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Abstract
ジ Many powered wheelchair users find their medical condition andBackground

their ability to drive the wheelchair will change over timeズ In order to maintain
their independent mobilityゴ the powered chair will require adjustment over time
to suit the userとs needsゴ thus regular input from healthcare professionals is
requiredズ These limited resources can result in the user having to wait weeks
for appointmentsゴ resulting in the user losing independent mobilityゴ
consequently affecting their quality of life and that of their family and carersズ In
order to provide an adaptive assistive driving systemゴ a range of features need
to be identified which are suitable for initial system setup and can automatically
provide data for reゾcalibration over the long termズ

ジ A questionnaire was designed to collect information from poweredMethods
wheelchair users with regard to their symptoms and how they changed over
timeズ Another group of volunteer participants were asked to drive a test platform
and complete a course which represented manoeuvring in a very confined
space as quickly as possibleズ Two of those participants were also monitored
over a longer period in their normal home daily environmentズ Featuresゴ thought
to be suitableゴ were examined using pattern recognition classifiers to determine
their suitability for identifying the changing user input over timeズ

ジ The results are not designed to provide absolute insight into theResults
individual user behaviourゴ as no ground truth of their ability has been
determinedゴ they do nevertheless demonstrate the utility of the measured
features to provide evidence of the usersブ changing ability over time whilst
driving a powered wheelchairズ

ジ Determining the driving features and adjustable elementsConclusions
provides the initial step towards developing an adaptable assistive technology
for the user when the ground truths of the individual and their machine have
been learned by a smart pattern recognition systemズ
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Introduction
There is no typical powered wheelchair (PWC) user. Individuals  

may be suffering from neurological trauma or disease, or be 

affected by musculoskeletal trauma or disease; and they may be 

of any age. Increasingly, people are living longer and therefore 

may require mobility assistance for much longer. One publication  

in 20101 investigated these issues; the research concluded that the 

literature was lacking in regard to the PWC user quality of life  

and their ability to self-maintain. The Canadian Occupational  

Performance Measure (COPM), developed by Law et al. in  

19942, measures the users’ perception of their own self-care and  

living capabilities by using a questionnaire which usually takes 

around thirty minutes to complete. This methodology has been 

applied in a lot of research, some for PWC users, according to a 

review of the methodology3. Mills et al.4 propose a conceptual  

framework, which includes a range of factors likely to affect  

user performance. They identify 10 tools used to assess the user 

driving abilities for the purpose of more suitable adjustment of the 

PWC to the individual user’s needs.

Earlier research into young people’s needs, with regards to 

the beneits of the PWC, had indicated that children who used  

PWCs had much better spatial awareness and cause-and-effect 

skills than their peers who did not use PWCs5. However more 

recent research6 concluded that the beneit to the user was only 

positive when both the PWC and their environment were of  

a suitable ‘it’, and could be quite negative when the child 

felt excluded from social integration; for example, due to the  

bulkiness of the PWC restricting their movements in conined  

environments.

A study of the elder PWC user found that one of the immediate 

beneits from issue of a PWC was an increased independence  

and a feeling of well-being7. Furthermore, the research sug-

gested that despite this euphoria many of the elderly users were  

anxious about driving outdoors, which may be due to a fear of 

accidents, particularly toppling over, and the issue of a breakdown  

leaving them stranded. The research noted that this user group  

were dissatisied with the wheelchair service, quoting long wait-

ing times and having serious concerns that the chair would not  

meet their changing needs over time.

There has been much research in the ield of providing PWC  

users with smart and assistive systems8,9; however, most users do  

not like having their control taken away from them, essentially  

disempowering them10 rather than assisting them to overcome  

challenges that their disabilities present. This essentially means 

that each individual would need the assistive system to be adapted  

and adjusted to their individual needs and requirements, and  

for the system to be re-tuned as their needs change over time.  

This is a substantial constraint for any manufacturer or developer 

of technology.

Therefore each person’s needs from any smart assistive  

PWC is quite unique and speciic to them, hence current com-

mercially available assistive technology tends to be specialist  

equipment, speciically designed and built for each individual, 

or a group suffering from a particular illness, or alternatively  

is some standard hardware/software which has been adapted 

for the particular individual. This means that assistive tech-

nology is very costly in both equipment and technical main-

tenance, particularly when the device may require constant  

adjustment11.

In order for manufacturers to be able to mass produce devices 

at an affordable cost, there needs to be a suficient volume of  

production. Therefore, there is a need to develop assistive PWC  

technology which is adaptable to a wide range of users’ clini-

cal needs, whilst also being adaptable to the individual’s per-

sonal preferences. This would require a smart system which 

monitors the user’s performance and adjusts the system 

accordingly; this information may also be directly related 

to their medical condition, which could potentially provide  

      Amendments from Version 1

The Introduction has been modified to reflect the current situation 

with young person’s attitudes towards powered wheelchairs 

(PWC), and to highlight the need to adapt the PWC to each 

individual. The text describing Table 1 has been re-worded to 

make it clearer that the table suggests the number of potential 

smart PWC users. Reference to the source of observations 

about PWC set-up and adjustments to the control system for the 

individual have been added.

Questionnaire self-scoring/defining has been added to the main 

text. The ‘control’ participants who were non-users has been 

explained, the types of PWC used has been stated, and the 

question of body posture supporting addressed. The course 

depicted in Figure 2 has been labelled with dimensions. ‘Not 

answered’ has replaced ‘N/A’ in Table 4. The experimental method 

for group ’C’ has been elaborated upon.

Features have been listed in the “Feature development” section 

and the reference to Table 1 changed to Table 2. Specific details 

of the features and their labels have been added to the “Feature 

evaluation” section. Figure 3 has had the ‘X’ and ‘Y’ axes that are 

referred to in the text added. Figure 10 legend has been changed 

to make the axis labelling clearer.

Our intention was to determine smoothness from velocity not 

jerk, potentially spasm and possibly panic from sudden direction 

change, and tremor and nervousness from frequency and peaks 

over the long term and in real-time. Experimentation to determine 

joystick data-rate suitability has been explained in detail with the 

corresponding future work needed added to the Conclusion.

The collision avoidance method has been better explained with 

regard to how the varying user joystick input quality could be 

used to adjust its behaviour and Figure 4 has been updated to 

show more information. Driving duration analysis has been better 

stated.

See referee reports

REVISED
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Table 1. Estimated potential smart wheelchairs users, organised by diagnosis, in the EU.

Diagnosis Prevalence 
(millions) 

(Lower–upper)

% who need 
wheelchair 

(Lower–upper)

Typical symptoms % with 
symptoms 

(Lower–upper)

Alzheimer disease 3.6–6.4 10–20 Attention, agitation, and  

impulse control Executive reasoning

45–52 

35–45

Amyotrophic lateral 
sclerosis

0.04–0.05 46–80 Fatigue/weakness 

Head/neck movement

20–26 

20–26

Cerebral palsy 1.1–1.3 80–90 Spasticity 

Tremor 

Hemiplegia 

Ataxia 

Dystonia 

Executive reasoning

70–90 

10–20 

10–20 

5–10 

15–20 

30–40

Multiple sclerosis 0.4–0.6 65–75 Spasticity 

Tremor 

Fatigue/weakness 

Head/neck movement 

Ataxia 

Executive reasoning

65–90 

5–7 

43–90 

43–90 

23–84 

30–70

Parkinson disease 1.4–1.6 5–15 Visual field neglect 

Tremor 

Bradykinesia 

Executive reasoning

85–95 

60–65 

10–15 

25–45

Traumatic brain injury 4.6–5 15–25 Visual field neglect 

Visual field loss Spasticity 

Hemiplegia 

Tremor 

Bradykinesia 

Fatigue/weakness 

Head/neck movement 

Attention, agitation, and  

impulse control 

Executive reasoning

20–80 

15–25 

35–50 

45–50 

20–30 

20–25 

35–50 

35–50 

20–60 

50–60

clinicians with more data to base their diagnosis and subsequent 

treatments on.

Currently, health authorities across Europe provide adaptive and 

assistive technology for those who need it on an individual basis; 

therefore PWCs are adapted to each person, which is expen-

sive and very time consuming. The PWC user is subjected to an  

ability-to-operate test and, in the UK12, will only be given an 

NHS funded PWC if they meet this criterion. For those individ-

uals who do not meet the requirements the only alternative is to  

either have an assistant in constant attendance, or not to use a  

PWC unless they can buy their own, with the associated re-tuning 

costs.

According to research13 there are a wide range of diseases which 

may cause suficient disabilities to prevent individuals from  

operating a PWC without assistance, these have been extrapo-

lated from the US population at the time of the research to it  

the current (2016) EU population and are listed in Table 1 by  

diagnosis, with some of the typically associated symptoms. Accord-

ing to our research and experience, whilst developing and testing 

our driving assistance technology14–16, providing simple collision  

avoidance or navigational assistance would not be suficient to 

allow unmonitored use of the PWC, due to safety risks. There needs  

to be a synergetic assistance which adapts the assistance to the 

needs and requirements of the individual as they change over  

time, and most importantly keeps the user in full control of the 

PWC motion at all times.

Research aims
This research seeks to determine features which would iden-

tify the changing needs of PWC users and to distinguish the  

elements which would be required to make adjustments to an 

assistive PWC system, which would then be able to adapt to  

the users’ needs as they change over time. In order to do this we 

need to identify and quantify the severity of the problem. This  

will require identifying how often they use their PWC, how  

many collisions occur and when, what problems they have and  

how that may relate to their speciic disability.
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The user joystick input trajectory quality can be used as 

a measure of the level of assistance required to assist an  

individual17–19; however research is sparse with regards to quantify-

ing and qualifying that user input with the intention of providing  

precise assistance for that individual when so required. We 

have also identiied from our previous research that the user’s 

approach angle to doorways and their proximity to obstacles 

when navigating the environment can be a measure of their abil-

ity to drive, this research further investigates the suitability of  

collision avoidance as an identifying feature for feedback to adapt 

the system to better suit the individual’s’ navigation assistance 

requirement.

The ultimate objective of this research is to provide the  

adjustable elements which can be used to irst improve the user’s 

own input quality, keeping them in full control for as long as 

possible and only when necessary moving to the next layer of  

assistance, which would also provide progressively more colli-

sion avoidance assistance, and then to the next level providing  

steering assistance, and inally to the higher level where the  

joystick input has now become digital. This methodology we 

believe will allow individuals who have been precluded from 

being prescribed a PWC to now be eligible for a smart adaptable 

assistive PWC, where the assistive system would also be able 

to step-in and provide the necessary assistance to keep the user  

in full and safe control of their PWC.

Powered wheelchair control
The electric powered wheelchair is usually controlled by a  

joystick which provides a digitised proportional input where  

one axis provides the turn proportionality and the other axis  

provides the forward and reverse proportionality. The powered 

wheelchair platform can be described as a unicycle or a two 

wheeled non-holonomic tank like mechanism14 which has the  

following kinematic:

                            2
right left

body body

v v
x v =

+
=

                            
(1)

                            

right left

body body

v v

W
θ ω

−
= =

                         
(2)

Where:

υ
right

 and υ
left

 are the velocities of the individually driven rear 

wheels.

W is the distance between the rear driving wheels.

This means that the platform motion is restricted by these  

equations; this means that for a wheel separation of half a metre 

the platform can rotate 4 times faster than the forward veloc-

ity. The joystick input device has a very similar mathematical  

relationship; however the distance between the two drive  

wheels would need to be two metres for there to be an equally  

proportional relationship between the joystick and the motion.

