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On the query complexity of real functionals

Hugo Férée, Walid Gomaa and Mathieu Hoyrup

January 14, 2013

Abstract

Recently Kawamura and Cook developed a framework to define the
computational complexity of operators arising in analysis. Our goal is
to understand the effects of complexity restrictions on the analytical
properties of the operator. We focus on the case of norms over C[0, 1]
and introduce the notion of dependence of a norm on a point and
relate it to the query complexity of the norm. We show that the
dependence of almost every point is of the order of the query complexity
of the norm. A norm with small complexity depends on a few points
but, as compensation, highly depends on them. We characterize the
functionals that are computable using one oracle call only and discuss
the uniformity of that characterization.

1 Introduction

An approach to computable analysis is the so-called Type-Two Theory of
Effectivity (TTE) which enables one to extend computability theory from
discrete spaces to many continuous spaces arising in mathematical analysis
[Wei00, BHW08]. On the other side, computational complexity theory over
continuous spaces is still in its infancy. A theory applicable to the space of
real numbers has been developed by Ko and Friedman [KF82, Ko91] and
has given many results. However, this theory is not readily extendible to
“larger” spaces such as the space C[0, 1] of continuous real functions defined
over the unit interval, and a more general, abstract theory is still lack-
ing. First approaches have been developed by Weihrauch [Wei03] on metric
spaces, and by Schröder [Sch04] who argues that in order to express compu-
tational complexity in terms of first-order time functions (as in the discrete
setting), one must restrict to σ-compact spaces. Recently Kawamura and
Cook [KC10] developed a framework applicable to the space C[0, 1] (which
is not σ-compact), using higher-order complexity theory and in particular
second-order polynomials. In particular their theory enables them to prove
uniform versions of older results about the complexity of solving differential
equations, as well as new results [Kaw10, KORZ12].
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Our general goal is to study the complexity of operators defined over
C[0, 1] and particularly to understand the implication that complexity re-
strictions have on the analytical properties of the operator. Looking for
connections between computation and analysis is an old and fruitful field
of investigation. The most famous example is the fact that on many sorts
of topological spaces, a computable function must be continuous and, fur-
ther, the continuous functions are exactly the functions that are computable
relative to some oracle. Topology is always hidden behind computability
notions, which explains why higher-order recursion theory and computable
analysis are intimately related to descriptive set theory. Such a correspon-
dence between computation and topology also comes up in complexity the-
ory: bounds on the resources available during the computation are reflected
in analytical constraints over the functions to be computed, confining them
to live in a smaller space. Illustrations of this principle appear in several
places. Townsend [Tow90] characterized relativized polynomial classes of
type-2 relations by means of topological notions: for instance if A is an
alphabet then a subset of (A∗)A

∗

is in ΣP
1 relative to some oracle (written

ΣP
1 in his paper) if and only if it is a “polynomially open set”, in a certain

sense. In analysis, a real function f : [0, 1] → R is polynomial-time com-
putable relative to an oracle if and only if it has a polynomial modulus of
uniform continuity [Ko91].

This paper is a first study along these lines of the complexity theory over
C[0, 1] recently developed by Kawamura and Cook, in which such correspon-
dences are not known to date. Some typical questions are: what are the
topological implications of limiting the resources of a machine computing a
functional? what is the class of functionals that are computable in polyno-
mial time relative to an oracle? Observe that a bound on a resource such
as time imposes two conditions on the machine operation: it restricts its
internal computation time as well as the information queried to the oracle.
We mostly concentrate on the second constraint, expressed in terms of query
complexity.

The potential limitations imposed by resource bounds on the computa-
tion of functionals over C[0, 1] come from the representation of input func-
tions f ∈ C[0, 1] which does not give a global view on f but local information
only: the whole function is not approximated, for example, by piecewise lin-
ear functions, but rather the oracle evaluates the function on demand at
queried points, in addition to giving a modulus of continuity of f to the
machine. The penny-pinching character of the oracle describing the input
is due to the huge amount of information a function contains (one can see
[Far11] for a quantitative analysis of this fact). As a result, little can be
known about f in polynomial time, and classical operators such as taking
the supremum or the integral of a function are not polynomial-time com-
putable because a machine needs exponential time to evaluate its input on
the whole interval.
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In this paper, we do not consider general functionals but we focus on
the simpler case of norms over C[0, 1]. The general problem is: what are
the analytical effects of bounding the computational resources to compute
a norm? As explained above, bounding the allowed number of queries to
the oracle prevents the machine to evaluate its input f ∈ C[0, 1] at too
many points, hence a norm with low query complexity should “depend”
on a small set. We formalize this idea by introducing two notions: the
quantitative notion of dependence of a norm on a point and the qualitative
notion of relevance of a point w.r.t. a norm. Intuitively, a norm ‖.‖ has
high dependence on a point if changing f around that point results in a big
change in the value ‖f‖ . We then show how the query complexity of the
norm impacts on these properties: a norm with low complexity depends on
a small set but, as compensation, the dependence on that set is very high.

We also investigate the extreme case when only one oracle call is al-
lowed to the machine computing a functional and obtain a characterization.
Surprisingly, the argument to obtain such a characterization is much more
involved than expected. It contains subtleties that make it non-uniform in
terms of complexity.

The paper is organized as follows. In Section 2 we present the back-
ground on complexity in analysis needed for our results. In Section 3 we
formalize the notions of dependence of a norm on a point and of relevant
points w.r.t. a norm. We then show how they reflect the query complexity of
the norm. In Section 4 we characterize the class of functionals that are com-
putable by an oracle Turing machine making only one query to the oracle.
In Section 5 we conclude the paper with open questions to be investigated
in the future. Proofs of three results are put in the appendix.

2 Definitions and Preliminary Results

2.1 Notations and basic definitions

Σ denotes the alphabet {0, 1}. The length of a finite word u over Σ is
denoted by |u|.

Let A ⊆ [0, 1] and β ∈ [0, 1]. The distance of β to A is d(β,A) =
inf{|α − β| : α ∈ A}. Given r > 0, the neighborhood of A of radius r
is N(A, r) = {β ∈ [0, 1] : d(β,A) < r}. If α ∈ [0, 1], we simply write
N(α, r) = N({α}, r) = {β ∈ [0, 1] : |α − β| < r}. We will also consider the
closed neighborhood N(A, r) = {β : d(β,A) ≤ r}.

