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AN EFFICIENT GRADIENT PROJECTION METHOD FOR

STOCHASTIC OPTIMAL CONTROL PROBLEMS ∗

BO GONG∗, WENBIN LIU† , TAO TANG‡ , WEIDONG ZHAO§ , AND TAO ZHOU¶

Abstract. In this work, we propose a simple yet effective gradient projection algorithm for a
class of stochastic optimal control problems. We first reduce the optimal control problem into an
optimization problem for a convex functional by means of a projection operator. Then we propose
an convergent iterative scheme for the optimization problem. The key issue in our iterative scheme
is to compute the gradient of the objective functional by solving the adjoint equations that are
given by backward stochastic differential equations (BSDEs). The Euler method is used to solve
the resulting BSDEs. Rigorous convergence analysis is presented and it is shown that the entire
numerical algorithm admits a first order rate of convergence. Several numerical examples are carried
out to support the theoretical finding.

Key words. Stochastic optimal control, gradient projection methods, backward stochastic
differential equations, conditional expectations

AMS subject classifications. 60H35, 65C20, 35Q99, 35R35

1. Introduction. In recent years, stochastic optimal control has been exten-
sively studied and has become an essential tool in various fields, such as financial
mathematics and engineering. There exists a very extensive body of literature in
both theoretical and practical studies of stochastic optimal control problems, see e.g.,
[4, 5, 17, 25, 8, 11] and references therein.

In this work, we are concerned with the following stochastic optimal control prob-
lem

min
u∈K

J(u) = E

[

∫ T

0

(

h(xu
t ) + j

(

u(t)
)

)

dt+ k(xu
T )

]

, (1.1)

where u is the control policy, and xu is the corresponding state process that satisfies
the following stochastic differential equation

dxu
t = b

(

xu
t , u(t)

)

dt+ σ
(

xu
t , u(t)

)

dWt, t ∈ (0, T ], x|t=0 = x0. (1.2)

Theoretical investigations for the above model can be found in [4, 13, 17, 24, 3, 7, 15,
26, 32, 36]. For practical applications of (1.1)-(1.2), one can refer to [7, 23, 26, 36, 38]
for engineering applications, to [21, 22, 30, 40, 42] for applications in option pricing
and portfolio optimization, to [1] for analysis of climate changes, and to [16] for
biological and medical problems, to name a few.

In general the above model does not admit explicitly closed form solutions and
thus efficient numerical algorithms have been widely studied in recent years. Roughly
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speaking, we can characterize numerical algorithms into four categories: (i) transfer-
ring the control problem into finite dimensional stochastic programming, see e.g.,
[9, 15, 18, 19, 26, 36, 39, 41]; (ii) dynamic programming principle (DPP) based
approach [6, 25]. In this framework, one usually needs to solve the corresponding
Hamilton-Bellman-Jacobin (HJB) equations, and this is one of the most widely used
numerical methods [2, 4, 5, 10, 20]; (iii) martingale based methods [21, 22, 37]; and
(iv) stochastic maximum principle (SMP) based methods, see e.g., [17] and references
therein.

Basically, the SMP procedure is to directly compute directional derivative for the
objective functional J(·) by introducing an adjoint process. Then by introducing an
optimality condition for the control problem, a variational inequality coupled with
the state and adjoint equations forms an optimality condition system (we call it SMP
system) that can be used to solve the optimal control problem. While SMP is a
popular tool for theoretical studies of stochastic optimal control, see, e.g., [40, 42], it
has not been widely used in the numerical setting.

In this work, we propose a simple yet effective gradient projection algorithm for
the stochastic optimal control problem (1.1)-(1.2). We first reduce the optimal control
problem to an optimization problem for a convex functional by means of a projection
operator. Then we propose an convergent iterative scheme for the optimization prob-
lem. The key idea in our iterative scheme is to compute the gradient of the objective
functional in an efficient way, and this is done by solving the adjoint equations that is
given by backward stochastic differential equations (BSDEs). Our approach belongs
to SMP based approach, and it relies on solving the SMP system in an efficient way.
To this end, we propose a simple yet effective Euler-type method for solving the re-
sulting BSDEs. Furthermore, we perform a sharp convergence analysis and we show
that our numerical method admits a first order rate of convergence. Several numerical
examples are presented to support the theoretical founding.

The rest of the paper is organized as follows. In Section 2 we set up the stochastic
optimal control problem and provide with some assumptions. The gradient projection
method is presented in Section 3. Section 4 is devoted to convergence analysis of the
proposed numerical approach. Several numerical experiments are presented to show
the effective of the proposed numerical method in Section 5. We finally give some
conclusions in Section 6.

2. Problem Setup. For notational simplicity, we shall narrow our discussion
to the one dimensional case, however, the whole framework applies easily to multi-
dimensional cases. Let (Ω,F , {Ft}06t6T ,P) be a complete probability space with
filtration Ft generated by the Brownian motion {Ws}06s6t. Here T is the terminal
time. We denote by U = L2([0, T ];R) the space of all square integrable functions
x : [0, T ] → R, and denote by UF = L

2
F ([0, T ]×Ω;R) the space of all adapted

stochastic processes x : [0, T ]× Ω → R that satisfy

E

[

∫ T

0

(xt)
2 dt

]

< +∞.

Let C ⊂ R be a nonempty, convex and closed subset, and we define the following
control set

K =
{

u ∈ U
∣

∣ u(t) ∈ C a.e.
}

.

Note that we have assumed that the control u is deterministic. We remark that
a deterministic control can still be useful for future planning as discussed e.g. in
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[7, 26] for engineering applications, in [9] for financial applications and in [36] for an
application in stochastic hybrid systems. Moreover, stochastic control (i.e., u ∈ UF )
can also be included in our approach and this will be discussed in Section 5 via
numerical examples.

Given u ∈ K, the controlled state process xu
t is governed by the SDE

dxu
t = b

(

xu
t , u(t)

)

dt+ σ
(

xu
t , u(t)

)

dWt, t ∈ (0, T ], x|t=0 = x0 ∈ R. (2.1)

The considered cost functional is given by

J(u) = E

[

∫ T

0

(

h(xu
t ) + j

(

u(t)
)

)

dt+ k(xu
T )

]

, (2.2)

where h(·), j(·), k(·) are given functions and xu
t is the solution of (2.1). We now state

our stochastic optimal control problem as follows:

Find u∗ ∈ K such that J(u∗) = min
u∈K

J(u). (2.3)

Throughout the paper, we shall make the following assumption.
Assumption 1.

• The functions b = b(x, u) and σ = σ(x, u) are continuously differentiable with
respect to x and u, and have bounded derivatives.

• The functions h, j and k are continuously differentiable, and their derivatives
have at most a linear growth with respect to the underling variables.

Notice that under Assumption 1, the solution xu
t of (2.1) and the cost functional

J(u) are all well defined for u ∈ K.

3. The gradient projection method. In this section, we will present details
of our gradient projection method. For the stochastic optimal control problem (2.1)-
(2.2), it is well known that for the optimal control u∗ it holds

(J ′(u∗), v − u∗) > 0, ∀v ∈ K, (3.1)

where (J ′(u), v) is the variation of J(u) along the direction v, i.e., for v ∈ U such that
u+ v ∈ K, we have

(J ′(u), v) = lim
ρ ↓ 0

J(u+ ρv)− J(u)

ρ
. (3.2)

The existence of such derivatives has been discussed in [13, 32, 40]. Here we slightly
abuse the notation by referring J ′(u), the functional, to the corresponding element in
U , as U is a Hilbert space.

