause to a given breach, which would reduce the manual

effort and prevent potential human errors. Second, natural

language processing can be adopted to automatically extract

norms from policies and breaches. Third, we can develop

heuristic guidelines for the development of the breach ontol-

ogy, where concepts and properties are automatically extracted

from breach descriptions.

Threat models, such as misuse case diagrams or attack/de-

fense (A/D) trees, describe potential ways a software system

can be attacked and how those attacks can be mitigated [12],

[26]. While threat models identify potential breaches, they

do not directly translate to policy designs. It would be an

important contribution to investigate how SEMAVER can help

bridge this gap, in particular via norm-based patterns [13].
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