We assume the space C[0, 1] of continuous functions from [0, 1] to R with
the usual structure of real vector space. The uniform norm is defined by
‖f‖

∞
= maxx∈[0,1] |f(x)|. The L1-norm is defined by ‖f‖1 =

∫ 1
0 |f(x)|dx.

If f ∈ C[0, 1] then the support of f is Supp(f) = {x ∈ [0, 1] : f(x) 6= 0}.
Observe that Supp(f) is an open set. We say that f is supported on a set
A ⊆ [0, 1] if Supp(f) ⊆ A.
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Lip1 ⊆ C[0, 1] denotes the set of 1-Lipschitz functions from [0, 1] to R.
A norm F over C[0, 1] is weaker than a norm G if one there is a constant

c such that F (f) ≤ c ·G(f) for all f ∈ C[0, 1], or equivalently the functional
F : C[0, 1] → R is continuous w.r.t. the topology of the norm G.

2.2 Polynomial time computable functionals

We briefly recall the formalism of [KC10].

Oracle Turing machine. An oracle Turing machine M taking as input a
finite string u ∈ Σ∗ and consulting an oracle given by a function ϕ : Σ∗ → Σ∗

is denoted Mϕ(u).
A function ϕ : Σ∗ → Σ∗ is regular if |u| ≤ |v| implies |ϕ(u)| ≤ |ϕ(v)| for

all u, v ∈ Σ∗. The size of a regular function ϕ is the function |ϕ| : N → N

defined by |ϕ|(n) = |ϕ(0n)| (as ϕ is regular, 0n can be replaced by any word
of length n).

The pairing of two regular functions ϕ,ψ : Σ∗ → Σ∗ is the regular func-
tion 〈ϕ,ψ〉 defined by 〈ϕ,ψ〉(0u) = ϕ(u)10|ψ(u)| and 〈ϕ,ψ〉(1u) = ψ(u)10|ϕ(u)|.

Polynomial time oracle Turing machine. Second-order polynomi-

als are defined inductively in the following way: every positive integer is a
second-order polynomial, every first-order variable n is a second-order poly-
nomial, if P and Q are second-order polynomials then so are P + Q, PQ
and X(P ) where X is a second-order variable.

An oracle Turing machine M runs in polynomial time if there is a
second-order polynomial P (n,X) such that for any regular function ϕ and
input u ∈ Σ∗, Mϕ(u) halts in at most P (|u|, |ϕ|) steps.

Representation of C[0, 1]. For n ∈ N, let Dn = { p
2n : p ∈ N, 0 ≤ p ≤ 2n}

and D =
⋃

n Dn be the set of dyadic rational numbers in the interval [0, 1].
Every string u ∈ Σ∗ represents a dyadic rational du whose binary expansion
is 0.u.

A modulus of continuity of a function f ∈ C[0, 1] is a function µ :
N → N such that if |x− y| ≤ 2−µ(n) then |f(x) − f(y)| ≤ 2−n.

An approximation function of f is a function fD : D × N → D such
that |fD(d, n) − f(d)| ≤ 2−n. We can assume w.l.o.g. that fD(d, n) ∈ Dn.

We represent µ by the function µ(u) = 0µ(|u|). We represent fD by
the function fD : Σ∗ × Σ∗ → Σ∗ defined by fD(u, v) = w such that dw =
fD(du, |v|).

If µ is a modulus of continuity of f and fD an approximation function
of f then 〈µ, fD〉 is a representation of f .

A functional F : C[0, 1] → R is computable if there is an oracle Turing
machine M such that for any f ∈ C[0, 1], any representation ϕ of f and any
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n ∈ N written in unary notation, Mϕ(n) halts and outputs a dyadic number
d such that |F (f) − d| ≤ 2−n.

A relativized oracle Turing machine is an oracle Turing machine that
has access to an auxiliary oracle A ∈ {0, 1}N and queries A(n) by writing
the binary expansion of n on an extra query tape. The representation of
functions in C[0, 1] is natural in the precise sense that it is admissible: a
functional F : C[0, 1] → R is computable by a relativized oracle Turing
machine if and only if it is continuous w.r.t. the topology of the uniform
norm (see [Wei00] for precise results on admissibility of representations). In
particular, a norm is computable by relativized oracle Turing machines if
and only if it is weaker than the uniform norm.

Definition 2.1. A functional F : C[0, 1] → R is polynomial-time com-
putable if it is computable by an oracle Turing machine that runs in poly-
nomial time.

Example 2.1. Assume (qn)n∈N
is a polynomial-time computable enumeration

of the dyadic rational numbers in the interval [0, 1], i.e. there is a polynomial-
time computable function ψ : Σ∗ → Σ∗ such that qn = dψ(0n). Define the
functional

F0(f) =
∑

n∈N

|f(qn)|
2n

.

F0 is a norm over C[0, 1]. It can be easily verified that F0 can be computed by
a machine with computational time bounded by a second-order polynomial
in terms of the size of (a representation of) f and the precision parameter.

3 Norms

Ko [Ko82] introduced the class NPR of NP real numbers and showed that it
coincides with the class of maximum values of polynomial time computable
functions over [0, 1]. The separation problem PR = NPR lies between the
problems P = NP and EXP = NEXP. Friedman [Fri84] obtained similar re-
sults for the integral values of polynomial time computable functions. These
results show that separating complexity classes of real numbers is as diffi-
cult as in the case of sets of strings. However the situation is different for
complexity classes of functionals: Ko and Friedman [KF82] proved that the
functional mapping f ∈ C[0, 1] to max{f(x) : x ∈ [0, 1]} is not polynomial-
time computable (in a certain sense that is weaker than the one of Cook and
Kawamura used here, Definition 2.1), while there is a way to express the fact
that it is an NP functional. Similarly, the functional mapping f ∈ C[0, 1] to
∫ 1
0 f(x) dx can be proved not to be polynomial-time computable.

The main reason why lower bounds are much easier to achieve in the
case of functionals lies in the fact that time restrictions not only bound the
internal computation time of a machine but also limit its access to the input
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– it contrasts with the classical setting where time restrictions usually do not
prevent the machine to access its input entirely. Hence a machine running in
polynomial time does not have time enough to evaluate the input function on
a large set so it can hardly distinguish between some very different functions.
It suggests that if a machine computes a norm, bounding its computation
time must have implications on the topology induced by the norm, which
raises the following question: what are the topologies induced by polynomial-
time computable norms?