Next, we propose a gradient projection method for solving the optimal condition
(3.1). To this end, let ∥ · ∥ be the norm of U . We define the projection operator PK :
ω 7→ PKω as

∥

∥PKω − ω
∥

∥ = min
u∈K

∥u− ω∥. (3.3)

Notice that the projection problem (3.3) is equivalent to the inequality

(PKω − ω, v − PKω) > 0, ∀v ∈ K. (3.4)
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For any positive constant ρ, the variational inequality (3.1) is equivalent to the fol-
lowing inequality

(

u∗ − (u∗ − ρJ ′(u∗)) , v − u∗)
> 0, ∀v ∈ K. (3.5)

By the fact of wellposedness of convex optimizations and by comparing the above
inequality with the inequality (3.4), we conclude that for the optimal control u∗, it
holds

u∗ = PK(u∗ − ρJ ′(u∗)). (3.6)

That is, the optimal control u∗ is the fixed point of PK(u− ρJ ′(u)) on K.
We shall approximate the control u∗ numerically by step functions. To this end,

we introduce the following uniform time partition:

0 = tN0 < tN1 < · · · < tNN = T, tNn+1 − tNn = T/N =: ∆t. (3.7)

We will denote by INn the intervals [tNn−1, t
N
n ) for 1 6 n 6 N − 1, and by INN the

interval [tNN−1, t
N
N ]. In the context where N is fixed, we shall omit the superscript N

of tNn . We also define the associated space of piecewise constant functions by

UN =

{

u ∈ U | u =
N
∑

n=1

αnXIN
n

a.e., αn ∈ R

}

.

Let KN = K ∩UN , then it is clear that KN is also convex and closed. Now, we define
the approximated problem of (2.3) by

J(u∗,N ) = min
u∈KN

J(u).

Using similar arguments, one can show that

u∗,N = PKN

(

u∗,N − ρJ ′(u∗,N )
)

. (3.8)

Based on the above optimal condition, we propose the following fixed-point iteration
scheme to get the approximated optimal control

ui+1,N = PKN

(

ui,N − ρiJ
′
N (ui,N )

)

, i = 1, 2, · · · , (3.9)

where ρi is a positive constant. Notice that in the above equation we have changed
J ′(·) into J ′

N (·), as one cannot compute J ′(·) exactly in general, and thus it is obtained
by numerical approaches. It is clear that J ′

N (·) depends on particular numerical
schemes, and we shall discuss the numerical approximation of J ′

N (·) in later sections.
We will denote the error between J ′(·) and J ′

N (·) by
ϵN = sup

i

∥

∥J ′(uN,i)− J ′
N (uN,i)

∥

∥ . (3.10)

Next, we show in Theorem 1 the convergence property of the iteration scheme (3.9).
Theorem 1. Assume that J ′(·) is Lipschitz and uniformly monotone around u∗

and u∗,N in the sense that there exist positive constants c and C such that

∥J ′(u∗)− J ′(v)∥ 6 C∥u∗ − v∥, ∀v ∈ K,
(

J ′(u∗)− J ′(v), u∗ − v
)

> c∥u∗ − v∥2, ∀v ∈ K,

∥J ′(u∗,N )− J ′(v)∥ 6 C∥u∗,N − v∥, ∀v ∈ KN ,
(

J ′(u∗,N )− J ′(v), u∗,N − v
)

> c∥u∗,N − v∥2, ∀v ∈ KN .
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Moreover, we assume that

ϵN = sup
i

∥

∥J ′(ui,N )− J ′
N (ui,N )

∥

∥ → 0, N → ∞.

Suppose that ρi is chosen such that 0 < 1− 2cρi + (1+ 2C)ρ2i 6 δ2 for some constant
0 < δ < 1. Then, the iteration scheme (3.9) is convergent, more precisely, we have

∥u∗ − ui,N∥ → 0. i, N → ∞.

Proof. By (3.8) and (3.9), we have

∥

∥u∗,N − ui+1,N
∥

∥

2
6

∥

∥u∗,N − ui,N − ρi
(

J ′(u∗,N )− J ′
N (ui,N )

)∥

∥

2

=
∥

∥u∗,N − ui,N
∥

∥

2 − 2ρi
(

u∗,N − ui,N , J ′(u∗,N )− J ′
N (ui,N )

)

+ ρ2i
∥

∥J ′(u∗,N )− J ′
N (ui,N )

∥

∥

2
.

By the Lipschitz condition and monotonicity property of J ′(·), we have

− 2ρi
(

u∗,N − ui,N , J ′(u∗,N )− J ′
N (ui,N )

)

=− 2ρi
(

u∗,N − ui,N , J ′(u∗,N )− J ′(ui,N ) + J ′(ui,N )− J ′
N (ui,N )

)

6− 2cρi
∥

∥u∗,N − ui,N
∥

∥

2
+ ρ2i

∥

∥u∗,N − ui,N
∥

∥

2
+ ϵ2N .

Moreover, we have

ρ2i
∥

∥J ′(u∗,N )− J ′
N (ui,N )

∥

∥

2
= ρ2i

∥

∥J ′(u∗,N )− J ′(ui,N ) + J ′(ui,N )− J ′
N (ui,N )

∥

∥

2

6 2Cρ2i
∥

∥u∗,N − ui,N
∥

∥

2
+ 2ρ2i ϵ

2
N .

It is easy to show that for sufficiently small ρi, there is a constant 0 < δ < 1 such
that 0 < 1− 2cρi + (1 + 2C)ρ2i 6 δ2, then we get

∥

∥u∗,N − ui+1,N
∥

∥

2
6 δ2

∥

∥u∗,N − ui,N
∥

∥

2
+ (1 + 2ρ2i )ϵ

2
N , (3.11)

Then, there exists a constant C1 that independent of N and i such that

∥

∥u∗,N − ui,N
∥

∥ 6 δi
∥

∥u∗,N − u0,N
∥

∥+ C1ϵN .

Under the assumption ϵN → 0, we get

∥u∗,N − ui,N∥ → 0. (N, i → ∞). (3.12)

On the other hand, using similar arguments as for deriving (3.11), we obtain

∥

∥u∗ − u∗,N∥

∥ =
∥

∥u∗ − PKN
(u∗ − ρJ ′(u∗)) + PKN

(

u∗ − ρJ ′(u∗))− u∗,N∥

∥

6 ∥u∗ − PKN
(u∗ − ρJ ′(u∗))∥+

√

1− 2cρ+ Cρ2
∥

∥u∗ − u∗,N∥

∥ .

Let ρ = c/C, C2 =
(

1−
√

1− 2cρ+ Cρ2
)−1

, we have

∥

∥u∗ − u∗,N∥

∥ 6 C2 ∥u∗ − PKN
(u∗ − ρJ ′(u∗))∥ .
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Since C is invariant in time, for v ∈ UN , it holds that PKv ∈ UN . Thus we have
PKv ∈ KN , and then we have PKv = PKN

v. Now, denoting ω := u∗ − ρJ ′(u∗), we
have

∥

∥u∗ − u∗,N∥

∥ 6 C2 ∥u∗ − PKN
(u∗ − ρJ ′(u∗))∥ = C2 ∥PKω − PKN

ω∥
6 C2 (∥PKω − PKPUN

ω∥+ ∥PKPUN
ω − PKN

ω∥)
= C2 (∥PKω − PKPUN

ω∥+ ∥PKN
PUN

ω − PKN
ω∥)

6 2C2 ∥ω − PUN
ω∥ .

As UN is dense in U , we have ∥ω−PUN
ω∥ → 0, and thus ∥u∗−u∗,N∥ → 0. Then, the

conclusion follows from this argument and (3.12).
In Theorem 1 we have shown the convergence of ∥u∗,N − ui,N∥ under the as-

sumption ϵN → 0. Note that this is a reasonable assumption. In fact, under certain
regularity requirements, and by designing suitable numerical approaches for J ′

N (·),
one could further expect that ϵN ∼ O(∆t). In such a case, we could expect a first
order rate of convergence of our iteration scheme (3.9), as illustrated in the following
corollary.

