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CREDIBLY IDENTIFYING SOCIAL EFFECTS:
ACCOUNTING FOR NETWORK FORMATION AND

MEASUREMENT ERROR

Arun Advani

University of Warwick, Institute for Fiscal Studies and CAGE

Bansi Malde*

University of Kent, and Institute for Fiscal Studies

Abstract. Understanding whether and how connections between agents (networks) such as declared
friendships in classrooms, transactions between firms, and extended family connections, influence
their socio-economic outcomes has been a growing area of research within economics. Early methods
developed to identify these social effects assumed that networks had formed exogenously, and were
perfectly observed, both of which are unlikely to hold in practice. A more recent literature, both
within economics and in other disciplines, develops methods that relax these assumptions. This paper
reviews that literature. It starts by providing a general econometric framework for linear models of
social effects, and illustrates how network endogeneity and missing data on the network complicate
identification of social effects. Thereafter, it discusses methods for overcoming the problems caused
by endogenous formation of networks. Finally, it outlines the stark consequences of missing data on
measures of the network, and regression parameters, before describing potential solutions.

Keywords. Networks; Social effects; Econometrics; Endogeneity; Measurement error; Sampling
design

1. Introduction

Networks – connections between agents – are an ubiquitous part of life. Student’s academic achievement

is influenced by their friends and classmates; employee productivity by interactions with other team

members; individuals learn about new products and opportunities from their acquaintances and friends;

firms cooperate and compete with other firms in developing new innovations; and so on. Understanding

the nature and magnitude of the effects of networks is key to constructing meaningful models and

designing effective policies. A particular interest lies in identifying social effects – direct spillovers from

the outcomes of one agent to the outcomes of others.

Early empirical work seeking to identify social effects used data with limited information on networks,

typically information on membership of mutually exclusive groups such as classrooms, neighbourhoods,

or villages. Estimating social effects with this type of data suffers from two key limitations. First,

identifying the social effect is complicated by the reflection problem – a form of simultaneity where

it is not possible to identify who is influencing whom (Manski, 1993). Second, since more detail

on interactions within a group is not available, studies (implicitly) assume that all agents within a group

interact with one another in the same way. However, the composition of the group on both observed and
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2 ADVANI AND MALDE

unobserved dimensions could influence within-group interactions, and through this the actual outcome.

Ignoring variation in interactions within such groups can lead to misleading conclusions and policy design,

as shown in recent work by Carrell et al. (2013).

More recently, a growing body of research within empirical economics uses data which directly measure

interactions between pairs of agents (network data hereon) to sidestep these issues. This growth has been

spurred by the increasing availability of such data, as well as the development of methods to identify

and estimate social effects with such data. Starting with Bramoullé et al. (2009) and De Giorgi et al.

(2010), methods have been developed to overcome the reflection problem. They show how information

on network structure can be used to break the simultaneity, and obtain the necessary exclusion restrictions

for parameter identification. These methods, reviewed in detail by Advani and Malde (2014), Topa and

Zenou (2015) and Boucher and Fortin (2015), impose strong restrictions on the network formation process

and the quality of the data.

In particular, the network is assumed to be exogenous conditional on observed agent- and network-level

characteristics, and to be fully and perfectly observed by the researcher. Both assumptions are unlikely

to hold in practice. In a schooling context, for example, personality traits which are rarely observed by

a researcher might influence both a child’s choice of friends and her schooling performance. Estimates

of the influence of a child’s friends’ outcomes on her outcomes will be biased if her choice of friends

is not accounted for. Similarly, accurately collecting fine-grained information on all connections is very

costly and logistically challenging, making it rare to observe a complete, perfectly measured network.

This has important implications for identification of social effects using restrictions based on the network

structure: for example, the methods proposed by Bramoullé et al. (2009) and De Giorgi et al. (2010)

rely on information of who is not connected with whom to provide exclusion restrictions. Missing or

mismeasured data on link status will impair the ability of these methods to yield unbiased and consistent

social effect estimates.

The issue of endogenous link formation has long been recognized in the empirical literature, while that

of measurement error has received increasing attention recently. In this paper, we provide an overview

of a range of econometric methods to deal with network endogeneity and measurement error when

estimating linear models of social effects. The majority of empirical work on social effects uses linear

models, motivating our focus on this class of model.1 Whilst the process of network formation is of

interest in its own right, our interest is in identifying causal social effects, for which endogenous network

formation is a clear confounder. We therefore focus on methods that deal with the endogeneity in network

formation when estimating social effects, rather than all methods to model and estimate network formation

processes. We draw on methods developed in a broad range of disciplines, including economics, sociology

and mathematics, and express ideas in a manner that can be easily understood by economists.

We begin by laying out a general linear econometric model of social effects, separately for individual-

level and network-level outcomes. The individual-level specification nests a number of economic models

that have been applied in the literature. These specifications clarify the social effect parameters of interest,

and allow us to illustrate the consequences of endogenous link formation and measurement error in the

network on social effect estimates.

Next, we provide a brief overview of strategies to deal with endogenous network formation. We do not

hope or attempt to provide a comprehensive review of this now large and expanding literature. Instead, we

discuss, in a general way, four common approaches, using specific examples to illustrate ideas. The first

approach exploits exogenous variation arising from random assignment of interventions or links. Though

this provides clean identification, random assignment may not often be feasible. The second approach

exploits local shocks to network structure induced by natural- and quasi-experiments such as policy rules,

or unanticipated deaths of agents. When such variation is not available, a third approach – instrumental

variables – may be promising. This involves finding a variable which affects the link formation decision

but has no direct influence on the outcome of interest. However, such a variable may not be available in

many contexts. A final strand of the literature thus jointly models link and action choices. Approaches
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CREDIBLY IDENTIFYING SOCIAL EFFECTS 3

within this literature model these choices either sequentially, or simultaneously. In the former case, a

natural solution to account for bias arising from the self-selection of link is the control function where one

estimates the selection bias term, and ‘controls’ for it when estimating the social effect model. However,

where multiple equilibria are possible, this approach requires additional assumptions about equilibrium

selection.

Thereafter, we discuss the challenge posed by imperfectly measured networks. Missing data, due to

the sampling method or otherwise, have important consequences for both measurement of statistics of

the network, and the parameter estimates of social effect models. This is because networks consist of two

interrelated objects: agents (nodes) and links. A sampling strategy over one of these objects defines the

(conditional) sampling process over the other. This means that econometric and statistical methods for

estimation and inference developed under classical sampling theory are often not applicable to network

data. We first discuss the implications of missing data for the estimation of network statistics and regression

parameters. Thereafter, we review the methods available to correct for these problems, and the conditions

under which they can be applied.

Given the breadth of research in these areas alone, we naturally have to make some restrictions to

narrow the scope of what we cover. We do not cover methods for estimating social effects when networks

are conditionally exogenous. Surveys by Blume et al. (2010), Advani and Malde (forthcoming), Topa

and Zenou (2015) and Boucher and Fortin (2015) more than amply cover this ground. In our discussion

of endogeneity, we touch lightly on issues of network formation; a fuller treatment of network formation

can be found in Advani and Malde (2014), Graham (2015), de Paula (forthcoming) and Chandrasekhar

(2015). Similarly, whilst we discuss briefly models in which characteristics of the network structure are

important, a fuller treatment can be found in Jackson et al. (2017). Finally, we do not survey findings on

the size, magnitude or heterogeneity of the social effects found in applied economics: other reviews more

than amply cover these, for example, Epple and Romano (2011) and Sacerdote (2011) provide surveys

of peer effects in education, while Chuang and Schechter (2015) provide a survey of applied work on

networks in developing countries.

The rest of the paper is organized as follows. Section 2 lays out a general linear econometric model of

social effects, separately for individual- and network-level outcomes. Section 3 considers methods to deal

with endogenous formation of network links. Section 4 considers the implications of measurement error

in the network, and outlines some of the methods that have been proposed to account for these. Section 5

provides some concluding remarks, considers some of the limits of what is currently known about

econometric methods for linear social effect models and offers some potential directions for future work.

2. Conceptual Framework

We begin by laying out a general linear econometric model of social effects, separately for individual- and

network-level outcomes. These nest a number of the key empirical specifications used in the literature,

and elucidate the parameters of interest. We draw on these specifications to outline some of the common

assumptions imposed to identify the parameters of interest. Thereafter, we illustrate the implications of

endogenous network formation and measurement error in the network.

Throughout we use the following notation. A network (or graph), g = (Ng, E g), is defined by a set of

nodes, Ng , and the edges (or links) Eg between them. The nodes represent agents (individuals, households,

firms or countries), and the edges represent the links between pairs of nodes (e.g. friendship, kinship,

coworking, economic transactions). We index networks by g, and nodes within a network g by i ∈ Ng .

The number of nodes in network g is Ng , and the number of edges is Eg . We define GN as the set of

all possible networks on N nodes. We consider binary networks where any (ordered) pair of nodes i, j

is either linked, G ij,g= 1, or not linked, G ij,g= 0. If G ij,g= 1 then j is described as being a neighbour

of i . We denote by neii,g = { j : G ij,g = 1} the neighbourhood of node i , which contains all nodes with

whom i is linked. di,g = |{ j : G ij,g = 1}| is the number of neighbours, or degree, of i . Nodes that are
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4 ADVANI AND MALDE

neighbours of neighbours will often be referred to as ‘second degree neighbour’. Typically it is convenient

to assume that G i i,g := 0 ∀i ∈ g. Edges may be directed, so that G ij,g is not necessarily the same as

G ji,g; in this case the network is a directed graph (or digraph). The network can be represented by an

Ng × Ng adjacency matrix, Gg , with typical element G ij,g; and whose leading diagonal is normalized to

0. We also define the influence matrix, G̃g , as the row-stochastised adjacency matrix.2 Elements of this

matrix are defined as G̃ ij,g = d−1
i,g G ij,g.