We already know that they cannot be equivalent to the topologies of
the uniform norm and the L1 norm. One can prove that (i) a polynomial-
time computable norm is incomparable with the L1 norm, (ii) it cannot be
complete, (iii) the notion of convergence it induces is incomparable with
convergence in probability. Hence polynomial-time computable norms live
in a reduced space, outlined by these properties. Our goal is to circumscribe
more accurately complexity classes of norms by having a finer look into their
analytical properties. The subsequent notions of dependence of a norm on
a point and of relevance of a point w.r.t. a norm will make it possible.

3.1 Dependence of a norm on a point

Let F be a norm over C[0, 1] and α ∈ [0, 1]. Intuitively, one would say that
the norm of a function depends on its value at α if modifying it at α only
changes its norm. But two problems appear: first we consider continuous
functions so modifying a function f at α is not possible without modifying
f also around α; second, if f = 0 then modifying f anywhere will auto-
matically change F (f) = 0 to some positive value, as F is a norm. To get
around these issues, the solution consists in defining a quantitative depen-
dence notion that relates the size of the neighborhood of α on which f is
modified to the alteration of the value F (f). As F is a norm, it has a certain
homogeneity that allows us to focus on the function f = 0 only.

From now on we assume that F is a norm over C[0, 1] that is weaker
than the uniform norm.

Definition 3.1. Let F be a norm on C[0, 1] and α ∈ [0, 1]. The dependence

of F on α ∈ [0, 1] is the function dF,α : N → R defined by

dF,α(n) = sup{l : ∃f ∈ Lip1,Supp(f) ⊆ N(α, 1/l)

and F (f) > 2−n}
= inf{l : ∀f ∈ Lip1,Supp(f) ⊆ N(α, 1/l)

implies F (f) ≤ 2−n}.

Observe that the first set is downward closed, so the two definitions are
equivalent.
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For every α and n, dF,α(n) ≥ 1. Indeed, if l < 1 then every function
is supported on N(α, 1/l) = [0, 1]. For every α, dF,α is nondecreasing,
unbounded and dF,α(n) ≤ 2c · 2n if F ≤ c · ‖.‖

∞
.

One easily checks that the set {l : ∀f ∈ Lip1,Supp(f) ⊆ N(α, 1/l) implies F (f) ≤
2−n} is closed, so the infimum is a minimum.

Let hα,r be the maximal 1-Lipschitz function supported on N(α, r).
When the norm is monotonic, i.e. |f | ≤ |g| implies F (f) ≤ F (g),

dF,α(n) = sup
{

l : F (hα,1/l) > 2−n
}

.

Let us illustrate Definition 3.1 on a few examples.

Example 3.1. Let F be the uniform norm. For all α ∈ [0, 1] and n ∈ N,
2n ≤ dF,α(n) ≤ 2n+1. The dependence of a point w.r.t. to the uniform norm
is maximal.

Example 3.2. Let F be the L1 norm. For all α ∈ [0, 1] and n ∈ N, 2
n−1

2 ≤
dF,α(n) ≤ 2

n+1
2 . While exponential, the dependence of a point w.r.t. the L1

norm is smaller than for the uniform norm.

Example 3.3. Let Q = {q0, q1, . . .} ⊆ [0, 1] be a countable dense set and
F (f) =

∑

i 2
−i|f(qi)|. For all i and n ≥ i, dF,qi(n) ≥ 2n−i: intuitively,

the norm of a function depends much on its value on Q. Moreover, it does
not depend much on points that are “far away” from the points qi and
the dependence of almost every point (in the sense of Lebesgue measure) is
bounded by a polynomial. Indeed, let α be such that |α−qi| ≥ ǫ/i2 for all i:
one has dF,α(n) ≤ n2/ǫ for all n. To show that, let f ∈ Lip1 with Supp(f) ⊆
N(α, ǫ/n2). f is null on {q0, . . . , qn} so F (f) =

∑

i>n 2−i|f(qi)| ≤ 2−n as
‖f‖

∞
≤ 1. Observe that the set of such α has mesure ≥ 1 − ǫπ2/3 which

can be made arbitrarily close to 1. So for α in a set of measure 1, dF,α is
bounded by a polynomial (which depends on α).

Proposition 3.1. For each n ∈ N, the function α 7→ dF,α(n) is continuous.
Moreover one has for all α, β,

|dF,α(n) − dF,β(n)| ≤ |α− β|dF,α(n)dF,β(n).

Proof. Let l < dF,α(n), f ∈ Lip1 with Supp(f) ⊆ N(α, 1/l) and F (f) >
2−n. Supp(f) ⊆ N(β, 1/l + |α − β|) so dF,β(n) ≥ l/(1 + l|α − β|). As it
is true for every l < dF,α(n), dF,β(n) ≥ dF,α(n)/(1 + dF,α(n)|α − β|) so
dF,α(n) − dF,β(n) ≤ |α − β|dF,α(n)dF,β(n). Exchanging α and β gives the
result. As dF,α(n) is bounded by c·2n for some c, it implies that α 7→ dF,α(n)
is continuous.

Proposition 3.2. If a norm F is weaker than a norm G then there exists
k such that for all α and n, dF,α(n) ≤ dG,α(n+ k).

Proof. Straightforward from the definition, using k such that F ≤ 2kG.
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However, non equivalent norms may not be distinguished by their depen-
dence functions. If F is a norm then F (f)+ |f(0)−f(1)| and F (f)+ |f(0)|+
|f(1)| are generally non-equivalent but have exactly the same dependence
functions.

Definition 3.2. The maximal dependence of a norm F is the function
DF : N → R defined by

DF (n) = max
α∈[0,1]

dF,α(n).

For every norm that is weaker than the uniform norm, there exists a
constant c such that DF (n) ≤ c · 2n. The next result gives a lower bound,
which is optimal as it is reached by the L1 norm.

Proposition 3.3. For every norm F there exists c > 0 such that DF (n) ≥
c · 2n

2 for all n.

Proof. Let N ∈ N\{0}. On easily checks that the sum
∑N

i=0 hi/N,1/N equals

the constant function 1
N . By triangular inequality, F (1)

N ≤ ∑

i F (hi/N,1/N ) ≤
(N+1) maxi F (hi/N,1/N ) so there exists i ∈ {0, . . . , N} such that F (hi/N,1/N ) ≥
F (1)

N(N+1) . Let 0 < c <
√

F (1)/4 andN = ⌈c2n
2 ⌉. One has F (1)

N(N+1) >
F (1)

(N+1)2
>

2−n if n is sufficiently large, so DF (n) ≥ dF, i
N

(n) ≥ N ≥ c2
n
2 . Changing c

one can obtain the inequality for all n.

