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Abstract

We report the observation of novel temperature-driven structural-memory-effects in carbon

nanotubes (CNTs)filledwith Fe3Cnano-crystals. These structural-transitions weremeasured by

means of temperature (T) dependent x-ray diffraction (XRD) in the T-range from298 K to 12 K. A

clear reversible 2θ-shift in the 002-peak of the graphitic-CNTs-walls is foundwith the decrease of the

temperature. As determined by Rietveld refinement, such 2θ-shift translates in a not previously

reported decrease in the value of theCNT graphitic c-axis with the decrease of the temperature (from

298 K to 12 K). Also, a clear reversible 2θ-shift in the 031 and 131 diffraction-peaks of Fe3C is observed

within the sameT-range. Rietveld refinements confirm the existence of suchmemory-effect and also

reveal a gradual decrease of the 010-axis of Fe3Cwith the decrease of the temperature. These

observations imply that the observed structural-memory-effect is a characteristic of CNTswhen Fe3C

is the encapsulated ferromagnet. The generality of suchmemory-effects was further confirmed by

additionalmeasurements performed on other types of CNTs characterized by continuous

Fe3C-filling. XRDmeasurements in the T-range from298 K to 673 K revealed also an unusual

reversible decrease of the Fe3C-peak intensities with the increase of the temperature. These

observations can have important implications on themagnetic data recording applications of these

nanostructures by helping in better understanding the unusual temperature-dependentmagnetic

instabilities of iron-based nano-crystals which have been recently reported in literature.

1. Introduction

Carbon nanotubes (CNTs) are allotropes of carbonwith a cylindrical-like nano-structure closed at each end

with fullerene-like caps. These structures have attracted an important attention for applications in numerous

areas ofmaterial-science, nanotechnology, physics and aerospace, electronics and semiconducting technology

[1–7], nano-medicine [8–11], andmany others. Thanks to their important chemical stability CNTs have been

considered and used as nano-containers with the aimof protecting chosenmaterials,molecules and/or crystals

of interest from interactionwith the external environment (whichwould otherwise lead to oxidation) [12–20].

In the last decademuch attention has been focused on encapsulatingmagnetic iron-based nano-crystals inside

CNTs [12–22]. These systems have been considered suitable for applications in energy storage,magnetic data

recording, exchange bias systems andmany others [12–14]. In a iron-filled CNTs- device/prototype data

densities up to 66Gigabit/inch2have been estimated [12].

These nanostructures are generally grown in the formof vertically alignedfilms by chemical vapour

deposition (CVD)methods involving the use of single ormixed organometallic compounds as synthesis

precursors. The obtainedCNTs-structures generally exhibit partial filling rates [12–17]. In the attempt to
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control and tune the nano-crystal filling-rate and therefore themagnetization characteristics, the addition of (1)

Cl-containing precursors [19–21, 23] or (2) local-perturbations has been proposed [18]. It has been shown that

themetallocene-pyrolysis leads to the formation of numerousmolecular species which include:

Fe+H2+CH4+C5H6+K [17]. TheCNTs obtained from these synthesesmethods have been reported to

encapsulatemixed- or single-iron-based phases. Specifically, the presence ofmixed Fe3C,α-Fe and γ-Fe phases

has been reported for experiments involving the pyrolysis of the only ferrocene precursor [12–17]. Instead, when

additional Cl-containing precursors are added to ferrocene, the presence of large quantities of Fe3Chas been

shown [19–21, 23]. In the attempt to enhance themagnetization properties of these structures, the use of

annealingmethods has been considered for the conversion of γ-Fe intoα-Fe [24–26]. Particularly, it has been

shown that annealing of Fe-filledCNTs in vacuum can allow an efficient conversion of γ-Fe intoα-Fe at

relatively low annealing-temperatures [27].

However, despite the large number of reports on this topic, very little is known about the temperature-

dependent structural arrangement of these structures. Indeed previous literature works havemainly focused

their attention on the room-temperature structural properties, without analysing the effect of cooling or heating

on the structure of these importantmaterials. In this paper we address thismissing point andwe report the

observation of not previously reported temperature-driven structural-memory-effects inCNTs filledwith Fe3C

nano-crystals.