2.1 Individual-Level Models

Common specifications of individual-level linear social effect models can be written as a special case of

the following equation:

Y = αι + w y(G,Y )β + Xγ + wx(G,X)δ + Zη + Lν + ε (1)

Y is an
∑M

g=1 Ng × 1 vector stacking individual outcomes of nodes across all networks (indexed

by g = 1, . . . , M). X = (X
′

1, . . . , X
′

M )
′

is an
∑M

g=1 Ng × K matrix of K individual-level observable

characteristics that influence a node’s outcome and potentially that of others in the network. G =

diag{Gg}
g=M

g=1 is a block-diagonal matrix with the adjacency matrices of each network along its leading

diagonal, and zeros on the off-diagonal. The block-diagonal nature of G means that only the characteristics

and outcomes of nodes in the same network are allowed to influence a node’s outcome. w y(G,Y )

and wx(G,X) are functions of the adjacency matrix, and the outcome and observed characteristics,

respectively. These functions indicate how network features, interacted with outcomes and exogenous

characteristics of other nodes in the network, influence the outcome. Z is an
∑M

g=1 Ng × Q matrix of

Q network-level observed variables that influence nodes’ outcomes. The matrix L = diag{ιg}
g=M

g=1 is an∑M
g=1 Ng × M matrix where each column is an indicator for being in a particular network. ν = {νg}

g=M

g=1

is a vector of network-specific effects, unobserved by the econometrician but known to nodes; and ε is a

vector stacking the (unobservable) error terms for all nodes across all networks. In any given specification

only one of Z and L can be included.

This representation nests a range of models estimated in the economics literature:

Local Average Model: This model arises when a node’s outcomes are influenced by the average

behaviour and characteristics of its direct neighbours.3 This happens, for example, when social effects

operate through a desire for a node to conform to the behaviour of its neighbours. This implies that

w y(G,Y ) = G̃Y and wx(G,X) = G̃X above. Bramoullé et al. (2009) and De Giorgi et al. (2010) provide

conditions for identifying model parameters when the network is conditionally exogenously formed.

Local Aggregate Model: When there are strategic complementarities or substitutabilities between

a node’s outcomes and the outcomes of its neighbours, one can obtain the local aggregate model. In

this case, a node’s outcome depends on the aggregate outcome of its neighbours, which corresponds to

w y(G,Y ) = GY in equation (1). wx(G,X) is typically defined to be G̃X . See Calvó-Armengol et al.

(2009), Lee and Liu (2010), Liu et al. (2014b), and Bramoullé et al. (2014) for details on identification

conditions when the network is conditionally exogenously formed.

Hybrid Local Model: This class of models nests both the local average and local aggregate

models, which allows the social effect to operate through both a desire for conformism and through

strategic complementarities/substitutabilities. In the notation of equation (1), it implies that w y(G,Y ) =

[GY , G̃Y ], while wx(G,X) is typically defined to be G̃X . Liu et al. (2014a) provide identification

conditions when the model is conditionally exogenously formed.

Models with Network Statistics: Networks may influence node outcomes (and consequently aggregate

network outcomes) through statistics of the network beyond those depending on direct neighbours only.4

For instance, the DeGroot (1974) model of social learning implies that an individual’s eigenvector

centrality, which measures a node’s importance in the network by how important its neighbours are,

determines how influential it is in affecting the behaviour of other nodes.

Journal of Economic Surveys (2017) Vol. 00, No. 0, pp. 1–29
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CREDIBLY IDENTIFYING SOCIAL EFFECTS 5

Denoting a specific network statistic by ωr , where r indexes the statistic, some possible specialisations

of w y(G,Y )β in equation (1) for node i in network g include:

�

∑R

r=1
ωr

i,gβr : R different network statistics, without any reference to outcomes (e.g. Banerjee et al.,

2013; Cruz et al., forthcoming); or

�

∑R

r=1

∑
j �=i

G̃ ij,g y j,gω
r
j,gβr : the average of neighbours’ outcomes weighted by R different network

statistics (e.g. Cai et al., 2015); or

�

∑R

r=1

∑
j �=i

G ij,g y j,gω
r
j,gβr : the sum of neighbours’ outcomes weighted by R different network

statistics.

Analogous definitions can be used for wx(G,X)δ.

The social effect parameter in equation (1) is β: the effect of a function of a node’s neighbours’

outcomes (e.g. an individual’s friends’ schooling performance) and the network. This is also known as

the endogenous effect, to use the term coined by Manski (1993). This parameter is often of policy interest

since the presence of endogenous effects implies there is a social multiplier: the aggregate effects of

changes in X , wx(G,X) and Z are amplified beyond their direct effects, captured by γ , δ and η. The

parameter δ, capturing the effect of neighbours’ characteristics, is known as the exogenous or contextual

effect, while η and ν capture a correlated effect, common to everyone in the same network.

Identification of the social effect parameter depends on the restrictions imposed on the relationship

between the error terms, ν and ε, and the right-hand side variables in equation (1). These restrictions

reflect assumptions on common unobserved shocks and on the network formation process. For example,

E[νg| Xg, Zg, Gg] = 0 ∀ g ∈ {1, . . . , M} implies nodes sort into networks exogenously, conditional on

individual-level and network-level observables, while E[εi,g| Xg, Zg, Gg] = 0 ∀ i ∈ Ng; g ∈ {1, . . . , M}

implies that the network is exogenous, conditional on individual-level and network-level observable

characteristics of all nodes in network g.

The former assumption can be relaxed when data on a large number of networks are available:

unobservable characteristics determining sorting into networks can be accounted for using network-level

fixed effects, as in panel data specifications. A number of methods, that rely primarily on variation in

network structure, have been developed to identify the social effect parameters in such models using

observational data and under the assumption that the network is conditionally exogenous and well-

measured. The interested reader is directed to Advani and Malde (forthcoming), Topa and Zenou (2015)

and Boucher and Fortin (2015) for more details.

2.2 Network-Level Models

Researchers might also be interested in aggregate network-level outcomes, in which case the following

specification is typically estimated:

ȳ = φ0 + w̄ ȳ(G)φ1 + X̄φ2 + w̄ X̄ (G,X)φ3 + u (2)

where ȳ is an (M × 1) vector stacking the aggregate outcome of the M networks, w̄ ȳ(G) is a matrix of

R̄ network statistics (e.g. average number of links per node, also known as average degree) that directly

influence the outcome, X̄ is an (M × K ) matrix of network-level characteristics, and w̄ X̄ (G,X) is a term

interacting the network-level characteristics with the network statistics.5 φ1 captures how the network-

level aggregate outcome varies with specific network features while φ2 and φ3 capture, respectively, the

effects of the network-level characteristics and these characteristics interacted with the network statistic(s)

of interest on the outcome.

The key parameter of interest is typically φ1: the effect of a network statistic, such as network density,

on the aggregate network outcome. The key identification assumption is that E[ug|Gg, X̄g] = 0, which
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6 ADVANI AND MALDE

will not hold if there are unobserved variables in u that affect both the formation of the network and the

outcome ȳ; or if the network statistics are mismeasured.

2.3 Implications of Network Endogeneity and Measurement Error

The assumption that the network is conditionally exogenous implies, first, that there are no unobserved

(to the econometrician) agent-specific factors influencing both an agent’s choice of connections and the

outcome of interest; and second, that agents do not take into account the influences of their neighbours on

the outcome of interest when choosing their links. Both of these are very strong requirements. To see this

more easily, consider the following example. Suppose we have observational data on farming practices

amongst farmers in a village, and want to identify the factors that influence take-up of a new, potentially

risky technology. The data might show that more connected farmers are also more likely to adopt the

technology. However, without further analysis we cannot necessarily interpret this as being caused by the

network. There could be some underlying unobserved variable that is correlated with both the outcome

and the network. For example, more risk-loving people, who might be more likely to adopt the technology,

may also be more sociable, and thus have more connections. Alternatively, more connected farmers might

also be more interested in learning about innovative practices, and choose to have more connections for

this reason! Both of these violate the condition that E[εi,g| Xg, Zg, Gg] = 0 ∀ i ∈ g; g ∈ {1, . . . , M} in

Equation (1). Section 3 describes potential solutions to this endogeneity problem in more detail.

Measurement error in G can also invalidate the assumption that E[εi,g| Xg, Zg, Gg] = 0 ∀ i ∈ g; g ∈

{1, . . . , M}, and hence bias parameter estimates. Suppose the observed network, G∗, is a noisy measure

of the true underlying network, G, such that G∗ = G + ξ (G). Estimation of equation (1) would be based

on the mismeasured network, G∗, with the measurement error term (or a function of it) subsumed into the

error term, ε, in equation (1). Clearly, then E[εi,g| Xg, Zg, G∗
g] �= 0, leading to bias in the social effect

parameter estimates. Moreover, the measurement error in the network is likely to be non-classical, so that

it is not independent of the true network.

A simple example illustrates this. Surveys often place an upper limit, ψ , on the number of links a node

can report, leading to some links of agents with many connections to be recorded as not existing. In the

absence of other error, the number of misclassified links for node i can be expressed as
∑

j ξ (G)ij =

max{0,
∑

j G i j − ψ}. Thus, the measurement error necessarily depends on the structure of the true

network, making it non-classical. The consequences of measurement error on parameter estimates will

thus be quite complex. Section 4 considers this in more detail, and outlines some potential solutions.

3. Dealing with Endogeneity of Network Formation

We now discuss approaches taken to identify social effects whilst relaxing the assumption that the network

is exogenous. Specifically, we allow for the possibility that network links are chosen, and that these choices

might be related to the unobservables determining individuals’ outcomes.6 We discuss four approaches

taken in the literature to deal with this form of endogeneity, providing examples of where they have been

used, and discussing their limitations.