Corollary 1. Suppose that the conditions in Theorem 1 holds, and furthermore,
we assume that u∗ and J ′(u∗) are both Lipschitz continuous functions in U , then under
the condition ϵN ∼ O(∆t) we have

∥

∥u∗ − ui,N
∥

∥ ∼ O(∆t), i → ∞.

The iteration scheme (3.9) is the starting point of our numerical approach for stochas-
tic optimal control problems. In the following sections, we shall show how to get the
numerical approximation J ′

N (u) of J ′(u) in each iteration.

3.1. The representation of J ′(u). It is noticed that the iteration scheme (3.9)
involves the computation of J ′(u). In this section, we will derive a new formula of
J ′(u) for fixed u ∈ K by introducing a pair of adjoint processes. Again in all our
arguments, J ′(u) is referred to the element of U .

By the definition (3.2), we have

(J ′(u), v) = lim
ρ ↓ 0

J(u+ ρv)− J(u)

ρ

= E

[

∫ T

0

h′(xu
t )Dxu

t (v) dt+

∫ T

0

j′
(

u(t)
)

v(t) dt+ k′(xu
T )Dxu

T (v)
]

, (3.13)

where xu
t is the solution of the SDE (2.1), and

Dxu
t (v) := lim

ρ ↓ 0

xu+ρv
t − xu

t

ρ
.

Under Assumption 1, the process Dxu
t (v) satisfies the SDE

dDxu
t (v) =

(

b′x
(

xu
t , u(t)

)

Dxu
t (v) + b′u

(

xu
t , u(t)

)

v(t)
)

dt

+
(

σ′
x

(

xu
t , u(t)

)

Dxu
t (v) + σ′

u

(

xu
t , u(t)

)

v(t)
)

dWt, Dxu
0 (v) = 0. (3.14)

Notice that one can resort to the above equation to get J ′(u), however, this would in-
volve very complicate numerical schemes for solving (3.14) (see e.g. [7]). To overcome
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this, we shall introduce a pair of adjoint processes (pu, qu) that solves the following
backward stochastic differential equation (BSDE):

−dput = f
(

xu
t , p

u
t , q

u
t , u(t)

)

dt− qut dWt, puT = g(xu
T ) = k′(xu

T ), (3.15)

where f is defined as

f(x, p, q, u) = h′(x) + p b′x(x, u) + q σ′
x(x, u).

Notice that by the standard BSDE theory, under Assumption 1, the BSDE (3.15)
admits an unique solution (put , q

u
t ) for u ∈ K. We remark that theoretical studies of

BSDEs has been a hot topic recently. In particular, the wellposedness of our adjoint
equation, i.e., the BSDEs (3.15), has been well discussed under mild assumptions.
One can refer to [34, 33, 29] for more details on the BSDEs theory.

We shall show in the following that by introducing the pair (put , q
u
t ), the involving

terms Dxu
t (v) in (3.13) will be canceled. More precisely, by Itǒ’s formula, we have

h′(xu
t )Dxu

t (v)dt

= −Dxu
t (v)dp

u
t −

(

put b
′
x

(

xu
t , u(t)

)

+ qut σ′
x

(

xu
t , u(t)

)

)

Dxu
t (v)dt+ qut Dxu

t (v)dWt

= −d
(

put Dxu
t (v)

)

+ put dDxu
t (v) + qut

(

σ′
x

(

xu
t , u(t)

)

Dxu
t (v) + σ′

u

(

xu
t , u(t)

)

v(t)
)

dt

−
(

put b
′
x

(

xu
t , u(t)

)

+ qut σ′
x

(

xu
t , u(t)

)

)

Dxu
t (v)dt+ qut Dxu

t (v)dWt

= −d
(

put Dxu
t (v)

)

+
(

put b
′
u

(

xu
t , u(t)

)

+ qut σ′
u

(

xu
t , u(t)

)

)

v(t)dt

+
(

put σ
′
x

(

xu
t , u(t)

)

Dxu
t (v) + put σ

′
u

(

xu
t , u(t)

)

v(t) + qut Dxu
t (v)

)

dWt. (3.16)

Then, by inserting (3.16) into (3.13), we obtain

(J ′(u), v) =

∫ T

0

(

E
[

put b
′
u

(

xu
t , u(t)

)

+ qut σ′
u

(

xu
t , u(t)

)]

+ j′
(

u(t)
)

)

v(t)dt.

Then, we can re-define J ′(u) by

J ′(u)|t = E
[

put b
′
u

(

xu
t , u(t)

)

+ qut σ′
u

(

xu
t , u(t)

)]

+ j′
(

u(t)
)

. (3.17)

Here J ′(u)|t represents J ′(u), as an element of U , valued at t.

To simplify the expression of J ′(u), we have introduced a pair of adjoint processes
(pu, qu) that satisfies the BSDE (3.15), to get rid of the term Dxu

t (·). Then, by solving
the BSDE (3.15), we can get the solution pair (pu, qu) numerically, and then further
get an approximated J ′

N (u) of J ′(u) by using (3.17). In the next section, we shall
propose an Euler type method for solving the adjoint BSDE (3.15).

Remark 1. We remark that the authors in [12] also introduced an adjoint e-
quation to cancel the term Dxu

t (·). The adjoint equation therein is an anticipating
integrand stochastic differential equation, where the solution is required to be backward-
adapted instead of the classic forward adapted. However, such a requirement is not
true in general. In other words, the wellposedness of the adjoint equation in [12] is
unclear for general situations.
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3.2. Numerical approximations for adjoint equations. By (3.15), it is no-
ticed that the solution pair (put , q

u
t ) depends on the forward process xu

t . Hence, we
need to solve (for t ∈ [0, T ]) the following forward-backward stochastic differential
equations (FBSDEs)

{

dxu
t = b

(

xu
t , u(t)

)

dt+ σ
(

xu
t , u(t)

)

dWt, xt=0 = x0,

−dput = f
(

xu
t , p

u
t , q

u
t , u(t)

)

dt− qut dWt, puT = g(xu
T ).

(3.18)

Next, we shall discuss how to solve the above FBSDEs numerically with a given
u ∈ K. For notation simplicity, we shall omit the superscript u in this section, such
as xt = xu

t , pt = put , qt = qut .
Under mild assumptions, it is well known that the above backward equation is

wellposed [35]. Moreover, the solutions pt and qt have the representations

pt = η(t, xt), qt = σ
(

xt, u(t)
)

∂xη(t, xt), (3.19)

where η(t, x) : [0, T ]× R → R is the solution of the following parabolic PDE

L0η(t, x) = −f
(

x, η(t, x), σ
(

x, u(t)
)

∂xη(t, x), u(t)
)

, η(T, x) = g(x), (3.20)

with

L0η(t, x) = ∂tη(t, x) + b
(

x, u(t)
)

∂xη(t, x) +
1

2
σ
(

x, u(t)
)2
∂xxη(t, x),

The representations in (3.19) is the so called nonlinear Feynman-Kac formula [35].
We remark that numerical methods for FBSDEs is a hot topic recently, and one

can refer to [27, 28, 44, 45, 46] and references therein for variable numerical approaches.
Here in this paper, we shall introduce a simple scheme, namely the Euler scheme, for
solving the FBSDEs (3.18).

