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ABSTRACT

Background: Interindividual variation in the response to diet is

common, but the underlying mechanism for such variation is

unclear.

Objective: The objective of this study was to use a metabolic pro-

iling approach to identify a panel of urinary metabolites represent-

ing individuals demonstrating typical (homogeneous) metabolic re-

sponses to healthy diets, and subsequently to deine the association

of these metabolites with improvement of risk factors for cardiovas-

cular diseases (CVDs).

Design: 24-h urine samples from 158 participants with pre-

hypertension and stage 1 hypertension, collected at baseline and fol-

lowing the consumption of a carbohydrate-rich, a protein-rich, and a

monounsaturated fat–rich healthy diet (6 wk/diet) in a randomized,

crossover study, were analyzed by proton (1H) nuclear magnetic res-

onance (NMR) spectroscopy. Urinary metabolite proiles were inter-

rogated to identify typical and variable responses to each diet. We

quantiied the differences in absolute excretion of metabolites, dis-

tinguishing between dietary comparisons within the typical response

groups, and established their associations with CVD risk factors us-

ing linear regression.

Results:Globally all 3 diets induced a similar pattern of change in the

urinary metabolic proiles for the majority of participants (60.1%).

Diet-dependent metabolic variation was not signiicantly associated

with total cholesterol or low-density lipoprotein (LDL) cholesterol

concentration. However, blood pressure (BP) was found to be sig-

niicantly associated with 6 urinary metabolites relecting dietary

intake [proline-betaine (inverse), carnitine (direct)], gut microbial

co-metabolites [hippurate (direct), 4-cresyl sulfate (inverse), pheny-

lacetylglutamine (inverse)], and tryptophan metabolism [N-methyl-

2-pyridone-5-carboxamide (inverse)]. A dampened clinical response

was observed in some individuals with variable metabolic responses,

which could be attributed to nonadherence to diet (≤25.3%), vari-

ation in gut microbiome activity (7.6%), or a combination of both

(7.0%).

Conclusions: These data indicate interindividual variations in BP in

response to dietary change and highlight the potential inluence of

the gut microbiome in mediating this relation. This approach pro-

vides a framework for stratiication of individuals undergoing di-

etary management. The original OmniHeart intervention study and

the metabolomics study were registered at www.clinicaltrials.gov as

NCT00051350 and NCT03369535, respectively. Am J Clin Nutr

2018;107:323–334.

Keywords: diets, gut microbiome, hypertension, metabolic proil-

ing, metabonomic, metabolomic, personalized health care

INTRODUCTION

Of total global deaths, approximately half are attributed to car-

diovascular diseases (CVDs), with elevated blood pressure (BP)

being a key risk factor (1). Genome-wide association studies have

identiied common genetic variants associated with high BP (2)

but these only account for a small proportion of the population

variance in BP and do not take lifestyle factors such as physical

inactivity or unhealthy diet into account. CVD remains the lead-

ing cause of mortality for noncommunicable diseases worldwide,

even though the adoption of healthy dietary patterns such as those

promoted by Dietary Approaches to Stop Hypertension (DASH)

(3), Optimal Macronutrient Intake Trial for Heart Health (Om-

niHeart) (4), and Mediterranean diets (5) has unequivocally been

shown to reduce CVD risk. Humans demonstrate substantial vari-

ation in response to dietary intervention, partially attributable to

genetic heterogeneity (6, 7). For example, the apolipoprotein A-

IV protein modulates cholesterol-lowering responses to high-fat

diets (8, 9). However, supporting evidence for genetic inluence

on variable dietary responses remains conlicting (10) andmodii-

able factors such as changes in body weight (11, 12), or variation

in the composition of the gut microbiome (13) and virome (14),

have been implicated in variation in dietary responses.
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Metabolic phenotyping technologies provide a framework for

investigating the inluences of environmental and lifestyle fac-

tors on disease risk and have been successfully applied to in-

vestigate chronic diseases, e.g., diabetes (15). Systematic mod-

ulation of metabolism in response to food intake (16) has been

reported and the impact of diet on a range of pathological con-

ditions, including gastrointestinal cancer risk, has been assessed

(17). Building on methodological approaches developed for char-

acterizing interindividual variation in response to drug toxicity or

therapies (18), we propose to demonstrate the feasibility of iden-

tifying interindividual variation in clinical response to 3 different

healthy diets, using a 1H nuclear magnetic resonance (NMR)-

based metabolic phenotyping approach, and establish the im-

pact of this variation on CVD risk. We hypothesized that dietary

change from a typical American diet to a healthy diet or between

different healthy diets would result in typical changes in the uri-

nary metabolic phenotypes for the majority of individuals, herein

considered as the homogeneous dietary response (HDR) group.

We ascertained that a minority of individuals demonstrated atyp-

ical dietary responses, herein referred to as the variable (het-

erogeneous or nonuniform) dietary response (VDR) group. We

further hypothesized that these speciic urinary dietary response

phenotypes would be associated with BP. Variation in diet-

speciic biomarkers will further enhance our understanding of the

link between variation in dietary response and the aetiopathogen-

esis of hypertension.

METHODS

OmniHeart study design

TheOmniHeart study (N= 163)was a randomized, controlled,

3-period cross-over feeding study aiming to assess the effects of

3 healthy diets on BP and lipid proiles (19). The key indings

and study design of the OmniHeart study have been previously

published (4, 19). Briely, all 3 OmniHeart diets had a similar nu-

trient composition to the established healthy DASH diet but var-

ied in macronutrient composition. The Omniheart carbohydrate-

rich diet (OmniCarb diet) provided 58% kcal from carbohydrate,

15% from protein, and 27% from fat; the remaining 2 diets
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replaced 10% of calories from carbohydrate with either protein,

predominantly obtained from vegetable sources (OmniProt diet),

or unsaturated fats, predominantly derived from monounsatu-

rated fat (OmniMFA diet). Participants were randomly assigned

to 1 of 6 possible orders of administration of the 3 diets, each

intervention period lasting for 6 wk. During each intervention

period, the participants were requested to only consume food

prepared in the diet kitchen and were allowed to consume ≤2 al-

coholic beverages/d and 3 noncaloric caffeinated beverages/d as

part of the trial. Their main meal was consumed on-site on week-

days and all other meals were eaten at home. Participants com-

pleted a diary in which they indicated whether they had complied

with the study food protocol during the feeding periods. During

the screening visits and washout periods (≥2 wk), participants

consumed their own food. The Willett food frequency question-

naire (20), administered by certiied staff as a means to describe

the usual food intake of participants during screening visits, indi-

cated participants consumed a typical American diet at the outset

of the study, corresponding to high intake of saturated fat, exces-

sive reined sugar, and salt with low intake of fruit, vegetables,

and omega-3-fat.

A total of 163 men and women aged 30–80 y from the Bal-

timore and Boston areas, with prehypertension (systolic BP of

120–139 mmHg and/or diastolic BP of 80–89 mmHg) or stage

1 hypertension (systolic BP of 140–159 mm Hg and/or diastolic

BP of 90–99 mm Hg) and without diabetes or prior CVD, were

recruited to the study. Theminimum detectable, between-diet dif-

ferences for primary (systolic BP) and secondary (diastolic BP,

LDL cholesterol, HDL cholesterol, triglyceride, and total choles-

terol) variables in the full cohort (n = 160) and in subgroups

(n = 80 and 70) were at 80% and 90% power (2-sided alpha,

P = 0.05).