3.1 Random Assignment

The first method is random assignment, either of some intervention provided to a subset of nodes in the

network, or of links in the network. Random assignments of interventions have been used to study a wide

range of questions, including the diffusion of innovations in social networks (Aral and Walker, 2012;

Oster and Thornton, 2012; Cai et al., 2015; among others), social learning (Godlonton and Thornton,

2012), sharing of resources and savings (Comola and Prina, 2017; Angelucci et al., forthcoming), peer
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CREDIBLY IDENTIFYING SOCIAL EFFECTS 7

effects in exercise (Babcock et al., 2015), peer effects in education (Angelucci et al., 2010; Babcock and

Hartman, 2010) and peer monitoring (Breza and Chandrasekhar, 2015).

In these designs, also known as partial population experiments, (Moffitt, 2001), researchers randomly

assign a subset of nodes in a network to receive a treatment. Untreated nodes in the network will be

indirectly exposed to the treatment through their interactions with treated nodes. This indirect exposure

will vary with the position of the untreated nodes in the pre-treatment network relative to nodes that were

randomly assigned the treatment. Since the treatment is randomly assigned, conditional on their network

position the exposure levels of untreated nodes will be orthogonal to the network structure. Thus, a

reduced form social effect can be identified by comparing the outcomes of untreated nodes with the same

network position but different levels of exposure to the treatment.7 The identified reduced form social

effect need not solely capture the spillover of neighbours’ outcomes on a node’s own outcome: it may

also capture other channels through which the intervention may influence those neighbours. For example,

in the case of the adoption of innovations, a treatment such as providing information to a subset of the

network could influence innovation take-up through both diffusion of information, as well as through

the adoption decisions of the initially informed nodes (see Banerjee et al., 2013), making it difficult to

separately identify the endogenous social effect without further modelling.

Randomly assigned treatments can only be used to identify social effects if the treatment does not

also change the social network. Recent work by Comola and Prina (2017), Delavallade et al. (2016)

and Dupas et al. (forthcoming) shows that interventions may alter the network of interactions, so that a

randomly assigned treatment will not be orthogonal to the final network structure. Use of the pre-treatment

network does not solve the problem: treatment effects identified based on the pre-treatment network may

be misleading since they ignore the effects on network structure. This is shown by Comola and Prina

(2017), who extend the local average model to allow for the network to change in response to a treatment.

This extended model allows for the recovery of both the total treatment effect, and the social effect.

However, the randomly assigned treatment can no longer be used to identify the social effect. To recover

this parameter, Comola and Prina (2017) propose to, first, exploit the panel dimension of their network

data to account for time-invariant unobserved variables that influence both network formation and the

outcome of interest. Second, to account for time-varying unobservables, they use predicted changes in

the network (partly due to the treatment) as an instrument for the actual changes. This is similar to the

strategy in König et al. (2014), described in detail in Section 3.3.

A third set of designs relies on variation arising from randomly assigned links. While this strategy has

been widely applied in laboratory experiments of network effects, recent work has applied this to real-life

contexts, or exploited real-life contexts where this occurs, including classrooms (Carrell et al., 2009),

dorm rooms (Sacerdote, 2001), sport partners (Guryan et al., 2009) and among firm managers (Fafchamps

and Quinn, 2016). Random assignment to a group is likely to increase interactions among those assigned

to the same group, and through this affect the social effect of interest. Social effect parameters identified

using this variation would thus not be subject to biases associated with endogenous network formation.

Nonetheless, researchers still need to account for unobserved network shocks in order to obtain

consistent estimates of the social effect.8 To account for these confounders, existing studies use pre-

randomization, rather than contemporaneous, values of outcomes and characteristics. In particular, they

estimate reduced-form specifications of the following type:

Y post = αι̃ + w y(G,Y pre)β̃ + Xpreγ̃ + wx(G,Xpre)δ̃ + ε̃post (3)

where the subscript post indicates variables measured after random assignment to the network, and pre

indicates variables measured before random assignment. When shocks are i.i.d., the pre-randomization

outcome Y pre, will be uncorrelated with current unobserved shocks, allowing for identification of the

reduced form social effect parameter, β̃. This need not solely capture the spillover of peers’ outcomes

on a node’s own outcome. It will also capture other channels through which past peer outcomes may
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8 ADVANI AND MALDE

influence the node’s current outcome, so that β̃ �= β in equation (1). For example, in a classroom setting,

a teacher may put in more effort to teach a class with higher past performance, leading to β̃ > β.

There are two further limitations to this approach. First, forced creation of links is very difficult to

achieve in practice: links can only be encouraged (or discouraged) by the random assignment rule. The

formation of more complex network structures such as transitive or intransitive triads is not currently well

understood, making it difficult to use this method to generate exogenous variation in these. Second, the

identified parameter will capture a local, rather than average, effect.9 In particular, the experiment allows

researchers to study the effect of altering an agent’s randomly chosen group members on his outcome. If

agents form links only with a subset of group members, and make this choice non-randomly (e.g. they

choose those that provide the highest net value), these estimates will not be very informative about the

likely social effect when the group is constructed in another way, making it difficult to draw credible

policy recommendations.

This is demonstrated in the work of Carrell et al. (2013), who use peer effects estimated in an earlier

paper (Carrell et al., 2009) to ‘optimally assign’ a random sample of Air Force Academy students to

squadrons, with the intention of maximizing the achievement of lower ability students. In fact, test

performance in the ‘optimally assigned’ squadrons turned out to be worse than in the unconditionally

randomly assigned squadrons! The authors suggest that this finding is driven by a failure to account for

the choice of links formed by individuals within squadrons.10

3.2 Quasi-Experimental Approaches

A second approach exploits natural or quasi-experiments that generate local shocks in network structure

that can be argued to be independent of nodes’ network formation propensities as well as of common

network-level unobserved variables.11 Examples include unanticipated deaths of individuals (Patnam,

2013, for board members; Mohnen, 2016, for super-star scientists), policy-based reassignments of students

to schools (Hoxby and Weingarth, 2005), the Nazi expulsion of Jewish scientists (Waldinger, 2010, 2012)

and natural disasters such as the 2011 Great East Japan earthquake (Carvalho et al., 2016). This method

recovers a social effect parameter by comparing outcomes of agents affected by a shock to their local

network with those of agents with similar pre-shock characteristics (including local network structure)

who do not face a shock to their local network. The key underlying assumption is that agents with similar

pre-shock observed characteristics and local network structure would have faced a similar trend in their

outcomes in the absence of the shock.

In addition, this method also requires that agents choose not to directly respond to the shock.12

Importantly, non-response in this case includes both, not adjusting links in response to the shock, and

not ex ante choosing links strategically to (unobservably) insure against the probabilistic exogenous

link destruction process. This can be difficult to satisfy in practice: in the case of the unanticipated

deaths of board members, for example, the former restriction would imply that company boards do

not immediately fill the emerging vacancy with a similarly connected new board member, while the

latter restriction would imply ignoring the board member’s age and health status when hiring. Finally,

if there is heterogeneity in the social effect, this approach provides only a local social effect, based on

an average over the links that change as a result of the shock. This may not be representative of the

average social effect if, for example, older board members have more influence and are more likely

to die.

3.3 Instrumental Variables

An alternative approach is to use instrumental variables: variable(s) correlated with the endogenous

network covariate, w y(G,Y ) in equation (1) but excluded from the equation itself. Applications of
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this approach include Munshi and Myaux (2006), Hoxby (2000), Mihaly (2009), König et al. (2014),

Acemoglu et al. (2015), Patacchini and Zenou (2016) and Cohen-Cole et al. (forthcoming).

As ever with instrumental variables, their effectiveness as a solution to endogeneity relies on

having a good instrument: a variable which has strong predictive power for the network covariate

but does not enter the outcome equation directly. This will generally be easiest to find when there

are some exogenous constraints that make particular edges much less likely to form than others,

despite their strong potential benefits. For example, when studying fertility in rural Bangladesh,

Munshi and Myaux (2006) exploit strong social norms that prevent the formation of cross-religion

edges even where these might otherwise be very profitable. The restrictions on cross-religion

connections mean that having different religions is a strong predictor that two women are not

linked.

Another approach in the education literature, pioneered by Hoxby (2000), and applied by Bifulco

et al. (2011) and Patacchini and Zenou (2016), makes use variation in the composition of peers

in different cohorts in the same grades in a school. The underlying argument is that parents may

choose a school based on the observed average composition of a cohort, but they will not know the

actual composition of a new cohort: differences between the average and realized composition are an

‘unexpected shock’. Similarly, cohort composition is not subject to biases arising from schools assigning

students of different types to specific classrooms or teachers. Thus, the unexpected variation in cohort

composition can be used as an instrument for the composition of a child’s peers. A concern with this

strategy is that cohort composition could affect achievement through other channels, for example, by

changing teachers’ behaviour. Hoxby (2000) offers a useful test for this. Specifically, if there are multiple

groups (e.g. race), and the effects of group composition on achievement operate solely through an

endogenous social effect, then the effects of changing the share of say black students should be the

same as that of changing the share of Asian students, given the average achievement of each race

group.

Alternatively, secondary motivations for forming edges that are unrelated to the primary outcome could

be used to obtain independent sources of variation in edge formation probabilities. An application of this

approach is Cohen-Cole et al. (forthcoming), who consider multiple outcomes of interest, but where

agents can form only a single network which influences all of these. Recent work by König et al. (2014)

instead makes use of instruments based on the network adjacency matrix predicted from a dyadic network

formation model. In their study of spillovers from R&D collaborations between firms connected by a web

of collaboration agreements (and who also might compete with one another), link formation is modelled

as a function of variables that do not otherwise affect the outcome. Specifically, they use indicators for

having collaborated on R&D in the past, having a common collaborator in the past, and lagged measures

of firms’ technological proximity.