3.3. The Euler scheme for FBSDEs. We now follow closely the work [45]
and [46] to introduce the Euler method for solving the FBSDEs (3.18). The time
partition was defined in (3.7). By integrating both sides of the backward equation on
[tn, tn+1] we obtain

ptn = ptn+1
+

∫ tn+1

tn

f(xt, pt, qt, u(t)) dt−
∫ tn+1

tn

qt dWt. (3.21)

Then by taking conditional expectation E
x
tn [·] = E[·| Ftn , xtn = x] on both sides of

(3.21) and applying the left-point rectangular rule, we have

pxtn = E
x
tn

[

ptn+1

]

+∆t f
(

x, pxtn , q
x
tn , u(tn)

)

+ R̄x
p,n, (3.22)

where

R̄x
p,n =

∫ tn+1

tn

E
x
tn

[

f
(

xt, pt, qt, u(t)
)]

dt−∆t f
(

x, pxtn , q
x
tn , u(tn)

)

is the truncation error due to the left-point rectangular rule. Equation (3.22) is our
reference equation for solving p.

Next, we aim to deriving another reference equation for solving q. To this end,
by multiplying (3.21) by ∆Wn+1 := Wtn+1

−Wtn and taking conditional expectation
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E
x
tn [·] on both sides of the derived equation and then applying again the left-point

rectangular rule, we obtain

qxtn =
1

∆t

(

E
x
tn

[

ptn+1
∆Wn+1

]

+ R̄x
q,n

)

, (3.23)

where

R̄x
q,n =

∫ tn+1

tn

E
x
tn

[

f
(

xt, pt, qt, u(t)
)

∆Wn+1

]

dt−
∫ tn+1

tn

E
x
tn [qt] dt+∆t qxtn

is again the corresponding truncation error.

By removing the error terms R̄x
p,n and R̄x

q,n in (3.22) and (3.23), we get the
following semi-discretization scheme for the BSDE in (3.18): impose the initial value
of pxN = g(x) on x ∈ R, and then for n = N−1, · · · , 1, 0, compute pxn = pn(x) and
qxn = qn(x) with x ∈ R in a backward way by

pxn = E
x
tn

[

pn+1

]

+∆t f
(

x, pxn, q
x
n, u(tn)

)

, (3.24)

qxn =
1

∆t
E
x
tn

[

pn+1∆Wn+1

]

. (3.25)

Notice that in the above semi-discretization schemes (3.24) and (3.25), solving pxn and
qxn for each x ∈ R may involve the knowledge of pn+1 on the whole space region R. To
apply this scheme into practice, the spacial discretization of R and the approximations
of the conditional expectation E

x
tn [·] are required.

To do this, we introduce a uniform partition Rh of the R as

Rh =
{

xk

∣

∣ k = 0,±1,±2, ...
}

, with ∆x = xk+1 − xk.

We shall denote Ik =: [xk, xk+1]. Notice that the above partition involves infinite
grid points, however, this is unnecessary in practical applications, as we are always
interested in the final information (t = 0) in a finite interval. This means that we
can consider a finite partition with |k| ≤ P with P being a positive integer (which
can be very large and problem dependent). In what follows, we shall consider a finite
partition with the parameter P. We remark that how to choose a reasonable P is not
a trivial work, and we refer to [46] for further discussions.

On the partition Rh, we introduce a continuous piece-wise linear function space
Vh, the element of which v ∈ Vh can be represented as follows

v(x) =
∑

|k|≤P

vk(xk)ϕk(x), with ϕk(x) =











x−xk−1

xk−xk−1
, x ∈ Ik−1,

xk+1−x
xk+1−xk

, x ∈ Ik,

0, otherwise.

For a continuous function f(x), we now introduce the associated interpolation oper-
ator Ih by

Ihf(x) =
∑

|k|≤P

f(xk)ϕk(x),

i.e., a function in Vh is determined by its values at the grid points in Rh.
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3.3.1. The approximation of conditional expectations. We now discuss
the approximation of conditional expectations. Let x̃tn,x

tn+1
be the Euler approximation

of the state xtn,x
tn+1

, namely,

x̃tn,x
tn+1

= x+ b
(

x, u(tn)
)

∆t+ σ
(

x, u(tn)
)

∆Wn+1

= x+ b
(

x, u(tn)
)

∆t+ σ
(

x, u(tn)
)
√
∆t ζ,

(3.26)

where ζ ∼ N (0, 1) is a normal random variable.

We choose p̃tn,xtn+1
= ptn+1

(x̃tn,x
tn+1

) = η(tn+1, x̃
tn,x
tn+1

) to approximate ptn,xtn+1
, where

η(t, x) is the solution of the problem (3.19). As a result, p̃tn,xk

tn+1
is a function of x̃tn,xk

tn+1
,

thus a function of the increment ∆Wn+1. Therefore, the conditional expectation
E
x
tn [p̃tn+1

] (as well as E
x
tn [p̃tn+1

∆Wn+1]) can be written into an integral on R with

the Gaussian probability density function ρ(ξ) = 1√
2π

e−ξ2/2. Hence we propose the

Gauss-Hermite quadrature rule to approximate these conditional expectations. The
L-point Gauss-Hermite quadrature rule for a function f writes

E[f(ζ)] =

∫

R

f(ξ)ρ(ξ)dξ ≈
L
∑

ℓ=1

f(ξℓ)ωℓ, (3.27)

where {ξℓ} and {ωℓ} are the Gaussian-Hermite quadrature points and the associated
weights, respectively.

Consider for example the approximation of the conditional expectation E
x
tn [p̃tn+1

],
we have

E
x
tn [p̃tn+1

] = E[ptn+1
(x̃tn,x

tn+1
)]

= E
[

ptn+1

(

x+ b
(

x, u(tn)
)

∆t+ σ
(

x, u(tn)
)
√
∆t ζ

)]

≈
L
∑

ℓ=1

ptn+1

(

x+ b
(

x, u(tn)
)

∆t+ σ
(

x, u(tn)
)
√
∆t ξℓ

)

ωℓ.

(3.28)

We shall denote by Ẽ
x
tn [ptn+1

] the approximation of Ex
tn [p̃tn+1

], more precisely,

Ẽ
x
tn [ptn+1

] =
L
∑

ℓ=1

ptn+1

(

x+ b
(

x, u(tn)
)

∆t+ σ
(

x, u(tn)
)
√
∆t ξℓ

)

ωℓ. (3.29)

Similarly we denote by Ẽ
x
tn [ptn+1

∆Wn+1] the approximation of Ex
tn [p̃tn+1

∆Wn+1] :

Ẽ
x
tn [ptn+1

∆Wn+1] =
L
∑

ℓ=1

ptn+1

(

x+ b
(

x, u(tn)
)

∆t+ σ
(

x, u(tn)
)
√
∆t ξℓ

)
√
∆t ξℓ ωℓ.

(3.30)
In the quadrature rule (3.29), it is noticed that x̂ = x+b(x, u(tn))∆t+σ(x, u(tn))

√
∆t ξℓ

may not be on the partition Rh. Therefore, we shall resort to the linear interpolation
Ih to get the desired information. To this end, we define

Ê
x
tn [ptn+1

] =
L
∑

ℓ=1

Ihptn+1

(

x+ b
(

x, u(tn)
)

∆t+ σ
(

x, u(tn)
)
√
∆t ξℓ

)

ωℓ. (3.31)
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Similarly, we define Ê
x
tn [ptn+1

∆Wn+1] as

Ê
x
tn [ptn+1

∆Wn+1] =
L
∑

ℓ=1

Ihptn+1

(

x+ b
(

x, u(tn)
)

∆t

+ σ
(

x, u(tn)
)
√
∆t ξℓ

)
√
∆t ξℓ ωℓ.