The sample size of the trial (n = 160) was selected because

it provided adequate power to detect between-diet differences in

the primary outcome variables that have public health signii-

cance, both overall and in subgroups. Speciically, the minimum

detectable effect size for systolic BP was <3 mmHg even in sub-

groups that comprised only 40% (n = 64) of participants. One

individual completed just 1 dietary intervention period, and 4 in-

dividuals completed 2 intervention periods. The remaining 158

completed all 3 dietary interventions, provided four 24-h urine

collections, and supplied anthropometric and sociodemographic

metrics on CVD (Supplemental Figure 1). These four 24-h urine

collections corresponded to the baseline screening visit and 1 at

the end of each of the three 6-wk dietary interventions. NMR

urine spectra for these 158 individuals were used for the analyses

presented here. During the last 10 d of each dietary intervention

period, a fasting blood specimen was obtained to measure lipid

concentrations. BP was measured on 5 d by trained staff using

the OMRON 907 device for those requiring a normal or large

adult cuff, after participants had been seated for ≥5 min. The re-

ported BP was based on the average of 9 BP measurements taken

at screening visits and 15 measurements taken at the last 5 visits

of each feeding period. Bodyweight for all participants wasmain-

tained within 2% of their baseline throughout the study period

by adjusting caloric levels each weekday. Baseline sociodem-

ographic and anthropometric characteristics were obtained for

each participant. Institutional ethics committee approval was ob-

tained for each site and all participants provided written informed

consent.
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NMR-based metabolic phenotyping and data processing

Urine specimens were analyzed by 600 MHz 1H NMR spec-

troscopy using a Bruker NMR spectrometer (Bruker Biospin,

Rheinstetten, Germany) according to a standard protocol (21) in

our London metabolic phenotyping laboratory. Urine specimens

were allowed to thaw at room temperature and centrifuged at

12,000 g for 5 min to remove particulates. For each specimen,

500 µL of urine was mixed with 250 µL of phosphate buffer so-

lution at pH 7.4 ± 0.1. The resulting mixtures were left to stand

for 10 min and then further centrifuged as before. A total volume

of 500 µL of the supernatant was added to 50 µL of sodium

3-trimethylsilyl-(2,2,3,3-2H4)-1-propionate (TSP) in deuterium

oxide, giving a inal concentration of 1 mM. This solution was

transferred to a 5-mm NMR tube. The prepared urine specimens

were placed in the auto-sampler and analyzed in a simple random-

ized order generated by computer. A 1-dimensional (1D) pulse

sequence with a water saturation method (recycle delay–90°–t1–

90°–tm–90°–acquisition) was used to acquire standard 1H NMR

spectra of the urine. The spectra were acquired with 64K data

points and 128 scans over a spectral width of 12 kHz. The re-

cycle delay was set to 2 s with a mixing time (tm) of 100 ms

and a t1 of 20 µs, providing an acquisition time of approximately

2.72 s. All 1H NMR spectra were phased, baseline corrected, and

manually referenced to TSP at δ 0 with Topspin software (ver-

sion 2.1, Bruker Biospin) prior to multiplication by an exponen-

tial weighting function corresponding to a line broadening of 0.3

Hz. The spectral regions containing the water (δ 4.5–5.05) and

urea (δ 5.5–6.5) resonances, as well as the extreme ends (<δ 0.7

and >δ 9.5) of the spectra that contain minimal metabolic in-

formation, were removed. Initial analysis showed that the signal

arising from the –CH2 and –CH3 group of the creatinine peaks

dominated the analysis due to the high concentration of creatinine

compared to other metabolites. Since there was no statistical dif-

ference in the clinical creatinine measurements at screening visit

and at the end of each study period based on Jaffé reaction mea-

surement (P> 0.5 for all comparisons between each diet and the

baseline), we removed the creatinine regions containing the peaks

at δ 3.035–3.062 and δ 4.052–4.075 from all subsequent analy-

sis. A total of 23,998 NMR data variables, at a full resolution

(0.0003 ppm), were then normalized by a probabilistic quotient

method (22) using the median spectrum of the whole data-set as

a reference and subsequently scaled to unit-variance.

Data analysis

We applied Statistical HOmogeneous Cluster SpectroscopY

(SHOCSY) (23) to the processed and normalized spectroscopic

data. SHOCSY is a variant of statistical spectroscopic techniques

such as Subset Optimization by Reference Matching (STORM)

(24) and Statistical TOtal Correlation SpectroscopY (STOCSY)

(25). SHOCSY involves clustering of the spectral data based on

the similarity or dissimilarity of the spectral features followed

by the association of clusters to different dietary groups using

an enrichment test. The application of SHOCSY enables iden-

tiication of the groups of spectra showing uniform or ho-

mogeneous urinary metabolic responses (HDR) and those

showing variation from the coherent metabolic response (VDR)

following the consumption of different OmniHeart diets. Due

to the nature of the cross-over study design, we employed

multilevel orthogonal partial least squares discriminant analysis

(mOPLSDA) (26, 27), which incorporates the variation between

and within participants in the data-set to optimize visualiza-

tion of dietary response, in conjunction with SHOCSY. We per-

formed this in a pairwise fashion, comparing the urinary spec-

tral data from the screening visit (relecting a basal dietary

pattern) with those from the end of each dietary intervention,

and modelled this separately for the urinary spectral data corre-

sponding to an HDR (3 models, 1 model/diet) and those repre-

senting a VDR (3 models). Thus, each subgroup was compared

to its own baseline. We also performed comparison between dif-

ferent OmniHeart diets and separately for the HDR (3 models)

and VDR (3 models) groups, creating a total of 12 different

mOPLSDA models (Supplemental Table 1). Each mOPLSDA

comparison was validated using a 7-fold cross-validation proce-

dure. The model statistics, Q2Yhât (28), is deined as the propor-

tion of variance in the data predicted by the mOPLSDA model

and is therefore a measure of the robustness of the model. In ad-

dition, permutation testing was performed by randomly assigning

classes to the samples and remodeling repeatedly 100 times. The

Q2Yhât statistic for the real model was then compared to the null

hypothesis distribution obtained from the permuted Q2Yhât t val-

ues and was considered signiicant when the P value of the real

Q2Yhât was <0.05 on those permuted values.

The 3 criteria used to identify discriminatorymetabolites were:

(i) P values of the correlations between the spectral variable and

the mOPLSDA scores vector should be <1.85 × 10−6 (corre-

sponding to P< 0.05 after Sidák correction); (ii) a variable load-

ing coeficient strength, r2 > 0.3 as deined in Zou et al. (23); and

(iii) the stability of the NMR variables, whereby a data point was

considered signiicant when lanked by 2 NMR spectral variables

conforming to criteria (i) and (ii). For peaks that were free from

spectral overlap, the 24-h urinary excretion of each discrimina-

tory metabolite was quantiied by integration of the NMR signal

intensities. Since we found no signiicant difference in the ex-

cretion of creatinine between different OmniHeart diets and the

typical American diet (P > 0.5), the absolute excretion of each

discriminatory metabolite was normalized to the corresponding

24-h urinary creatinine excretion (in mmol/L). The difference in

absolute excretion of each discriminatory metabolite was deter-

mined for the comparison of each dietary intervention with base-

line or between different OmniHeart dietary interventions. The

association between the differences in absolute excretion of each

discriminatory metabolite and changes in CVD risk factors (sys-

tolic and diastolic BP, LDL, total cholesterol) was established

using linear regression for HDR groups. In addition, known co-

variates for hypertension, including urinary excretion of sodium,

potassium, calcium, and phosphate, were also established for the

HDR and VDR groups for the comparisons between baseline and

each OmniHeart diet. The statistical signiicance of these covari-

ates was adjusted by Bonferroni correction (0.05 divided by num-

ber of comparisons) to account for multiple testing. All analyses

were performed using in-house software written in Matlab (ver-

sion 2012a, MathWorks, Natick, MA).