Importantly, this type of solution can only be employed when the underlying network formation

model has a unique equilibrium, so there is only one network structure consistent with the characteristics

(observed and unobserved) of the agents and environment. When multiple equilibria are possible –

generally the case when the incentives for a pair of agents to link depend on the state of the other potential

links – instrumental variable solutions cannot be used without imposing some equilibrium selection rule.

Issues of uniqueness in network formation models, and how one might estimate the these models, are

discussed in Advani and Malde (2014). Care must also be taken when interpreting the estimated social

effect, particularly in the presence of effect heterogeneity, since instrumental variables generally identify

a local social effect. In particular, the estimated β̂I V will be a weighted average of individual-specific

βi ’s, with more weight given to agents for whom the network covariate of interest is induced to change

most by the instrument. Hence, the estimated social effect would be larger than the unweighted average

social effect if these agents are also those whose outcomes are most responsive to those of their peers (or

vice versa).
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3.4 Jointly Modelling Link and Action Choices

3.4.1 Sequential Link and Action Choices

Another method that has been proposed (Blume et al., 2015) and implemented in recent work is the

control function. Endogenous linking decisions create selectivity bias in social effect estimates. Control

function methods propose to correct this by including an estimated selectivity bias term, estimated from a

first stage network formation model, as an additional regressor in the main equation of interest (Heckman,

1979; Lee, 1983; Heckman and Robb, 1985). Recent work by Goldsmith-Pinkham and Imbens (2013),

Arduini et al. (2015), Horrace et al. (2016) and Hsieh and Lee (2016) extends control function methods

to a networks context. The selection correction term is a non-linear function of the predicted network, and

thus of variables determining link choice. Identification of the social effect parameter can be achieved

even in the absence of a variable that influences the outcome only through link choices (an exclusion

restriction) by relying on functional form assumptions. The presence of an exclusion restriction, however,

may make identification more credible.

The key challenge in operationalizing this method is specifying a sufficiently tractable first-stage model

of link formation. This is a result of the size of the joint distribution of edges: for a directed binary network

this is a N (N − 1)-dimensional simplex with 2N (N−1) points of support (potential networks).13 Recent

advances in specifying and estimating network formation models are detailed in Advani and Malde

(2014), Graham (2015), Chandrasekhar (2015) and de Paula (forthcoming).

Context-specific features can potentially help simplify the first-stage model. For example, Horrace

et al. (2016) consider the performance of a sports team, where the network is taken to be the set of

players that play in the same game for one team. The team size is fixed, and relatively small, so that the

network formation process can be modelled as the choice of selecting a fixed number of players from

a longer list. Under the assumption that the team manager’s choice of players is solely a function of a

random shock he observes, but which is not observed by the researcher, parametric and semi-parametric

selection correction approaches suggested by Lee (1983) and Dahl (2002) can be applied to account for

endogenous link formation.14 As explained above, identification of model parameters relies on functional

form assumptions.

Other studies including Goldsmith-Pinkham and Imbens (2013), Hsieh and Lee (2016) and Arduini

et al. (2015) use dyadic models of link formation.15 The former two studies incorporate a ‘strategic’

element to network formation, whereby linking decisions are allowed to depend on the status of other links

in the network. Goldsmith-Pinkham and Imbens (2013) assume that links are formed homophilously –

individuals who have more similar characteristics are more likely to be friends – but they also allow network

covariates to enter the link formation model. Similarity can be based on the observed characteristics,

X , and/or on one (binary) unobserved characteristic, ς . By imposing parametric restrictions on the

distribution of the unobservable, they are able to characterize a parametric distribution for (Y , G).

Likelihood estimation can then be used to recover the parameters. The presence of network covariates

makes this computationally difficult to estimate directly, since the space of possible networks is large,

making the denominator in the likelihood function difficult to compute. A Bayesian Markov Chain Monte

Carlo (MCMC) approach is used to overcome this, by providing an estimate for the denominator based

on a sample of networks.

Hsieh and Lee (2016) consider linking decisions in directed networks in a framework similar to

Goldsmith-Pinkham and Imbens (2013), though crucially they allow for decisions to be affected by

multiple unobserved variables. Linking decisions are assumed to be homophilous, and are influenced

by dyad-specific characteristics, C, individual characteristics, X , and unobserved network statistics such

as transitivity. Assuming that the unobservable terms in the social effects and the network formation

equations are joint normally distributed, Hsieh and Lee (2016) are able to characterize the conditional

distribution of (Y , G|X, C; θ ), where θ is a vector of model parameters from both the network formation
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and social effect equations. The dyad-specific characteristics appear only in the link formation model,

and thus provide exclusion restrictions for the identification of model parameters. As with Goldsmith-

Pinkham and Imbens (2013), likelihood estimation using maximum likelihood is computationally difficult,

necessitating the use of a Bayesian MCMC approach.

Arduini et al. (2015) consider two further ways of modelling the first stage: (i) a dyadic link

formation model of Graham (2017), which assumes homophilous link formation and agent-specific

unobserved heterogeneity, and (ii) a model where the link formation probability is a function of the node’s

characteristics only. The former assumption requires parametric estimation, while the latter method allows

for semi-parametric estimation. They derive the asymptotic properties of the estimators, and evaluate their

effectiveness in correcting for endogeneity using simulations.

3.4.2 Simultaneous Link and Action Choices

A final method for accounting for endogeneity also relies on jointly modelling link formation and action

choices though, contrary to the control function approach, links and actions are simultaneously chosen.

This approach is taken by Boucher (2016) and Badev (2017), who model peer effects among adolescents

in extracurricular activities and smoking choice respectively, allowing agents to choose their action

(activity/smoking decisions) simultaneously with their links. In both cases, the action and link decisions

will generally be non-separable.

In Boucher (2016), agents get utility directly from links, from playing an action (activity choice) close

to their type, and from conforming on action to the actions of the people they are linked to. He shows

that, close to the optimum, utility is (locally) differentiable with respect to the action. Intuitively, since

the action can be changed smoothly, while linking decisions are binary, utility should change smoothly

with changes in the action around the optimum.16 To also study link choice, Boucher shows that the game

can be characterized by a potential function. He provides bounds on the maximum of this function, and

assumes that this maximum is associated with the equilibrium that will be selected in practice. He then

estimates (by quasi-maximum likelihood estimation) the equation determining the action combined with

the network formation equation, for both of the bounds on the network. In practice when the network is

sparse each bound will give similar answers: this is the case in his context.

In Badev (2017) link choice is strategic even in the absence of the action choice (smoking), since the

value of a link to someone depends also on their links. Combining the individual utility functions with

a random matching process between individuals and myopic decision-making, he shows that behaviour

will converge to a k-player Nash stable state in finite time.17 Adding Gumbel distributed preference

shocks instead implies convergence to a stationary distribution over the set of possible network states, in

particular one that is invariant to the choice of k. With these shocks the model maps to an Exponential

Random Graph Model (see Section 4.2.4 for more details), for which an analytical characterization of

the likelihood function is possible. However, as with the models discussed in the previous subsection,

the large number of potential networks makes exact calculation of the denominator of the likelihood

function computationally infeasible. Instead, as above, this is approximated using MCMC methods, and

then maximum likelihood estimation can be used for this approximated likelihood function.

4. Measurement Error

The second challenge complicating identification of social effect parameters in network data is that of

measurement error in the network. Measurement error can arise from a number of sources including: (1)

missing data due to sampling method, (2) mis-specification of the network boundary, (3) top-coding of

the number of edges, (4) mis-coding or mis-reporting and (5) non-response. We refer to the first three

as sampling-induced error and the latter two as non-sampling-induced error. It is important to account
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for these since, as we will show below, measurement error can induce important biases in measures of

network statistics and in parameter estimates.

We focus on summarizing the consequences of sampling-induced measurement error, and outlining

methods proposed in the literature to deal with these. Though a number of issues remain unresolved, this

literature offers useful guidance to researchers planning to collect data to uncover social effects in terms

of (i) how to construct a sample; and (ii) what data to collect and from whom. Note also that there is

a large econometric and statistical literature on non-sampling induced measurement error, which could

potentially apply or be extended to network contexts, for example, Chen et al. (2011) provide an overview

of methods for dealing with misreporting in binary variables. However, these issues have been less studied

in a networks context, and are thus not covered here.18

Measurement error issues arising from sampling are particularly problematic in the context of network

data, since these data comprise of information on interrelated objects: nodes and edges. All sampling

methods, other than a full census, sample at least one of these objects in a way that depends on the

network structure: defining a random sampling process over one induces a particular process over the

other.19 To illustrate how this may happen, consider taking a random sample of nodes from a star network,

which consists of a single central node directly connected to N − 1 other peripheral nodes, with no other

connections between them. If we were to randomly sample half the nodes in the network, we would sample

the central node half the time. However, if we were to randomly sample half the links, we would always

sample the central node, since every edge is connected to this node, and sample peripheral nodes roughly

half the time only. Thus, random sampling of edges would lead to a higher chance of sampling nodes

with many edges, giving a different sampling distribution for nodes compared to when directly sampling

nodes. This means that methods for estimation and inference developed under classical sampling theory

are often not applicable to network data.