Such transitionsweremeasured by themeans of temperature dependent x-ray diffraction in the temperature

range from298 K to 12 K. A clear reversible 2θ-shift in the 002 peak of the graphitic CNTswalls is foundwith the

decrease of the temperature. As determined byRietveld refinementmethods, such 2θ-shift translates in a not

previously reported decrease in the value of theCNTgraphitic c-axis with the decrease of the temperature from

298 K to 12 K. Additionally, a clear reversible 2θ-shift in the 031 and 131 peaks of the encapsulated Fe3Ccrystals

within the XRDpatterns is found in the same temperature range. Suchmemory effect in the encapsulated Fe3C is

further confirmed byRietveld refinements analyses, which show a clear decrease in the value of the encapsulated

Fe3C-010 crystal-axis with the decrease of the temperature. These observations clearly prove the existence of a

not previously observed temperature-dependent structuralmemory effect in both the encapsulated Fe3C

crystals and theCNTs. The generality of suchmemory-effects was further confirmed by additional

measurements performed on other types of CNTs producedwith different synthesismethods and characterized

by a continuous Fe3Cfilling. These observations imply that the observed structural transition (structural-

memory-effect) is a characteristic of both partially-filled and continuously filled CNTswhen Fe3C is the

encapsulated ferromagnet.

2. Experimental

The synthesis experiments were carried out by using aCVD system composed of a quartz tube of length 1.5 m,

one zone electric furnace and anArflow rate of 10–12 ml min−1. The reactor dimensions used for the

production of Fe3C-filledCNTswere as follows: for the partially-filledCNTs a quartz tubewith an inner

diameter of 44 mmand awall thickness of 3 mmwas used. The temperature of pyrolysis was set to that of

990 °C. The precursors (approximately 1 g of ferrocene and 0.15–0.65 ml of dichlorobenzene)were evaporated

with a preheater at a temperature of approximately 200 °C and 70 °C. Instead, for the continuously-filled CNTs,

a different type of CVD reactor consisting of a quartz tube of 22 mmouter diameter, wall thickness of 2.5 mm

and length of 1.5 mwas used togetherwith lower quantities of ferrocene and dichlorobenzene (60 mg of

ferrocene and 0.05 ml of dichlorobenzene). In both cases the samples were cooled down until the temperature of

25 °Cby removing the furnace along a rail-system.

Variable low-temperature XRDmeasurements were performedwith a Panalytical Empyrean powder x-ray

diffractometer (CuK-α,λ=0.154 nm) equippedwith a primary Johanssonmonochromator, anOxford

Cryosystems PhoeniX cryostat operating under vacuumbelow 10−2 Pa, and aX’celerator linear detector. All the

high temperature experiments were performedwith a Rigaku Smartlab powder x-ray diffractometer (CuK-α,

λ=0.154 nm) under vacuumvalues below 7 Pa in the temperature range from139 K to 673 K. A 200 kV

American FEI Tecnai G2F20was employed to obtain transmission electronmicroscopy (TEM) and high

resolutionTEM (HRTEM) images. XPSmeasurements were performedwith a Escalab 250Xi.Magnetic

measurements were performedwith aQuantumDesignMPMSXL-7.

3. Results and discussion

Themorphological properties of the as grownfilledCNTswerefirst revealedbyTEManalyses performed in

transmission and scanningTEMmode.Typical examples of the as grownCNTswith the two synthesis approaches

described above are shown infigures supp. 1, 2,is available online at stacks.iop.org/MRX/5/025010/mmedia
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while typicalHRTEMimages are shown infigure 1. Theobserved lattice spacings characterizedby apreferred

directionwith respect to theCNT-axis (seefigure 1)were associated to the 010 and100 reflectionsof Fe3Cwith space

groupPnma (see alsofigure supp. 13 forXPS analyses).

The evaluation of the temperature-dependent (T-dependent) structural properties of the as grownCNTs

was carried out byXRD analysis under vacuumat variable temperatures. As afirst step, the attentionwas focused

on the structural properties of CNTs partially filledwith Fe3C in the temperature range from298 Kdown to

12 K. The presence of amulti-walled arrangement of theCNTs-walls was revealed by the XRDpatterns in the 2θ

range from23 to 30 degrees (see figure 2). A clear peak at approximately 26 degrees 2θwas found and associated

to the 002 reflection, which identifies the graphitic arrangement of theCNT-walls. Also, as shown infigure supp.