Identiication of discriminatory metabolites

The discriminatory metabolites found to be signiicantly

inluenced by the healthy dietary interventions were con-

irmed by in-house and published database (29) references and
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authenticated by spiking in standard compounds purchased

from Sigma Aldrich. These compounds included: N-methyl-

2-pyridone-5-carboxamide, 4-hydroxyphenylacetic acid, carni-

tine, creatine, dimethylglycine, S-methyl-L-cysteine-S-oxide,

N-methyl nicotinic acid,N-methyl nicotinamide, proline-betaine,

and hippurate. For the remaining urinary metabolites where they

were not available commercially, identiication was achieved us-

ing further analytical methods such as 2-dimensional NMR ex-

periments, solid phase extraction chromatography experiments

coupled with NMR, ultra-performance liquid chromatography

coupled to mass spectroscopy, and statistical analysis such as

STORM (24) as well as using published databases and/or liter-

ature.

RESULTS

Individuals show variation in urinary metabolic phenotypes

on OmniHeart diets

Participants’ demographics and changes in CVD risk fac-

tors following each OmniHeart diet are provided in Table 1.

Each diet elicited a range of clinical responses over the 6-wk

study in terms of reduction of CVD risk factors, which was re-

lected in the urinary metabolome. Interindividual differences

in dietary response were observed; the majority of the partici-

pants showed a HDR to all of the OmniHeart diets when com-

pared to the baseline proile: 71.5% (n = 113) for OmniProt,

80.4% (n = 127) for OmniMFA, and 86.7% (n = 137) for Om-

niCarb. The remaining individuals who did not demonstrate a

“typical” response to a given diet were grouped into the VDR

class: n = 45 for OmniProt, n = 31 for OmnMFA, and n = 21

for OmniCarb. A similar modeling strategy was applied to com-

pare between pairs of OmniHeart diets. We found >70% par-

ticipants showed consistent metabolic differences between diets

(Supplemental Table 1).

OmniHeart diets show distinctive urinary metabolic

phenotypes

Each of the 3 OmniHeart diets was associated with a dis-

tinct metabolic phenotype in the majority of participants (the

HDR group). For the OmniHeart–baseline comparisons, the

discriminatory metabolites were predominantly related to:

(i) dietary intake—increased excretion of proline-betaine,

N-acetyl-S-methyl-L-cysteine sulfoxide, S-methyl-L-cysteine-

S-oxide, creatine, and carnitine; (ii) tryptophan–NAD

degradation—reduced excretion of N-methyl-2-pyridone-

5-carboxamide and N-methyl nicotinamide, and increased

excretion of N-methyl nicotinic acid; and (iii) gut mi-

crobial mammalian metabolism—increased excretion of

hippurate and dimethylglycine, and reduced excretion of

4-hydroxyphenylacetic acid (Supplemental Table 2). Compared

to the baseline proiles, proline-betaine was the only metabolite

uniformly increased in the urinary phenotypes of HDR groups

across all 3 diets, consistent with increased citrus fruit consump-

tion (30). Increased excretion of carnitine and creatine in the

OmniProt diet relected the increase in protein intake (31).

Additional pairwise comparisons (P < 10−5) between differ-

ent OmniHeart diets further indicated that each diet was associ-

ated with a distinct metabolic phenotype. The HDR group of the

OmniProt diet was generally characterized by higher excretion of

urinary creatine, N-methyl-2-pyridone-5-carboxamide and 2 gut

microbial mammalian co-metabolites, phenylacetylglutamine,

and 4-cresyl sulfate compared to the other 2 OmniHeart diets;

whilst the HDR group for the OmniCarb diet consistently showed

higher excretion of hippurate and guanodinoacetate (Supple-

mental Tables 3 and 4). The differences in themarkers for dietary

intake of cruciferous vegetables (S-methyl-L-cysteine-S-oxide

and N-acetyl-S-methyl-L-cysteine sulfoxide) (32) and markers

for citrus fruit intake (proline-betaine) (30) observed when com-

paring urine of OmniHeart diets with the baseline proiles, were

generally not observed for pairwise comparisons between the

OmniHeart diets since all 3 diets included higher proportions of

fruits or vegetables than the baseline.

Urinary metabolites signiicantly associated with BP

We quantiied 10 discriminatory metabolites altered in

response to 1 or more OmniHeart diets and assessed their

associations with BP and lipid proiles using the HDR groups

only. Although no signiicant associations were found between

dietary phenotypes and LDL or total cholesterol, we found

signiicant associations between 2 of these food-related metabo-

lites and BP. Proline-betaine was inversely associated with

systolic and diastolic BP for OmniCarb and OmniMFA diets

when compared to baseline (P < 0.05, Table 2). A similar

trend was observed for the OmniProt diet although it was not

statistically signiicant. A direct association was found be-

tween systolic BP and carnitine for the OmniProt diet when

compared to baseline (P < 0.05). We found 3 metabolites

related to host-gut microbial pathways that were signiicantly

associated with BP (hippurate, phenylacetylglutamine, and

4-cresyl sulfate). Hippurate showed a direct association with

systolic BP (P < 0.001) and diastolic BP (P < 0.01) levels

for the OmniCarb diet compared to baseline, whereas 4-cresyl

sulfate and phenylacetylglutamine (distal colonic microbial

metabolites of tyrosine and phenylalanine, respectively) were

inversely associated with BP for the comparison between

OmniMFA and OmniProt diets. N-methyl-2-pyridone-5-

carboxamide (tryptophan–NAD metabolite) was also found

to be inversely associated with systolic and diastolic BP levels

for the OmniCarb–baseline comparison (P < 0.05). These data

demonstrate healthy diets can elicit coherent changes in the

urinary metabolic phenotypes for the majority of individuals and

that some of these metabolites are either directly or inversely

associated with BP.

Urinary metabolic phenotypes can identify nonadherence to

diets

The urinary spectral data for the VDR groups for each of

the OmniHeart diets typically produced fewer dietary-speciic

discriminatory metabolites than the HDR groups (Supplemental

Tables 2 and 3). The VDR groups also showed discordance in

the concentrations of proline-betaine and hippurate when com-

pared to the HDR groups. Since increased consumption of

citrus fruits was a feature of all dietary interventions, we there-

fore classiied individuals with a lower concentration of proline-

betaine (a direct marker of citrus fruit intake) (33, 34) as non-

adherent to these diets on the assumption that this was gener-

ally indicative of dietary behavior. We found the majority of

participants in the VDR groups excreted lower 24-h urinary
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TABLE 1

Characteristics of participants who completed all 3 OmniHeart diets (n = 158)1

Characteristics P values

Age, mean ± SD 53.1 ± 10.8

Ethnicity, n (%)

African American 86 (54.4)

Non-African American 72 (45.6)

Gender, n (%)

Male 88 (55.7)

Female 70 (44.3)

Hypertension, n (%)

Prehypertension 127 (80.4)

Hypertension 31 (19.6)

Obesity status, n (%)

Normal range 32 (20.3)

Overweight 53 (33.5)

Obese 73 (46.2)

Smoking, n (%)

Current 18 (11.4)

Former 42 (26.6)

Never 98 (62)

Alcohol intake

No alcohol, n (%) 88 (56)

Serving per week among drinkers, mean ± SD 4.17 ± 3.5

Education, n (%)

≤ High school 32 (20.3)

Some college 53 (33.5)

College graduate 73 (46.2)

Mean changes in SBP from baseline (95% CI), mm Hg

OmniCarb diet –8.0 (–9.4, –6.6) ‡

OmniMFA diet –9.4 (–10.7, –8.1) ‡

OmniProt diet –9.4 (–10.8, –8.1) ‡

Mean changes in DBP from baseline (95% CI), mm Hg

OmniCarb diet –4.1 (–4.9, –3.3) ‡

OmniMFA diet –4.9 (–5.7, –4.1) ‡

OmniProt diet –5.3 (–6.1, –4.4) ‡

Mean changes in LDL cholesterol from baseline (95% CI), mg/dL

OmniCarb diet –11.6 (–14.6, –8.6) ‡

OmniMFA diet –13.2 (–16.5, –9.9) ‡

OmniProt diet –14.4 (–17.7, –11.1) ‡

Mean changes in HDL cholesterol from baseline (95% CI), mg/dL

OmniCarb diet –1.5 (–2.6, –0.3) *

OmniMFA diet –0.4 (–1.4, 0.6)