In practice, censuses of networks that economists wish to study are rare, and feasible to collect only

in a minority of cases (e.g. small classrooms or villages). Collection of data on the complete network is

typically too expensive and cumbersome. Moreover, when data are collected from surveys, it is common

to censor the number of edges that can be reported by nodes. Finally, to simplify data collection, one

may erroneously limit the boundary of the network to a specified unit, for example, village or classroom,

thereby missing edges connecting to nodes beyond this boundary. Section 4.1 outlines the consequences

of missing data due to sampling on estimates of social effects and on network statistics. Until recently

most research on these issues was done outside economics, so we draw also on research from other fields,

including sociology, statistical physics and computer science. In Section 4.2, we then outline a number

of methods developed to help deal with the consequences of measurement error.

Much of our discussion in the subsequent sections will consider two specific ways of constructing

a network graph from sampled nodes. Given a sample of nodes, one could consider including only the

edges among pairs of sampled nodes, generating an induced subgraph. Alternatively, one could include

all edges of sampled nodes, including non-sampled nodes connected to sampled nodes within the network

graph. This generates a star subgraph. These are displayed in Figure A1 in Appendix A. Panel (a) of the

figure shows the network from which nodes are randomly sampled, while the shaded circles and dark

lines in panels (b) and (c) display the network that emerges under star subgraph sampling and induced

subgraph sampling, respectively.

4.1 Measurement Error Due to Sampling

4.1.1 Local Network Models

Missing data, for sampling or non-sampling reasons, can generate important biases in the estimates of

social effects in the local average, local aggregate and hybrid local models. Identification strategies for
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the social effect in these models exploit variation in network structure, typically using the exogenous

characteristics of indirect neighbours as instruments for the outcomes of a node’s direct neighbours

(w y(G,Y ) in equation (1)). For example, in the local average model Bramoullé et al. (2009) suggest

using the average exogenous characteristics of second- and third-degree neighbours, G̃
2
X and G̃

3
X ,

as instruments for the endogenous G̃Y (G̃
3
X is needed when we wish to account for network fixed

effects). Critically, identification comes from knowledge of which edges are definitely not present. When

data are missing or misclassified, one may not know definitively which nodes are only indirectly linked,

complicating the use of this strategy.

Goldsmith-Pinkham and Imbens (2013) propose a test for measurement error in the network when more

than one observation of the network is available. This will be the case, for example, in longitudinal network

studies where the network is elicited on multiple occasions over time. The basic intuition underlying their

test is that if measurement error is unconditionally random, and a link is absent in one observation of

the network, there is a higher probability that it is missing spuriously (and hence was mismeasured)

in the first observation if it is present in the second observation. If this is the case, we would expect

these mismeasured links’ characteristics and outcomes to also affect a node’s outcome. To illustrate

their method more formally, we introduce some additional notation: let G A and G A′

denote the first and

second measurements of the adjacency matrix related to the outcome of interest; and GB denote a matrix

that indicates which links are absent in G A but present in G A′

. The presence of unconditionally random

measurement error can be tested by estimating the following equation for linear w y and wx :

Y = αι + w y(G A,Y )β + Xγ + wx(G A,X)δ + w y(GB,Y )βB

+wx(GB,X)δB + Zη + Lν + ε (4)

If G A is well measured, links that are present in G A′

but not in G A should not influence the outcome

of interest, Y . Hence, the coefficients on their outcomes and characteristics, βBand δB , should be 0.

Non-zero coefficients would be indicative of measurement error in the network. Note though that these

coefficients could be non-zero even in the absence of measurement error if, for example, outcomes are

correlated over time and the two measurements correspond to adjacency matrices collected at two points

in time. Any such alternative explanations should be carefully considered when using this strategy to test

for measurement error.

Measurement error in the network due to sampling implies that the matrices G and G̃ are misspecified.

In particular, when some links are missing, any two nodes would appear to be, on average (weakly),

further apart in the sampled network than they are in the true underlying network. This measurement error

carries over to the endogenous covariate G̃Y in the local average model, as well as the instruments G̃
2
X

and G̃
3
X . Further, since it is common to both the endogenous covariate and instrument, the instrument

will be unable to purge the social effect parameter of bias (Chandrasekhar and Lewis, 2016). Simulations

by Chandrasekhar and Lewis (2016) and Liu (2013) suggest (respectively) that these biases can be very

large in local average and local aggregate models, with the magnitude falling as the proportion of the

network sampled increases, and as the number of networks in the sample increases. Both papers also offer

simple, direct solutions to this issue when data are available on a star subgraph: these are described in

Section 4.2.1.

Patacchini et al. (2017) also use simulations to consider the robustness of social effect estimates in a

model with heterogeneous social effects. Their data include a high proportion of missing nodes. Contrary

to the simulations in Chandrasekhar and Lewis (2016) and Liu (2013), their simulations add new links

to the observed network, some of which lead to mistakenly classifying neighbours as neighbours-of-

neighbours. They show that their findings on peer effects hold qualitatively, though they over-estimate

the magnitude of one type of peer effect. Such simulations offer one way for researchers to check the

robustness of social effects estimates to missing data.
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4.1.2 Network Statistics

Missing data arising from partial sampling can generate non-classical measurement error in measured

network statistics, which in turn biases estimates of social effects. A number of studies, primarily in fields

outside economics, have investigated the implications of sampled network data on measures of network

statistics and model parameters. The following broad facts emerge from this literature:

1. Network statistics computed from samples containing moderate (30–50%) and even relatively high

(∼70%) proportions of nodes in a network can be highly biased. Sampling a higher proportion of

nodes in the network generates more accurate network statistics. Simulation evidence from studies

including Galaskiewicz (1991), Costenbader and Valente (2003), Lee et al. (2006), Kim and Jeong

(2007) and Chandrasekhar and Lewis (2016) indicates biases that are very large in magnitude, and

which go in different directions, depending on the statistic being studied.20 For example, the average

path length – the average number of links one has to go through on the shortest path between any pair

of nodes – was found to be over-estimated by 100% when constructed from an induced subgraph

with 20% of nodes in the true network. Table A1 in Appendix A provides a more detailed summary

of findings from these papers for some commonly used network statistics for data collected via

random sampling of nodes as either a star subgraph or an induced subgraph.

2. Measurement error due to sampling varies with the underlying network structure. This is apparent

from work by Frantz et al. (2009), who investigate the robustness of a variety of centrality measures

to missing data when data are drawn from a range of underlying network structures: uniform random,

small world, scale-free, core-periphery and cellular networks (see Appendix B for definitions). They

find that the accuracy of centrality measures varies with the structure. Small world networks are

especially vulnerable to missing data, since they have relatively high clustering and a few ‘bridging’

edges that reduce path lengths between nodes that would otherwise be distant. The estimated

centrality statistics are therefore very sensitive to sampling the nodes that are part of a bridge. By

contrast, centrality measures are less vulnerable to missing data when the underlying network is

‘scale-free’.

3. The magnitude of error in network statistics that is due to sampling varies with the sampling method.

Lee et al. (2006) compare the results of estimating network statistics using data collected via induced

subgraph sampling, random sampling of nodes, random sampling of edges and snowball sampling

(see Appendix C for more details on sampling strategies). They draw samples from networks with

a power-law degree distribution, that is, where the fraction of nodes having k edges, P(k), is

asymptotically proportional to k−γ , and usually 2 < γ < 3. This distribution allows for ‘fat tails’,

that is, the proportion of nodes with very high degrees constitutes a non-negligible proportion of all

nodes. Lee et al. (2006) show that the sampling method impacts the magnitude and direction of bias

in network statistics. For instance, random sampling of nodes and edges leads to over-estimation of

the size of the exponent of the power-law degree distribution, which implies an over-estimation of

the number of nodes with large degrees. Conversely, snowball sampling, which is less likely to find

nodes with low degrees, underestimates this exponent.

4. Parameters in economic models using mismeasured network statistics are subject to substantial

bias. Sampling induces non-classical measurement error in the measured statistic, that is, the

measurement error is not independent of the true network statistic. Chandrasekhar and Lewis

(2016) suggest that sampling-induced measurement error can generate upward bias, downward bias

or even sign switching in parameter estimates. The bias is large in magnitude: for statistics such as

degree, clustering and centrality measures, they find that the mean bias in parameters in network-

level regressions ranges from over-estimation bias of 300% for some statistics to attenuation bias

of 100% for others when a quarter of network nodes are sampled. As with network statistics,

the bias becomes smaller in magnitude as the proportion of the network sampled increases. The
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magnitude of bias is somewhat smaller, but nonetheless substantial, for node-level regressions.

Table A2 summarizes the findings from the literature on the effects of random sampling of nodes

on parameter estimates.

5. Top-coding of edges or incorrectly specifying the boundary of the network biases network statistics.

Network data collected through surveys often place an upper limit on the number of edges that can

be reported. Moreover, limiting the network boundary to an observed unit, for example, a village

or classroom, will miss nodes and edges beyond the boundary. Kossinets (2006) investigates, via

simulations, the implications of top-coding of reported edges and boundary misspecification. He

considers a number of network statistics, including average degree, clustering and average path

length. Both types of error cause average degree to be under-estimated, and average path length

to be over-estimated. No bias arises in the estimated clustering parameter when only top-coding is

present.

Overall, the literature indicates that even relatively little missing data (e.g. observing 75% of nodes)

may generate severe non-classical measurement error in network statistics, as well as severely biased

parameter estimates, highlighting the need for a census of the network. However, this can be very costly

or infeasible to collect. Work in disciplines outside economics, as well as recent work in economics, has

proposed a number of possible methods for dealing ex post with the consequences of missing data. We

review this literature in the next subsection.

4.2 Correcting for Measurement Error

Having considered the problems posed by missing data on both the network and parameter estimates, we

now discuss methods for dealing with measurement error ex post, that is, once data have been collected.

These can be divided into four broad classes: (1) direct corrections, (2) design-based corrections, (3)

likelihood-based corrections and (4) model-based corrections. We summarize the underlying ideas for

each of these, and discuss their advantages and drawbacks.

