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Can Topological Transitions be Exploited to Engineer

Intrinsically Quench-Resistant Wires?
Philip Whittlesea, Jorge Quintanilla , James F. Annett, Adrian D. Hillier, and Chris Hooley

Abstract—In this paper, we investigate whether by synthe-
sizing superconductors that are tuned to a topological, node-
reconstruction transition point, we could create superconducting
wires that are intrinsically resilient to quenches. Recent work shows
that the exponent characterizing the temperature dependence of
the specific heat of a nodal superconductor is lowered over a re-
gion of the phase diagram near topological transitions where nodal
lines form or reconnect. Our idea is that the resulting enhance-
ment of the low-temperature specific heat could have a potential
application in the prevention of superconductor quenches. We per-
form numerical simulations of a simplified superconductor quench
model. Results show that decreasing the specific heat exponent can
prevent a quench from occurring and improve quench resilience,
though in our simple model the effects are small. Further work will
be necessary to establish the practical feasibility of this approach.

Index Terms—Energy dissipation, superconducting filaments
and wires, superconducting magnets, superconducting magnetic
energy storage, waste heat.

I. INTRODUCTION

Q
UENCHES limit the application of superconductors in

magnetic field generation, energy transmission and en-

ergy storage. When a superconductor quenches, a random fluc-

tuation leads to a phase transition of the entire material. In short,

some small finite region of the superconductor can transition into

its normal state, with T > Tc , thus losing its superconducting

properties. In this small normal region the superconductor sud-

denly has finite resistivity and will generate heat if a current

is passing through it. The heat generated by this normal region

transfers to the surrounding superconducting regions which can

become normal as well. In turn this generates more heat until

eventually the entire superconductor is heated up above Tc and it
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is said to have quenched. Engineering applications of supercon-

ductors already utilise a whole host of quench prevention and

protection techniques, ranging from electronic detection meth-

ods to current-sharing fail-safe systems [1]–[6]. In spite of this,

quenches do occur regularly; the most well-known example be-

ing that which led to the shutdown of the LHC experiment at

CERN for months in 2008 [7].

Topology in condensed matter opens up a different avenue

from the usual Ginzburg-Landau view point. Instead of changes

in symmetry the focus is on changes in topology. From this view

point a host of phenomena can be described, from topological

insulators to Lifshitz transitions to Majorana fermions [8]–[10],

none of which can be understood purely from a symmetry view

point. It has been proposed that topologically protected states

could be usefully applied to quantum computing [11]. Here we

suggest the possibility that topological transitions in supercon-

ductors could be used to make quench-resistant wires for energy

transport and storage.

Unconventional superconductors can have nodal points or

lines in the quasiparticle energy spectrum where the energy gap

is zero [12]. A region on the Fermi surface with zero energy

gap allows for arbitrarily low energy excitations. This impacts

the thermodynamic properties of the system e.g. point- and

line-nodes cause T 3 and T 2 specific heat dependence respec-

tively [12], [13], rather than the exponential suppression found

in conventional BCS superconductors. Recently there has been

interest in anomalously-low exponents obtained at topological

transitions where nodal lines cross (n = 1.8), form (n = 1.5) or

even form and cross simultaneously (n = 1.4) [14]. These result

from the non-linear dispersion of quasiparticles near the nodal

regions at the transition point.

Topological phases can occur in superconductors where dif-

ferent quantum ground states are identified with different topo-

logical invariants [15]. Here we are interested in the topological

node-reconstruction transition [14], [16] where nodal lines on

the Fermi surface form, cross or reconstruct as some tuning pa-

rameter is changed, changing the associated topological number

[14], [17], [18]. In this case the associated topological number

is the number of nodal lines on the Fermi surface which can

only change by multiples of two.

One feature of the node-reconstruction transition is that the

low temperature specific heat is enhanced, with exponents even

lower than 2 or 3 [14], [18]. Furthermore, at finite tempera-

ture this effect is present over a swathe of tuning-parameter

space; meaning it is not necessary to sit exactly at the tran-

sition to exploit the enhanced specific heat [14]. Here we
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investigate whether by synthesising superconductors that are

tuned to the topological, node-reconstruction transition point

we could create superconducting wires that are intrinsically re-

silient to quenches.

Our idea is based on the principle that the superconductor in

the node-reconstruction state can absorb more heat before in-

creasing in temperature itself due to its enhanced specific heat.

The more energy it can absorb before increasing in tempera-

ture the more resilient it should be to quenching. This “pas-

sive” approach to quench prevention is quite different to the

existing approach of engineering solutions as mentioned previ-

ously. The two different approaches are entirely complementary.

Materials that can be tuned to node formation/reconstruction

transitions include the non-centrosymmetric superconductors

Li2(Pt, Pd)3B [19] and the high-temperature cobalt-doped pnic-

tides Ba(Fe1−xTx )2As2 (T = Co, Ni, Pd) [18], [20], [21].

II. MODEL

A cable-in-conduit-conductor, CICC, has a core made of su-

perconducting wires with a copper matrix throughout. It is sur-

rounded by some liquid coolant and enclosed with cladding.