OmniProt diet –2.7 (–3.7, –1.7) †

Mean changes in triglyceride from baseline (95% CI), mg/dL

OmniCarb diet –0.2 (–9.1, 8.7)

OmniMFA diet –9.7 (–17.9, –1.5) *

OmniProt diet –16.5 (–25.8, –7.3) *

Mean changes in total cholesterol from baseline (95% CI), mg/dL

OmniCarb diet –12.5 (–15.8, –9.1) ‡

OmniMFA diet –15.6 (–19.2, –11.9) ‡

OmniProt diet –20.2 (–23.7, –16.7) ‡

1T test comparison between baseline clinical data and after each dietary intervention: *P< 0.05; †P< 10−5;
‡P < 10−10. DBP, diastolic blood pressure; OmniCarb, OmniHeart carbohydrate-rich diet; OmniHeart, Optimal

Macronutrient Intake Trial for Heart Health; OmniMFA, OmniHeart monounsaturated fat-rich diet; OmniProt,

OmniHeart protein-rich diet; SBP, systolic blood pressure.

concentrations of proline-betaine when compared to the HDR

groups. Fifteen of the 21 individuals (71.4%) from the

OmniCarb-VDR group showed a 24-h urinary excretion of less

than the lower 95% CI obtained for proline-betaine excretion

of the OmniCarb-HDR group. A similar trend was observed for

the OmniMFA-VDR (21/31, 67.7%) and OmniProt-VDR (35/45,

77.8%) groups. The overall estimation of nonadherence to each

diet was: 9.5% (n = 15) for the OmniCarb, 13.3% (n = 21) for

the OmniMFA, and 22.2% (n = 35) for the OmniProt diet. De-

spite sub-classiication of VDR groups as adherent or nonadher-

ent, contrasting patterns remained in the VDR and HDR groups,

as exempliied for hippurate (a gut microbial co-metabolite of di-

etary phenols), where increased excretion of hippurate was char-

acteristic for the HDR but not either of the VDR (diet adherent or

Downloaded from https://academic.oup.com/ajcn/article-abstract/107/3/323/4915937
by University of Kent user
on 12 April 2018



328 LOO ET AL.

TABLE 2

Estimated mean differences in CVD risk factors1

2 SD excretion Total cholesterol

Urinary metabolites (mmol/L) SBP (mm Hg) DBP (mm Hg) LDL-C (mg/dL) (mg/dL)

Homogeneous dietary responders for OmniCarb diet vs. baseline (n = 137)

Proline-betaine 1.25 –4.10 (–2.90) † –1.77 (–2.15)* –3.90 (–1.26) –3.94 (–1.17)

Hippurate 3.47 6.14 (4.64) ‡ 2.27 (2.79) † –1.47 (–0.48) 2.70 (0.80)

N-methyl-2-pyridone-5-carboxamide 0.21 –3.03 (–2.24)* –1.77 (–2.19)* 2.22 (0.75) 3.49 (1.11)

N-methyl nicotinic acid 0.27 –0.20 (–0.14) 0.59 (0.71) –1.94 (0.64) –0.25 (–0.07)

N-methyl nicotinamide 0.03 –0.86 (–0.60) –0.75 (–0.97) 0.60 (0.20) –0.55 (0.17)

Homogeneous dietary responders for OmniMFA vs. baseline (n = 127)

Proline-betaine 0.87 –3.53 (–2.76) † –1.73 (–2.20)* 2.41 (0.73) 1.87 (0.48)

Homogeneous dietary responders for OmniProt vs. baseline (n = 113)

Proline-betaine 0.74 –1.16 (0.74) 0.14 (0.16) 1.31 (0.33) –1.42 (–0.33)

Carnitine 0.29 3.11 (1.99)* 1.13 (1.38) 0.45 (0.11) 1.03 (0.24)

Creatine 1.62 1.54 (1.05) –1.19 (–0.24) –4.34 (–1.11) –6.87 (–1.65)

Homogeneous dietary responders for OmniCarb vs. OmniMFA (n = 113)

Guanodinoacetate 0.95 0.29 (0.35) 0.06 (0.09) –0.51 (–0.21) 2.70 (0.94)

Homogeneous dietary responders for OmniCarb vs. OmniProt (n = 134)

Phenylacetylglutamine 0.70 –0.89 (–0.96) –0.93 (–1.42) –2.82 (–1.18) –0.44 (–0.15)

4-cresyl sulfate 0.27 0.06 (0.07) 0.73 (1.11) –0.91 (–0.79) 1.02 (0.35)

Homogeneous dietary responders for OmniMFA vs. OmniProt (n = 118)

Phenylacetylglutamine 0.68 –1.7 (–1.93) –1.89 (–3.32) † 0.31 (0.13) –0.33 (–0.14)

4-cresyl sulfate 0.30 –2.68 (–3.05) † –2.15 (–3.74) † 0.73 (0.31) –0.27 (–0.11)

1The SBP, DBP, LDL-C, and total cholesterol mean differences per 2-SD increase in absolute excretion for the comparison between baseline and post-

OmniHeart diets and between different OmniHeart diets for the HDR groups. The correlations between changes in metabolites and CVD factors were evaluated

by linear regression. 2 SD excretion of each urinary metabolite was calculated by the absolute differences between dietary comparisons. Numbers in parenthesis

are z scores, i.e., regression coeficient divided by standard error (z score ≥ 1.96, P < 0.05; ≥2.58, P < 0.01; ≥3.89, P < 0.001). NMR chemical shifts (mul-

tiplicity) used for quantiication: proline-betaine, δ3.11 (singlet); hippurate, δ7.64 (triplet); N-methyl-2-pyridone-5-carboxamide, δ6.67 (doublet); N-methyl

nicotinic acid, δ4.44 (singlet); N-methyl nicotinamide, δ8.89 (triplet); carnitine, δ3.23 (singlet); creatine, δ3.93 (singlet); guanodinoacetate, δ3.80 (singlet);

phenylacetylglutamine, δ7.43 (triplet); 4-cresyl sulfate, δ2.35 (singlet). CVD, cardiovascular disease; DBP, diastolic blood pressure; LDL-C, LDL choles-

terol; NMR, nuclear magnetic resonance; OmniCarb, OmniHeart carbohydrate-rich diet; OmniHeart, Optimal Macronutrient Intake Trial for Heart Health;

OmniMFA, OmniHeart monounsaturated fat–rich diet; OmniProt, OmniHeart protein-rich diet; SBP, systolic blood pressure.
*P < 0.05; †P < 0.01; ‡P < 0.001.

nonadherent) subgroups for OmniCarb. Differential metabolite

patterns were also observed for different subgroups within the

OmniMFA (Figure 1).

Urinary metabolic variation relects interindividual

differences in clinical responses

Discarding the nonadherent VDR group, we assessed the ef-

fect of each diet, stratiied by HDR group compared to adherent-

VDR group, on urinary electrolyte concentrations. We found sig-

niicant overall changes in mean urinary sodium (decrease) and

mean urinary potassium (increase) in the HDR groups for all Om-

niHeart diets when compared to baseline values (Supplemen-

tal Table 5). The mean changes in urinary electrolytes were of

slightly greater magnitude when considering the subset of pre-

hypertensive individuals within the HDR groups for sodium:

–31.3 mmol/d (OmniCarb), –44.9 mmol/d (OmniMFA), and

–35.9 mmol/d (OmniProt); and potassium 26.4 mmol/d (Omni-

Carb), 28.4 mmol/d (OmniMFA), and 24.7 mmol/d (OmniProt),

P < 0.001 (data not shown). This general trend in mean urinary

sodium and potassium levels was apparent for the adherent-VDR

groups but the changes from baseline level were insigniicant.