As we will see later (Proposition 3.4), this bound is reached by some
point α.

Each point of high dependence has an influence on the value of the norm,
but does not usually determine that value. However, the next theorem shows
that the whole set of points of high dependence taken together determine
the value of the norm up to some precision. Let

Rn,l = {α : dF,α(n) ≥ l}.
As α 7→ dF,α(n) is continuous, Rn,l is a closed set.

Theorem 3.1. Let l ≤ DF (n). If f ∈ Lip1 is null on Rn,l then F (f) ≤
l22−n+6.

Proof idea. Decompose f as a sum of small functions supported on intervals
of length at most 2/l. Each small function is supported on a small neigh-
borhood of radius 1/l of some point α satisfying dF,α(n) ≤ l, so the norm
of each small function is at most 2−n. The number of small functions is
quadratic in l, which gives the result.

This result gives a strategy to evaluate the norm of a function. Indeed, let

ǫ > 0 and l = 2−
n−7

2
√
ǫ. Theorem 3.1 implies that if f, g ∈ Lip1 coincide on

Rn,l then |F (f)−F (g)| ≤ F (f−g) ≤ ǫ (applying the theorem to f−g
2 ∈ Lip1)

so in order to know the norm of f up to ǫ, it is sufficient to evaluate f on
Rn,l.
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3.2 Relevant points

Intuitively, the norm of a function f depends on the values of f on points of
high dependence, i.e. points α whose function dF,α is large. Several questions
arise: at which points a machine computing a norm should evaluate its input
function? can we separate the points into two classes, the points that are
relevant to compute the norm and the points that are not, according to the
growth of their dependence function? To answer the second question, we
need to find a threshold. The example of the L1 norm shows that one cannot
hope in general to have points whose dependence function grows faster than
2

n
2 , so the threshold should be at most of the order of 2

n
2 . Proposition 3.3

suggests (but does not imply) that points whose dependence is at least 2
n
2

might always exist. It is indeed the case as Proposition 3.4 below shows.
We can then choose 2

n
2 as a threshold that separates [0, 1] into the two

classes of relevant and irrelevant points. The interest of these notions will
be demonstrated by Theorem 3.2, 3.3 and 3.4.

Definition 3.3. Let F be a norm over C[0, 1]. A point α is relevant w.r.t.
F if there exists c > 0 such that dF,α(n) ≥ c · 2n

2 for all n.

First observe that the set R of relevant points is a countable union of
growing compact sets,

Rk = {α : ∀n, dF,α(n) ≥ 2
n
2
−k} =

⋂

n

R
n,2

n
2 −k

R =
⋃

k

Rk.

As dF,α(n) ≥ 1 for all α and n, Rk = {α : ∀n > 2k,dF,α(n) ≥ 2
n
2
−k}.

Proposition 3.3 can be strengthened: relevant points always exist and are
dense, which fits with the intuition that a norm should “look everywhere”
to separate different functions.

Proposition 3.4. Let F be a norm. The set of relevant points is dense.

Proof. Let p ∈ N \ {0} and a ∈ [2−p, 1− 2−p]. We construct a relevant point
α ∈ N(a, 2−p). Let c ∈ N be such that F (ha,2−p) > 2−c. α will be the limit of
a sequence αn defined by induction on n, satisfying F (hαn,2−n−p) > 2−2n−c.
Start with α0 = a.

Given αn, we decompose hαn,2−n−p as a sum of four functions (see Figure
1). Let β1 = β2 = αn, β3 = αn − 2−n−p−1 and β4 = αn + 2−n−p−1.
hαn,2−n−p =

∑4
i=1 hβi,2−n−p−1 so by triangular inequality there exists αn+1 ∈

{β1, β2, β3, β4} such that F (hαn+1,2−n−p−1) ≥ F (hαn,2−n−p)/4 > 2−2n−2−c.
As |αn − αn+1| ≤ 2−n−p−1, αn is a Cauchy sequence, let α be its limit.

One has |α− αn| ≤ 2−n−p so hαn,2−n−p is supported on N(α, 2−n−p+1). As
F (hαn,2−n−p) > 2−2n−c, dF,α(2n+ c) ≥ 2n+p−1. Let k ≥ c+3

2 − p. For every

n > 2k > c, dF,α(n) ≥ 2
n
2
−k.
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Figure 1: hαn,2−n−p =
∑4

i=1 hβi,2−n−p−1

Let us illustrate the notion of relevant point on a few examples.

Example 3.4. Let F be the uniform norm. Every point is relevant, and
R = R0 = [0, 1].

Example 3.5. Let F be the L1 norm. Every point is relevant, and R = R1 =
[0, 1].

Example 3.6. Let F (f) =
∑

i 2
−i|f(qi)|. Every qi is relevant and Ri contains

{q0, . . . , q2i}. Whether R contains only the numbers qi depends on the way
they are distributed in the unit interval:

1. let us consider the canonical enumeration of the dyadic rationals, de-
fined in the following way: for i = 2n + k with 0 ≤ k < 2n, let
qi = (2k + 1)2−n. The important feature of this enumeration is that
dyadic rationals are far from each other, in terms of their indices: if
i < j then |qi − qj | ≥ 1

j . Indeed, let n be such that 2n ≤ j < 2n+1:

|qi − qj | ≥ 2−n ≥ 1
j .

Lemma 3.1. If (qi)i∈N is the canonical enumeration of the dyadic ra-
tionals then R = D. Moreover if α /∈ D then dF,α(n) ≤ 2(n + 1) for
infinitely many n.

Proof. Let α /∈ D and n0 ∈ N. Assume dF,α(n) > 2(n + 1) for all
n ≥ n0.

First, F (hα, 1
2(n0+1)

) > 2−n0 so there exists i ≤ n0 such that |α −
qi| < 1

2(n0+1) otherwise the first n+ 1 terms in the sum defining F are

null and the norm is at most 2−n. Take i ≤ n0 minimizing |α − qi|.
As α 6= qi there exists n > n0 such that |α − qi| ≥ 1

2(n+1) . Take

n minimal. Again, F (hα, 1
2(n+1)

) > 2−n so there exists j ≤ n such

that |α − qj | < 1
2(n+1) . As |α − qj | < |α − qi|, j > n0 ≥ i. Now,

|qi − qj | ≤ |α − qi| + |α − qj | < 1
2n + 1

2(n+1) <
1
n ≤ 1

j , which gives a
contradiction.