According to one control system manufacturer; they employ a 

‘Virtual Restrictor Plate’ (VRP)20 for the purpose of allowing  

the medical practitioner some degree of freedom to adjust the  

distance the user is required to move the joystick with regard to  

the actual motion of the PWC, whilst maintaining a safe ratio of 

speed to turn. Other methods of modifying the shape have been 

evaluated21 however the basic principle is still the same, to map 

or scale in some way the joystick to provide the user with their  

desired platform motion. There are usually up to ive joy-

stick mapping proiles20 which are used for different speed and 

turn rates such that the input better matches the desired out-

put, akin to changing gear in a motorised vehicle. This means 

that the user can use the same joystick movement to drive have 

a much iner control at low speeds in conined environments 

and or conversely little joystick movement to drive at speed  

outdoors. This scaling will affect turn speeds, forward and reverse 

speeds, acceleration and deceleration. The outcome should be 

that the user has the PWC set up so that they feel safe and com-

petent to drive in restricted and open environments. The Kent 

and Canterbury hospital wheelchair technicians and prescribing  

clinicians we interviewed stated that this process may take several 

sessions and sometimes a satisfactory outcome is not achieved.

A further challenge to meeting user need is that their ability and 

ease to move the joystick may change signiicantly over time. In 

the case of the smart PWC, the system would need to adjust the 

dynamic parameters in the collision avoidance and the trajectory 

generation according to the joystick input and the proile selected 

by the user.

The mapping process will not only need to map the position of 

the joystick to the desired velocity for each motor driven wheel  

according to Equation 1 and Equation 2 it will also need to provide  

some time delay ramp to the rate of change of the joystick such 

that the motor acceleration is smooth and jerk is minimised. The 

most common method is to use a feed-forward control approach, 

shown in Figure 1, where certain parameters can be adjusted to  

suit the needs of each user of the platform whilst remaining  

within the boundaries of the electrical and mechanical system 

dynamics22. This process is implemented in the control algorithms 

developed by the control system manufacturer.

The most common parameters which always require adjustment 

to the individual for each proile (driving situation) are:

•     forward speed range

•     forward +/- acceleration

•     reverse speed range

•     reverse +/- acceleration
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•     turn speed range

•     turn +/- acceleration.

The current method of setting-up a PWC is essentially down 

to trial-and-error, and the procedure (after discussion with the  

wheelchair service, dealers, and clinicians) can be as follows:

•     Match the power module load compensation to the motor 

loads to ensure the loading between motors is the same 

and it is driving without a bias to one side on lat ground.

•     Adjust the positive and negative acceleration on turning, 

forward, reverse, pulling away and stopping.

•     Tune for each proile such that the performance is evenly 

spread across the range of proiles.

•     Fine tune each proile with the user to suit their desires 

and needs.

Some of the observations commonly reported, according to 

PWC dealers, hospital wheelchair service technicians and  

clinicians we spoke to, were:

• Motor load compensation can be very dificult to achieve 

on older chairs where it is not possible to compensate 

for differences in left and right motor load. Additionally 

compensation may only be effective at one power level. 

This means that the chair may drive in a straight line on 

a vinyl surface, but veer on a carpeted surface. Joystick 

users can compensate for this change in drive characteris-

tic. However the switch user is not able to do so.

• Aggressive acceleration or too high forward and turning 

speed can frighten some users and made them reluctant to 

drive the chair.

• Some users with reduced hand function required reduced 

joystick throw – that is 50% delection gives 100% 

speed.

• Sometimes it is necessary to reverse the polarity of the 

Forward/Reverse action if the user found it easier to pull 

the joystick rather than push.

• It is important to keep asking, every time you see the user, 

if the settings are suitable.

• There are not enough resources for regular visits to the 

user to check and adjust PWC tuning.

• Users may not report that they are having dificulty driv-

ing their chair. Perhaps for fear that the chair will be 

taken away or because they don’t think that anything can 

be done to improve the chair setup or because they have 

given up asking.

• Therefore a smart wheelchair which can identify the 

user’s driving characteristics and detect from those char-

acteristics whether the chair requires retuning, should be 

of great beneit to that user.

Ethical statement
The project was subject to the University’s formal procedure  

for ethical consideration of projects involving human participa-

tion, under the auspices of the Faculty of Sciences’ Research  

Ethics Advisory Group. Ethical approval was granted by NRES 

Committee East of England, REC reference: 14/EE/0164 under 

the title: Evaluation of a Powered Wheelchair with collision  

avoidance.

Methods
Whilst there is some guidance on the analysis of driving  

features23 there remains the need to determine which features are 

good indicators of the user’s ability to control their PWC safely 

in their respective environments, especially if their ability changes 

over time. A potential set of features is given in Table 2. These are 

based upon the symptoms listed in Table 1 and some adjustable 

parameters for PWC control systems, and also information on the 

proximity of obstacles.

Figure 1. Typical feed-forward PWC control schematic.
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Table 2. Measurements for a potential feature-set.

Symptoms Reactions Measurements

Tremors and involuntary 
movements of the joystick 

Continuous sinusoidal component and 
sudden motion

•    Position

•    Velocity

•    Frequency

Attention, tiredness, and 
general fatigue

Increasingly irregular motion and proximity 
to obstacles, operational time reduction

•    Position

•    Velocity

•    Proximity

•    Time

Muscular stiffness and 
weakness

Directional bias and amplitude change of 
muscular activity

•    Position

•    Velocity

•    Time

Observational and visual bias Hesitation and preference when driving in 
certain directions, proximity to obstacles

•    Position

•    Velocity

•    Proximity

•    Time

Reasoning, confusion, panic, 
and agitation 

Hesitation when driving, directional 
changes, stop-start, proximity to obstacles, 
sudden motion, possible nervous tremors

•    Position

•    Velocity

•    Frequency

•    Proximity

•    Time

Table 3. Powered wheelchair user questionnaire background data.

Identifier
Driving 
ability

Number of years in 
wheelchair Reason for PWC Difficulties

Manual Powered

A1 5 3 6 Physical strength None at present

A2 5 0 20 Physical strength Slopes and kerbs

A3 4 14 6
Guillain–Barré syndrome, 
neurological and paralysed 
from waist down

Clawed hands unable to turn 
head to see

A4 4 0.5 0.5 Motor neuron disease Rear visibility, kerbs, obstructions

A5 4 16 6 Spina Bifida Spatial awareness

A6 4 0 12 Osteoarthritis
Pedestrians not seeing me, 
uneven paths/roads and slopes

A7 4 0 10 Ehlers-Danlos syndrome
Tiredness, poor proprioception, 
dislocation

A8 5 20 15 Myasthenia gravis
tiredness/weakness/not able to 
use on a bad day

A9 1 5 2
Cerebral palsy affecting all 
four limbs

jerkiness of my arms

A10 1 15 2 Cerebral ataxia spatial awareness

A11 4 0 2 Poor balance/knees
concentration/not able to use on 
a bad day

A three pronged approach was undertaken in order to investigate 

the problem. The irst approach was to locate and obtain data  

from PWC users by using a questionnaire (Supplementary File S1).  

This was undertaken by attending disability exhibitions and  

conferences and asking visitors in powered wheelchairs to take 

part in the data collection. The anonymous questionnaire with a  

self-addressed envelope was included and out of nearly 70 

questionnaires some 11 participants responded (A group), the 

anonymous data was simply given a random identiier when the  

envelope was opened and their backgrounds with the associated 

identiiers are given in Table 3. They were also asked to self-score  

the number of collisions and the range of their abilities, for one of  

their self-deined ‘good days’ and for one of their ‘bad days’. Par-

ticipants were clearly informed that they were partaking in research 
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and that the data would be used solely for research purposes,  

both verbally and in writing on the questionnaire, and that by  

returning the questionnaire they would be giving their consent 

to participate. The returned questionnaire data had no personal  

identiication attached and therefore is fully anonymised. This  

does not alter or distort the scientiic meaning.

The second approach was to use data obtained from twelve par-

ticipants (B group) who were invited to undertake evaluation of  

a smart PWC collision avoidance system (Dynamic Localised 

Force Field method14) using a specially designed course to test  

manoeuvring in conined spaces in accordance with the ethi-

cal approval of the project. We also invited two student nurses 

to undertake the same course, who had never driven a PWC  

and had no disabilities, as a comparative control (labelled B5 and 

B6). All participants used the same PWC (Invacare Spectre XTR2 

platform using a Dynamic Controls DX2 joystick control sys-

tem) with the same driving proile and undertook the same path 

around the course, shown in Figure 2. They were asked to drive  

around the course as quickly as possible without colliding with 

any of the walls or posts as if they were on a competitive driv-

ing test. Their joystick control input to the PWC system,  

and the data from the collision avoidance ultrasound sensors  

measuring the range to the surrounding obstacles, was recorded 

by our monitoring hardware as they negotiated the driving  

course in chronologically labelled order of the participant par-

ticipation. The anonymised B group participants’ backgrounds are  

given in Table 4. All participants were able to adjust their own  

upper body posture and had no additional means of support  

other than the standard PWC.

The third approach was to obtain joystick movement data from  

two participants, B1 & B2, over a longer period of time (C 

group) without any modiication to their control input. This was 

achieved by mounting on a standard Invacare Spectra PWC using 

a Dynamic Controls DX2 joystick control system we supplied, a 

joystick recording device connected to the manufacturer’s control 

system, and two buttons for the user to press, one for deliberate 

collision and one for accidental collision, an IMU, and a real time 

clock. The participants took turns to drive the PWC without any  

collision avoidance in their normal daily environment for at least 

three days. The inertial motion of the platform, joystick input,  

time-of-day, driving time, and the output from two manual dig-

ital buttons for identifying deliberate and accidental collisions 

were recorded on an SD card, without identifying what the user 

was doing and where they were. The identiier labels of B1 and  

B2 are respectively also C1 and C2 where the irst letter simply 

relates to the different testing group and environment.

The participants in both group B and C were informed in writing, 

and verbally, what they would be volunteering to undertake, and 

how their data would be used for research and publication, for  

which they gave their written consent. All data has been  

anonymized without distortion or alteration to the scientiic  

meaning.

Feature development
Determining the user’s physical input range and rate of  

change of position to set-up the control system has been until 

now an iterative empirical process. In addition there also remains 

the issue of the user input ability changing over time and how  

that is monitored so that the system can be re-adjusted at some 

later date. A smart PWC system would need to analyse the user 

input characteristics and then adjust the control system mappings, 

in order to provide a progressively proportionally scaled robust 

and safe assistance. A further requirement of any smart assistive  

system10,16 is that the user is kept in control for as long as  

possible, rather than the smart system simply taking over con-

trol and confronting the user with an autonomous system.  

Therefore the irst step in developing an adaptive assistive sys-

tem is to identify the input proile of the user so that the joystick  

mapping can be better initially set-up and adjusted over time.

Figure 2. Participant driving evaluation course.
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Table 4. Powered wheelchair user test course data recording, background.

Identifier
Driving 
ability

Years 
driving PWC

PWC driving 
training

Reason for PWC Difficulties

B1 5 15 None Cerebral Palsy None at present

B2 5 3.5 Yes Stroke Left side paralysis

B3 5 11 Scooter
Duchenne 
muscular dystrophy

Muscular weakness

B4 5 9 None
Duchenne 
muscular dystrophy

Muscular weakness

B5 0 0 None Control subject None

B6 0 0 None Control subject None

B7 4 2 None Brain injury
Attention, memory, anxiety, 
fatigue, equilibrium

B8 4 15 None Multiple Sclerosis
Muscular weakness, 
spasticity

B9 4.5 16 Yes Multiple Sclerosis
Muscular weakness, 
spasticity, equilibrium

B10 2.5 1
Yes, 
currently

Brain injury
Attention, planning, 
fatigue, equilibrium, visual, 
fine motor

B11 3.5 15 None Cerebral Palsy Left side spasticity

B12 2 2 Some Not answered Not answered

B13 4.5 4 None Multiple Sclerosis Not answered

B14 4.5 12 None Tetraplegia
Fine motor control of 
fingers, left side weaker

Returning to our initial feature set, given in Table 2, we  

hypothesise that we can identify the user input proile from their 

physical input quality, joystick position range, and rate of change 

of joystick position, and by feedback from obstacle proximity  

sensors we can also identify their visual spatial awareness.  