With regard to the intercomparison between OmnniHeart diets,

no systematic differences were observed in the electrolyte levels

with the exception of higher urinary sodium and phosphate lev-

els being characteristic of the OmniProt-HDR when compared to

the OmniMFA-HDR group (P < 0.01, data not shown). No sys-

tematic differences in electrolytes were expected as micronutri-

ents such as potassium, sodium, calcium, and magnesium were

indexed to the energy level from the diet for each participant

(19).

We also investigated the changes in CVD risk factors post-

diet and found a signiicant (P < 10−10) reduction in all HDR

diet groups when compared to the baseline for systolic and di-

astolic BP, LDL cholesterol, and total cholesterol. Addition-

ally, the reduction in serum triglyceride concentrations was sig-

niicant for the OmniProt-HDR group; and HDL cholesterol

for the OmniCarb-HDR and OmniProt-HDR groups, P < 0.05

(Figure 2). High-risk individuals such as those who were hy-

pertensive or those with nonoptimal lipid proiles in the HDR

groups showed greater reduction in these CVD risk factors

than low-risk individuals (Supplemental Figure 2). For all

the VDR groups, a dampened reduction in CVD risk fac-

tors was generally observed when compared to the corre-

sponding HDR comparator groups (Figure 2). A signiicant

(P < 0.05) reduction in systolic and diastolic BP was observed

in both the adherent- and nonadherent-OmniMFA-VDR and the

non-adherent-OmniProt-VDR groups; whilst the adherent- and
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FIGURE 1 The observed mean differences in excretion for hippurate between HDR and adherent- and nonadherent-VDR groups when OmniHeart diets
and their corresponding baseline spectra were compared. Open square, OmniCarb-HDR (n= 137); light-grey closed square, adherent-OmniCarb-VDR (n= 6);
dark-grey closed square, nonadherent-OmniCarb-VDR (n = 15); open circle, OmniMFA-HDR (n = 127); light-grey closed circle, adherent-OmniMFA-VDR
(n = 10); dark-grey closed circle, nonadherent-OmniMFA-VDR (n = 21); open triangle, OmniProt-HDR (n = 113); light-grey closed triangle, adherent-
OmniProt-VDR (n= 10); dark-grey closed triangle, nonadherent-OmniProt-VDR (n= 35). Error bars indicate 95% CIs. Signiicant t test comparison between
baseline and post OmniHeart diets: *P < 0.05; ‡P < 10−10. HDR, homogeneous dietary response; OmniCarb, OmniHeart carbohydrate-rich diet; OmniHeart,
Optimal Macronutrient Intake Trial for Heart Health; OmniMFA, OmniHeart monounsaturated fat–rich diet; OmniProt, OmniHeart protein-rich diet; VDR,
variable dietary response.

non-adherent-OmniProt-VDR groups also generally showed sig-

niicant reductions for LDL, HDL, and total cholesterol al-

though the magnitude of the change in CVD risk factors

was generally more variable than that observed for the corre-

sponding HDR groups. The observed lack of dietary-induced

clinical beneit in the adherent-VDR groups may be partially

due to the reduced sample size (n < 10) following stratiica-

tion of the cohort. In addition to the observation that HDR

groups of all 3 OmniHeart diets generally elicited a reduc-

tion in CVD risk factors when compared to typical Ameri-

can diets, we also found the HDR-OmniProt group generally

showed a larger overall reduction in CVD risk factors when

compared to the HDR-OmniMFA and HDR-OmniCarb groups

(Supplemental Figure 3).

Stratiication of individual response based on urinary

metabolic phenotypes

From a cohort of 158 individuals, who partook in all 3 dietary

interventions, we were able to stratify individuals according to

diet-response speciic urinary phenotypes: corresponding to those

who demonstrated: HDR to all 3 diets (n= 95, 60.1%; Group 1);

HDR to 2 diets but VDR to 1 diet (n = 35, 22.2%; Group 2);

HDR to only 1 diet but VDR to 2 diets (n= 22, 13.9%; Group 3);

non-adherent-VDR to all 3 diets (n= 4, 2.5%; Group 4); and mix

of nonadherent- and adherent-VDR to all 3 diets (n = 2, 1.3%;

Group 5). Moreover, we were able to further sub-stratify indi-

viduals in the VDR groups that demonstrated a dampened clin-

ical response into those participants that were: (a) adherent to

diets but showed differences in metabolic phenotypes from the

majority of participants (including gut-microbial co-metabolites;

n = 12, 7.6%); (b) nonadherent to ≥1 diet (n = 40, 25.3%);

or (c) a combination of the 2 (n = 11, 7.0%); see Table 3. We

found that individuals consistently classiied as HDR for all 3

OmniHeart diets generallymanifested a greater reduction in CVD

risk factors than those that were classiied as HDR for just 1 or 2

of the OmniHeart diets (Supplemental Figure 4).

DISCUSSION

We show that the majority, but not all, of the participants re-

sponded similarly in terms of their expressed metabolic pheno-

type to a particular diet and that each of the 3 diets had a distinct

effect on the metabolism. However, regardless of the macronu-

trient differences between the 3 OmniHeart diets and the diet-

speciic impact on the metabolic proile, the majority of partic-

ipants (60.1%), demonstrated post-diet improvement in clinical

risk factors for CVD. We applied an agnostic multivariate sta-

tistical tool to identify participants who showed a coherent bio-

chemical response (HDR) to each of the diets and subdivided the

data-set into high- and low-risk individuals based on their BP sta-

tus or lipid proiles. Although both groups demonstrated a co-

herent biochemical response irrespective of the CVD risk status,

the high-risk groups generally demonstrated a larger reduction

in CVD risk factors than low-risk individuals. Our results thus

demonstrate that manipulation of dietary macronutrient content,

without alteration of caloric intake and bodyweight, can elicit co-

herent changes in metabolic proiles and contribute to beneicial

effects on both BP levels and lipid proiles.

Notably, we identiied 2 gut microbial-host co-metabolites as-

sociated with BP: phenylacetylglutamine and 4-cresyl sulfate, de-

riving from phenylalanine and tyrosine, respectively, resulting

from bacterial putrefaction of protein in the distal colon. The gut

microbiota, in particular Firmicutes and Bacteroidetes, can adapt

to dietary changes and induce changes in host metabolism (35):

an increase of Firmicutes-to-Bacteroidetes ratio has been demon-

strated in spontaneous hypertensive rats (36). Other researchers
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TABLE 3

Stratiication by urinary phenotypes1

Summary of sub-phenotypes N %

Group 1: HDR to all 3 diets 95 60.1

Group 2: HDR to 2 diets but VDR to 1 diet 35 22.2

(a) Nonadherent-VDR to the other diet 25 15.8

(b) Adherent-VDR to the other diet 10 6.3

Group 3: HDR to 1 diet but VDR to 2 diets 22 13.9

(a) Nonadherent-VDR to the other 2 diets 11 7.0

(b) Adherent-VDR to the other 2 diets 2 1.2

(c) Mixed response—nonadherence-VDR to 1 diet and adherent-VDR to the other diet 9 5.7

Group 4: Nonadherent-VDR to all 3 diets 4 2.5

Group 5: Mix of nonadherent and adherent to all 3 diets 2 1.3

1Individuals were stratiied based on diet-speciic urinary phenotypes. HDR, homogeneous dietary response; VDR,

variable dietary response.

have manipulated gut microbiota balance via probiotic admin-

istration with consequent beneicial effects on BP levels (37).

More recently, blood concentrations of phenylacetylglutamine

were found to be strongly anti-correlated with BP, consistent with

our results, and with carotid-femoral pulse-wave velocity, a mea-

sure of aortic stiffness (38). Although 4-cresyl sulfate has never

been formally linked to BP, its dietary excretion has been shown

to be highly correlated with that of phenylacetylglutamine (16).