3, XRDmeasurements in the 2θ range from35 to 55 degrees revealed the presence of a large quantity of Fe3C

crystals with space group Pnma (as confirmed byRietveld refinement infigure supp. 3) andminor quantities of

γ-Fe with space group Fm-3mandα-Fewith space group Im-3mphases. Interestingly, as shown infigure 2, the

T-dependentmeasurements revealed the presence of a shift in the position of the 002 peak toward higher values

of 2θ degrees with the decrease of the temperature. Such shift could be associated to a decrease in the value of the

c-axis of the graphitic-unit cell of the CNTwith the decrease of the temperature.

Such reversible transition can be observed infigure 3(A), where the variation of the graphitic-CNT-unit-cell

c-axis is plotted against the temperature. Curiously, as shown infigure 3(B) a decrease in the value of the 010

Figure 1.HRTEMmicrographs showing the single-crystalline arrangement of the Fe3Ccrystals encapsulated inside theCNTs.Note
the preferred 010 orientation of the Fe3C crystal in A and the preferred 100 orientation in B.
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crystal-axis of Fe3Cwith the decrease of the temperature was also found (as determined by Rietveld refinement

analyses, see figure supp. 3 for examples of XRDmeasurements performed at 298 K and 12 K and the respective

Rietveld refinements); note that each data point infigure 3(B)was extracted by Rietveld refinement analyses of

individual XRDdiffractograms. Such reversible transition is shownwith a higher detail in theXRDpatterns in

figures 4(A), (B), where a clear reversible shift in the 031 peak-position of the Fe3C structure is present (see also

figures supp. 4(A), (B) for details of 131 peak). Such observation implies that a reversible and cooperative

structural transition induced by the decrease of the temperature is present in both the Fe3CandCNTs systems

(see alsofigures supp. 4(A), (B), note that the diffractograms offigures supp. 3 and 4(A) belong to the same

dataset).

In addition, Rietveld refinement of the data (shown infigure supp. 3) provides evidence that the observed

shift in the 131 peak-positionmay be associated to a slight increase of the 100 and 001 axis-values of Fe3Cwith

the decrease of the temperature (note however that such slight change could not bewell quantified due to the

accuracy limit of the instrument, as shown infigures supp. 5, 6). These observations imply that Fe3C-filledCNTs

are characterized by unusual structural-memory characteristics as confirmed by the observations infigure 4(B).

In the attempt to verify the generality of this property, furthermeasurements were carried out on a different

type of CNTsfilledwith Fe3C (CNTsfilledwith continuous Fe3Ccrystals) producedwith different synthesis

conditions (60 mg of ferrocene, 0.05 ml of dichlorobenzene, see experimental section). As shown infigures

supp. 7, 8, also in this case, a similar trend is found. A shift in the position of the 002 graphitic-peak toward

Figure 2.T-dependent experimental XRDpatterns (red line) andRietveld refinement (green line) showing the variation of the
graphitic CNT002 peak-positionwith the decrease of the temperature. A clear shift toward higher values of 2θ degrees is observed
with the decrease of the temperature.
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higher values of 2θ degrees is foundwith the decrease of the temperature. Furthermore, a similar shift in the 031

peak position is observed also in this type of CNTs.

These findings suggest that the observed structural-memory-effect is a general characteristic ofmultiwall

CNTsfilledwith Fe3Ccrystals (independent from the used synthesismethod, see alsofigures supp. 14, 15 for

additionalmeasurements performed in a third type of Fe3C-filledCNTs). It is important tomention that

previous literature works have shown that themagneticmoment of Fe3Ccan be strongly influenced by the

values of the crystal unit cell axes [30–34]. Therefore our observationsmay have important implications from a

magnetic perspective, by helping in better understanding the unusualmagnetic properties of iron-based crystals

which have been recently reported in literature by zerofield cooled (ZFC) andfield cooled (FC) studies of the

magnetization [30–34]. Particularly it is interesting to notice that Karmakar et al [33]have reported an unusual

variation of themagnetizationwith temperature and appliedfield inCNTsfilms containing large quantities of

α-Fe and Fe3C and very small quantities of γ-Fe (below 1%). These observations are in agreement with our

magnetization analyses (shown infigures supp. 16 and 17)where ZFCmeasurements exhibited a similar unusual

variation in themagnetization values with temperature and applied field. Therefore a possible influence of the

structural-memory effect reported in this work on such unusual variation of themagnetization characteristics

cannot be excluded. Future neutron diffraction experimentsmay be helpful to fully elucidate the origin of such

magnetic effects.