Thus essentially we can proile the user driving trajectory input  

and how it changes over time by monitoring the following  

features:

•   Joystick Position

ż    Biases/areas/quadrants

ż    Range/magnitudes

•    Joystick Velocity (actual user velocity of the joystick  

movement)

ż    Sudden large magnitudes

ż    Measure of smoothness

ż    Biases/areas/quadrants

•   Proximity to Obstacles

ż    Biases

ż    Magnitudes

•   Time

ż    Actual driving time day-to-day (long term trend)

ż    Speciic task

  Overall

  Ratio of moving to stopping

•   Frequency of tremor/shake in joystick motion

ż    Long term trend

ż    Short term task/place speciic

Joystick input tremor and smoothness. Hand tremors  

can affect the joystick input quality, such that the user inds it 

challenging to operate a normal PWC. Therefore modern PWC 

control systems can be programmed to compensate for tremor.  

However the severity of the tremor may change over time such 

that sometimes the user may be fully capable of safely control-

ling the PWC and at other times could be potentially a danger to  

themselves and others around them. Research has identiied the 

dominant tremor frequency is age related; particularly people 

with large amplitude tremors undergo a reduction in frequency as 

they age24. Hand tremor frequency may also be dependent on the  

task; research suggests the displacement amplitude may decrease 
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the tremor frequency by 3–4 Hz where the range is commonly 

between 4–11 Hz25. One proposed solution was to develop  

Isometric Joysticks, which measure applied force rather than  

movement26; however there was only a small improvement in  

performance.

A smart adaptive system would need to determine when the  

joystick signal input quality with adapted iltering is suitable 

to be acceptable as a proportional input, or whether treating the  

joystick as a switched device is a better option with the sys-

tem providing appropriate assistance to control speed and rate of  

turn, acceleration and deceleration. However the irst step in the 

process is to detect the presence of tremor, spasm or panic.

In order to detect tremors a Fast Fourier Transform will be 

used to determine if the joystick signal is suficient for the pur-

pose of monitoring the user for signs of tremor such that we can  

correct their joystick input:

                            

(j 1)(k 1)N
j 1 N

X(k) x( j)
− −

== Σ ω
                            

(3)

Where:

                                       ω
N
 = e(−2πi)/N                                      (4)

Smoothness can be regarded as a measure of intended move-

ment and jerk (ms-3) has been commonly used as an empirical  

way to obtain some objective measurement of this feature.  

However several studies have reported mixed results with dif-

ferent jerk algorithms27, such that dimensionless jerk and the 

log of the dimensionless jerk being the only valid measures of  

smoothness28. However velocity (ms-1) rather than jerk is thought 

to be a more appropriate measurement of smoothness29 which  

in this case can be easily obtained from the standard joy-

stick. The sample rate from the Dynamic Data Bus is set by the  

manufacturer at 50Hz. This rate is high enough to meet the  

requirement for smoothness measurement29. Smoothness can be 

obtained by using the joystick velocity vector as follows:
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And where (v
2
 − v

1
) is the distance the joystick has moved  

in the velocity plane and (ω
2
 − ω

1
) is the distance moved in the 

turn plane, and t
2
 − t

1
 is the sample time period and the weight w

i
 

is given by:

                                           w
i
 = λѺ

{1,2,....i}                                           
 (7)

In addition to tremor and smoothness there is the issue of user 

sudden movement or panic in response to a miscalculation or 

some involuntary muscular action when navigating around obsta-

cles. The Peaks method (sudden direction change), which can be  

used in real-time, offers the potential for determining sudden  

jerks (panicky motion) or spasms as well as long term tremor  

monitoring.

Joystick positional bias. The user may need to have the joystick 

forward and reverse swapped because their ability to pull their 

hand towards them is better than to push the joystick away from 

them. They may also only be able to move the joystick part-way 

rather than the fully available range. This range, or throw, may also 

change over the day and over days. The general input pattern of 

the joystick can be said to lie within the diamond shape given in  

Figure 3, where the physical restriction of the device keeps the 

input within the kinematic boundary given by equations one and 

two. Additionally the software VRP, or equivalent, ensures the  

input continues to obey the boundaries when the throw shape is 

altered.

It is proposed that in order to identify measure and adjust the  

mapping the joystick input is represented by quadrants within 

which the shape of the user input proile is represented by shape  

parameters A and B, shown in Figure 3, such that they represent 

the semi major axis and semi minor axis of an ellipse where the  

joystick speed and turn (x and y) statistical position density  

distribution mid 50% inter-quartile range (IQR) represents the  

magnitude of A and B, and the centre point in the (x) axis is 

the median of the IQR, and the centre of the (y) axis is the irst  

quartile.

In Figure 3 the user’s forward left quadrant might look like the  

blue ellipse and the forward right quadrant might be indicated by 

the red ellipse where an optimally mapped proile, for the task 

in hand, might look like the green ellipse where both quadrant  

ellipses are now overlapped. It should be noted that although the 

ellipse for the two forward quadrants crossover the actual posi-

tion data is all in the respective quadrants, showing the full ellipse  

(overlap) is designed to permit a visual miss-alignment between 

how the user moves the joystick left/right, this is likely to be  

highly dependent upon how the user holds the joystick as well as 

the muscular lexibility (future research).

The position proile can be remapped to meet the needs of the  

user by either changing the pre-set proile velocity ranges (for spe-

ciic tasks) or for a smart adaptive assistive system by setting the 

maximum ‘best day’ performance and then adjusting the mapping 

by taking the A and B parameters and using their spread to remap 

the input joystick values. This is done by taking the joystick veloc-

ity and turn commands off of the powered chair communication 

bus, remapping those values and returning them to the bus30. The 

equation for remapping can be given by:

                          

( _ ) _

( _ _ )

in
out

x in min range out
x

range in out min

− ∗
=

+
                

(8)

Velocity vector bias. Whilst there may be a method to solve or  

ilter the tremor/smoothness there may be also be a bias to  

the smoothness which can be because of muscular or motor  
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Figure 3. Joystick pattern and input ranges.

neuron disease or due to visual neglect. Therefore it is proposed to  

determine the velocity vector in each quadrant by measuring the 

rate of change of the joystick position and to represent this as a 

range using the 50% IQR. This feature can be used to bias the  

Joystick input tremor and smoothness section for each quadrant 

where the velocity vector is broken down into components to  

adjust each axis in each quadrant. This would give the accelera-

tion parameter range for the feed-forward control set-up and for  

the smart adaptive system to adjust as it changes over time.

Proximity to obstacles. One crucial feature to consider for 

the adjustment of any assisted navigation system, must be the 

proximity to obstacles as the user manoeuvres around them.  

Whilst it is impossible to identify intent there is clearly a need for 

users to come into contact with obstacles, such as when transfer-

ring to a bed or chair, and when opening a manually operated door.  

Therefore the measurement of obstacle proximity must be 

one which identiies a bias in the pattern, such as driving very  

close to obstacles on the left side as opposed to the right side 

and more collisions in one particular sector around the user. This  

could indicate a visual or spatial awareness problem. This  

measure could be obtained by comparing the assisted system  

corrected user input with the actual input by taking a moving  

average of the differences in each sector.

                              
(( ) / )

1
1

exp
R p k

F −= −
                                     

(9)

The Dynamic Localised Adjustable Force Field (DLAFF)14 is 

one such collision avoidance method which can be dynami-

cally adjusted according to user needs and abilities. The concept  

is based upon two travelling ellipses, as shown in Figure 4, which 

surround the PWC platform, the inner ellipse provides a zone 

within which the physical platform and user is located, the outer  

ellipse provides the limit of the repulsion force, which is given 

by Equation 9, and which acts between them in a radial fashion  

about the mid-point of the rear PWC axle, marked ‘O’ in Figure 4,  

to damp the platform motion where the nearest forward right 

obstacle damps the left wheel motor and the nearest forward left  

obstacle damps the right wheel motor.

The size and shape of the two ellipses can be dynamically  

changed providing that one of the foci remains at the body ori-

gin ‘O’ and the other foci ‘F’ is constrained to the X body axis. 

The ellipse can also be extended outwards along the Y axis  

such that the repulsive zone each side can be extended or 

retracted. Areas of the ellipses can be sectioned into zones in a 

similar way to the joystick, such as shown in Figure 4; however in  

this case the zones should relate to the platform dynamic and kin-

ematic such that the collision avoidance can be biased and adjusted 

over time. For example the user may have their left leg in plas-

ter and in this case the inner ellipse foci ‘F’ would be moved  

outward such that the physical dimensions of the platform 

and user were kept within the inner ellipse. Another example  

might be that the user has poor vision to the left and has trou-

ble negotiating obstacles to the left, in this case we might extend 

the outer ellipse on the left side and/or we might adjust the  

repulsion proportionality such as by changing the (k) value, 

as shown in Figure 5, to alter the collision avoidance behaviour 

to provide more or less safety distance between the platform  

and the obstacle. Altering the damping factor in this case will 

change the platform trajectory earlier in such a way that the  

obstacle is passed at a further distance than would otherwise  
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Figure 4. Collision avoidance zoning.

Figure 5. Adjustment the repulsive field of the collision avoidance by using the (k) value.
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have been the case, this is crucial in the case where the user  

may be travelling quicker than the system can respond.

Duration of active PWC driving. The PWC user may be seated 

in their chair for long periods of time31, effectively living in 

it. The time they spend out of bed, or other seating, and in their  

chair will be related to their day-to-day ability. Additionally 

the amount of time spent driving, rather than just sitting in the 

PWC may also indicate their current capability; however these  

may be long term health related features. For the purposes of 

adapting and adjusting any driving assistance time based fea-

tures, the time driving to time stationary and the number of pauses  

when negotiating obstacles may have some relationship to lev-

els of tiredness and reasoning and thus some direct relationship  

to the amount of assistance which is required.

Feature evaluation and data processing
An adaptive system would require a metric of the user’s  

changing abilities over time, such that by using pattern recognition 

techniques these changing features can be identiied. Essentially, 

a pattern of features is assigned to a particular event or symptom,  

and a classiier tries to match the current observation with saved 

patterns. Similar pattern recognition work to that required for a 

smart PWC adaptive system has been previously undertaken for  

various online classiiers to determine the suitability for develop-

ing real-time embedded systems. This research concluded that 

linear and quadratic discriminant analyses are highly suited and  

K-Nearest Neighbour-1 is possible if the training set does not 

become too large to the task32 Naïve Bayes, Support Vector  

Machine, and Artiicial Neural Networks proved were even more 

suitable33. The research was undertaken on a dual core 1500 MHz 

2GB RAM MICROSPACE EBX (MSEBX945) small compu-

ter format board with 1000 sample training set and 400 features.  