More generally, and by the same argument, if f is non increasing and
i < j implies |qi − qj | ≥ f(j) then if α /∈ D, dF,α(n) ≤ f(n+1)

2 for

infinitely many n. In particular if f(n) = o(2
n
2 ) then R = D.
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2. we now consider the case when the sequence (qi)i∈N accumulates quickly
at a point α /∈ D, in which case α may be relevant. For instance, if
|q2i − α| < 2−2i then one easily checks that dF,α(n) ≥ 2

n
2
−2 for all n,

so α is relevant.

The terminology is justified by the next result: the value F (f) up to
some precision (decreasing to 0 as k grows) only depends on the values of f
on Rk, so the points of Rk are relevant to evaluate the norm of a function.

Theorem 3.2. Let F be a norm that is weaker than the uniform norm.
There exists a constant c such that if f ∈ Lip1 is null on R2k then F (f) ≤
c · 2−k.

We first need a few lemmas.

Lemma 3.2. For every α ∈ [0, 1] and n ∈ N there exists β such that |α−β| ≤
1/(2dF,α(n)) and dβ(n+ 2) ≥ 2dF,α(n).

Proof. Let l < dF,α(n) and f ∈ Lip1 be supported on N(α, 1/l) and F (f) >
2−n. Let h1, h2 be the maximal 1-Lipschitz functions supported on [0, α]
and [α, 1] respectively. Let f1 = min(f, h1), f2 = min(f, h2) and f3 = f4 =
(f − f1 − f2)/2. All fi are 1-Lipschitz and are supported on N(βi, 1/(2l))

h1 h2

α

f

(a) f , h1 and h2

h1

α

f1

(b) f1

h2

α

f2

(c) f2

Figure 2: f = f1 + f2 + f3 + f4

for some βi ∈ N(α, 1/(2l)). As f = f1 + f2 + f3 + f4 there exists i such that
F (fi) > 2−n−2, which implies dβi

(n+ 2) > 2l.
To each l < dF,α(n) is associated some βl. By compactness of [0, 1], there

exists an accumulation point β when l tends to dF,α(n). By continuity, β
satisfies the conditions.

Lemma 3.3. For every α ∈ [0, 1] and every n ∈ N there exists β such that

|α− β| ≤ 1/dF,α(n) and dβ(n+ p) ≥ 2
p−3
2 dF,α(n) for all p ∈ N.

Proof. We iteratively apply Lemma 3.2. Let β0 = α. Given βp, let βp+1

be obtained by applying Lemma 3.2 to βp and n + 2p. One has dβp
(n +

2p) ≥ 2pdF,α(n) and |βp− βp+1| ≤ 2−p−1/dF,α(n). βp is a Cauchy sequence,

11



let β be its limit. As |β − βp| ≤ 2−p/dF,α(n), a function supported on
N(βp, 2

−p/dF,α(n)) is supported on N(β, 2−p+1/dF,α(n)) so dβ(n + 2p) ≥
2p−1dF,α(n). As dβ(n + 2p + 1) ≥ dβ(n + 2p) ≥ 2p−1dF,α(n) we get the
result.

We will need the following refinement of Theorem 3.1.

Lemma 3.4. There exists a constant c such that for all ǫ and all f ∈ Lip1,
if |f | ≤ ǫ on Rn,l then F (f) ≤ cǫ+ l22−n+6.

Proof. Let c be such that F ≤ c‖.‖
∞

. We decompose f into a sum f = g+h
of 1-Lipschitz functions such that ‖g‖

∞
≤ ǫ and h = 0 on Rn,l. g and h are

defined as g(x) = f(x) if |f(x)| ≤ ǫ, g(x) = −ǫ if f(x) ≤ −ǫ and g(x) = ǫ if
f(x) ≥ ǫ, and h = f − g.

One easily checks that g and h are 1-Lipschitz. As f = g + h, F (f) ≤
F (g) + F (h) by triangular inequality. F (g) ≤ cǫ and F (h) ≤ l22−n+6 by
Theorem 3.1.

Proof of Theorem 3.2. Lemma 3.3 gives

R2k,l ⊆ N
(

⋂

n≥2k

R
n,2

n−3
2 −kl

, 1/l
)

.

Assume l ≥ 2
3
2 . The set

⋂

n≥2k R
n,2

n−3
2 −kl

is contained in Rk. Indeed, if

n ≥ 2k then l2
n−3

2
−k ≥ 2

n
2
−k.

As a result, if f ∈ Lip1 is null on Rk then |f | ≤ 1/l on R2k,l, so by

Lemma 3.4 F (f) ≤ c
l + l22−2k+6 for some c. Now take l = 2

k
2 : F (f) ≤

c2−
k
2 +2−k+6 ≤ c′2−

k
2 for some c′ that only depends on c (strictly speaking,

the result is proved for k ≥ 3 as we need l ≥ 2
3
2 . However, the result can be

obtained for all k by changing the constant c′).

The result can easily be generalized from the case of 1-Lipschitz functions
to any f ∈ C[0, 1].

Corollary 3.1. Let F be a norm that is weaker than the uniform norm.
There exists c ∈ N such that if f ∈ C[0, 1] is null on R2mf (p) then F (f) ≤
c · 2−p, where mf is a modulus of continuity of f .

Proof. Let c0 be such that F ≤ c0‖.‖∞
. Let L = 2mf (p)−p+1. Let k = mf (p).

There exists an L-Lipschitz function g which is null on R2k and such that
‖f − g‖

∞
≤ 2−p. Indeed, let pi = i2−mf (p) for i = 0 to 2mf (p). Let g(pi) = 0

if d(pi,R2k) < 2−mf (p), g(pi) = f(pi) otherwise and extend g to a linear
function between two consecutive points. One easily checks that g satisfies
the required condtions.

First, F (f − g) ≤ c02
−p. Applying Theorem 3.2 to g/L gives F (g) ≤

c1L2−mf (p) ≤ c12
−p for some constant c1, so F (f) ≤ c02

−p + c12
−p.
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3.3 Complexity of norms

We now show how the complexity of a norm has an influence on the shape of
the norm, which can be measured by the way it depends on the points and
by the size of the set of relevant points. Precisely, our complexity measure
will be the number of queries submitted to the oracle.