(3.32)

Notice that the approximated expectation Ê
x
tn [·] is a function of x. In the partition

space Rh, we denote Êtn [·] := Ê
xtn

tn [·]. In addition, for functions f ∈ Vh, we have

Ê
x
tn [f(x̃

tn,x
tn+1

)] = Ẽ
x
tn [f(x̃

tn,x
tn+1

)],

Ê
x
tn [f(x̃

tn,x
tn+1

)∆Wn+1] = Ẽ
x
tn [f(x̃

tn,x
tn+1

)∆Wn+1].

Based on the above observations, we finally get the following approximations Êx
tn [ptn+1

]

and Ê
x
tn [ptn+1

∆Wn+1] of E
x
tn [ptn+1

] and E
x
tn [ptn+1

∆Wn+1] :

E
x
tn [ptn+1

] = Ê
x
tn [ptn+1

] + R̂x
p,n,

E
x
tn [ptn+1

∆Wn+1] = Ê
x
tn [ptn+1

∆Wn+1] + R̂x
q,n,

(3.33)

where R̂k
p,n and R̂k

q,n are the truncation errors:

R̂x
p,n = R̃x

p,n +Rx
E,p,n +Rx

Ih,p,n
,

R̂x
q,n = R̃x

q,n +Rx
E,q,n +Rx

Ih,q,n
,

(3.34)

with

R̃x
p,n = E

x
tn [ptn+1

]− E
x
tn [p̃tn+1

], R̃x
q,n = E

x
tn [ptn+1

∆Wn+1]− E
x
tn [p̃tn+1

∆Wn+1],

Rx
E,p,n = E

x
tn [p̃tn+1

]− Ẽ
x
tn [ptn+1

], Rx
E,q,n = E

x
tn [p̃tn+1

∆Wn+1]− Ẽ
x
tn [ptn+1

∆Wn+1],

Rx
Ih,p,n

= Ẽ
x
tn [ptn+1

]− Ê
x
tn [ptn+1

], Rx
Ih,q,n

= Ẽ
x
tn [ptn+1

∆Wn+1]− Ê
x
tn [ptn+1

∆Wn+1].

3.3.2. The fully discrete scheme. By the reference equations (3.22) and (3.23)
and the approximations of the conditional expectations in (3.31), we get the following
two equations:

pxtn = Ê
x
tn

[

ptn+1

]

+∆t f
(

x, pxtn , q
x
tn , u(tn)

)

+Rx
p,n, pxtN = g(x), (3.35)

qxtn =
1

∆t

(

Ê
x
tn

[

ptn+1
∆Wn+1

]

+Rx
q,n

)

, (3.36)

where Rx
p,n and Rx

q,n are the total truncation errors defined by

Rx
p,n = R̄x

p,n + R̂x
p,n, Rx

q,n = R̄x
q,n + R̂x

q,n (3.37)

with R̄x
p,n and R̄x

q,n defined in (3.22) and (3.23), and R̂x
p,n and R̂x

q,n defined in (3.34).
Based on the two reference equations (3.35) and (3.36), we propose a fully dis-

crete numerical scheme for solving the FBSDEs (3.18) as follows: given the terminal
condition pN =

∑

|k|≤P g(xk)ϕk(·) ∈ Vh, for n = N − 1, · · · , 1, 0, and each xk ∈ Rh,
solve pn ∈ Vh and qn ∈ Vh by

pkn = Ê
xk

tn

[

pn+1

]

+∆t f
(

xk, p
k
n, q

k
n, u(tn)

)

, (3.38)

qkn =
1

∆t
Ê
xk

tn

[

pn+1∆Wn+1

]

. (3.39)
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3.4. Summary of the numerical approach. We now summarize the entire
algorithm of our gradient projection method. In the fixed-point iteration (3.9), we
have introduced J ′

N (·) as the approximation of J ′(·). As the relation between J ′(·)
and the adjoint processes (p, q) has been revealed in (3.17), it is natural to define
the approximation J ′

N (·) by replacing p, q and E[·] in (3.17) with the numerical ones.
More precisely, we define

J ′
N (u)|tn = Ê

[

pnb
′
u

(

·, u(tn)
)

+ qnσ
′
u

(

·, u(tn)
)]

+ j′
(

u(tn)
)

, (3.40)

where Ê[·] is defined by

Ê[ϕt0 ] = ϕt0 , Ê[ϕtn ] = Ê
x0

t0 [Êt1 [· · · Êtn−1
[ϕtn ]]], n > 1. (3.41)

To make sure that J ′
N (·) ∈ UN , we define

J ′
N (u)|t =

N−1
∑

n=0

J ′
N (u)|tn XIN

n
(t). (3.42)

Then, the gradient projection method is summarized in Algorithm 1.

Algorithm 1 Gradient projection method

Set the initial guess of the control u0 ∈ UN and the error tolerance ϵ0;
1. Set the terminal condition: pkN = g(xk), xk ∈ Rh;
2. For n = N − 1, · · · , 1, 0, solve (pn, qn) by (3.38)-(3.39);
3. Compute J ′

N (u)|tn by (3.40);
4. Update u by (3.9);
Repeat the above steps until the error ∥ui+1,N − ui,N∥ reaches the tolerance ϵ0.

4. Error estimates. In this section, we shall perform a rigorous error analysis
for our gradient projection method. As concluded in Corollary 1, the first order rate
of convergence relies on the estimate ϵN = O(∆t). By observing the definition of
(3.17) and (3.40), we see that the error ϵN contains two parts: the numerical error

of (pkn, q
k
n) and the approximation error of Ê[·]. In the following sections, we shall

estimate the two parts one by one.

4.1. Preliminary results of the discrete operator Ê[·]. In this subsection,
we first show some basic properties of the approximated conditional expectations
Ê
xk

tn [·] and Ê[·] which are defined in (3.31) and (3.41) respectively.
Notice that the weights of the quadrature rule {ωℓ} are all positive and there

holds
∑

ℓ

ωℓ = 1.

Moreover, the L-point Gauss-Hermite quadrature rule is exact for polynomials with
degree less than or equal to 2L − 1. We now state some basic properties of Êxk

tn [·] in
the following:

Proposition 1. Given variables ϕtn+1
= ϕ̄(tn+1, xtn+1

), for L > 2, we have

• Ê[Êtn [ϕtn+1
]] = Ê[ϕtn+1

].

• If for any x, it holds ϕx
tn+1

> 0, then we have Ê
xk

tn [ϕtn+1
] > 0, Ê[ϕtn+1

] > 0.
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•
(

Ê
xk

tn [ϕtn+1
]
)2

6 Ê
xk

tn [(ϕtn+1
)2], (Ê[ϕtn ])

2 6 Ê[(ϕtn)
2],

(

Ê
xk

tn [ϕtn+1
∆Wtn+1

]
)2

6

(

Ê
xk

tn [(ϕtn+1
)2]− (Êxk

tn [ϕtn+1
])2

)

∆t.

The above propositions are all well known and easy to prove. It is also known
that under Assumption 1, for m > 1 it holds that

E[|xt|m] 6 C(|x0|m + 1).

In the following, we shall provide a similar result for the approximated expectation
Ê[·]. Notice that in what follows, C shall stand for a constant that is independent of
∆t, ∆x, n and k, while its value may vary from place to place.

Proposition 2. Under Assumption 1, for m > 2, L > 2, and ∆x = O(
√
∆t), it

holds

Ê[|xtn |m] 6 C(|x0|m + 1).