Another research project used a Weightless Neural Networks 

to classify simple geometric patterns in the microsecond time  

frame on an Atmel AT89x55 24.3MHz processor with 256 bytes 

of RAM34. Therefore, in line with developing a real-time adap-

tive assistive system, we propose to evaluate the driving features  

by using the following classiiers:

• Linear Bayes Normal35

• Fisher's linear discriminant36

• Logistic linear37

• Naive Bayes classiier38

• Support vector machine39

• Parzen classiier40

• k-nearest neighbour41

Features used for all of the ixed course monitoring of group B:

• FFT dominant frequency

• Smoothness

• Forward left ‘A’ from joystick position ellipse

• Forward left ‘B’ from joystick position ellipse

• Forward right ‘A’ from joystick position ellipse

• Forward right ‘B’ from joystick position ellipse

• Rear left ‘A’ from joystick position ellipse

• Rear left ‘B’ from joystick position ellipse

• Rear right ‘A’ from joystick position ellipse

• Rear right ‘B’ from joystick position ellipse

• Forward left velocity vector median

• Forward right velocity vector median

• Rear left velocity vector median

• Rear left velocity vector median

• Forward left collision bias

• Forward right collision bias

• Rear left collision bias

• Rear right collision bias

• Ratio of time in motion to time stationary

• Total course time

Features used for all of the three day monitoring of group C:

• FFT dominant frequency

• Smoothness

• Forward left ‘A’ from joystick position ellipse

• Forward left ‘B’ from joystick position ellipse

• Forward right ‘A’ from joystick position ellipse

• Forward right ‘B’ from joystick position ellipse

• Rear left ‘A’ from joystick position ellipse

• Rear left ‘B’ from joystick position ellipse

• Rear right ‘A’ from joystick position ellipse

• Rear right ‘B’ from joystick position ellipse

• Forward left velocity vector median

• Forward right velocity vector median

• Rear left velocity vector median

• Rear left velocity vector median

• Ratio of time in motion to time stationary
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Results
Collision analysis
The ‘A’ group of volunteer participants (A1-A11) were  

asked to monitor their daily routine on a ‘good’ and ‘bad’ day. 

They were tasked with noting how many collisions occurred and  

what class of collision they were. Class (A) denotes acciden-

tal collisions, Class (D) refers to intentional and deliberate col-

lisions such as attempting to use the PWC to open doors, and  

class (C) relates to directional changes where the user has needed 

to reverse and re-approach due to initial misjudgement of the  

correct alignment to a doorway for example. Participants A8 and 

A11 were unable to drive the PWC on a bad day.

The results of the good day collisions, shown in Table 5, clearly 

show that using the PWC to push open doors is quite common, 

however the number of accidental collisions with the door frame 

was high compared to deliberate collisions and misalignments. In 

comparison with the same two types of obstacle on a bad day, it  

can be seen that the number of deliberate collisions did not 

change signiicantly, yet the accidental collision and misalignment  

incidents rose to be of similar occurrence, with door frame  

misalignments doubling (Table 6). This pattern was similarly  

followed with the other types of obstacles, with a general increase 

in the number of accidental collisions, in particular with that of the 

misalignment class.

In addition to gathering data via the volunteer questionnaires, 

two experienced PWC users were monitored over an extended  

period of time, one for ive days and the other for four days. In 

this case they used a standard powered chair, which included 

an electronic data collection system. This system enabled the  

users to record collisions by pressing a button. The data indicated 

that on average for each hour in the PWC, C1 had 3.9 and C2  

had 3.3 accidental collisions (Table 7). When this was aver-

aged against the actual driving time the rate increased to: C1 had  

12.3 and C2 had 7.2 collisions per hour of actual driving. The  

average collisions recorded by the 11 questionnaire participants 

showed an average accident rate of around one per hour.

The response from the participant questionnaire is given in  

Table 8 and this indicated that there was a marked shift of abili-

ties between a ‘good day’ and a ‘bad day’. The range of abilities 

stretched from being reasonably able to function to needing full 

support from carers.

Joystick tremor and smoothness analysis
An experiment was undertaken, with the view of  

establishing whether the data rate from the standard commer-

cially available system was suficient to measure both the tremor 

and smoothness features. Commonly the Normalised Jerk score 

is employed27 to measure smoothness; however this is the third  

derivative of joystick position whereas velocity is the irst  

order. This would mean that using jerk to score smoothness,  

rather than velocity, would require a higher sample rate than is 

available.

An artiicial tremor was analysed to obtain the frequency  

by using the two methods as previously described. The irst  

involved using a Fast Fourier Transform and the second count-

ing peaks in the signal as it changed sign over time, an exam-

ple is shown in Figure 6. As expected the 50Hz sample rate  

from the commercial system is suitable for measuring the  

typical tremor rate range; however the notched joystick plot, and 

experimentation, indicated that it would not be suitable for third 

order differentiation to obtain jerk.

In order to determine if velocity is a good measure of joystick  

smoothness we needed to compare this with the traditional  

Normalised Jerk Score; therefore a three axis accelerometer was 

mounted into the joystick handle and additionally, an analogue 

to digital converter was connected directly to the Hall Effect  

sensor coils and samples from both sensors were acquired at  

a data rate of ≈250Hz thus directly measuring acceleration 

and velocity. Joystick position data was also collected at 50Hz 

from the PWC data bus (Dynamic Controls DX2) using their  

proprietary interface30.

A series of 16 artiicial tremors at different frequencies were  

physically generated and the data from the accelerometer, ana-

logue joystick, and digital joystick from the system bus recorded.  

The data was then irst analysed to determine whether veloc-

ity obtained from differentiating the joystick position data was  

a reasonable feature for determination of smoothness.

The joystick movement data from the accelerometer and 

from the system data bus were compared to determine the 

suitability for extracting the frequency from the stand-

ard PWC data bus. In addition, the velocity vector was  

derived from both the joystick data and the much higher sample  

rate directly from the joystick coils; this was compared to the  

traditional method of obtaining the weighted average jerk from 

accelerometer data. Both sets of data are given in in Table 9.

The accelerometer and joystick bus values were compared  

using ANOVA to determine whether the joystick bus data rate was 

suficient to determine the tremor frequency by using either the  

FFT or digital peak count methods. The FFT method digital  

joystick compared to accelerometer gave F (15, 15) = 108, p = 0 

where F critical = 2.4. The digital joystick peak method  

returned F (15, 15) = 2.79, p = 0.028 where F critical = 2.4. 

Therefore the FFT method is very good and the peaks method is  

a fair method of measuring tremor when taking joystick data  

from the system bus compared to using an accelerometer.

There appeared to be little correlation between the different meth-

ods of evaluating velocity vector smoothness when the data was 

initially reviewed, however this was due to the sampling rate and 

hence scaling. All three methods are given for comparison in  

Figure 7. Therefore if we multiply the velocity vector smoothness 

obtained from the joystick digital data by a factor of two, to try 

to adjust the scale difference, we can compare the digital joystick 

directly with the weighted average jerk to determine if there is a 

signiicance. This gave a digital smoothness score to accelerometer 

normalised jerk score correlation of F (15, 15) = 10.7, p = 0 and  

F critical = 2.4 which indicated that there was a signiicant  

correlation between the two methods. Therefore the joystick data 

Page ÷＜ of ≠∴

Wellcome Open Research ＝×÷≧ゴ ＝ジ∴≠ Last updatedジ ×≦ DEC ＝×÷≧



Table 5. Collisions on a good day.

Obstacle class Identifier Totals

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11

Door A 0 0 2 0 3 0 0 1 0 0 1 7

D 0 2 6 2 5 0 4 0 0 0 0 19

C 0 0 2 0 2 4 1 0 0 0 N/A 9

Doorway 
frame

A 0 1 2 1 10 0 0 2 4 10 2 32

D 0 0 1 0 0 0 0 0 0 0 0 1

C 0 0 3 1 2 2 0 0 0 0 0 8

Wall A 0 0 0 1 4 0 0 0 0 5 1 11

D 0 0 0 0 2 0 0 0 0 0 0 2

C 0 0 1 1 0 0 1 0 0 0 0 3

Furniture A 0 0 0 1 3 0 1 1 4 10 0 20

D 0 0 0 0 0 0 0 0 0 0 0 0

C 0 0 1 0 1 2 2 0 0 0 0 6

People A 0 0 0 0 1 0 0 0 2 3 0 6

D 0 0 0 0 0 0 0 0 0 0 0 0

C 0 0 2 0 2 5 0 0 0 0 0 9

Road A 0 0 1 1 3 0 0 2 1 5 1 14

D 0 0 1 0 4 0 3 0 0 0 0 8

C 0 0 1 0 1 0 0 0 0 0 0 2

Totals 0 3 23 8 43 13 12 6 11 33 5 157

Hours in PWC 16 18 8.5 5 16 10 12 12 5 N/A 2 104.5

Table 6. Collisions on a bad day.

Obstacle Class Identifier Totals

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11

Door A 1 0 5 0 7 0 2 N/A 4 0 N/A 19

D 1 2 4 2 3 0 10 N/A 0 0 N/A 22

C 1 0 5 2 4 2 3 N/A 0 0 N/A 17

Doorway 
frame

A 1 1 6 5 6 0 3 N/A 8 5 N/A 35

D 1 0 1 0 1 0 0 N/A 0 0 N/A 3

C 1 0 6 2 2 0 4 N/A 0 0 N/A 15

Wall A 1 0 2 1 10 0 2 N/A 0 1 N/A 17

D 0 0 1 0 2 0 0 N/A 0 0 N/A 3

C 0 0 3 2 1 1 6 N/A 0 0 N/A 13

Furniture A 1 0 2 4 11 1 2 N/A 8 5 N/A 34

D 0 0 1 0 2 0 0 N/A 0 0 N/A 3

C 0 0 4 2 1 2 5 N/A 0 0 N/A 14

People A 0 0 5 1 2 1 1 N/A 4 0 N/A 14

D 0 0 1 0 0 0 0 N/A 0 0 N/A 1

C 0 0 1 0 2 9 6 N/A 0 0 N/A 18

Road A 0 0 3 3 4 3 1 N/A 2 1 N/A 17

D 0 0 1 0 2 0 4 N/A 0 0 N/A 7

C 0 0 1 0 1 6 2 N/A 0 0 N/A 10

Totals 8 3 52 24 61 25 51 N/A 26 12 N/A 262

Hours in PWC 12 18 4.5 7 16 15 16 N/A 2 N/A N/A 90.5
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Table 7. Long term collision data.

Day

1 2 3

Id Class Totals

C1 Number of deliberate collisions 3 1 1 5

Number of accidental collisions 3 17 23 43

Hours in PWC 5.45 3.13 3.03 11.61

Hours driving 1.04 0.83 1.63 3.5

C2 Number of deliberate collisions 4 0 1 5

Number of accidental collisions 14 8 32 54

Hours in PWC 5.2 0.97 10.35 16.52

Hours driving 2.98 0.73 3.79 7.5

Table 8. Range of symptoms between good and bad days.

ID A B C D E F G H

g b d g b d g b d g b d g b d g b d g b d g b d

A1 1 1 0 1 1 0 1 1 0 1 1 0 2 4 2 2 4 2 1 3 2 1 1 0

A2 1 1 0 1 1 0 1 1 0 1 1 0 1 2 1 1 2 1 1 3 2 1 1 0

A3 2 4 2 2 3 1 2 3 1 2 3 1 4 5 1 4 5 1 4 5 1 2 4 2

A4 1 1 0 1 1 0 1 1 0 1 1 0 2 2 0 2 5 3 2 5 3 1 1 0

A5 1 1 0 1 2 1 1 3 2 1 1 0 1 3 2 1 3 2 2 4 2 2 4 2

A6 1 3 2 1 3 2 1 3 2 1 3 2 1 4 3 1 3 2 1 4 3 1 3 2

A7 1 3 2 1 3 2 1 3 2 1 3 2 2 3 1 2 5 3 1 4 3 1 3 2

A8 1 1 0 1 2 1 1 2 1 1 2 1 1 3 2 3 5 2 3 5 2 2 5 3

A9 3 5 2 1 3 2 2 4 2 1 3 2 3 5 2 3 5 2 3 5 2 2 4 2

A10 1 3 2 3 5 2 2 5 3 3 5 2 1 2 1 3 5 2 3 5 2 3 5 2

A11 3 4 1 2 3 1 1 2 1 1 2 1 2 3 1 2 3 1 3 4 1 1 2 1

Key:

A1:A11 = Participant identification

g = Good day

b = Bad day

d = Difference between a good day and a bad day

A to H = Symptom identifier given in Table. 4.