The association between gut-microbial co-metabolites and BP

is further evidenced in the direct association we found between

BP and hippurate, originating from the conversion of benzoic acid

by gut microlora via the shikimate pathway (39). In contrast to

our results, hypertensive rats showed an anti-correlation between

hippurate and BP (40) but interpolation from animal data to hu-

man must be performed with care due to the differences in gut

microbiomes between species. An inverse association between

excretion of hippurate and BP has been reported in humans but

this association was not signiicant after adjusting for BMI, alco-

hol intake, and urinary excretion of sodium and potassium (41).

A controlled feeding study byWu et al. (35) showed that changes

in the gut microbiome occurred within 24 h of initiating a change

in diet and that BMI and weight loss can also inluence the gut

microbiome composition. However, in our dietary intervention

study, all participants consumed a consistent healthy dietary pat-

tern for 6 wk and maintained their body weight, with micronu-

trients being indexed to the energy level of their diets. Our data,

therefore, suggest modulation of diets can affect gut microbiome

activity and that this may lead to a direct effect on BP regulation.

We observed an inverse association of N-methyl-2-

pyridone-5-carboxamide (tryptophan–NAD metabolite)

and BP. Bartus et al. (42) showed that ingestion of

1-methylnicotinamide in hypertriglyceridemic rats resulted

in an increase of 1-methylnicotinamide and its metabo-

lites such as N-methyl-2-pyridone-5-carboxamide and found

that ingestion of 1-methylnicotinamide in both the dia-

betic and hypertriglyceridemic rats can ameliorate the ni-

tric oxide-dependent vasodilation, a surrogate marker for

atherosclerosis. Others have found that 1-methylnicotinamide

demonstrates anti-thrombotic activity (43). Our indings fur-

ther support the beneicial impact of N-methyl-2-pyridone-5-

carboxamide on CVD health. We suggest the tryptophan–NAD

pathway may offer a new target for pharmacological treatment

of hypertension.

We also conirmed the association of dietary markers with

BP including: a direct association between BP and carnitine (a

marker for protein ingestion); and an inverse association with

proline-betaine (citrus fruit ingestion). Our results are consistent

with previous studies linking hypertension with blood concen-

tration of carnitine (44) and variations in BP following carnitine

treatment in rats (45). Similarly our results support the previously

postulated beneit of citrus fruit intake in reduction of BP (34).

Speciically for the OmniProt diet, despite the increased excre-

tion of carnitine, a marker which was linked to higher BP, over-

all beneicial reductions in CVD risk factors (both BP levels and

lipid proiles) were elicited and these beneits persisted for those

who were considered as typical (HDR) as well as variable (VDR)

responders. The speciic mechanisms for this remain unclear al-

though it may be hypothesized that the altered large-bowel mi-

crobiome following protein-rich dietary intervention may play a

signiicant role.

We investigated our data stratiied by responders (HDR

groups) and nonresponders (VDR groups) to ascertain whether

the lack of demonstrated response was purely due to poor adher-

ence to diet. We used a marker of citrus fruits, proline-betaine, as

a proxy for dietary adherence to OmniHeart diets, as participants

were given citrus fruits as part of their diets. Using the level of

proline-betaine excretion at<95%CI of the HDR groups as a cut-

off, we estimated that nonadherence contributed to the dampened

clinical responses for 9.5–22.2% of the participants, depending

on the type of OmniHeart diet. These nonadherence values are

considerably higher than the <5% nonadherence estimated from

the self-reported data from this study (4) and provided an addi-

tional objective measure to the mean urine urea nitrogen mea-

surements, relecting protein intake, which was highest on the

protein-rich diet. Our modeling strategy thus provided an objec-

tive method for classiication of individuals in the VDR groups as

nonadherent to each of the OmniHeart diets. The remaining dis-

crepancy in metabolic response in individuals showing good

dietary adherence was mainly attributable to variation in the ex-

cretion of gut microbial metabolites (7.6%). These results are

consistent with indings from a recent study by Zeevi et al. (46)

who showed interindividual differences in glycemic response to

foods and that these were correlated with differences in the com-

position of the microbiome.

As a feeding study, this study has several strengths including:

the provision of all meals to participants where their bodyweights
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were held constant throughout the feeding periods, thereby re-

moving the confounding effect of weight loss; the inclusion of

24-h urine collection; and the randomized cross-over design,

which all add rigor to the study. Further, we have included in-

dividuals from high CVD risk groups such as African American

(∼50%) and prehypertensive patients (∼80%), which strength-

ens the general applicability of our stratiication pipeline, al-

though we recognize a large proportion of our participants was

either overweight or obese and therefore not relective of the

general population. However, this relects the higher incidence

of obesity among the African American population. Since, by

design, participants’ weight remained the same throughout the

study, our models were not adjusted for BMI. We also did not

adjust for socioeconomic status based on previous indings in

a large-scale cross-sectional study, which demonstrated that the

inverse association with BP was explained mostly by dietary

differences (47).

Our study represents one of the largest dietary interventions

of its kind where many prior nutritional metabolic phenotyping

studies have typically involved a small number of participants

(N < 25) (48, 49). In this study, we used food-frequency ques-

tionnaires to describe participants’ food intake during the screen-

ing visit (baseline) and this information was used to estimate the

average intended food intake to maintain the participants’ body

weight throughout the isocaloric feeding periods. However, one

limitation is that we were unable to perform more detailed anal-

ysis on individual dietary components and the dose–response re-

lation with BP. An additional limitation of the current study was

the use of NMR spectroscopy as the sole method of metabolic

proiling. Although the robustness of the technique is advanta-

geous for generating high-quality data, mass spectrometry would

offer better sensitivity and selectivity andmay have identiied fur-

ther candidate biomarkers relating to BP. Nonetheless, we were

able to uncover a number of biomarkers related to BP and these

biomarkers were structurally authenticated.

In this global proiling study, we opted to use urine as our

choice of bioluid as urine constitutes a rich source of informa-

tion encompassing the inluence of dietary and gut microbiota.

We and others (41, 50) have successfully identiied urinary dis-

criminatory metabolites related to BP. However, future studies

should validate our indings by the use of urine specimens col-

lected from independent epidemiological studies. Further to val-

idating the candidate biomarkers related to dietary modulation

of BP, a series of in vivo studies to establish causality would be

necessary. For example, Menni et al. (51) have shown a possible

causal relation between hexadecanedioate and BP using rodent

models.

Our strategy illustrates the feasibility of adopting a rational

stratiication approach for diabetologists, cardiologists, or dieti-

tians to identify individuals’ nonadherence to diets and to opti-

mize clinical responses to therapy. Extending this concept, we can

envisage that further characterization of interindividual responses

to healthy diets as determined by an individual’s phenotypic pat-

terns and further determining an individual’s longitudinal pheno-

typic stability prior to a healthy dietary intervention would need

to be developed for the identiication of latent sub-phenotypes.

This may confer a public health beneit with potential to provide

a personalized approach to dietary recommendations aimed at

optimizing prevention of CVD and related disorders.

In conclusion, variation in metabolic phenotypes in response

to speciic healthy diets may hold clues as to the mechanisms

underlying interindividual variations in response to dietary mod-

ulation and points to the potential importance of the gut micro-

biome in accounting for differences in dietary response and the

subsequent impact on BP. The worklow presented here provides

a clinically actionable framework to develop tailored dietary in-

terventions designed to reduce BP and other CVD risk factors.