Proof. We denote by Ih|x|m the linear interpolation of the function | · |m at x.
By the interpolation theory, there exists θ ∈ [x−, x+] (where x− < x+ are two grid
points around x) such that for ∆x sufficiently small, it holds

Ih|x|m 6 |x|m +
1

8
m(m− 1)|θ|m−2(∆x)2

6 |x|m +
1

8
m(m− 1)

(

(|x|+∆x)m + 1
)

(∆x)2

6 |x|m + C
(

|x|m + C∆x(|x|m + 1) + 1
)

(∆x)2

6
(

1 + C(∆x)2
)

|x|m + C(∆x)2. (4.1)

For fixed k and ℓ, let a1 = xk + b(xk, u(tn))∆t and a2 = σ(xk, u(tn))
√
∆t ξℓ, then

there exists θ ∈ [a1, a1 + a2] such that

|xk,ℓ|m = |a1 + a2|m = |a1|m +m|a1|m−1sgn(a1)a2 +m(m− 1)|θ|m−2(a2)
2

6 |a1|m +m|a1|m−1sgn(a1)a2 +m(m− 1)(|a1|+ |a2|)m−2(a2)
2. (4.2)

By the assumptions on b and σ, for sufficiently small ∆t we have

|a1|m 6
(

(1 + C∆t)|xk|+ C∆t
)m

6 (1 + C∆t)m|xk|m + C∆t(|xk|m + 1)

6 (1 + C∆t)|xk|m + C∆t,

|a1|+ |a2| 6 C(|xk|+ 1).

Using together (4.1)-(4.2) and the definition

xk,ℓ = xk + b(xk, u(tn))∆t+ σ(xk, u(tn))
√
∆t ξℓ,
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we have

Ê
xk

tn [|xtn+1
|m] =

L
∑

ℓ=1

Ih|xk,ℓ|mωℓ

6
(

1 + C(∆x)2
)

L
∑

ℓ=1

|xk,ℓ|mωℓ + C(∆x)2

6
(

1 + C(∆x)2
)

(

(1 + C∆t)|xk|m + C∆t+ C(|xk|m + 1)∆t
)

+ C(∆x)2

6
(

1 + C(∆x)2
)(

(1 + C∆t)|xk|m + C∆t
)

+ C(∆x)2.

Consequently, by the definition (3.41) and the assumption ∆x = O(
√
∆t ), we have

Ê
[

|xtn+1
|m

]

= Ê
[

Êtn [|xtn+1
|m]

]

6
(

1 + C(∆x)2
)

(

(1 + C∆t)Ê[|xtn |m] + C∆t
)

+ C(∆x)2

6
(

1 + C(∆x)2
)n+1

(1 + C∆t)n+1
(

|x0|m + (n+ 1)C∆t+ (n+ 1)C(∆x)2
)

6 C(|x0|m + 1).

This completes the proof.
Next, by the variational arguments, we can easily present an approximation prop-

erty for the expectation Ê[·].
Lemma 1. Assume that b, σ ∈ C0,4

b . For ϕt = ϕ̄(t, xt) with ϕ̄ ∈ C0,4
b , we define

Φti(x) = E
x
ti [ϕtn ], then it holds Φti ∈ C0,4

b , and furthermore, we have

E[ϕtn ] = Ê[ϕtn ] +
n−1
∑

i=0

Ê[R̂Φ,i],

with R̂Φ,i = E
xti

ti [Φti+1
]− Ê

xti

ti [Φti+1
], 1 6 i 6 n.

4.2. The error estimates of (pkn, q
k
n). We let

µn = ptn − pn, νn = qtn − qn,

where (pt, qt) and (pn, qn) are the exact solutions of the FBSDEs (3.18) and numerical
solutions of the scheme (3.38)-(3.39), respectively. Notice that

pn(x) =
∞
∑

k=−∞
pknϕk(x), qn(x) =

∞
∑

k=−∞
qknϕk(x),

where (pkn, q
k
n) are numerical solutions by scheme (3.38)-(3.39), and for xk ∈ Rh we

have (pkn, q
k
n) = (pn(xk), qn(xk)). We now define

µk
n = pxk

tn − pkn, νkn = qxk

tn − qkn.

Then, by subtracting the equation (3.38) from the equation (3.35), and the equation
(3.39) from the equation (3.36), respectively, we deduce that

µk
n = Ê

xk

tn [µn+1] + ∆t δfk
n +Rk

p,n, µk
N = pxk

tN − pkN , (4.3)

νkn =
1

∆t

(

Ê
xk

tn [µn+1∆Wn+1] +Rk
q,n

)

, (4.4)
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where

δfk
n = f(xk, p

xk

tn , q
xk

tn , u(tn))− f(xk, p
k
n, q

k
n, u(tn)), Rk

p,n = Rxk

p,n, Rk
q,n = Rxk

q,n.

Now, we are ready to give the estimates of µk
n and νkn in the following Lemma.

The estimates also imply the stability of the scheme (3.38)-(3.39) and will be used in
our final error estimates.

Lemma 2. Under proposition 1, namely, assume that f(x, p, q, u) is Lipschitz
continuous with respect to p and q, uniformly in x and u, then there holds

Ê[(µn)
2] + ∆t

N−1
∑

n=0

Ê[(νn)
2] 6 C Ê[(µN )2] +

C

∆t

N−1
∑

n=0

Ê
[

(Rp,n)
2 + (Rq,n)

2
]

.

Proof. By taking square of the equations (4.3)-(4.4), and using together Proposi-
tion 1, and the inequality (a+ b)2 6 (1 + ϵ)a2 + (1 + 1/ϵ)b2 we get

(µk
n)

2
6 (1 + γ∆t)

(

Ê
xk

tn [µn+1]
)2
,

+ C
(

1 +
1

γ∆t

)(

∆t2
(

(µk
n)

2 + (νkn)
2
)

+ (Rk
p,n)

2
)

(νkn)
2
6

C

∆t

(

Ê
xk

tn [(µn+1)
2]−

(

Ê
xk

tn [µn+1]
)2
)

+
C

(∆t)2
(

Rk
q,n

)2
.

Let ∆t 6 1/γ, γ = 4C2, and add up the above inequalities to get

(µk
n)

2 +
∆t

2C
(νkn)

2
6 (1 + γ∆t)Êxk

tn [(µn+1)
2] +

∆t

2C
(µk

n)
2

+
1

2∆t

(

(Rk
p,n)

2 + (Rk
q,n)

2
)

,

which yields

(µk
n)

2 + C∆t(νkn)
2
6 (1 + C∆t)Êxk

tn [(µn+1)
2] +

1

∆t

(

(Rk
p,n)

2 + (Rk
q,n)

2
)

.

By taking discrete expectation on the above inequality, using together property i, we
have

Ê[(µn)
2] + C∆t Ê[(νn)

2] 6 (1 + C∆t)Ê[(µn+1)
2] +

1

∆t
Ê
[

(Rp,n)
2 + (Rq,n)

2
]

. (4.5)

Then, we gets

Ê[(µn)
2] 6 C Ê[(µN )2] +

C

∆t

N−1
∑

n=0

Ê
[

(Rp,n)
2 + (Rq,n)

2
]

. (4.6)

Taking the summation of (4.5) from n = 0 to N − 1 we get

C∆t
N−1
∑

n=0

Ê[(νn)
2] 6

N−1
∑

n=0

(

C∆t Ê[(µn+1)
2] +

1

∆t
Ê
[

(Rp,n)
2 + (Rq,n)

2
]

)

6 C Ê[(µN )2] +
C

∆t

N−1
∑

n=0

Ê
[

(Rp,n)
2 + (Rq,n)

2
]

. (4.7)
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Then, the proof is completed.

We now provide with the following lemma for estimating the truncation errors,
and the proof is somehow standard using the arguments of approximation theory.

Lemma 3. Suppose that Assumptions 1 holds, and moreover, we assume that
b(·, w), σ(·, w) ∈ C4

b , and f(·, ·, ·, w) ∈ C2,2,2
b hold uniformly in w ∈ C, η ∈ C1,4

b .
Then, we have

1

∆t

N−1
∑

n=0

Ê
[

(Rp,n)
2 + (Rq,n)

2
]

= O
(

(∆t)2
)

+O
(

(∆x)4/(∆t)2
)

.