Our starting point is the general model for a CICC, found

in [6]. It consists of a collection of coupled partial differential

equations: a heat equation with source terms for the wire itself;

another heat equation for the cladding, both depend on the tem-

perature of the coolant; and another set of equations describing

the temperature change and fluid dynamics of the coolant itself.

In order to prove our concept we use a simplified version of

this model which captures the relevant physics, specifically a

pair of partial differential equations describing heat flow in the

superconductor and in the bath:

C∗

c (T
∗(x∗, t∗), T ∗

c )
∂T ∗(x∗, t∗)

∂t∗

=
∂2T ∗(x∗, t∗)

∂x∗2 − (T ∗(x∗, t∗) − T ∗

h (x∗, t∗))

+ Θ(T ∗(x∗, t∗) − T ∗

c ) (1a)

∂T ∗

h (x∗, t∗)

∂t∗
= β(T ∗(x∗, t∗) − T ∗

h (x∗, t∗)) (1b)

Here x is the distance along the superconducting wire and t is

time. T (x, t) is the temperature of the superconductor, Tc is its

critical temperature and Th (x, t) is the temperature of the helium

bath. C is the specific heat of the superconductor and Θ is a

Heaviside theta function that switches on when the temperature

of the conductor is above the critical temperature Tc . β is a

dimensionless constant that depends on the design of the CICC.

A * indicates that a quantity has been made dimensionless by

dividing by the following characteristic scales:

x0 =

(

Acκc

hPc

)
1
2

(2a)

T0 =
ηcI

2x2
0

A2
c κc

(2b)

C0 = γT0 (2c)

t0 =
ρcC0x

2
0

κc

(2d)

β =
ρcC0Ac

ρhChAh

(2e)

Here the subscripts c and h differentiate between the conduc-

tor and helium respectively. ρ is the density, κ is the thermal

conductivity, h is the heat transfer coefficient, P is the wetted

perimeter and A is the cross-sectional area of the conductor, η

is the resistivity, I is the current in the conductor and γ is the

Sommerfeld specific heat of the superconductor.

Equation (1a) describes how the temperature of the wire

changes with time: the first term on the right hand side de-

scribes the heat flow along the length of the wire; the second

term describes heat transfer with the helium bath; and the third

term simulates the Joule heating that occurs when the supercon-

ductor is in the normal state.

The change in the temperature of the helium bath with re-

spect to time, (1b), is given by a single heat transfer term which

acts between the helium and the conductor - there are no terms

describing the fluid dynamics of the liquid coolant. This simpli-

fication decreases computational complexity but maintains the

effect of the helium increasing in temperature and helping to

propagate the quench.

We model the specific heat of a nodal superconductor by

C∗

c (T
∗(x∗, t∗), T ∗

c )

= α∗T ∗(x∗, t∗)nΘ(T ∗

c − T ∗(x∗, t∗))

+ T ∗(x∗, t∗)Θ(T ∗(x∗, t∗) − T ∗

c ), (3)

where

α∗ =
α

γ
T n−1

0 (4)

and α and γ are material-dependent constants. This model cap-

tures the following essential physics (see Fig. 1):
� The specific heat has a linear temperature-dependence

above Tc with some fixed Sommerfeld coefficient γ. This

is appropriate for any Fermi liquid at low temperature [13].
� At Tc the specific heat has a jump, ∆C, as predicted by

Landau theory for any second-order phase transition [22].

For simplicity we fix the size of the jump to the value

predicted by BCS theory: ∆C = 1.43 [23].
� Below Tc , the specific heat has a power law of temperature

characterised by the exponent n which reflects the specific

nodal state [12]–[14], as discussed above. The coefficient

α is not a free parameter, but is instead fixed by the re-

quirement that the specific heat has the right value at T−

c .

Its dimensionless form is α∗ = 2.43T ∗

c
1−n .

The simplest case of this model has a constant specific heat

with a constant temperature heat bath, however in this case it is

easy to show that the specific heat enters only in the timescale

t0 of the model, i.e., the specific heat controls the rate of quench

propagation and has no effect on whether a quench will hap-

pen or not. Introducing a variable specific heat while artificially

maintaining a constant temperature heat bath is still not suf-

ficient to model quench behaviour as a cold enough bath will
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Fig. 1. Specific heat of the superconductor. The green dotted line shows
the linear Sommerfeld specific heat for normal metals. Our model for the nodal
superconductors’ specific heat is given by the blue dashed line (linear line nodes
or shallow point nodes, exponent 2.0) and the red dot-dashed line (shallow line
node, exponent 1.5). The specific heat is linear above Tc and a power law below.
At low temperatures, a lower exponent gives a higher specific heat. The jump
in specific heat at Tc is fixed.

always prevent a quench, given enough time, no matter the size

or intensity of the initial heat pulse. In contrast, the model pre-

sented here contained the minimum physics required to simulate

a quench. Details of the simpler models are a digression from

the main point presented here, hence they have been omitted.