We thank T. Yap for her contribution to the sample preparation for

NMR analyses. This manuscript was prepared using OmniHeart research

materials obtained from the National Heart, Lung, and Blood Institute

(NHLBI) Biologic Specimen and Data Repository Information Coordi-

nating Center and does not necessarily relect the opinions or views of

the NHLBI. The OmniHeart study description together with the study

protocol and associated metadata are available from the Biologic Specimen

and Data Repository Information Coordinating Center (BioLINCC) at

https://biolincc.nhlbi.nih.gov/static/studies/omniheart/MOP.pdf?link_time=

2017-07-02_01:45:33.646682. We thank the Imperial-National Institute for

Health Research (NIHR) Clinical Phenome Centre, which is supported by

the NIHR Imperial Biomedical Research Centre based at Imperial College

Healthcare National Health Service (NHS) Trust and Imperial College

London. The views expressed are those of the author(s) and not necessarily

those of the NHS, the NIHR, or the Department of Health.

The authors’ responsibilities were as follows—RLL: designed metabolic

proiling research; LJA: designed OmniHeart research; RLL and XZ: con-

ducted the research and analyzed data; RLL, EH, and XZ: wrote the

manuscript; RLL: had primary responsibility for inal content; EH and JKN:

facilitated access to MRC-NIHR National Phenome Centre and related work;

RLL, EH, and JKN: conducted metabolite identiication; and all authors: re-

viewed and approved the inal manuscript. None of the authors reported any

conlicts of interest.

REFERENCES
1. Global Disease Burden Risk Factor Collaborators. Global, regional, and

national levels of maternal mortality, 1990–2015: a systematic analysis
for the Global Burden of Disease Study 2015. Lancet 2016;388:1775–
812.

2. Ehret GB. Genome-wide association studies: contribution of genomics
to understanding blood pressure and essential hypertension. Curr
Hypertens Rep 2010;12:17–25.

3. Appel LJ, Moore TJ, Obarzanek E, Vollmer WM, Svetkey LP, Sacks
FM, Bray GA, Vogt TM, Cutler JA, Windhauser MM, et al. A
clinical trial of the effects of dietary patterns on blood pressure.
DASH Collaborative Research Group. N Engl J Med 1997;336:
1117–24.

4. Appel LJ, Sacks FM, Carey VJ, Obarzanek E, Swain JF, Miller
ER, Conlin PR, Erlinger TP, Rosner BA, Laranjo NM, et al. Effects
of protein, monounsaturated fat, and carbohydrate intake on blood
pressure and serum lipids: results of the OmniHeart randomized trial.
JAMA 2005;294:2455–64.

5. Sleiman D, Al-Badri MR, Azar ST. Effect of Mediterranean diet in
diabetes control and cardiovascular risk modiication: a systematic
review. Front Public Health 2015;3:69.

6. Katan MB, Beynen AC, de Vries JH, Nobels A. Existence of consistent
hypo- and hyperresponders to dietary cholesterol in man. Am J
Epidemiol 1986;123:221–34.

7. Jacobs DR Jr., Anderson JT, Hannan P, Keys A, Blackburn H.
Variability in individual serum cholesterol response to change in diet.
Arteriosclerosis 1983;3:349–56.

8. Mata P, Ordovas JM, Lopez-Miranda J, Lichtenstein AH, Clevidence
B, Judd JT, Schaefer EJ. ApoA-IV phenotype affects diet-induced
plasma LDL cholesterol lowering. Arterioscler Thromb Vasc Biol
1994;14:884–91.

9. McCombs RJ, Marcadis DE, Ellis J, Weinberg RB. Attenuated
hypercholesterolemic response to a high-cholesterol diet in subjects
heterozygous for the apolipoprotein A-IV-2 allele. N Engl J Med
1994;331:706–10.

Downloaded from https://academic.oup.com/ajcn/article-abstract/107/3/323/4915937
by University of Kent user
on 12 April 2018

https://biolincc.nhlbi.nih.gov/static/studies/omniheart/MOP.pdf?linktime2017-07-0201:45:33.646682


METABOLIC RESPONSE TO DIETS AND THE LINK WITH BP 333

10. Masson LF, McNeill G, Avenell A. Genetic variation and the lipid
response to dietary intervention: a systematic review. Am J Clin Nutr
2003;77:1098–111.

11. Denke MA. Review of human studies evaluating individual dietary
responsiveness in patients with hypercholesterolemia. Am J Clin Nutr
1995;62:471S–7S.

12. Denke MA, Adams-Huet B, Nguyen AT. Individual cholesterol
variation in response to a margarine- or butter-based diet: a study in
families. JAMA 2000;284:2740–7.

13. Faith JJ, McNulty NP, Rey FE, Gordon JI. Predicting a human
gut microbiota’s response to diet in gnotobiotic mice. Science
2011;333:101–4.

14. Minot S, Sinha R, Chen J, Li H, Keilbaugh SA, Wu GD,
Lewis JD, Bushman FD. The human gut virome: inter-individual
variation and dynamic response to diet. Genome Res 2011;21:
1616–25.

15. Pelantova H, BuganovaM, HolubovaM, Sediva B, Zemenova J, Sykora
D, Kavalkova P, Haluzik M, Zelezna B, Maletinska L, et al. Urinary
metabolomic proiling in mice with diet-induced obesity and type 2
diabetes mellitus after treatment with metformin, vildagliptin and their
combination. Mol Cell Endocrinol 2016;431:88–100.

16. Heinzmann SS, Merriield CA, Rezzi S, Kochhar S, Lindon JC,
Holmes E, Nicholson JK. Stability and robustness of human metabolic
phenotypes in response to sequential food challenges. J Proteome Res
2012;11:643–55.

17. O’Keefe SJ, Li JV, Lahti L, Ou J, Carbonero F, Mohammed K,
Posma JM, Kinross J, Wahl E, Ruder E, et al. Fat, ibre and cancer
risk in African Americans and rural Africans. Nat Commun 2015;
6:6342.

18. Everett JR, Loo RL, Pullen FS. Pharmacometabonomics and
personalized medicine. Ann Clin Biochem 2013;50(Pt 6):523–45.

19. Carey VJ, Bishop L, Charleston J, Conlin P, Erlinger T, Laranjo N,
McCarron P, Miller E, Rosner B, Swain J, et al. Rationale and design of
the Optimal Macro-Nutrient Intake Heart Trial to Prevent Heart Disease
(OMNI-Heart). Clin Trials 2005;2:529–37.

20. Rimm EB, Giovannucci EL, Stampfer MJ, Colditz GA, Litin LB,
Willett WC. Reproducibility and validity of an expanded self-
administered semiquantitative food frequency questionnaire among
male health professionals. Am J Epidemiol 1992;135:1114–26;
discussion 1127–36.

21. Beckonert O, Keun HC, Ebbels TM, Bundy J, Holmes E, Lindon
JC, Nicholson JK. Metabolic proiling, metabolomic and metabonomic
procedures for NMR spectroscopy of urine, plasma, serum and tissue
extracts. Nat Protoc 2007;2:2692–703.

22. Dieterle F, Ross A, Schlotterbeck G, Senn H. Probabilistic quotient
normalization as robust method to account for dilution of complex
biological mixtures. Application in 1H NMR metabonomics. Anal
Chem 2006;78:4281–90.

23. Zou X, Holmes E, Nicholson JK, Loo RL. Statistical HOmogeneous
Cluster SpectroscopY (SHOCSY): an optimized statistical approach
for clustering of (1)H NMR spectral data to reduce interference and
enhance robust biomarkers selection. Anal Chem 2014;86:5308–15.

24. Posma JM, Garcia-Perez I, De Iorio M, Lindon JC, Elliott P, Holmes E,
Ebbels TM, Nicholson JK. Subset Optimization by ReferenceMatching
(STORM): an optimized statistical approach for recovery of metabolic
biomarker structural information from (1)H NMR spectra of bioluids.
Anal Chem 2012;84:10694–701.