4.2.1 Direct Corrections

As we saw earlier, missing data on network connections generate measurement error in both the

endogenous regressor and the network-based instruments in local network models, thereby inducing

bias in social effects. Chandrasekhar and Lewis (2016) suggest a simple, direct correction for this issue

for the local average model when the network data available are a star subgraph collected from a random

sample of nodes, and outcome data are available for all agents. In particular, they suggest restricting

the estimation sample to include only the initially sampled nodes. For these nodes, data on all their

neighbours (and the neighbours’ outcomes) are observed, meaning that the regressor G̃Y will not be

subject to measurement error. The key instruments for identification, G̃
2
X and G̃

3
X , can be constructed

as usual using all the observed data. They will be mismeasured, but, crucially, the measurement error in the

instruments will now not be correlated with the regressor, making them valid instruments. However, the

measurement error in the instruments weakens the first-stage correlation with the endogenous regressors,

particularly when the amount of missing data on the network is high, leading to a weak instrument

problem. In this case, other methods, including model-based corrections, could be applied.

For the local aggregate model, an alternative solution exists when network fixed effects are not

necessary. In the absence of measurement error, the standard approach to identification uses node degree

(GL), along with the network-based instruments, G2 X and GG̃X as instruments for the mismeasured

endogenous regressor GY . This provides over-identification, since only one instrument is needed in the

absence of network fixed effects. When data from a star subgraph are available, node out-degree is still
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typically well-measured, meaning that it can be used as the only instrument for GY , and the noisier

mismeasured instruments using indirect neighbours can be ignored. This is supported by Monte Carlo

simulation evidence in Liu (2013), which shows that estimates recovered using this strategy are very

similar to the parameters from the pre-specified data generating process.

Liu et al. (forthcoming) suggest a solution for the case where there the network and covariates are

perfectly observed, but outcome data are available for a sub-sample only. They note that the reduced form

equation for the local average model, when restricted to the observations for whom complete outcome

data are available, involves regressing the outcome on a non-linear transformation of X and G̃X . Such

data are consistent with survey designs that collect network information and some key covariates from all

nodes and detailed outcome data from a sample. Drawing on an argument in Wang and Lee (2013), they

show that model parameters can be consistently estimated from the transformed reduced form equation

using nonlinear least squares. Monte Carlo simulations suggest the method works well.

4.2.2 Design-Based Corrections

Design-based corrections rely on features of the sampling design to correct for sampling-induced

measurement error. They are appropriate for correcting network-level statistics that can be expressed as

totals or averages, such as average degree and clustering (Frank; 1978, 1980a, 1980b, 1981; Thompson,

2006).21 Based on Horvitz-Thompson estimators, which use inverse probability-weighting to compute

unbiased estimates of population totals and means from sampled data, they can be used to correct for

the non-random sampling of either nodes or edges provided that the sample inclusion weights of the

non-randomly sampled object can be calculated.

Formulae for node- and edge-inclusion probabilities are available for the random node and edge

sampling schemes (see Kolaczyk, 2009). Recovering sample inclusion probabilities when using snowball

sampling – where a sample is constructed by first collecting information on the neighbours of some

(randomly) selected agents, then gathering information on the neighbours of these neighbours and

so on (see Appendix C for more) – is typically not straightforward after the first step of sampling.

This is because every possible sample path that can be taken in subsequent sampling steps must be

considered when calculating the sample-inclusion probability, making this exercise very computationally

intensive. However, Markov chain resampling methods make it feasible to estimate the sample inclusion

probabilities (see Thompson, 2006, for more details). An application of this method in economics is given

by Mastrobuoni and Patacchini (2012) and Mastrobuoni (2015), who use a Markov chain–based method

to correct for non-random selection of nodes into a sample of mobsters followed by law enforcement

officials in the United States. They model the sample construction of mobsters as a snowball sample,

which can further be modelled as a Markov chain. The stationary distribution of the Markov chain of

the sample inclusion probabilities provides the likelihood of a node i being found when following any

randomly selected edge in the network.22

Frank (1978, 1980a, 1980b, 1981) derives unbiased estimators for a range of graph statistics.

Chandrasekhar and Lewis (2016) characterize the biases in parameter estimates from linear univariate

models for a range of network statistics, and provide guidance on how these biases may be corrected.

They show that attenuation biases can be easily corrected by estimating the variance of the measurement

error, and offer corrections for the scaling biases based on their characterisation. They further show that

for four statistics – average degree, clustering coefficient, support and average graph span – estimators of

social effect parameters are consistent when raw network statistics are replaced by their design-corrected

counterparts. Numerical simulations suggest that this method reduces greatly the sampling-induced bias

in parameter estimates.

A key drawback to this procedure is that it is not possible to compute Horvitz–Thompson estimators for

network statistics that cannot be expressed as totals or averages. This includes node-level statistics, such
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as eigenvector centrality, many of which are of interest to economists. Likelihood-based and model-based

corrections offer alternative solutions that are more feasible in these cases.

4.2.3 Likelihood-Based Corrections

Likelihood-based corrections can also be applied to correct for measurement error. Such methods have

been used to correct specific network-based statistics such as out-degree and in-degree. Conti et al. (2013)

correct for sampling-induced measurement error in in-degree by adjusting the likelihood function. To

do so, they first specify a process for outgoing and incoming edge nominations to obtain the outgoing

and incoming edge probabilities. Specifically, they assume that outgoing (incoming) edge nominations

from i to j are a function of i’s ( j’s) observable preferences, the similarity between i and j’s observable

characteristics (capturing homophily), and a scalar unobservable for i and j . They allow for correlations

between i’s observable and j’s unobservable characteristics (and vice versa). When edges are binary, the

out-degree and in-degree have binomial distributions with the success probability given by the calculated

outgoing and incoming edge probabilities. Random sampling of nodes to obtain a star subgraph generates

measurement error in the in-degree, but not in the out-degree. However, since the true in-degree is

binomially distributed, and nodes are randomly sampled, the observed in-degree has a hypergeometric

distribution conditional on the true in-degree. Knowledge of these distributions allows the specification

of the joint distribution of the true in-degree, the true out-degree, and the mismeasured in-degree. Pseudo-

likelihood functions can be specified allowing for parameters to be consistently estimated via maximum

likelihood methods.

4.2.4 Model-Based Corrections

Model-based corrections provide an alternative approach to correcting for measurement error. Such

corrections involve specifying a model that maps the mismeasured network to the true network. Parameters

of the model are estimated from the partially observed network data and the available data on the

characteristics of nodes and edges. The estimated parameters are subsequently used to predict the value of

non-sampled edges, essentially imputing the missing values. Network formation models usually recover

the probability of a link, meaning that the predicted network is a matrix of probabilities. The predicted

network can then be used in place of the mismeasured network to obtain an estimate of the social effect.

To do this it is crucial to have information on individual characteristics (e.g. gender, ethnicity) that are

predictive of link formation for all nodes in the network. It is also important that the network formation

model estimated is sufficiently flexible to accurately capture the observed network(s).

When covariates on all nodes in the network are available, Chandrasekhar and Lewis (2016) derive

conditions that must be satisfied for this approach to yield consistent estimates of the social effect

parameter when allowing for the first stage network formation process to be heterogeneous across

networks. In particular, the estimator of the network formation parameters must converge uniformly to

the true parameters. This imposes restrictions on the available data – in particular, the number of networks

must grow slower than the size of the networks – and on the first stage network formation model, assuming

that data are missing at random.

Chandrasekhar and Lewis (2016) analyse three different classes of network formation models to derive

the conditions under which they generate consistent social effect estimates. These models are known to

have asymptotic frames which allow for consistent parameter estimation.23

The first model is the conditional edge independence model (Fafchamps and Gubert, 2007; Goldsmith-

Pinkham and Imbens, 2013; among others), where links form independently, conditional on covariates. The

probability of a link is typically modeled as a function of node- and link-level covariates. Chandrasekhar

and Lewis (2016) show this model satisfies the conditions for uniform convergence as long as the level
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of interdependence in covariates between a pair of nodes goes to 0 as the (social) distance between the

two nodes increases to infinity. However, these models typically fail to generate clustering levels similar

to those seen in real-life social networks.

A second class of models are the subgraph generated models of Chandrasekhar and Jackson (2016),

which model the network to be the union of different network features (pairs, triangles, etc.) that each

form with a certain probability. Chandrasekhar and Lewis (2016) shows that this model satisfies the

conditions for uniform convergence given an assumption on convergence rates is satisfied. This class of

models does not require information on node-level covariates.

A final class of models considered is the group or block model, where the link formation probability

is a function of group-specific parameters. A group is defined based on the values of a combination of

(bounded) characteristics (e.g. high educated females aged < 40 years). In other words, the model can

be thought of one with group-fixed effects and a growing number of groups, which allows for substantial

flexibility in characterizing the underlying network formation process. However, since the number of

parameters to be estimated can grow with the network size, Chandrasekhar and Lewis (2016) show

that sufficiently fast convergence can only be achieved for network-level analysis, not for node-level

analysis.

It should be noted that misspecification of the first stage model could undermine the ability of this

method to correct for measurement error. In particular, conditional edge independence models may not

be well suited to correcting measurement errors in network clustering, but may be sufficient in correcting

measurement error in average degree. Thus, the characteristic one is trying to correct should be taken into

consideration when choosing the first stage model. Simulations in Chandrasekhar and Lewis (2016) show

that model based corrections work well in greatly reducing and almost eliminating biases in social effect

parameters arising from missing data for a number of social effect models including the local average

model.