1 = not suffering with this (within normal range)

2 = causes occasional problems

3 = problematic effecting day-to-day tasks

4 = severely affecting personal performance

Class Symptom

A Muscular tremors and/or spasms

B Attention and/or concentration difficulty

C Panic and/or agitation (nervousness)

D Reasoning and/or confusion

E Muscular stiffness

F Muscular weakness

G General fatigue/tiredness

H Observational and/or visual bias
5 = unable to function without assistance
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Figure 6. Example plot of the digital system joystick data frequency feature analysis.

Table 9. Joystick multimodal frequency analysis.

FFT 
accelerometer 

y axis (Hz)

Magnitude 
dominant 

y axis 
frequency

FFT 
Joystick 
digital 

y axis (Hz)

Frequency 
digital peak 
count (Hz)

Weighted 
average 

(x, y) jerk 
vector

Analogue 
velocity  

(x, y) vector 
smoothness

Digital 
velocity 

(x, y) vector 
smoothness

1 3.523 0.247 3.197 3.619 0.296 0.081 0.159

2 6.016 3.048 5.908 6.471 2.619 0.121 0.715

3 4.715 0.488 4.661 4.920 0.586 0.082 0.219

4 3.957 5.981 3.957 4.861 4.440 0.205 1.418

5 3.957 4.841 4.282 4.486 2.129 0.136 0.865

6 3.360 9.117 3.36 3.842 3.724 0.217 1.613

7 4.390 3.619 4.39 5.050 2.118 0.130 0.800

8 8.618 0.599 7.859 6.767 1.130 0.077 0.198

9 4.471 1.738 4.444 4.971 1.333 0.093 0.447

10 6.178 3.802 5.85 5.366 5.767 0.204 1.341

11 4.498 3.469 4.498 5.218 4.166 0.177 0.996

12 4.336 0.191 4.336 3.558 0.361 0.082 0.157

13 4.878 0.242 4.878 2.521 0.312 0.080 0.150

14 4.444 0.810 4.444 4.817 0.445 0.083 0.184

15 3.144 1.438 3.144 4.999 0.715 0.082 0.262

16 6.585 0.316 6.097 3.650 4.042 0.245 1.951

Page ÷≧ of ≠∴

Wellcome Open Research ＝×÷≧ゴ ＝ジ∴≠ Last updatedジ ×≦ DEC ＝×÷≧



Figure 7. Comparison of the smoothness score with the normalised jerk score using an accelerometer, analogue measurement of the 
velocity vector direct from the joystick coils and the digital data from the PWC bus.

obtained from the PWC system can be used with the velocity 

smoothness algorithm to determine the user smoothness of input 

without the need to mount additional sensors.

The tremor frequency and range of the ixed course partici-

pants, depicted in Figure 8, showed that most of the participants 

did not have a signiicant tremor. Only two of the participants  

appeared to have a signiicant tremor; however both were young 

student nurses who had never driven, or attendant operated,  

a PWC who were asked, without prior warning, to take part as 

novice, non-disabled non-users for the purpose of comparison.  

They were both very nervous and anxious about undertaking 

the test course which we believed was the reason for the tremor  

and the smoothness results. The other participants had little  

variation in the range of smoothness (Figure 9), although their  

individual ranges appeared to indicate that this might be an  

identifying feature for each individual.

The results in Figure 10 showed the three day range of tremor 

and smoothness for participant C1 and C2, who were also, B1 

and B2 respectively. The participants undertaking the test course 

were instructed to complete the course as quickly as possible as  

if on a driving test. When the day to day user and their driving 

test course tremor and smoothness were compared it was clear that  

there was a much narrower range for the test course. Additionally, 

C2 reported feeling unwell and to have had dificulties getting 

around the outside rear of their house on day three.

There was a large range of tremor variation on the last day for 

C2, however the smoothness range remained similar to the 

other days unlike the two non PWC users (B5 and B6) on the 

test course who showed large variation in both smoothness and 

tremor when stressed. There remains a question as to whether the  

dificulty in operating the PWC for C2 was because of an  

increased tremor due to illness, or that the action of attempting to 

manoeuvre the platform gave rise to a tremor-like motion of the 

joystick or that the increased tremor and dificulty reported in 

manoeuvring the chair was a result of feeling unwell. We believe 

the latter is the case, otherwise smoothness would also have been  

affected.

Joystick position analysis
The PWC user is likely to have different joystick usage proiles  

for different tasks. For example driving indoors in a highly  

cluttered environment will require more left to right movements 

to avoid objects compared with driving outside in open spaces 

which will not require so much correction. The user is provided 

with a range of programmed proiles to suite each environment. For 

example acceleration, deceleration, rate of turn and velocity will 

have relatively low values for indoor use and high values when 

in open spaces or outdoors. Ideally, an adaptive assistive system  

could use the user’s driving characteristics to recognise the  

environment in which the user is driving, and then automatically 

select the most appropriate proile for the user and micro-adjust as 

the user’s needs change over the day.
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Figure 8. Tremor frequency comparisons for all fixed course participants.

Figure 9. Smoothness comparisons for all fixed course participants.
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Figure 10. Tremor frequency (T) and smoothness (S) features variability day-to-day compared to specific task for participants C1 and 
C2.

The results in the tables and igures abbreviate forward right 

‘a’ component of the ellipse as ‘fra’ and rear right ‘b’ as rrb or  

‘ra/la’ and ’rb/lb’ as right/left ‘a’ and right/left ‘b’, where not  

otherwise labelled.

The driving test course results for the different features are  

given in Table 10a and Table 10b, Figure 11 shows the  

forward quadrants only as the task was mainly forwards where the 

reverse element was speciically tasked into a left hand corner and  

therefore not enough data was present for proper analysis,  

although the results are still given in Table 10. This test course 

could be described as a highly cluttered indoor environment,  

therefore it would be expected that more time would be spent turn-

ing than driving in a pure forward or reverse direction due to the 

lack of free space. The data for the ‘C’ group for the three days  

was analysed in two ways, irstly the range of change over  

the day was broken down into segments of driving greater  

than 30 seconds over each of the entire day’s driving, given in  

Table 11 and Table 13, and secondly was to use all of the data  

combined for each entire day, Table 12 and Table 14.

The outcome indicated that the joystick turn position range  

was clearly not suited to the manoeuvring needs during  

the test course, the ellipse bias parameter ‘b’ being much larger  

and towards the limit of the left right throw range shown in  

Figure 11, for all of participants. This mapping can be clearly  

seen from the joystick ellipse proile of B1/C1 shown in Figure 12.  

However when we look at the extended three day experiment  

it can be seen from the data shown in Figure 13–Figure 14  

that the settings given to the user were more suited to them for 

their environment, with the ellipse parameters plotted and shown in  

Figure 15. It is also clear when we compared the range of  

variance within the day and over the days for group C with  

their performance during the B group test course that joystick  

position was task speciic, furthermore there appeared to be  

a range of operation speciic to each individual user, as seen by the 

tightly clustered ellipse parameters in Figure 11, this indicated  

that this metric is a potential identifying feature as well as a means  

of adjusting the PWC initial proile mappings and to re-map them  

as their abilities change over the long-term.

Joystick velocity vector bias analysis
In addition to the PWC user joystick positional pattern and 

biases, due to physical and/or cognitive impairment, there is the 

issue of the rate of change of position. Where smoothness and  

tremor give an overall quality to the motion, there still remains 

the issue of which speciic direction the motion needs more or 

less damping. For example a user may ind pulling the joystick 
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Table 10A. Feature data from driving test course (median values).

Id Run
FFT 
(Hz)

‘S’ 
*102

Position bias ellipse
Velocity vector bias 

(mm/s)
Obstacle bias

Driving 
timeforward 

right/left
rear 

right/left
forward rear forward rear

ra rb la lb ra rb la lb right left right left right left right left %
Total 
(s)

B1

1 1.73 1.69 17 74 13 76 10 44 10 13 8 11 13 18 27 32 34 41 80 111

2 1.19 1.69 14 73 13 69 42 116 5 8 8 10 11 8 25 25 35 32 69 100

3 1.14 1.65 24 97 21 85 23 76 17 119 8 8 8 15 34 28 45 32 99 146

4 1.95 1.53 15 80 16 80 17 55 9 26 8 8 8 7 33 30 37 35 100 122

B2

1 1.19 2.24 29 100 31 95 25 72 10 22 11 13 8 10 33 31 34 31 99 145

2 1.3 2.13 24 86 28 90 12 48 9 36 13 10 12 8 32 33 36 41 97 146

3 1.08 2.49 29 97 34 99 5 25 21 55 12 13 11 20 33 29 34 44 98 143

4 1.19 2.42 28 99 32 98 16 59 44 112 12 13 8 8 38 32 35 37 98 152

B3

1 1.84 2.41 29 90 18 73 17 31 8 25 11 11 10 18 37 33 38 35 100 119

2 1.84 2.41 30 94 19 74 4 19 1 7 8 13 7 10 37 36 39 35 99 118

3 1.46 2.5 28 81 19 76 9 35 4 16 8 15 9 14 40 33 36 42 96 110

4 1.73 2.82 28 86 24 74 13 40 10 27 11 13 12 18 39 35 35 35 97 120

B4

1 1.41 2.18 25 96 20 71 21 63 34 84 11 13 10 37 30 36 38 32 98 116

2 1.9 2.02 26 87 20 74 13 45 6 20 8 8 10 13 35 39 37 40 100 112

3 2.01 1.71 26 90 18 67 15 55 1 8 8 8 8 12 31 39 38 46 99 110

4 1.84 1.89 25 86 19 70 17 57 3 17 10 10 7 7 34 36 38 41 100 111

B5

1 1.03 4.49 42 105 32 86 55 127 42 120 21 14 7 31 35 41 37 31 79 125

2 3.36 3.87 43 112 35 103 55 127 8 24 15 16 15 7 35 41 35 37 99 154

3 1.3 3.23 46 114 39 103 21 50 54 126 12 15 5 12 35 37 40 27 100 130

4 1.52 2.72 39 109 38 106 9 35 0 0 8 10 5 0 39 34 36 0 100 127

B6

1 4.66 4.05 42 110 35 103 43 127 22 44 13 10 12 18 38 42 25 34 66 115

2 1.46 3.62 39 109 41 109 35 117 8 24 13 10 7 13 35 30 43 35 78 111

3 1.08 3.24 41 112 38 108 14 41 21 48 11 8 8 26 33 31 36 36 91 122

4 1.41 3.33 32 105 28 86 9 26 21 46 11 11 8 15 36 31 38 45 90 115

B7

1 1.03 2.16 24 96 22 68 6 28 26 10 12 12 6 17 31 31 41 23 100 137

2 1.03 2.15 29 102 21 74 14 39 13 26 14 15 9 18 30 32 40 38 100 149

3 1.57 2.58 24 98 27 83 22 50 17 61 15 15 9 33 31 33 38 26 100 159

4 1.08 2.49 24 94 21 76 16 44 12 37 18 15 9 19 33 38 39 39 99 153

towards them is much easier than pushing away from them which  

results in different rate of change between driving forward and 

reverse which may change for the user over time. Whilst this  

research has simply depicted the velocity in quadrant vector form  

(forward-left (f l), forward-right, rear-left (rl), rear-right (rr)) in the 

box-plot format shown in Figure 16, it is expected in future that  

the vector will be split into turn and speed component form for 

adjustment of damping.