25. Cloarec O, Dumas ME, Craig A, Barton RH, Trygg J, Hudson J,
Blancher C, Gauguier D, Lindon JC, Holmes E, et al. Statistical
total correlation spectroscopy: an exploratory approach for latent
biomarker identiication frommetabolic 1HNMR data sets. Anal Chem
2005;77:1282–9.

26. Westerhuis JA, van Velzen EJ, Hoefsloot HC, Smilde AK.
Multivariate paired data analysis: multilevel PLSDA versus OPLSDA.
Metabolomics 2010;6:119–28.

27. van Velzen EJ, Westerhuis JA, van Duynhoven JP, van Dorsten FA,
Hoefsloot HC, Jacobs DM, Smit S, Draijer R, Kroner CI, Smilde AK.
Multilevel data analysis of a crossover designed human nutritional
intervention study. J Proteome Res 2008;7:4483–91.

28. Trygg J, Wold S. O2-PLS, a two-block (X–Y) latent variable regression
(LVR) method with an integral OSC ilter. J Chemom 2003;17:53–64.

29. Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, Young N, Cheng D,
Jewell K, Arndt D, Sawhney S, et al. HMDB: the Human Metabolome
Database. Nucleic Acids Res 2007;35(Database issue):D521–6.

30. Heinzmann SS, Brown IJ, Chan Q, Bictash M, Dumas ME, Kochhar
S, Stamler J, Holmes E, Elliott P, Nicholson JK. Metabolic proiling
strategy for discovery of nutritional biomarkers: proline betaine as a
marker of citrus consumption. Am J Clin Nutr 2010;92:436–43.

31. Stella C, Beckwith-Hall B, Cloarec O, Holmes E, Lindon JC, Powell J,
van der Ouderaa F, Bingham S, Cross AJ, Nicholson JK. Susceptibility
of human metabolic phenotypes to dietary modulation. J Proteome Res
2006;5:2780–8.

32. Edmands WM, Beckonert OP, Stella C, Campbell A, Lake BG,
Lindon JC, Holmes E, Gooderham NJ. Identiication of human urinary
biomarkers of cruciferous vegetable consumption by metabonomic
proiling. J Proteome Res 2011;10:4513–21.

33. May DH, Navarro SL, Ruczinski I, Hogan J, Ogata Y, Schwarz Y, Levy
L, Holzman T, McIntosh MW, Lampe JW. Metabolomic proiling of
urine: response to a randomised, controlled feeding study of select fruits
and vegetables, and application to an observational study. Br J Nutr
2013;110:1760–70.

34. Lloyd AJ, Beckmann M, Fave G, Mathers JC, Draper J. Proline
betaine and its biotransformation products in fasting urine samples are
potential biomarkers of habitual citrus fruit consumption. Br J Nutr
2011;106:812–24.

35. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA,
Bewtra M, Knights D, Walters WA, Knight R, et al. Linking long-term
dietary patterns with gut microbial enterotypes. Science 2011;334:105–
8.

36. Yang T, Santisteban MM, Rodriguez V, Li E, Ahmari N, Carvajal JM,
Zadeh M, Gong M, Qi Y, Zubcevic J, et al. Gut dysbiosis is linked to
hypertension. Hypertension 2015;65:1331–40.

37. Khalesi S, Sun J, Buys N, Jayasinghe R. Effect of probiotics on
blood pressure: a systematic review and meta-analysis of randomized,
controlled trials. Hypertension 2014;64:897–903.

38. Menni C, Mangino M, Cecelja M, Psatha M, Brosnan MJ, Trimmer
J, Mohney RP, Chowienczyk P, Padmanabhan S, Spector TD, et al.
Metabolomic study of carotid-femoral pulse-wave velocity in women.
J Hypertens 2015;33:791–6; discussion 6.

39. Pero RW. Health consequences of catabolic synthesis of hippuric acid
in humans. Curr Clin Pharmacol 2010;5:67–73.

40. Akira K, Masu S, Imachi M, Mitome H, Hashimoto T. A metabonomic
study of biochemical changes characteristic of genetically hypertensive
rats based on (1)H NMR spectroscopic urinalysis. Hypertens Res
2012;35:404–12.

41. Holmes E, Loo RL, Stamler J, Bictash M, Yap IKS, Chan Q, Ebbels
T, De Iorio M, Brown IJ, Veselkov KA, et al. Human metabolic
phenotype diversity and its association with diet and blood pressure.
Nature 2008;453:396–400.

42. Bartus M, Lomnicka M, Kostogrys RB, Kazmierczak P, Watala C,
Slominska EM, Smolenski RT, Pisulewski PM, Adamus J, Gebicki J,
et al. 1-methylnicotinamide (MNA) prevents endothelial dysfunction in
hypertriglyceridemic and diabetic rats. Pharmacol Rep 2008;60:127–
38.

43. Chlopicki S, Swies J, Mogielnicki A, Buczko W, Bartus M,
Lomnicka M, Adamus J, Gebicki J. 1-methylnicotinamide (MNA),
a primary metabolite of nicotinamide, exerts anti-thrombotic activity
mediated by a cyclooxygenase-2/prostacyclin pathway. Br J Pharmacol
2007;152:230–9.

44. Mels CM, Schutte AE, Erasmus E, Huisman HW, Schutte R, Fourie
CM, Kruger R, Van Rooyen JM, Smith W, Malan NT, et al.
L-carnitine and long-chain acylcarnitines are positively correlated with
ambulatory blood pressure in humans: the SABPA study. Lipids 2013;
48:63–73.

45. Rauchova H, Dobesova Z, Drahota Z, Zicha J, Kunes J. The effect of
chronic L-carnitine treatment on blood pressure and plasma lipids in
spontaneously hypertensive rats. Eur J Pharmacol 1998;342:235–9.

46. Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger
A, Ben-Yacov O, Lador D, Avnit-Sagi T, Lotan-Pompan M, et al.
Personalized nutrition by prediction of glycemic responses. Cell
2015;163:1079–94.

47. Stamler J, Elliott P, Appel L, Chan Q, Buzzard M, Dennis B, Dyer
AR, Elmer P, Greenland P, Jones D, et al. Higher blood pressure in
middle-aged American adults with less education—role of multiple
dietary factors: the INTERMAP study. J Hum Hypertens 2003;
17:655–775.

48. Bondia-Pons I, Canellas N, Abete I, Rodriguez MA, Perez-Cornago
A, Navas-Carretero S, Zulet MA, Correig X, Martinez JA.

Downloaded from https://academic.oup.com/ajcn/article-abstract/107/3/323/4915937
by University of Kent user
on 12 April 2018



334 LOO ET AL.

Nutri-metabolomics: subtle serum metabolic differences in
healthy subjects by NMR-based metabolomics after a short-term
nutritional intervention with two tomato sauces. OMICS 2013;17:
611–18.

49. Lai S, Molino A, Coppola B, De Leo S, Tommasi V, Galani A,
Migliaccio S, Greco EA, Gnerre Musto T, Muscaritoli M. Effect of
personalized dietary intervention on nutritional, metabolic and vascular
indices in patients with chronic kidney disease. Eur RevMed Pharmacol
Sci 2015;19:3351–9.

50. Hanson M, Zahradka P, Taylor CG, Aliani M. Identiication of
urinary metabolites with potential blood pressure-lowering effects
in lentil-fed spontaneously hypertensive rats. Eur J Nutr 2016:
1–12, doi:10.1007/s00394-016-1319-5.

51. Menni C, Graham D, Kastenmuller G, Alharbi NH, Alsanosi
SM, McBride M, Mangino M, Titcombe P, Shin SY, Psatha M,
et al. Metabolomic identiication of a novel pathway of blood
pressure regulation involving hexadecanedioate. Hypertension 2015;
66:422–9.

Downloaded from https://academic.oup.com/ajcn/article-abstract/107/3/323/4915937
by University of Kent user
on 12 April 2018