Query complexity

Definition 3.4. A bounding class is a class T of functions t : N → N

satisfying the following conditions:

• T contains the constant function 1,

• T is closed downwards: if t′ ≤ t and t ∈ T then t′ ∈ T ,

• T is stable under multiplication by a polynomial.

In particular T contains all the (first-order) polynomials. The class
POLY of functions that are bounded by polynomials is a bounding class.
We say that a bounding class T is sub-exponential if for every t ∈ T
and ǫ > 0, t = o(2ǫn). The class POLY is an example of a sub-exponential
bounding class.

Given an oracle Turing machine M and n ∈ N, run M on input n and
oracle (id, 0), representing the null function with modulus m0(p) = p. q is
an oracle query if the machine eventually asks the oracle for the value of
fD(q, p) for some p. Let Qn be the set of oracle queries.

Definition 3.5. Let T be a bounding class. A norm over C[0, 1] has query

complexity in T if it is computable by a relativized oracle Turing machine
for which the function n 7→ |Qn| belongs to T .

A bound on the time complexity always induces a bound on the query
complexity: if a norm ‖.‖ is computable by a machine that on oracle ϕ and
input n, halts in time t(|ϕ|, n), then ‖.‖ has query complexity t(id, n). In
particular, every polynomial-time computable norm has polynomial query
complexity.

Relating query complexity, dependence and relevant points we
are now able to relate the query complexity of a norm to the way it depends
on points. The results are based on the following simple observation: if a
norm F depends on a point then a machine computing F must query the
oracle around that point.

Lemma 3.5. The following equivalent statements hold for all α, n:

Rn,l ⊆ N(Qn+1, 1/l)

α ∈ N(Qn+1, 1/dF,α(n))

dF,α(n) ≤ 1/d(α,Qn+1).

13



Proof. Let l = 1/d(α,Qn+1). If f ∈ Lip1 is supported on N(α, 1/l) then
f = 0 on Qn+1 so F (f) < 2−n. As a result, dF,α(n) ≤ l.

The notions of dependence and relevant points enable us to express for-
mally the intuition that a polynomial-time computable norm cannot depend
on a large set of points, as a machine computing it in polynomial-time only
has little time to evaluate its input. It is more generally true of any norm
that has low query complexity.

Theorem 3.3. Let F be a norm and T a bounding class. If F has query
complexity in T then for almost every α, dF,α ∈ T .

In particular if T is sub-exponential then the set of relevant points has
Lebesgue measure 0.

Proof. Let t ∈ T be such that |Qn| ≤ t(n) for all n. Let Ui =
⋃

nN(Qn,
1

2t(n)(n+i+1)2
)

and Ai = [0, 1] \ Ui. One has

µ(Ui) ≤
∑

n

1

(n+ i+ 1)2
≤ 1

i
.

so µ(Ai) ≥ 1 − 1
i . Let α ∈ Ai and n ∈ N : as α /∈ N(Qn,

1
2t(n)(n+i+1)2

),

dF,α(n) ≤ 1/d(α,Qn+1) ≤ 2t(n+1)(n+ i+2)2 by Lemma 3.5. The function
n 7→ 2t(n+ 1)(n+ i+ 2)2 belongs to T .

Moreover,

Theorem 3.4. Let F be a norm and T a sub-exponential bounding class.
If F has query complexity in T then the set of relevant points has Hausdorff
dimension 0.

Proof. We slightly refine the preceding proof. For s > 0, we replace the sets
Ui by V s

i =
⋃

nN
(

Qn, (t(n)(n+ i)2)−1/s
)

.

Again,
⋂

i V
s
i contains all the relevant points as (t(n)(n+i)2)1/s = o(2

n
2 ),

and its dimension is ≤ s. As it is true for any s > 0, the set of relevant
points has Hausdorff dimension 0.

In particular, if F is polynomial-time computable then most of the points
are irrelevant. In other words, F depends on a small set. As we show now,
it is balanced by the fact that it highly depends on some points. We know
from Proposition 3.4 that there exist points whose dependence function is
at least of the order of 2

n
2 and the example of the L1 norm shows that the

coefficient 1
2 cannot be increased in general. However for polynomial-time

computable norms, the coefficient can be taken arbitrarily close to 1. First,
one easily improves Proposition 3.3.

Proposition 3.5. Let F be a norm and T be bounding class. If F has query
complexity in T then 2n

DF (n) ∈ T .
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Proof. Let t ∈ T be such that |Qn| ≤ t(n) for all n. Let l < F (1)2n/(3t(n)).
Let g = 1

t(n)

∑

q∈Qn
hq,1/l. g ∈ Lip1 and g = 1/(lt(n)) on Qn so F (1/(lt(n))−

g) ≤ 2−n+1, hence F (g) ≥ F (1)/(lt(n))−2−n+1. As a result there exists q ∈
Qn such that F (hq,1/l) ≥ F (1)/(lt(n))−2−n+1 > 2−n, so DF (n) ≥ dF,q(n) ≥
l. As it is true for any l < F (1)2n/(3t(n)), DF (n) ≥ F (1)2n/(3t(n)).

For instance if F has polynomial query complexity then DF (n) ≥ 2n

P (n)
for some polynomial n. We raise the question whether this bound is reached:
is there some α such that 2n

dF,α(n) ∈ T ? We leave the question open, but in

the case when T is the class of functions that are bounded by polynomials,
we are able to prove that dF,α can be larger than 2(1−ǫ)n for any ǫ > 0. More
precisely,

Theorem 3.5. Let F be a polynomial-time computable norm. There exist
α ∈ [0, 1] and c > 0 such that dF,α(n) ≥ 2n−c

√
n logn for all sufficiently large

n. The set of such α is even dense.

Proof idea. The idea is to start from some triangular function hα0,l and to
decompose it as a sum of many smaller triangular functions. As most of
them will be far away from the query sets of the machine computing the
norm, their norms will be very small. As the sum of the norms of all the
small functions is bounded below by the norm of the initial function, one
of the few functions, hα1,l′ that are close to the query set must have a large
norm. Applying the same argument to the smaller function and iterating to
infinity produces a sequence αi converging to some α which will satisfy the
conclusion of the theorem.