5. Conclusion

Networks are thought to play an important role in shaping the preferences, behaviour and outcomes

of agents. Uncovering empirical evidence in support of this has proven to be difficult, particularly

when using information on membership of mutually exclusive groups as the key measure for social

interactions. A burgeoning literature in economics has turned instead to using network data – data with

detailed information on agents and the links between them – to uncover this evidence. However, there

exist important challenges that are not present in other contexts. In this paper we outline econometric

methods for working with network data to identify social effects: the influence of a node’s neighbours on

its choices. We focus particularly on methods for dealing with the endogenous formation of links, and

solutions to account for measurement error.

There have been a number of approaches taken to account for network endogeneity, including random

assignment of interventions or links, use of local network shocks, instrumental variables and jointly

modelling the choice of links and outcomes (either sequentially or simultaneously). The first three do

not require explicit specification of the process of network formation. Where they are feasible, they

can provide credible identification. However, randomly assigning interventions or links is frequently

infeasible; and exogenous local network shocks and suitable instruments might not be available in many

contexts. Explicit specification of the network formation model, as is required by the last method, provides

an alternative approach. This uses knowledge (or assumptions) about the payoffs from forming links to

provide a different route to identification. The challenges to this solution are not only in determining

what assumptions about payoffs are reasonable, but also technical. Such models are typically difficult

to estimate: they are slow to compute, and estimated parameters are frequently unstable. There is much

scope for future work in advancing these methods.
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Finally, the paper discussed the issue of measurement error, focusing particularly on sampling-induced

measurement error. Since networks comprise of interrelated nodes and edges, a particular sampling

scheme over one of these objects will imply a structure for sampling over the other. Hence, one must think

carefully in this context about how data are collected, and not simply rely on the usual intuitions that

random sampling will allow us to treat the sample as the population. When collecting census data is not

feasible, it will in general be necessary to make corrections for the induced measurement error, in order

to get unbiased parameter estimates. Whilst there are methods for correcting some network statistics for

some forms of sampling, again there are few general results, and consequently much scope for research.

Much work has been done to develop methods for working with network data, both in economics and in

other fields. Applied researchers can therefore take some comfort in knowing that many of the challenges

they face using these data are ones that have been considered before, and for which there are typically

at least partial solutions already available. Whilst the limitations of currently available techniques mean

that empirical results should be interpreted with some caution, attempting to account for social effects is

likely to be less restrictive than simply imposing that they cannot exist.
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1. These methods are less suited to discrete choice settings, such as those considered by Brock and

Durlauf (2001) and Brock and Durlauf (2007).

2. A row stochastic, or ‘right stochastic’, matrix is one whose rows are normalized so they each sum to

one.

3. The name ‘local average’ is used here to denote that only local (direct) connections affect an individual

directly, and the way in which they matter is only through the average outcome of these agents to

whom the individual directly connects.

4. For a survey of the main network statistics used and the contexts in which they are relevant, see

Jackson et al. (2017).

5. A discussion of the key network-level statistics used is provided by Jackson et al. (2017), where they

are described as ‘macro characteristics’ of the network.

6. It is important to note that this implies that individuals already have some information about the

unobservables. If these unobservables are identically distributed, are realized after the network

formation decisions are taken, and do not themselves depend on the network structure, then network

formation does not create an endogeneity problem. Goldsmith-Pinkham and Imbens (2013) suggest

a method to test for endogeneity.

7. A social effect can also be identified by comparing the outcomes of treated nodes with different levels

of exposure to other treated nodes. However, such an effect would have a different interpretation.

8. Researchers will also need to account for the reflection problem when information on interactions

within the network is not available.

9. Here we think of ‘local’ effects in terms of a local treatment effect, rather than in the sense of local

interactions.

10. Booij et al. (2017) and Tincani (2017) provide different interpretations of this result. The former

suggests that the problem with the assignment based on the results of Carrell et al. (2009) is that

the peer groups constructed fall far outside the support of the data used. Hence, predictions about

student performance come from extrapolation based on the functional form assumptions used, which
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should have been viewed with caution. Tincani (2017) suggests that the findings can be explained by

an education production function allowing for competition between students.

11. As with random assignment approaches, quasi-random assignment of interventions on a pre-specified

network have also been used to identify social effects. Examples of papers taking such an approach

include Banerjee et al. (2013).

12. One also needs access to panel data for the network, which may often not be available. Moreover,

measurement error in either round of network data will reduce the power of this strategy.

13. To give a sense of scale, for a network of more than seven agents the support of this space is larger

than the number of neurons in the human brain (estimated to be around 8.5 × 1010); with 13 agents

it is larger than the number of board configurations in chess (around 1046.25); and with 17 agents it is

larger than the number of atoms in the observed universe (around 1080).

14. They also develop a fixed effects approach, which can only be applied in contexts where the social

effect is heterogeneous.

15. In a dyadic model, the link choice is modelled to be a function of characteristics of each node (the

sum and/or difference), as well as characteristics of the link. Some models allow for node-specific

unobserved heterogeneity.

16. This requires that agents are not indifferent about any of their linking decisions, so are not at kink

points of their utility function, which they will not be generically.

17. A network is k-player Nash stable if any subset of k players is in a Nash equilibrium of the game

between them when only the links between the k players are decided together with their action

choices. This equilibrium concept is well suited in modelling myopic behaviour, but less so for

networks formed with the intention of influencing behaviour with a long horizon.

18. Comola and Fafchamps (2017) develop and implement a correction for this class of measurement

error in a networks context, while Patacchini et al. (2017) use simulations to assess the robustness of

estimated peer effects to misspecification of links and link types.

19. We consider a random sample to consist of independently and identically distributed units.

20. With the exception of average degree in a star subgraph, the evidence on the direction and magnitude

of biases described here come from simulation studies with specific designs. These may not always

hold for all network structures and sampling techniques, as explained below.

21. Chapter 5 of Kolaczyk (2009) provides useful background on these methods.

22. Mastrobuoni (2015) observes less than 20% of nodes in the whole network, which creates further

biases. He corrects for these by first taking logarithmic values of the network statistics (and his

outcome of interest), and then using instrumental variables. The logarithmic transformation accounts

for a scaling bias related to the proportion of the network sampled.

23. Importantly, they do not consider the properties of the so-called p∗-models (Wasserman and

Pattison, 2013) or exponential random graph models (ERGMs), which model the probability of

a link to depend on the links around it, since these models do not have a suitable asymptotic

frame.
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Appendix A: Additional Figures and Tables

# Nodes in sample = 15

# Edges in sample = 46

# Nodes in sample = 13

# Edges in sample = 34

# Nodes in sample = 6

# Edges in sample = 8

Average degree = 3.067 Average degree = 2.615 Average degree = 1.333

(a)Full Graph (b) Star Subgraph (c) Induced Subgraph

Figure A1. Star and Induced Subgraph.

Notes: Panel (a) of the figure shows the network from which nodes are randomly sampled. The shaded circles

and dark lines in panels (b) and (c) display the network that emerges under star subgraph sampling and

induced subgraph sampling, respectively, when 40% of nodes are sampled. The white circles and dotted lines

represent missing nodes and edges under the two different sampling schemes. The average degree is the

average number of edges that a researcher would get from dividing the number of sampled edges by the

number of sampled nodes.
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(a) Bipartite Network (b) Uniform Random (c) Scale-free (d) Core-periphery

(e) Cellular (f) Small world (g) K-Star (h) Clique

Figure A2. Network Topologies.

Table A1. Findings from Literature on Sampling-Induced Bias in Measures of Network Statistics

Statistic Measurement error in statistic

Star subgraph Induced subgraph

Network-level Statistics

Average degree Underestimated (–) if non-sampled nodes are

included in the calculation. Otherwise

sampled data provide an accurate measure.a

Underestimated (–).a

Average path length Not known. Over-estimated (+); network appears less

connected; magnitude of bias very large at

low sampling rates, and falls with sampling

rate.b

Clustering coefficient Attenuation (–) since triangle edges appear to

be missing.a
Little or no bias; random sampling yields same

share of connected edges between possible

triangles.a,b

Average graph span Overestimation (+) of the graph span: sampled

network is less connected than the true

network. At low sampling rates, graph span

may appear to be small, depending on how

nodes not in the giant component are

treated.a

Overestimation (+) of the graph span: sampled

network is less connected than the true

network. At low sampling rates, graph span

may appear to be small, depending on how

nodes not in the giant component are

treated.a

(Continued)

Journal of Economic Surveys (2017) Vol. 00, No. 0, pp. 1–29

C© 2017 The Authors. Journal of Economic Surveys published by John Wiley & Sons Ltd.



26 ADVANI AND MALDE

Table A1. Continued

Statistic Measurement error in statistic

Star subgraph Induced subgraph

Node-level Statistics

Degree (in- and out-

in directed graphs)

In-degree and out-degree both underestimated

(–) if all nodes in sample included in

calculation. If only sampled nodes included,

out-degree is accurately estimated. In

undirected graphs, underestimation (–) of

degree for non-sampled nodes.c

Degree (in undirected graphs) of highly

connected nodes is underestimated (–).d

Degree centrality

(degree

distribution)

Not known. Overestimation (+) of exponent in scale-free

networks ⇒ degree of highly connected

nodes is underestimated. Rank order of

nodes across distribution considerably

mismatched as sampling rate decreases.d

Betweenness

centrality

Distance between true betweenness centrality

distribution and that from sampled graph

decreases with the sampling rate. At low

sampling rates (e.g. 20%), correlations can

be as low as 20%.c

Shape of the distribution relatively well

estimated. Ranking in distribution much

worse, i.e. nodes with high betweenness

centrality can appear to have low centrality.e

Eigenvector centrality Very low correlation between vector of true

node eigenvector centralities and that from

sampled graph.c

Not known.