We assume that the system will be kept well below Tc as this

is the safest regime to prevent a quench. In this regime a nodal

superconductor is preferred as its specific heat rises faster at low

temperatures than that of a fully gapped superconductor. More

specifically, the nodal superconductor with the lowest exponent

will be preferred as it will have the highest specific heat. We can

therefore study the effect different topological states can have

on quench behaviour by altering the exponent n in (3). In this

proof-of-concept work we do not consider the effect of pinning.

III. METHOD AND RESULTS

The model was solved using a forward-in-time centred-in-

space (FTCS) algorithm [24] with zero-gradient boundary con-

ditions. The initial temperature profile of the wire has a Gaussian

heat pulse centred at the middle of the wire with a temperature

peak at Tq and a width W with T > Tc , called the hot zone.

At the edges of the hot zone are the quench fronts: positions xq

at which T = Tc . The quench fronts mark a boundary between

the superconducting and normal regions. The time evolution of

the wire’s temperature profile is computed using the FTCS al-

gorithm. A quench is said to have occurred once both the entire

wire and the helium are above Tc . If the full length of the wire

goes below Tc then a quench has been prevented.

Fig. 2 shows an example of the wire’s temperature profile

evolution during a quench. In this case the initial Gaussian heat

pulse expands until the full length of the wire is above Tc , at

which point it has quenched. The simulation continues until the

helium bath is above Tc to ensure that there is no possibility

Fig. 2. Time evolution of a quench. The red dashed line is the critical temper-
ature, the blue solid line is the temperature profile of the superconductor. Each
panel shows the temperature profile at a different time, with time increasing
from top to bottom.

Fig. 3. Time evolution of the quench front. The solid blue line shows the
position of the quench front as a function of time. The length of wire between
the quench fronts is above Tc . The left panel shows a quench and the right
shows a quench being prevented.

that the wire could cool down again given enough time. In the

non-quenching case, the width and height of the initial Gaussian

heat pulse decrease until the pulse disappears and the entire wire

is below Tc .

Time evolution of the quench fronts shows the expansion or

contraction of the length of the hot zone, see Fig. 3. If the initial

conditions were correct for a quench to occur then the hot zone

will increase in temperature and expand; the quench fronts will

move outwards until they reach the ends of the wire. If however,

the initial conditions were not sufficient for a quench, the quench

fronts will move towards the centre of the wire; reducing the

length of the hot zone while it decreases in temperature until
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Fig. 4. Quench phase-diagram separating the parameter space into two quench
and non quench regions. Each line corresponds to a different nodal state with
the solid blue line characterised by n = 2.0, the dashed green line by n = 1.5
and the dotted red line by n = 1.4. Here T ∗

h
= 0.1T ∗

c but the plot stays the
same for different T ∗

h
except the width at which the lines join is T ∗

h
dependent.

the entire wire is below Tc . Additionally the quench fronts are

used in determining convergence of the simulations with respect

to the numerical parameters: the number of spatial divisions of

the system, dx, the time step, dt and length used to simulate an

infinite wire L.

Different topological states are modelled by changing the

exponent n in the specific heat term in (3). For each topological

state a ‘phase boundary’ is constructed as a function of W , Th

and Tq ; see Fig. 4. The parameter space is split into two regions,

one which causes a quench and another which does not. All

phase boundaries converge to some critical width Wc which is

Th -dependent. For W < Wc the phase boundaries separate and

the area of parameter space that causes quenches changes with

exponent. The highest exponent has the largest quench-causing

area of parameter space whereas the lowest exponent (n = 1.4
shallow line node crossing state) has the lowest quench-causing

area. This smaller area in parameter space means there are fewer

combinations of parameters that cause quenches, thus making

the lower exponent state more resilient.

IV. CONCLUSION

In this work we have investigated the effect specific heat

has on the occurrence of quenches. Specifically, we have con-

centrated on the difference between specific heat power laws,

corresponding to different nodal states with n = 2 corresponding

to ordinary line nodes and n = 1.5, 1.4 corresponding to topo-

logical transition states [14], [18]. It is shown that the lower the

power law exponent, the higher the specific heat and the greater

the quench resilience. It is assumed that the temperature is low

so that the power law approximation is valid. In this regime

the power law specific heat is higher than the exponential BCS

specific heat, so even the worst of the test cases would offer an

improvement over BCS should the optimum topological state

not be achievable.

In summary, we have asked whether a nodal supercon-

ductor could be made more resistant to quenches by tun-

ing its parameters to a node-reconstruction topological tran-

sition point. Our calculations, using a minimum model, show

that this is indeed the case although the effect is small.

This concept has the potential to enhance the quench re-

silience of superconductors, especially if used in conjunction

with current quench detection and mitigation techniques, how-

ever, detailed materials modelling will be required to ascertain

whether the effect could be useful for applications. Possible

candidates include the non-centrosymmetric superconductors

Li2(Pt, Pd)3B [19] and the high-temperature cobalt-doped pnic-

tides Ba(Fe1−xTx )2As2 (T = Co, Ni, Pd) [18], [20], [21] This

could lead to the first applications of topological transitions

in the fields of energy distribution, storage and magnetic field

generation.
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