We do not know whether this result can be improved: is the bound
provided by Proposition 3.5 reached? In other words, is there α such that
dF,α(n) ≥ 2n

P (n) for some polynomial P and all n? Adapting the proof of

Theorem 3.5 we are only able to prove the existence of α such that dF,α(n) ≥
2n

P (n) for some polynomial P and infinitely many n.
We end this section by a characterization of the norms that have poly-

nomial query complexity.
A compact set K ⊆ [0, 1] can be polynomially covered if for each n

there exists a set An of cardinality bounded by a polynomial in n such that
K ⊆ N(An, 2

−n).

Proposition 3.6. A norm has polynomial query complexity if and only if
for every k, Rk can be polynomially covered, where k is an argument of the
polynomial.

Proof sketch. If a norm has polynomial query complexity then by Lemma
3.5, Rk ⊆ R2(n+k),2n ⊆ N(Q2(n+k)+1, 2

−n). We then use the assumption
that |Q2(n+k)+1| is polynomial in n, k.

15



Conversely, assume that Rk ⊆ N(An,k, 2
−n) for some set An,k of cardi-

nality bounded by P (n, k) for some polynomial P . We can assume w.l.o.g.
that the points of An,k belong to Dn. The additional oracle provides two
types of information: given n, k, it provides the set An,k and given n, k, p
and a list of |An,k| values, it provides a 2−p-approximation of ‖f‖ where f is
the piecewise linear function with the corresponding values on An,k. We now
describe the machine computing the norm. On input p, the machine asks
for mf (p), then asks the auxiliary oracle for Amf (p),2mf (p), evaluates f on

the latter set at precision 2−p and then using the returned values, asks the
auxiliary oracle for the norm of the corresponding piecewise linear function
and outputs that value. Corollary 3.1 tells us that the output value is within
c2−p of the value norm of f , for some constant c. Taking c into account, the
machine can be adjusted to compute the norm. It is routine to check that
the oracle can be coded as an element of {0, 1}N and that the queries of the
machines are polynomial in p and the size of the representation of f .

4 One oracle access

In this section we investigate the extreme case of a functional whose “query
complexity1” is bounded by 1, i.e. a functional F : C[0, 1] → R that is com-
putable by a machine making at most one oracle call on each precision input
n. Technically, the representation of f contains two types of information:
the modulus of continuity of f and the values of f on the dyadic rationals.
Here we separate the representation of f into two oracles and restrict the
machine to perform one query to the approximation oracle.

We are able to characterize exactly this class of functionals. While the
result looks natural, the proof is more delicate than expected: it is what
makes the result interesting. As the last result (Proposition 4.1) shows, the
argument hides subtleties that make it non-uniform.

Observe that it is trivial to obtain a characterization of functionals F :
(N → N) → (N → N) that are computable by an oracle Turing machine
such that to compute F (f)(n), does only one oracle call to f . Obviously, the
functional F can be expressed as F (f)(n) = ϕ(f(ψ(n)) for some computable
functions ϕ,ψ : N → N. Indeed, let ϕ(m) = F (λx.m) and ψ(n) be the
question asked by the machine to the oracle on input n. If F is assumed
to be polynomial-time computable, then so are ϕ and ψ. The argument is
much more elaborate on the real numbers.

Theorem 4.1. For a functional F : C[0, 1] → R the following are equivalent:

1. F is computable by a (polynomial time) oracle Turing machine that
does at most one query to the approximation oracle,

1here we make informal use of this expression as the query complexity is only defined
for norms.
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2. F is of the form f 7→ φ(f(α)), where α is a (polynomial time) com-
putable real number and φ : R → R is a (polynomial time) computable
real function which is uniformly continuous and whose modulus of uni-
form continuity is bounded by a computable function (a polynomial).

Observe that φ is uniquely determined by φ(v) = F (λx.v) where λx.v
is the constant function with value v. If F is not constant then α can be
proved to be unique.

One could imagine a kind of BSS model of oracle computation for func-
tionals, where the machine is allowed to ask its oracle for the value f(α),
giving α in one step, and getting the value f(α) in one step as well (see
[BCSS98] for the usual BSS model). In such a model, it is obvious that a
functional F computed by a machine making one oracle call should be of the
form F (f) = φ(f(α)). Theorem 4.1 tells us that this is also true for oracle
machines working at finite precision. Note however that the two models
would not have the same computation power: the uniform norm would not
be computable in such a model, as the machine should evaluate its input
function on an infinite set (which, at finite precision, can be approximated
by evaluating the function on a finite set).

4.1 Uniformity

Our question is now: can α and φ be efficiently computed from F? As for φ,
the answer is positive: it can be easily recovered as φ(v) = F (λx.v). However
the proof of Theorem 4.1 is not fully uniform as the computation of α relies
on a modulus m and a k such that F varies by at least 2−k on Cm[0, 1].
These objects can be effectively found, but not necessarily efficiently. The
next result shows that this problem cannot be got around.

Proposition 4.1. There exist αk and φk such that αk is not computable
in polynomial time in k and φk is not constant but Fk(f) := φk(f(αk)) is
computable in time polynomial in k.

As Fk is not constant, the decomposition (αk, φk) of Fk is unique.

Proof. Let A ⊆ N be such that the problem k ∈ A is decidable in time 2k

but not in polynomial time. Let αk = 1 if k ∈ A, αk = 0 if k /∈ A. Let
φk(x) = 2−2k · x. Let Fk(f) = φk(f(αk)). First, αk is not polynomially
computable in k.

Of course, each Fk is computable in polynomial time separately (for k
is fixed and hence constant). Moreover, we prove that Fk is polynomial
time computable, uniformly in k. In other words, there is an oracle Turing
machine M such that on oracle f , Mf (k, n) halts in time bounded above by
a polynomial p(k, n) and outputs a rational r such that |Fk(f) − r| ≤ 2−n.

Intuitively, if f does not vary much then it can be evaluated at 0 so
computing αk is not necessary; if f varies much then its modulus is large as
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well as the size of the representation of f , which gives enough computation
time for evaluating αk.

Given inputs (n, k), the machine queries mf (0) to the oracle and next:

• if n ≤ 2k−mf (0)−2, then query ψf (0, 0) and output an approximation

of 2−2k
ψf (0, 0) with precision 2−n−1.

• if n ≥ 2k − mf (0) − 1 then decide k ∈ A, compute αk accordingly,

query ψf (αk, n) and output 2−2k
ψf (αk, n).