There is a certainty that in general reversing will not be as smooth  

as driving forward; although participant B2/C2 appeared to 

be equally smooth driving forward or backwards there was a 

slight reduction in the relative range of smoothness in the rear 

right compared to the rear left which may have been due to the  

user’s restricted movement on the left side whilst the partici-

pant B1/C1 appeared to have dificulty in the rear right quadrant  

according the data (Figure 17).

Obstacle proximity bias analysis
An additional four laps of the driving course were undertaken  

with the collision avoidance system on so that any bias in the  

proximity to obstacles that a driver has as they pass that obstacle  
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Table 10B. Feature data from driving test course (median values).

Id Run
FFT 
(Hz)

‘S’ 
*102

Position bias ellipse
Velocity vector bias 

(mm/s)
Obstacle bias

Driving 
timeforward 

right/left
rear 

right/left
forward rear forward rear

ra rb la lb ra rb la lb right left right left right left right left %
Total 
(s)

B8

1 1.19 1.85 23 91 16 74 19 48 3 10 10 10 6 6 35 35 33 45 89 169

2 1.25 2.02 27 101 22 70 8 18 26 6 10 10 6 39 40 33 38 25 95 150

3 1.08 1.72 28 88 19 79 45 116 6 6 10 10 6 6 34 34 36 39 99 130

4 1.46 2.11 27 93 26 74 40 94 22 10 10 12 6 10 38 32 38 36 97 142

B9

1 1.25 2.3 25 86 22 70 28 80 17 81 15 14 10 17 34 33 41 33 95 137

2 1.03 2.34 28 106 22 69 20 62 0 4 14 11 9 4 30 35 43 38 96 136

3 1.03 2.49 33 98 28 77 17 53 46 86 13 13 10 15 34 38 40 31 96 128

4 1.19 2.71 31 90 22 75 28 80 24 25 15 15 11 12 35 36 41 34 94 137

B10

1 0.76 1.86 19 99 22 71 12 38 39 125 10 10 4 12 34 31 35 22 99 223

2 1.11 1.64 25 89 24 86 41 100 11 42 10 7 9 12 29 30 30 36 100 190

3 0.6 1.64 19 95 21 78 48 109 13 20 10 6 9 6 35 29 41 36 100 207

4 0.65 1.67 22 97 26 89 25 69 28 33 9 10 6 6 29 28 33 30 100 198

B11

1 1.73 1.57 24 84 28 85 15 53 35 60 10 10 11 10 31 25 38 35 99 136

2 1.84 1.91 31 87 32 84 14 44 39 91 12 10 10 13 29 32 37 49 96 140

3 1.25 1.99 31 91 30 81 14 47 42 100 12 12 10 26 28 31 38 19 99 145

4 1.14 2.11 29 89 27 80 23 66 33 8 13 12 9 27 29 29 38 40 98 134

B12

1 2.33 1.72 26 96 24 79 28 28 23 32 10 10 6 19 27 28 36 22 94 178

2 1.03 1.55 28 98 25 88 19 18 3 127 10 9 10 4 28 30 38 29 99 158

3 1.19 1.46 29 90 22 88 12 34 35 117 9 10 6 9 30 29 37 21 98 144

4 2.11 1.51 23 80 26 88 21 40 16 124 10 10 9 9 25 28 37 18 99 133

B13

1 1.25 1.63 17 84 21 72 20 28 26 37 10 10 6 10 28 28 37 46 95 146

2 1.19 1.64 20 84 20 70 20 44 46 111 10 10 10 10 28 30 34 12 91 145

3 1.08 1.50 16 69 23 61 14 53 31 22 7 6 10 13 26 29 39 23 92 151

4 1.84 1.35 23 92 19 74 10 29 7 1 10 6 4 29 27 30 37 10 94 143

B14

1 2.28 2.60 18 93 24 86 20 43 37 112 15 19 12 9 42 29 37 31 88 147

2 1.25 2.11 23 91 23 83 14 46 40 122 14 12 10 10 34 32 39 17 99 131

3 1.25 2.18 23 93 19 83 16 38 34 100 14 12 10 12 33 33 42 24 100 134

4 1.14 2.07 28 96 16 76 18 59 13 13 12 14 9 15 35 33 48 40 100 137

could be determined which may indicate some visual or per-

ception dificulty; therefore it would be imperative to include 

this as a metric in any driving performance assessment and  

a deinitive component for the adjustment of any navigation assis-

tive system. The quadrant relative bias is shown in Figure 18,  

where the magnitude in the y axis denotes the amount of differ-

ence between the user joystick input and the system determined  

corrected joystick input calculated to keep the platform a safe  

distance from the obstacle, where the ‘k’ value was ixed perma-

nently at the same value for all.

Participant B1 had a bias in the rear right quadrant which  

appeared to correlate with the velocity bias the user also had 

in that quadrant when they participated in the group ‘C’ trial.  

This relevance has more signiicance when we compare B1 with 

all of the other participants who appeared to have a greater level 
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Figure 11. Joystick forward quadrants position pattern ellipse bias parameters for all fixed course participants.

Table 11. The range of variance of features for C1 for each day showing the minimum, 
median, and maximum values when the motion of the platform was at least 30 seconds in 
duration.

C1
Day

1 2 3

Feature min med max min med max min med max

FFT Joystick digital ‘y’ axis (Hz) 1.1 4.8 6.0 2.3 4.5 10.6 0.5 2.2 4.4

Velocity vector (x, y) ×102 
smoothness ‘S’

1.4 3.5 6.1 1.7 2.9 3.9 2.2 2.9 5.3

Input bias ellipse

F/right a 6.5 19 44 6 13 24 12 18 24

F/right b 13 20 104 18 34 60 15 29 71

F/left b 5 18 35 6 10 21 8 16 32

F/left b 14 21 97 21 36 70 20 26 102

R/right a 3 16 49 6 20 40 16 25 36

R/right b 18 43 127 6 56 96 22 31 102

R/left a 8 13 35 2 17 32 10 18 47

R/left b 16 30 76 28 57 127 18 72 90

Velocity vector bias 
(mm/s)

F/right 10 24 45 10 16 24 12 16 40

F/left 13 25 33 11 19 29 10 15 42

R/right 6 28 89 10 26 73 15 33 51

R/left 9 21 160 11 21 46 14 23 36

Driving time
ratio 0.1 0.5 1.6 0.4 0.7 1.6 0.1 0.4 1.0

total 39 95 360 30 75 161 56 121 1424

Page ＝≠ of ≠∴

Wellcome Open Research ＝×÷≧ゴ ＝ジ∴≠ Last updatedジ ×≦ DEC ＝×÷≧



Table 12. Average daily feature values for C1 calculated from complete 
dataset of all motions.

C1 Day

feature 1 2 3

FFT Joystick digital y axis (Hz) 0 0 0

Velocity vector (x, y) ×102 smoothness ‘S’ 3.5 2.9 4.4

Position bias ellipse

forward

right a 34 16 36

right b 20 35 29

left a 32 15 35

left b 20 38 27

rear

right a 26 22 28

right b 44 59 62

left a 23 22 25

left b 37 59 69

Velocity vector bias (mm/s)

Forward
right 24 16 30

left 25 18 33

rear
right 14 20 28

left 18 20 21

Driving time
ratio 0.7 1.1 0.4

total 4507 3822 6722

Table 13. The range of variance of features for C2 for each day showing the minimum, median, and 
maximum values when the motion of the platform was at least 30 seconds in duration.

C2
Day

1 2 3

Feature min mid max min mid max min mid max

FFT Joystick digital ‘y’ axis (Hz) 0.3 3.0 8.8 1.1 2.9 5.7 0.5 4.8 14.6

Velocity vector (x, y) ×102 smoothness ‘S’ 1.5 4.2 5.9 3.4 3.7 5.1 1.3 3.5 5.1

Input bias ellipse

F/right a 7.5 14 50 0 22 50 0 13 39

F/right b 5 88 127 15 62 127 7 88 127

F/left b 5 16 56 11 15 29 7 15 47

F/left b 18 95 127 8 102 127 7 98 127

R/right a 0 29 46 4 22 41 4 30 49

R/right b 13 88 124 10 50 127 8 76 127

R/left a 1 25 36 3 23 29 1 26 44

R/left b 8 95 116 3 108 125 7 91 127

Velocity vector bias (mm/s)

F/right 8 23 45 7 22 34 5 19 35

F/left 8 25 78 8 21 46 5 23 89

R/right 6 20 153 8 16 23 5 18 36

R/left 9 22 41 7 16 21 6 19 88

Driving time
ratio 0.2 0.6 1.5 0.3 0.8 1.8 0.1 0.6 1.5

total 35 91 1192 36 85 402 32 69 812
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Table 14. Average daily feature values for C2 calculated from 
complete dataset of all motions.

C2 Day

feature 1 2 3

FFT Joystick digital y axis (Hz) 0 0 0

Velocity vector (x, y) ×102 smoothness ‘S’ 3.9 4.0 3.6

Position bias ellipse

forward

right a 43 30 21

right b 67 86 88

left a 46 24 21

left b 67 111 93

rear

right a 42 45 38

right b 83 81 74

left a 28 33 32

left b 93 112 91

Velocity vector bias (mm/s)

Forward
right 18 21 19

left 21 22 22

rear
right 19 15 16

left 22 17 19

Driving time
ratio 0.7 0.6 0.6

total 11261 2441 24364

Figure 12. Joystick positional pattern for B1/C1 during test course.
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Figure 13. Joystick forward quadrant position pattern ellipse bias parameter over time compared to specific task for B1/C1 and 
B2/C2.

Figure 14. Joystick rear quadrant position pattern ellipse bias parameter over time compared to specific task for B1/C1 and B2/C2.
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Figure 15. Positional bias plot showing forward left and right ellipses of participant C1 day 2.

Figure 16. Velocity vector quadrant bias for all fixed course participants.
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Figure 17. Three day velocity vector quadrant bias variability over time compared to specific task.

Figure 18. Obstacle avoidance quadrant relative bias for all fixed course participants.
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Figure 19. Course time and driving time percentage for all fixed course participants.

of system intervention bias towards the rear left side as would be  

expected when manoeuvring into a left hand corner. There was 

a signiicant range of intervention across all of the participants  

with some having had very little difference between system  

generated trajectories and their own and yet others had a large  

range of difference.

Duration of active PWC driving analysis
The driving ratio is given in the left hand column of each par-

ticipant and the total course time in the right hand column in  

Figure 19. The large range of both ratio and overall time for  

B1/C1 was thought to be because the participant tried to 

concentrate too hard on not making a mistake rather than  

undertaking the course as quickly as possible. Participants B6 and 

B7 were novices and therefore unfamiliar with PWC’s response 

to their input. This caused their stop/drive ratio and overall  

time to be irregularly varied. Participants B7, B8, B10, and B12 

had a narrow driving to stop ratio range but a varied overall time 

to complete course range which might have suggested tiredness  

or cognitive dificulty, participants reported these issues at the end 

of the test; however there was no direct correlation to each run.

It is clear when looking at the three day data that without deter-

mining exactly what task the PWC was undertaking, such as  

a ixed course, the ratio and overall PWC use time can only be 

a long term or day-to-day feature rather than over each day.  

However, a smart assistive PWC system would potentially be 

able to identify the platform location and therefore determine,  

for example, that the user was taking too long to negotiate the  

bathroom doorway and use that information together with  

the obstacle proximity feature to determine that the user is in  

need of greater assistance.

Pattern recognition analysis of feature set
The purpose of this research is to identify potential features and 

metrics that identify user driving patterns and changes in those 

patterns over time. This information can then be used so that  

assistive PWC systems can adapt over time to the user’s chang-

ing needs. Therefore the features must indicate that changing state. 

In order to test this we have used classiiers which can be used to 

run in real-time on embedded hardware. One task is to examine 

whether the driving characteristics enable the identiication of each 

participant.