Proof. As shown in (3.34), (3.35) and (3.36), Rk
p,n and Rk

q,n consist of the following
parts of errors.

Rk
p,n =R̄k

p,n + R̃k
p,n +Rk

E,p,n +Rk
Ih,p,n

,

Rk
q,n =R̄k

q,n + R̃k
q,n +Rk

E,q,n +Rk
Ih,q,n

.
(4.8)

By the interpolation theory, we have the following estimate

Rk
Ih,p,n

= O
(

(∆x)2
)

, Rk
Ih,q,n

= O
(

(∆x)2
)

.

Also, by the error estimate of the Gauss quadrature rule [31], for f ∈ Cr and 0 < ϵ < 1
we have

∣

∣

∣

∣

∣

1√
2π

∫

R

f(ξ)e−ξ2/2dξ −
L
∑

ℓ=1

f(ξℓ)ωℓ

∣

∣

∣

∣

∣

6
CL−r/2

√
2π

∫

R

|f (r)(ξ)e−(1−ϵ)ξ2/2|dξ,

where the constant C is dependents on r while independent of L and f. Therefore,
we have that

∣

∣Rk
E,p,n

∣

∣ 6 Cσ
(

xk, u(tn)
)4
(∆t)2,

∣

∣Rk
E,q,n

∣

∣ 6 Cσ
(

xk, u(tn)
)4
(∆t)5/2 + Cσ

(

xk, u(tn)
)3
(∆t)2.

Then, by Proposition 2, we have

Ê[(RE,p,n)
2] = O

(

(∆t)4
)

, Ê[(RE,q,n)
2] = O

(

(∆t)4
)

.

For R̃k
p,n and R̃k

q,n, a rough estimation follows by the Taylor expansion: by subtracting
(4.10) from (4.9) we obtain

E
xk

tn [ptn+1
] = pxk

tn+1
+∆tL η(tn+1, xk) +

∫ tn+1

tn

∫ s

tn

E
xk

tn [LL η(tn+1, yr)]drds, (4.9)

E
xk

tn [p̃tn+1
] = pxk

tn+1
+∆tL η(tn+1, xk) +

∫ tn+1

tn

∫ s

tn

E
xk

tn [LL η(tn+1, ỹr)]drds, (4.10)

then we can deduce that R̃k
p,n = O

(

(∆t)2
)

, where

L η(t, x) = b
(

x, u(t)
)

∂xη(t, x) +
1

2
σ
(

x, u(t)
)2
∂xxη(t, x).
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Similarly, for R̃k
q,n we can derive that R̃k

q,n = O
(

(∆t)2
)

. Finally, for the semi-
discretization error, we have

R̄xk

p,n =

∫ tn+1

tn

∫ t

tn

E
xk

tn [L0f̄(s, ys)]dsdt,

R̄xk

q,n =

∫ tn+1

tn

∫ t

tn

E
xk

tn [L0f̄(s, ys)∆Wn+1 + L1f̄(s, ys)− L0ζ(s, ys)]dsdt,

where f̄(t, x) = f
(

x, η(t, x), ζ(t, x), u(t)
)

. Thus, by recalling that u ∈ UN , we have

R̄xk

p,n = O
(

(∆t)2
)

, R̄xk

q,n = O
(

(∆t)2
)

.

Then, the desired result follows by combining all the estimates above.

Using together the above arguments (Lemma 1-3), we can finally get the following
error estimates for our numerical schemes:

Theorem 2. Suppose that assumption 1 holds, and under similar assumptions
as in the above lemmas. Then, the conclusions of Lemma 2 and Lemma 3 imply

Ê[(µn)
2] + ∆t

N−1
∑

n=0

Ê
[

(νn)
2
]

= O
(

(∆t)2
)

+O
(

(∆x)4/(∆t)2
)

.

Then, we can further get

ϵN = sup
i

∥J ′(uN,i)− J ′
N (uN,i)∥ = O(∆t) +O

(

(∆x)2/∆t
)

.

In particular, by taking ∆x = ∆t, we have that ϵN = O(∆t). Then, using together
Corollary 1, we have

∥u∗ − uN,i∥ = O(∆t), i → ∞.

Proof. Given u ∈ UN , we define

ϕt = pt b
′
u

(

xt, u(t)
)

+ qt σ
′
u

(

xt, u(t)
)

+ j′
(

u(t)
)

,

ϕk
n = pknb

′
u

(

xk, u(tn)
)

+ qknσ
′
u

(

xk, u(tn)
)

+ j′
(

u(tn)
)

.

Then by the assumptions, we have ϕ̄ ∈ C1,4
b in [tn, tn+1) × R, where ϕ̄ is such that
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ϕt = ϕ̄(t, xt). Moreover, J ′(u)|t = E[ϕt], J
′
N (u)|tn = Ê[ϕn]. Then, we have

∥J ′(u)− J ′
N (u)∥2

6 C
N−1
∑

n=0

∫ tn+1

tn

(

J ′(u)|t − J ′(u)|tn
)2

+
(

J ′(u)|tn − J ′
N (u)|tn

)2
dt

= C
N−1
∑

n=0

∫ tn+1

tn

(

∫ t

tn

d

dr
E[ϕr]

∣

∣

∣

r=s
ds
)2

dt + C∆t
N−1
∑

n=0

(

E[ϕtn ]− Ê[ϕn]
)2

6 C∆t
N−1
∑

n=0

∫ tn+1

tn

∫ t

tn

(

E[L0ϕ̄(s, ys)]
)2

ds dt

+ C∆t
N−1
∑

n=0

(

(

E[ϕtn ]− Ê[ϕtn ]
)2

+
(

Ê[ϕtn ]− Ê[ϕn]
)2
)

6 C(∆t)2 + C(∆x)4/(∆t)2 + C∆t
N−1
∑

n=0

Ê
[

(µn)
2 + (νn)

2
]

= O
(

(∆t)2
)

+O
(

(∆x)4/(∆t)2
)

.

Notice that the above estimation of ∥J ′(u)− J ′
N (u)∥2 does not depend on the choice

of u, and then, we complete the proof.

5. Numerical experiments. In this section, we present several numerical ex-
amples to verify the efficiency of our numerical approach. In all our computations,
we need to choose a reasonable parameter ρ. Motivated by the error estimates in
the last section, it is noticed that the scheme admits good convergence property with
sufficiently small ρ. However, extremely small ρ would decrease the convergence rate
of the iteration. In our examples, we shall simply choose ρi = 1/

√
i. And in what

follows, we shall denote by ”CT” the convergence rate.
Example 1. Our first example has been used in [12]. The optimal control problem

is stated as

J(u∗) = min
u∈K

J(u)

with the cost functional

J(u) =
1

2

∫ T

0

E
[(

xt − x∗(t)
)2]

dt+
1

2

∫ T

0

u2(t)dt, K = U,

and the controlled state equation

dxt = u(t)xt dt+ σxt dWt.

Here σ is a constant. The deterministic function x∗ and the corresponding exact
solution u∗ are given by

u∗(t) =
T − t

1

x0
− Tt+

t2

2

, x∗(t) =
eσ

2t − (T − t)2

1

x0
− Tt+

t2

2

+ 1. (5.1)

We set x0 = 1, T = 1 and σ = 0.1, and the number of samples for approximating the
expectation is chosen as M = 105, and we set the tolerance as ϵ0 = 10−5. Numerical
results by our gradient projection method are presented in Figure 1.