In the attempt to further investigate the T-dependent structural properties of Fe3C filled CNTs, the attention

was then turned on possible high temperature structural transitions in the range from approximately 298 K to

673 K. The result of the XRDmeasurements performed in such temperature range is shown infigures supp.

9–11 and infigure 5. Interestingly a reversible shift of the 002 peak-position toward lower values of 2θ degrees

Figure 3.Plots showing the variation of the graphitic CNT c-axis (A) and of the Fe3C010 axis (B)with temperature. Note that the
values plotted inA andBwere obtained by Rietveld Refinement (see supplementary information figure 3 for typical examples of the
Rietveld refinement analyses).
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Figure 4.XRDpatterns of CNTs partially filledwith Fe3Cmeasured at 298 K and down to 12 K. A clear reversible shift of the 031 peak
in (A), (B) (structural-memory-effect) is found, after taking back the sample to 298 K (see also supplementary info).

Figure 5.High temperature XRDpatterns of CNTs partially filledwith Fe3C showing the structural arrangement of the encapsulated
crystals in the temperature range from298 K to 673 K. The black star refers to the peak associated to the substrate used for theXRD
measurements.
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was foundwith the increase of the temperature. Rietveld refinement analyses confirmed (see figure supp. 9), that

an increase in the value of the graphitic c-axis of the CNT-unit cell (graphitic-unit-cell) is present with the

increase of the temperature (figure supp. 10).

This last observation is in agreement with that recently reported in the case of annealing-experiments of

CNTs-buckypapers filledwithα-Fe/γ-Fe crystals at high temperatures by T-dependent XRD in vacuum [27].

However, the observed shift is different with respect to that reported by FYWu et al [28] in the case of hollow

multiwall CNTs, where significant shifts (in the same high temperature range from298 K to 673 K) in the 002

peakwere observed only after high temperature treatment of as grownCNTs (due to the improved structural

arrangement) and not in the as grown samples [28]. A complementary interpretationwas also given by thework

of YManiwa et al [29], where the presence of disorder and defects in the graphitic layers of carbon nanotubes was

classified in different CNTs structural-arrangements, namely: (1)RussianDoll, (2) Jelly Roll, (3)mixed Russian

Doll and Jelly Roll and (4) polyhedral graphite with defects at the ridges [29]. In the specific case of our

measurements, it is important to notice that at high temperatures no significant changes in the values of the 031

Fe3Cpeak position are found (see supp. figure 11). Such difference with respect to the low-temperature

characteristics could be associated to the increase of the thermal agitationwhichmay also affect the structural

arrangement of the Fe3C crystals. Indeed an unusual reversible change in the observed peak-intensities and

shape is foundwith the increase of the temperature and can possibly be associated to such increase in the thermal

agitation.Note that the observed diffraction peak-position and intensities were found to come-back to the

original position after cooling-down the samples back to room temperature, as shown infigure supp. 12. In this

context, futureworkswith additional techniques will be considered to extract deeper information on the origin

of such unusual reversible peak-intensities variations.

4. Conclusion

In conclusionwe reported the observation of temperature-dependent structural-memory-effects inCNTs filled

with Fe3Cnano-crystals. These transitionsweremeasured by themeans of temperature dependent XRD in the

temperature range from298 K to 12 K.

A reversible decrease in the values of (1) the graphitic CNTs-c-axis and (2) the 010 Fe3Ccrystal-axis (with the

decrease of the temperature)was extracted by using Rietveld refinementmethods. The presence and the

generality of suchmemory-effects were further confirmed by additional XRDmeasurements performed on

other types of CNTs characterized by continuous Fe3C filling. In additionXRDmeasurements were also

performed at high temperatures in the range from298 K to 673 Kwhere an unusual reversible decrease of Fe3C

peak intensities was foundwith the increase of the temperature.
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