Whilst there are not many samples, they can be reasonably  

divided into testing and training sets (Table 15) with ten tests 

run for each classiier to improve robustness of testing. The  

outcome determined that it was possible to identify each partici-

pant between 74% and 86% correctly (Table 16) despite only hav-

ing a limited dataset. If the richer dataset for group ‘C’ is used  

then, as can be seen in Table 17, there was a certainty of correct 

identiication between 86% and 95%, dependent on the classiier 

used, between C1 and C2.

When data from C1 and C2 were analysed as it changed over the 

three days (Table 18 and Table 19), by labelling each day and 

comparing the three days for each participant individually, there 

was a much lower correlation of 65% to 85%, indicating that 
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Table 16. Pattern recognition test of driving test course participants.

All participants test number

Classifier 1 2 3 4 5 6 7 8 9 10 Ave

Linear Bayes 
Normal Classifier

89.3 82.1 89.3 89.3 89.3 82.1 78.6 89.3 85.7 85.7 86.1

K-Nearest 
Neighbour-1

89.3 82.1 75.0 82.1 82.1 85.7 89.3 75.0 85.7 75.0 82.1

Naive Bayes 
classifier

82.1 78.6 82.1 92.9 85.7 75.0 78.6 71.4 82.1 89.3 81.8

Parzen classifier 92.9 85.7 85.7 89.3 85.7 82.1 78.6 85.7 78.6 82.1 84.6

Fisher’s linear 
Discriminant

71.4 75.0 71.4 67.9 89.3 75.0 75.0 71.4 71.4 75.0 74.3

Logistic linear 
classifier

83.9 75.0 78.6 85.7 80.4 73.2 78.6 78.6 89.3 85.7 80.9

Support vector 
machine

82.1 89.3 67.9 82.1 64.3 78.6 78.6 75.0 85.7 75.0 77.9

Table 17. Pattern recognition test of three day participants for individuality.

C1 versus C2 test number

Classifier 1 2 3 4 5 6 7 8 9 10 Ave

Linear Bayes Normal 
Classifier

91.8 90.0 90.0 95.4 89.1 91.2 93.6 94.5 90.9 90.9 91.7

K-Nearest Neighbour-1 96.4 90.9 98.2 92.7 96.4 96.4 92.7 87.3 98.2 98.2 94.7

Naive Bayes classifier 83.6 80.1 87.3 90.9 89.1 85.4 85.4 88.2 90.1 81.2 86.1

Parzen classifier 90.1 92.7 92.7 96.4 96.4 100 92.7 92.7 94.5 98.2 94.6

Fisher’s linear 
Discriminant

92.7 88.2 90.0 95.4 88.2 93.6 93.6 90.0 88.2 91.2 91.1

Logistic linear 
classifier

90.0 89.1 93.6 91.8 90.0 92.7 90.0 91.8 88.2 88.2 90.5

Support vector 
machine

92.7 94.5 91.8 91.8 86.4 90.0 90.9 92.7 90.9 94.5 91.6

Table 15. Pattern recognition testing criteria.

Test
Total 

samples
Classes

Training/
test split

All participants test 56 14 (users) 50:50

A versus B test 140 2 (A and B) 60:40

A change over time test 35 3 (Day 1, 2 ,3) 60:40

B change over time test 105 3 (Day 1, 2 ,3) 60:40
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Table 18. Pattern recognition test for changes over the three day period (C1).

C1 change over time test number

Classifier 1 2 3 4 5 6 7 8 9 10 Ave

Linear Bayes Normal 
Classifier

66.7 63.0 51.9 77.8 74.1 63.0 77.8 51.9 63.0 59.3 64.9

K-Nearest Neighbour-1 70.4 70.4 85.2 63.0 70.4 77.8 85.2 77.8 55.6 77.8 73.4

Naive Bayes classifier 88.9 74.1 96.3 81.5 92.6 85.2 85.2 88.9 74.1 85.2 85.2

Parzen classifier 63.0 70.4 66.7 59.2 70.3 59.2 66.7 55.6 85.2 66.7 66.3

Fisher’s linear 
Discriminant

48.1 48.1 66.7 66.7 63.0 63.0 70.3 66.7 77.7 81.5 65.2

Logistic linear 
classifier

70.3 85.2 62.9 55.6 85.2 81.4 85.2 63.0 63.0 85.2 73.7

Support vector 
machine

66.7 70.4 55.6 66.7 81.5 59.3 77.8 85.2 77.8 74.1 71.5

Table 19. Pattern recognition test for changes over the three day period (C2).

C2 change over time test number

Classifier 1 2 3 4 5 6 7 8 9 10 Ave

Linear Bayes Normal 
Classifier

71.6 64.2 59.3 74.1 72.8 69.1 64.2 76.5 72.8 66.7 69.1

K-Nearest Neighbour-1 82.7 77.8 70.4 85.2 77.8 82.7 90.1 85.2 82.7 87.7 82.2

Naive Bayes classifier 74.1 75.3 69.1 71.6 69.1 75.3 80.2 74.1 69.1 79.0 73.7

Parzen classifier 76.5 79.0 83.9 71.6 87.7 77.8 82.7 71.6 74.1 72.8 77.8

Fisher’s linear 
Discriminant

74.1 76.5 65.4 71.6 69.1 72.8 71.6 72.8 71.6 60.5 70.6

Logistic linear 
classifier

71.6 64.2 76.5 71.6 71.6 77.8 70.4 76.5 74.1 72.8 72.7

Support vector 
machine

69.1 75.3 69.1 75.3 77.8 71.6 75.3 70.4 74.1 65.4 72.3

there had been a variation between the days. There was of course 

variation during each of the days and this was not differentiated  

by the labelling due to lack of ground truths and speciic tasks 

undertaken over the course of each day, this requires further  

investigation in a more observed environment. However, these 

results clearly show that there is already potential for adjusting the 

system over the long term without the ground truths, which is an 

important step towards developing an automated assistive system.

Conclusions
The development and provision of effective assistive technology 

to enable an individual to perform daily tasks on a more equal  

basis to someone who does not have the same disability can be 

challenging and hard to quantify, let alone justify, when funding 

demands are forever stretched. This research has sought to ease 

the development of an adaptable adjustable system by identifying 

some quantitative and qualitative measures with which to test the  

requirement of providing adaptive assistance to the PWC user 

in addition to determining the driving features and adjustable  

elements.

It is interesting to note from the results that, when assessing 

individuals, their awareness of the circumstances, location, and  

level of observation signiicantly affects their behaviour and per-

formance. Therefore information as to the user’s location and the 

task they are undertaking needs to be additionally identiied by the 

smart system for it to be able to provide a robust adaptive system.

This research has identiied that:

• The mapping of Joystick position to speed and turn 

interpretation can be adjusted over the long term as the 

user‘s movement pattern changes. An initial setup mapping 

can be undertaken for calibration and recalibrated sometime 

later. From the results, it does not appear to be necessary to 

update over the very short term such as during the course 

of a single day. Without knowing what the time related task 

being undertaken, there was no meaning to the short term 

time duration as we discovered when we undertook the long 

term 3 day testing. For example, there was no distinction 

between the users just moving the joystick accidentally or 
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Supplementary material
Supplementary File S1: Questionnaire for the collection of data from powered wheelchair users.

Click here to access the data.

out of boredom and actual intended motion. The time feature 

has a clear function to be employed as a measure of how 

quickly a user can undertake a speciic set task, this translates 

to the passing through of doorways and passageways where  

they are identiiable by the system. The time function 

can also indicate the general trend of usage over time. 

The ratio of driving time can be used as a long term trend 

potentially indicating the user’s ability change over time. This  

feature can also be used on task speciic activities as a measure 

of the user’s quality of navigation and therefore is a factor 

in the user abilities as they change over time during the day  

and over the days which can also indicate the need for a 

change in the level of required assistance.

• The smoothness feature is good for identifying the long  

term trend, when combined with tremor frequency, and as 

a short term daily identiier of the need to ilter the input  

signal. This feature also has the important characteristic  

of being an identiier for the need to change the level of 

assistance from a smart assistive PWC.

• The frequency of tremor obtained from the joystick is 

a good measure of user change over time providing the  

time frame is of suficient length to discount short term 

anomalies caused by controlled user actions which mimic 

a tremor. The smoothness feature should be used for the  

short term input iltering.

• The sensor feedback from the collision avoidance system 

can be used to indicate the proximity of obstacles as  

the user negotiates the environment. This produces a feature 

when the user input is compared to the system generated 

output that can be used to adjust the assistance, and level  

of assistance offered by the system.

• Finally the velocity vector can be used to determine the 

level of user uncertainty at some moment in time, such as  

when negotiating tight spaces and the user over reacts 

or makes erratic corrections. This is an interesting and  

important observation.

The paper has therefore identiied features and metrics which, 

with further reinement and testing, are suitable to be used to set 

up industry standard PWC control systems and to monitor their 

use for adjustment as the user’s needs change over time. This is a  

signiicant improvement over the current trial and error method 

and these features and metrics can be used to adjust/correct user 

joystick input to keep them safely in control of their machine 

for longer rather than crossing some digital threshold and deny-

ing them control. Further work is required to obtain user ground 

truths with respect to user actions, and to monitor their changes in  

behaviour over longer periods of time, when participants are using 

their own PWCs in order to determine precise adjustments for  

the smart adaptive system. This would need to involve  

accurate observation of panicky movements and spasms and  

users negotiating real-world obstacles.

Data availability
The data supporting the indings reported in this study have  

been uploaded to OSF: https://osf.io/w95ba/42. The following  

iles are included:

Extended_Day_Data.zip
This folder contains all of the data collected over the extended 

experiment which includes: Time in milliseconds; joystick  

speed; joystick turn; drive proile; x body accelerometer; y body 

accelerometer; z body accelerometer; body roll; body pitch;  

body yaw; and collision event. Only days which contained  

suficient data were reported in the results.

Fixed_Course_Feature_Results.xlsx
This ile lists the features identiied for each participant on all  

four attempts of the driving course.

Initial_Joystick_Data.zip
This folder contains the artiicially generated tremors for  

determination of the suitability of the PWC joystick data rate  

from the manufacturers system CAN Bus.

Joystick tremor analysis.xlsx
This ile summarises the artiicially generated joystick tremors.

Pattern_Recognition_Combined_Data.zip
A folder containing the feature data for the pattern recognition  

testing from the driving course and the multiple day usage.

SANAS_Driver_Symptoms_Data.xlsx
Anonymous questionnaire responses.