Gradient projection for stochastic optimal control 19

t
0 0.2 0.4 0.6 0.8 1

co
nt

ro
l

0

0.2

0.4

0.6

0.8

1

1.2
exact solution and numerical solution

exact
numerical

log(N)
1.6 1.7 1.8 1.9 2

lo
g(

er
ro

r)

-3.1

-3

-2.9

-2.8

-2.7

-2.6

-2.5
convergence rate

error
1st order rate

Fig. 1. Numerical results for example 1 with solution (5.1).

The left plot shows that the numerical solution matches the exact solution very
well when N = 100. In the right plot, we have tested the error decays with N =
40, 50, · · · , 100, and it is clearly shown that the method admits a first order rate of
convergence.

Next, we test a different pair (x∗, u∗) which is given by

u∗(t) =
e−T − e−t

1

x0
+ 1− e−t − te−T

, x∗(t) =
eσ

2t − (e−T − e−t)2

1

x0
+ 1− e−t − te−T

− e−t. (5.2)

We set σ = 0.1, M = 105, ϵ0 = 10−5 and N = 40, 50, · · · , 100. The numerical results
are given in Figure 2. Again, the numerical solution matches the exact solution very
well and first order convergence rate is observed.
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Fig. 2. Numerical results for example 1 with solution (5.2).

Example 2. Our second example is also from [12]. More precisely, we consider

J(u∗) = min
u∈K

J(u)
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with

J(u) =
1

2

∫ T

0

E
[(

xt − x∗(t)
)2]

dt+
1

2

∫ T

0

u2(t)dt, K = U,

dxt =
(

u(t)− r(t)
)

dt+ σu(t)dWt.

Here we set r(t) = u∗(t)/2, x0 = 0, T = 1, and σ is a constant. The deterministic
function x∗ and the corresponding exact solution u∗ are chosen as

u∗(t) =
T − t

σ2(T − t) + 1
, x∗(t) =

t

2σ2
− 1

2σ4
ln

σ2T + 1

σ2(T − t) + 1
+ 1.

In our computations, we choose σ = 0.1,M = 105, ϵ0 = 10−5, andN = 40, 50, · · · , 100.
The numerical results are shown in Figure 3 Similar conclusions can be made as for
example 1. The method converge with the first order accuracy.
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Fig. 3. Numerical results for example 2.

Example 3. The previous discussions have been focused on the deterministic con-
trol, that is, u ∈ U . In this example, we will show that our method can also be used
to solve stochastic optimal control problems with feed back control.

This example is set to be the same as in (2.1)-(2.2), except that the control
constraint set is now a set of stochastic controls:

KF = {u ∈ UF
∣

∣ut(ω) ∈ C a.e. a.s.}. (5.3)

It follows from the stochastic optimal control theory that the optimal control is
actually a feedback control, more precisely, there exists a function ū∗ such that
u∗
t = ū∗(t, xt), see e.g. [43, 14]. Given a feedback control u with ut = ū(t, xt),

by introducing the adjoint processes (p, q) in the same way as in the deterministic
case, and by applying the Itǒ’s formula, we can show that

J ′(u)t = ptb
′
u(xt, ut) + qtσ

′
u(xt, ut) + j′(ut). (5.4)

Notice that ut is a function of t and xt, then by (5.4) we know that J ′(u)t is also a
function of t and xt. Therefore, due to the feedback property of the control, we can
write J ′(u) pointwisely in time-space grids, namely,

J ′(u)xtn = pxtnb
′
u

(

x, ū(tn, x)
)

+ qxtnσ
′
u

(

x, ū(tn, x)
)

+ j′
(

ū(tn, x)
)

, (5.5)
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where x ∈ Dh and J ′(u)xt denotes J ′(u)t valued at xt = x. In the above equation,
by introdcing our numerical solutions pn and qn, we get the approximated J ′

N (·) of
J ′(·) :

J ′
N (u)kn = pknb

′
u

(

xk, ū(tn, xk)
)

+ qknσ
′
u

(

xk, ū(tn, xk)
)

+ j′
(

ū(tn, xk)
)

. (5.6)

Since the constraintK (5.3) is also pointwise in time and space, the projection problem
at the grid point (tn, x), x ∈ Dh can be written as

ū∗(tn, x) = PC
(

ū∗(tn, x)− ρJ ′(u∗)xtn
)

.

Here we shall not compute the feedback law explicitly, however, we do compute the
values of the control at the grid point. Then u∗ is updated in the following way:

ūi+1(tn, xk) = PC
(

ūi(tn, xk)− ρiJ
′
N (ui)kn

)

. (5.7)

Notice that due to the change of the space of control, we get rid of the expectation
in the computation of J ′(u), meaning that we no longer need the history informa-
tion before time t to compute J ′(u)t, but only the information at time instance t.
Consequently, if a proper space partition {xk}k is obtained, and the constraint K is
pointwise in time, then we can run the algorithm in a backward manner as described
in Algorithm 2. Compared to Algorithm 1, we notice that under the same spacial

Algorithm 2 Gradient projection method

Set the initial guess of the control {ū(tn, xk)}n,k and the error tolerance ϵ0;
1. Set the terminal condition: pkN = g(xk), xk ∈ Rh;
2. For n = N − 1, · · · , 1, 0, do

a. solve (pn, qn) by (3.38)-(3.39),
b. compute J ′

N (u)kn by (5.6),
c. update u by (5.7),

repeat a–c until supk |ūi+1(tn, xk)− ūi(tn, xk)| ≤ ϵ0.

partition, Algorithm 2 can save a lot restoration.
We now test Algorithm 2 for Example 3 with K defined in (5.3), and compare

the results using feedback control with the results obtained by using the deterministic
control. For the feedback control, we shall use the rectangular rule and Monte Carlo
method to compute the integral and the expectation of objective functional, respec-
tively. The numerical results are listed in the Table 1. It is shown that the use of
feedback control can indeed improve the results (produces a smaller value of objec-
tive functional), and this is reasonable as we are minimizing the objective functional
within a larger control set.

N J(u) with Algorithm 1 J(u) with Alogrithm 2
100 0.84833 0.62535
200 0.84797 0.64507
400 0.84777 0.65509
800 0.84770 0.66013

Table 1

Numerical results for example 5.3.
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Example 4. Our last example is a portfolio problem. We consider the following
example which has been used in [9].

J(u∗) = min
u∈K

J(u)

with

J(u) =
1

2
E
[

(xT − κ)2
]

, K =
{

u ∈ UF ; −1 6 ut 6 1, a.e. a.s.
}

,

dxt = (ζσut + r)xt dt+ σutxt dWt.

The parameters are chosen as

T = 50, κ = 1000, x0 = 300, r = 0.02, σ = 0.1, ζ = 0.05.

We set ϵ0 = 10−4, L = 4, ρi = 0.01/i, and the space region is given by [−100, 900].
The optimal value of J(u) given in [9] is 15023. To show the convergence rate, we
perform experiments with N = 1000, 2000, 4000, 8000, and choose M = N2/10. The
corresponding numerical solutions for J(u) are listed in the Table 2. It is clear that
the method admits a first order rate of convergence. This example shows that the
Algorithm 2 is capable of solving some optimal control problems involving feedback
control.

N 1000 2000 4000 8000 optimal
J(u) 15196 15107 15069 15045 15023
CR - 1.0423 0.8688 1.0641

Table 2

Numerical results for example 5.4.

6. Conclusion. In this work, we propose a gradient projection method for solv-
ing stochastic optimal control problems. The scheme contains a fixed-point iteration
of the control, and an Euler scheme for solving the adjoint equation that is given by
BSDEs. The Euler method is used to solve the adjoint BSDEs. We rigorously prove
that our numerical method admits a first order rate of convergence. Several numerical
tests are presented to support our theoretical finding.
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