Notes: Little bias refers to |bias| of <20%; large bias to |bias| of 20%; and very large bias to |bias| > 50%. With the
exception of average degree in the star subgraph, the evidence on the direction and magnitude of biases comes from
simulation studies with specific designs, which need not hold for all types of network structure.
Source: aChandrasekhar and Lewis (2016); bLee et al. (2006). cCostenbader and Valente (2003); dLee et al. (2006);
eKim and Jeong (2007).

Table A2. Findings from Literature on Sampling-Induced Bias in Parameter Estimates

Statistic Bias in parameter estimates

Star subgraph Induced subgraph

Network level statistics

Average degree Scaling (+) and attenuation (–), both of

which fall with sampling rate when

all nodes in sample included in

calculation; |scaling| > |attenuation|.

No bias if only sampled nodes

included.

Scaling (+) and attenuation (–), both of

which fall with sampling rate;

|scaling| > |attenuation|. Magnitude

of bias higher than for star subgraphs.

Average path length Attenuated (–). Magnitude of bias large

and falls with sampling rate.

Attenuated (–) more than star

subgraphs. Magnitude of bias is very

large at low sampling rates, and falls

with sampling rate.

(Continued)
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Table A2. Continued

Statistic Bias in parameter estimates

Star subgraph Induced subgraph

Clustering

coefficient

Scaling (+) and attenuation (–);

|scaling| > |attenuation|. Very large

biases, which fall with sampling rate.

Attenuation (–), falls with sampling

rate. Little bias even at node

sampling rates of <40%.

Average graph span Estimates have same sign as true

parameter if node sampling rate is

sufficiently large. Can have wrong

sign if sampling rate is too low,

depending on how nodes not

connected to the giant component are

treated in the calculation.

Estimates have same sign as true

parameter if node sampling rate is

sufficiently large. Can have wrong

sign if sampling rate is too low,

depending on how nodes not

connected to the giant component are

treated in the calculation.

Node-level statistics

Degree (in- and

out- in directed

graphs)

Attenuation (–), with the magnitude of

bias falling with the sampling rate.

The magnitude of bias is large even

when 50% of nodes are sampled.

Scaling (+), with the bias falling with

the node sampling rate. Bias is very

large in magnitude.

Degree centrality

(degree

distribution)

Not known. Not known.

Betweenness

centrality

Not known. Not known.

Eigenvector

centrality

Attenuation (–), with magnitude of bias

falling with the sampling rate.

Magnitude of bias large even when

50% of nodes are sampled.

Attenuation (–), with magnitude of bias

falling with the sampling rate.

Magnitude of bias very large.

Notes: Little bias refers to |bias| of <20%; large bias to |bias| of 20%; and very large bias to |bias| > 50%. The
evidence on the direction and magnitude of biases comes mostly from simulation studies with specific (univariate)
designs, which need not hold for all types of network structure.
Source: Chandrasekhar and Lewis (2016).

Appendix B: Definitions

� Adjacency Matrix, G: An N × N matrix, G, whose i j th element, G ij, represents the relationship

between i and j . In a binary network, G ij = 1 if i and j are linked, and 0 otherwise.
� Influence Matrix, G̃: A row-stochastic adjacency matrix, G̃ with G̃ ij = G ij/∑

j G ij
if two agents are

linked and 0 otherwise.
� Degree, di : Number of edges of a node in an undirected graph, di =

∑
j G ij in a binary graph (more

generally, di =
∑

j 1(G ij > 0)). In a directed graph, a node’s in-degree is the number of edges from

other nodes to that node, and its out-degree is the number of edges from that node to other nodes.
� Average degree, d̄: Average number of links per node in the network, d̄ = N−1

∑
i di .

� Density: Fraction of possible edges that are present in a network, d̄
N−1

.
� Path: A path in a network g between nodes i and j is a sequence of edges, i1i2, i2i3, . . . , iR−1iR ,

such that ir ir+1 ∈ g, for each r ∈ {1, . . . , R} with i1 = i and iR = j and such that each node in the

sequence i1, . . . , iR is distinct.
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� Shortest path length (geodesic): The shortest path length between i and j is minimum number of

edges that must be traversed on a path from i and j .
� Average path length: The average geodesic for every pair of nodes in the network. For pairs of

nodes for which no path exists, it is common to either exclude them from the calculation or to define

the geodesic for these nodes to be some large number (≥largest observed geodesic).
� Induced subgraph: A subset of nodes from the network, and all the edges in the network for which

both nodes involved in that edge are in the subset. See the right panel of Figure A1 for an example.
� Star subgraph: A subset of nodes from the network, and all the edges in the network for which at

least one of the nodes involved in that edge is in the subset. The middle panel of Figure A1 illustrates

an example of a star subgraph.
� Component: In an undirected network, this is a subgraph of a network such that every pair of nodes

in the subgraph is connected via some path, and there exists no edge from the subgraph to the rest

of the network.
� Bridge: The edge i j is a bridge in network g if removing it results in an increase in the number of

components in g.
� Degree centrality: A measure of centrality based on the number of direct neighbours a node has.

For node i this is given by di

N−1
.

� Betweenness centrality: A measure of centrality based on how well situated a node is in terms of

the paths it lies on. The importance of node i in connecting nodes j and k is the ratio of the no. of

geodesics between j and k that i lies on to the total no. of geodesics between j and k. Averaging

this ratio across all pairs of nodes (excluding i) yields the betweenness centrality of node i .
� Eigenvector centrality: A relative measure of centrality, the centrality of node i is proportional

to the sum of the centrality of its neighbours. It is given by [Ce(G)]i , the i th element of vector

Ce(G), where Ce(G) is the eigenvector associated with the largest eigenvalue of G, λmax (G). This

is calculated as a solution to λmax (G)Ce(G) = GCe(G).
� Clustering coefficient: For an undirected network, this is the proportion of fully connected triples

of nodes out of all potential triples for which at least two edges are present.
� Graph span: A measure that is closely related to the average path length. It is defined as span =

log(N )−log(d̄)

log(d̃)−log(d̄)
+ 1 where N is the size (number of nodes) in the network, d̄ is the average degree, and

d̃ is the average number of second-degree neighbours.
� Cliques: Subgraph of a network where every node is directly connected to every other node in the

subgraph.
� Uniform random network: Network where the ex ante probability of an edge between any pair of

nodes is constant across all edges in the network.
� Bipartite network: A network whose set of nodes can be divided into two sets, U and V , such that

every edge connects a node in U to one in V .
� Scale-free network: Network whose degree distribution follows a power law, i.e. where the fraction

of nodes having k edges, P(k), is asymptotically proportional to k−γ. Such a distribution allows for

fat tails.
� Core-periphery network: Network that can be partitioned into a set of nodes that is completely

connected (‘core’), and another set (‘periphery’) who are linked only with nodes in the ‘core’.
� Cellular network: Networks containing many cliques, with few edges connecting the different

cliques.
� Small world network: Network where most nodes are not directly linked to one another, but where

geodesics between nodes are small.
� k-star: Component with k nodes and k − 1 links such that there is one ‘hub’ node who has a direct

link to each of the (k − 1) other (‘periphery’) nodes.
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Appendix C: Collecting Network Data: Sampling Methods

In order to construct the full network, researchers would need to collect data on all nodes and edges,

that is, collect a census. This is typically very expensive, as well as logistically challenging. Instead

researchers usually collect data on a sample of the network. A number of sampling methods have been

used to do this, of which the most common are as follows:

Random Sampling

Random samples can be drawn for either nodes or edges. Data collected from a random sample of

nodes typically contain information on socio-economic variables of interest and some (or all) edges of

the sampled nodes, although data on edges are usually censored. The network graph constructed from

data where nodes are randomly sampled and where edges are included only if both nodes are randomly

sampled is known as an induced subgraph.

Information may also be available on some socio-economic variables of all nodes in the network.

Recent analyses with network data in the economics literature have featured datasets with edges collected

from random samples of nodes, where covariate information was available for all nodes. Examples include

data on social networks and the diffusion of microfinance used by both Banerjee et al. (2013) and Jackson

et al. (2012).

Datasets constructed through the random sampling of edges include a node only if any one of its edges

is randomly selected. Examples of such datasets include those constructed from random samples of email

communications, telephone calls or messages. In these cases researchers often have access to the full

universe of all e-mail communication, but are obliged to work with a random sample due to computational

constraints.

Snowball Sampling and Link Tracing

Snowball sampling is popularly used in collecting data on ‘hard to reach’ populations, that is, those for

whom there is a relatively small proportion in the population. For these groups one would get a very

small sample through random sampling from the whole population. Link tracing is a related method that

is usually used to collect data from vast online social networks, where the average degree is relatively

large.

Under both these methods, a dataset is constructed through the following process. Starting with an

initial, possibly non-random, sample of nodes from the population of interest, information is obtained on

either all, or a random sample of their edges. Snowball sampling collects information on all edges of the

initially sampled nodes, while link tracing collects information on only a random sample of these edges.

In the subsequent step, data on edges and outcomes are collected from any node that is reported to be

linked to the initial sample of nodes. This process is then repeated for the new nodes, and in turn for nodes

linked to these nodes (i.e. second-degree neighbours of the initially drawn nodes) and so on, until some

specified node sample size is reached or up to a certain social distance from the initial ‘source’ nodes.

It is hoped that, after k steps of this process, the generated dataset is representative of the population, that

is, the distribution of sampled nodes no longer depends on the initial ‘convenience’ sample. However, this

typically happens only when k is large. Moreover, the rate at which the dependence on the original sample

declines is closely related to the extent of homophily, both on observed and unobserved characteristics, in

the network. In particular, stronger homophily is associated with lower rates of decline of this dependence.

Nonetheless, this method can collect, at reasonable costs, complete information on local neighbourhoods.

Examples in economics of datasets collected by snowball sampling include that of student migrants used

in Méango (2014).
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