Wheelchair Fixed course Data.zip
Anonymized data from the 14 participants on the driving course 

assessment with key.
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In the Introductionゴ the statement プYoung peopleブs needsゴ with regards to the benefits of the PWCゴ have
not been fully researchedベ relies on ref ＞ which is now ÷＜ years out of dateズ The authors need to carry out
a contemporary literature search and review upゾtoゾdate research studiesズ This needs attention and the
findings from a search may further inform or adjust the evidence underpinning the research aims and
objectivesズ

The プabilityゾtoゾoperate testベ is carried out to assess individuals for PWC provision is primarily concerned
with safety ┑chair user and others in the environment┒ and has more to do with how the chair user
perceivesゴ judges and interprets the environment in order to drive the PWC successfullyズ

It is unclear from Table ÷ what are the disabilities プwhich currently prevent individuals from operating a
PWC without assistanceベズ Many of those listed eズgズ spasticityゴ weaknessゴ would not prevent use of a
PWCズ Some listed are coゾoccurring eズgズゴ spasticity┄hemiplegiaズ This needs clarificationズ 

The statement that プThis process may take several sessions and sometimes a satisfactory outcome is not
achievedベ requires the support of evidence specifically relating to the issues addressed in the paragraphゴ
iズeズ usersブ control of the joystickズ

プSome of the observations commonly reportedベズ Please provide the sources of the reported observations
that are considered to be commonズ

What is the rational for including people who did not use powered chairs in group Bバ They are noted as
ピcontrolブ ┆ what does that meanバ Is it that they did not have a health condition that would need a PWC for
mobilityバ Alsoゴ what is the meaning of not applicable ┑N┄A┒ for B÷＝ブs reason for having a PWCバ The text
states that there were ÷＝ group B participants but table ＜ indicates that there were ÷＝ズ These issues need
clarificationズ

How were the activities of group C in the PWC recordedバ Thenゴ how were the recordings analysedバ This
needs to be addressed so that similar studies can reproduce the methodsズ

Regarding the assessment of driving time and stationary time it would be helpful to reconsider the
assumption that stationary time may プindicate their current capabilityベ and プhave some relationship to
levels of tiredness and reasoning and thus some direct relationship to the amount of assistance which is
requiredズベ PWC users who work may spend a fair amount of time stationary ┑eズgズ at a work station or
operating a computer┒ and┄or not driving the chair ┑eズgズ because they may be driving their
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requiredズベ PWC users who work may spend a fair amount of time stationary ┑eズgズ at a work station or
operating a computer┒ and┄or not driving the chair ┑eズgズ because they may be driving their
car┄van┄transporter travelling to and from work┒ズ

How did the authors define a ピgood dayブ and a ピbad dayブバ How was this judged by the PWC usersバ Please
provide a definitionsズ Table ＞ and text ┆ there are three users with high collision numbers ┆ the majority in
your category Aズ The remaining users had far fewer collisionsズ Is it fair to take an averageバ Similar
comments are relevant for table ≦ズ The same users A≠ and A＞ have high numbersズ Interestinglyゴ A ÷× has
fewer collisions on a ピbadブ day than on a ピgoodブ dayズ Any particular reason notedバ Alsoゴ did the report of
collision with people allow differentiation between the PWC user colliding with another person and
another person colliding with the PWCバ

Page ÷∴ズ The authors state プdue to physical and┄or cognitive damageベズ Please change ピdamageブ to
ピimpairmentブズ The features of positional pattern and biases could also be due to postureズ It is not clear if
the participants were seated with postural supportゴ or had sufficient trunk muscle ability to be independent
in postural supportズ

Page ＝≧ para ＝ジ please rephrase プ ゼon not making a mistake and a colliding rather than having
undertaken the course ゼベ as it does not scan wellズ Similarly プズズuse the PWC and unfamiliar with its
response ゼベ ┑were unfamiliarバ┒

pズ＝≧ ┆ this is an interesting scenario ┆ プthe user was taking too long to negotiate the bathroom doorway ズズベ
and so needed assistanceズ Whilst it is clear that the proximity device will sense an obstacleゴ would it also
sense water spillage on the bathroom floorバ This would be a safety reason for the PWC user to stop at the
doorwayズ

Typo ┆ プWhen the data from C÷ and C＝ was analysedベ  data   analysedズwere

The authors have appropriately summarised what this research has identifiedズ They should also discuss
the limitations of the studyズ One issue arises that it would be helpful to have the views of the researchers
aboutズ The test circuit used had fixed featuresゴ yet everyday outdoors driving for PWC users requires
manoeuvring and negotiating moving features ┆ eズgズ pedestriansゴ cars┄bicycles etcゴ trolleysゴ buggiesゴ etcズ
how would the system work in these everyday circumstancesバ Although the authors did not research this
in the studyゴ is it something that will need specific further research in order for the new devices to have
benefits for users in daily life with a PWCバ

This review has not commented on the bioengineering aspects of the paper as the reviewer is not a
bioengineerズ A review by a peer bioengineer working in powered wheelchair research is recommendedズ

Is the work clearly and accurately presented and does it cite the current literatureバ
Partly

Is the study design appropriate and is the work technically soundバ
Partly

Are sufficient details of methods and analysis provided to allow replication by othersバ
Yes

If applicableゴ is the statistical analysis and its interpretation appropriateバ
I cannot commentズ A qualified statistician is requiredズ
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Are all the source data underlying the results available to ensure full reproducibilityバ
Yes

Are the conclusions drawn adequately supported by the resultsバ
Yes

 No competing interests were disclosedズCompeting Interestsジ

Referee Expertiseジ My area of expertise is in research with users and providers of powered wheelchairs
from a clinical and functional perspectiveズ My research field is in physical and complex disability and the
use of assistive technology by those with long term functional limitationsズ I do not have expertise in
bioengineering and cannot comment on those aspects of this articleズ

I have read this submissionズ I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standardズ
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ゴ University of Kentゴ UKMichael Gillham

We would like to thank the reviewer for the helpful and thorough reviewズ We have subsequently
made changes to the contentゴ as suggestedゴ with regard to all of the points raisedズ 

 There are no competing interestsズCompeting Interestsジ
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Department of Electronicsゴ University of Alcalaゴ Alcalá de Henaresゴ Spain

This paper is very interesting for future developments in Assistive devices for Powered Wheelchairs
┑PWC┒ズ However I have found several points that need to be clarifiedゴ justified or extendedズ

The authors mention the プsmart PWC collision avoidance systemベ ┑page ≧ゴ second paragraph┒ but they
give no details about which is the smart PWC usedズ This information must be included here in order to
know the actual expected performance of that avoidance systemズ If the set of users ┑Aゴ B and C┒ had
different PWCs such information should also be includedゴ because this is an important factor that could
affect the overall systemブs performanceズ

In the same page ≧ゴ Table ≠ゴ the concept プDriving abilityベ was included with an apparent numeric scale
from ÷ to ＞ズ What does it meanバ How was that figure obtainedバ Was it an objective quantity or subjective
qualityバ

The evaluation course shown in Figure ＝ needs further detailsズ There is no metric information there and
the dimensions of a test driving course have a great importance when evaluating driving abilitiesズ Full
details about lengths and widths of corridors and dimensions and location of obstacles must be includedズ
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The section プFeature developmentベ will be clarified if a list of such features is introduced before themゴ for
instance after the first paragraph on page ∴ゴ just before the first feature studied ┑that is プinput tremor and
smoothnessベ┒ズ Also I guess that there is a missゾreference in the first paragraph on page ∴ジ it is mentioned
プTable ÷ベ and I think that the right reference should be プTable ＝ベズ

On section プJoystick positional biasベゴ paragraph ＝ゴ there is a mention to axes x and y in Figure ≠ズ Such
axes were not represented thereズ Apparently they are supposed to be aligned with the ForwardゾReverse
┑axis x┒ and the rotation ┑axis y┒ commandsズ Pleaseジ let it be clear on Figure ≠ and in textズ I have to say
that normally I expect to see Joystick actions as they are physically found on the actual device that is
プForwardベ action pointing upwardsズ

The プProximity to obstaclesベ section needs to be improvedズ Although authors make a direct mention to
reference ÷＜ゴ in the current article Equation ┑∴┒ has all of its parameters undefined so it is meaningless
hereズ For instanceゴ what is the プdamping factorベ mentioned in textバ Pleaseゴ fix that issueズ

Figure ＜ shows the so called プcollision avoidance zoningベズ Also here appear a lot of undescribed featuresズ
Why the zones appear inside some elliptic regionsバ Why there are two ┑apparently┒ important points
hereバ One of such points is the turning centre of the PWC ┑between the traction wheelsゴ back on chair┒
butゴ what is the meaning of the other point of interestバ What is the meaning of the small rectanglesバ Are
they a representation of the PWC wheelsバ Why are there two elliptic regionsバ

In section プFeature evaluationゼベ on page ÷＝ appears up to ≧ classifiersズ Butゴ are the input vectors the
same for all the seven classifiersバ Pleaseゴ give more details about what features are used for each
classifier andゴ if all of them are usedゴ give a list summarizing themズ

In my opinionゴ the section プJoystick tremor and smoothness analysisベ must be suppressed or deeply
reformattedズ Let us go directly to Figure ≧ズ From there it is stated that the ＞×Hz digital info is enough for
identifying tremor so no additional hardware is requiredズ That is evident knowing the expected frequency
characteristics of tremor and the ＞×Hz sampling frequency of the system busズ Such ＞×Hz frequency on
system busゴ according to sampling theoremsゴ are enough for identifying frequency patterns of even ÷×Hz
┑theoreticallyゴ up to ＝＞Hz┒ズ So there is no need for introducing new devices for upゾsampling low frequency
information ┑like the one of tremor┒ up to ＝＞×Hzズ So the results on Figure ≧ are selfゾevident and any
difference there could only be derived from systematic errors on the measuring processズ

In Figure ÷×ゴ the vertical scale is プFrequencyベ and プSmoothnessベズ Howeverゴ the data columns were
referred to as プTベ and プSベズ I think that プTベ must be replaced by プFベ of Frequencyズ

About the section プPattern recognitionゼベ on page ＝≧ there are some points that need further
improvementズ As I said beforeゴ somewhere the reader needs to find what were the actual features
introduced to the classifiersズ But here we need to know also the ピoutput classesブズ Such info is shown in
Table ÷＞ゴ but it is not clear to me the meaning of all the classesズ For instanceジ first row in Table ÷＞ show
÷＜ classes that can be identified as one per user in Table ＜ズ Butゴ what about the other classes in other
rowsバ And alsoゴ why there is not an option for a プnot classifiedベ or プnot identifiedベ classバ

I hope my questions and comments could help to improve this articleズ Nevertheless I would like to
congratulate the authors for their excellent workズ

Is the work clearly and accurately presented and does it cite the current literatureバ
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Yes

Is the study design appropriate and is the work technically soundバ
Yes

Are sufficient details of methods and analysis provided to allow replication by othersバ
Partly

If applicableゴ is the statistical analysis and its interpretation appropriateバ
Yes

Are all the source data underlying the results available to ensure full reproducibilityバ
Yes

Are the conclusions drawn adequately supported by the resultsバ
Yes

 No competing interests were disclosedズCompeting Interestsジ

Referee Expertiseジ Assistive technologiesゴ embedded systemsゴ human machine interfacesゴ smart
wheelchairs

I have read this submissionズ I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standardゴ however I have significant reservationsゴ as outlined
aboveズ

Author Response ×＞ Dec ＝×÷≧
ゴ University of Kentゴ UKMichael Gillham

We would like to thank the reviewer for the helpful and thorough reviewズ We have made
amendments to the content as suggested by the reviewer to all of the points raised with the
exception ofジ The joystick plot orientation of axes was intended to correspond to the collision
avoidance ┑assistive technology┒ body frame of referenceズ Although the ＞×Hz data rate from the
joystick is sufficient to determine tremor frequency up to ＝＞Hz our intention was to determine
whether velocity was an adequate replacement for jerk as a measure of smoothness ┑as reported
by others┒ズ In this case the joystick measurement of velocity between two datum points is simply
the rate of the actual distance travelled by the joystickザ however jerk is fourth derivative of joystick
position and therefore we needed to sample for jerk at a much higher rate in order to compare
velocity derived smoothness with the Normalised Jerk Scoreズ We were also looking to use large
amplitude sudden velocity magnitude and direction changes as a measure of panic or sudden
reaction to misjudging obstaclesゴ these have a velocity┄frequency much higher than normal hand
tremorsゴ and we aim to determine this in future work when ground truths are availableズ In addition
all these changes would need to be monitored as they changed over short periods of timeゴ such as
negotiating a specific doorway where there may only be ＞×ゾ÷×× samples whilst also over the
general longゾterm monitoring and filtering of tremors and potentially spasmsズ Consequently in
response to the review we have reゾworded this section to make these things clearer because it did
appear unnecessaryズ 

 There are no competing interestsズCompeting Interestsジ
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