First observe that |f(αk) − f(0)| ≤ |f(0) − f(1)| ≤ 2mf (0). If n ≤
2k − mf (0) − 2, then |Mf (k, n) − F (f)| = |2−2k

ψf (0, 0) − 2−2k
f(αk)| =

2−2k |ψf (0, 0)− f(αk)| ≤ 2−2k
(|ψf (0, 0)− f(0)|+ |f(0)− f(αk)|) ≤ 2−2k

(1 +

2mf (0)) ≤ 2−2k+mf (0)+1 ≤ 2−n−1. So the output value is a 2−n-approximation
of Fk(f). The computations are done in polynomial time.

If n ≥ 2k −mf (0) − 1 then the computation of αk runs in time ≤ 2k ≤
n + mf (0) + 1 which is polynomial in n and mf (0). And it can be easily

verified that 2−2k
ψf (αk, n) is a 2−n-approximation of Fk(f).

5 Summary and open questions

We have introduced the dependence function dF,α of a norm F on a point
α (Definition 3.1) and the notion of a relevant point (Definition 3.3).

The norm of a function is determined by the values of the function on
the points of high dependence (Theorem 3.1). The set of relevant points is a
growing union of compact sets R =

⋃

k Rk. R is always dense (Proposition
3.4) and the norm of a function at precision 2−k is determined by the value
of the function on R2mf (k) (Theorem 3.2). Hence a machine computing
the norm only has to evaluate its input function at the relevant points.
Moreover, it has to: each relevant point must be close to some oracle query
(Lemma 3.5).

We have shown the effects of query complexity restrictions on the norm,
measured by the dependence function and the set of relevant points. In
particular if a norm is computable in polynomial time then its set of relevant
points has Hausdorff dimension 0 (Theorem 3.4), almost every point has a
polynomial dependence function (Theorem 3.3) and there exist points of
very high dependence (Theorem 3.5). We also get a characterization of
norms with polynomial query complexity (Proposition 3.6).

We characterize the functionals F : C[0, 1] → R that are computable by
a Turing machine allowed to make at most one oracle query on each input
(Theorem 4.1). We show that the characterization is not fully uniform in
terms of complexity (Proposition 4.1).
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5.1 Open questions

Is it possible to obtain a nice characterization of the functionals F : C[0, 1] →
R that are polynomial-time computable relative to some oracle, i.e. to extend
Proposition 3.6 to the general case? More generally is it possible to extend
our analysis from norms to general functionals over C[0, 1]? The dependence
of a functional on a point should be local, i.e. depend on the argument
f ∈ C[0, 1] of the functional: the functional F (f) = f(f(0)) intuitively
depends on 0 and f(0).

Our analysis is relevant when considering deterministic time complexity
classes. What about the non-deterministic case? The uniform norm is non-
deterministically polynomial-time computable, contrary to the L1 norm, but
they have the same sets of relevant points. What about space complexity?
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A Proof of Theorem 3.1

The proof intuitively works as follows: if f is null on Rn,l then it is sup-
ported on points of low dependence. f can then be decomposed as a sum
of functions supported on small neighborhoods of points of low dependence.
The norm of each small function being small, the norm of their sum will
also be small.

We actually prove that if f is moreover nonnegative then F (f) ≤ l22−n+5.
It gives the result for general f by decomposing f = f+ − f− where f+ and
f− are nonnegative.

Lemma A.1. Let α ∈ [0, 1] and g ∈ Lip1. If Supp(g) is disjoint from Rn,l

and contained in N(α, 1/l) then F (g) ≤ 2−n+1.

Proof. If dF,α(n) ≤ l then F (g) ≤ 2−n. Otherwise, g(α) = 0 and we de-
compose g into the sum of two 1-Lipschitz functions g0, g1 supported on
(α−1/l, α) and (α, α+1/l) respectively. For each i ∈ {0, 1}, either gi = 0 or
there exists β ∈ Supp(gi). In the latter case, gi is supported onN(β, 1/l) and
dF,β(n) < l so F (gi) ≤ 2−n. As a result, F (g) ≤ F (g0)+F (g1) ≤ 2−n+1.

Proof of Theorem 3.1. If l ≤ 1 then Rn,l = [0, 1] so F (f) = 0. We assume
now that l > 1. Let A = {2k

l : k ∈ N, k ≤ l
2} and B = {2k+1

l : k ∈ N, k ≤
l−1
2 }. Let dA(x) = d(x,A) and dB(x) = d(x,B). Observe that dA + dB = 1

l .
Let f ∈ Lip1 be nonnegative. Define for n, i ≥ 0 the following functions,

depicted in Figure 3:

g2n = min
(

2n
l + dA, f

)

, f0 = g0,

g2n+1 = min
(

2n+1
l + dB, f

)

, fi+1 = gi+1 − gi.

For all i ≥ 0, gi is 1-Lipschitz, so f0 is 1-Lipschitz and fi+1 is 2-Lipschitz.

(a) f (b) g0 ≤ g1 ≤ g2 = f

(c) g0 ≤ dA (d) g1 ≤
1
l

+ dB (e) f = g2 ≤
2
l

+ dA

Figure 3: The functions gi

One has g2n ≤ g2n+1 ≤ g2n + 2dB and g2n+1 ≤ g2n+2 ≤ g2n+1 + 2dA so
0 ≤ f2n+1 ≤ 2dB and 0 ≤ f2n+2 ≤ 2dA. In particular, f2n+1 = 0 on B and
f2n = 0 on A.
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Assume that Supp(f) is disjoint from Rn,l. As l ≤ DF (n), Rn,l 6= ∅ so
f vanishes at some point. As f is 1-Lipschitz, ‖f‖

∞
≤ 1 so fk = 0 for all

k ≥ l + 1: indeed, gk = gk−1 = f .
For each i, Supp(fi) ⊆ Supp(f) is also disjoint from Rn,l. As fi is

null on A or B, fi

2 is the sum of at most l+3
2 functions g satisfying the

conditions of Lemma A.1 so F (fi) ≤ (l+3)2−n+1. As f = f0 + . . .+fk with
k = ⌈l + 1⌉ − 1 < l + 1, F (f) ≤ (l + 2)(l + 3)2−n+1 ≤ l22−n+5 as l ≥ 1.

B Proof of Theorem 3.5

Lemma B.1. Let k, p, n ∈ N and α ∈ [2−k, 1 − 2−k]. There exists β ∈
N(α, 2−k) such that

F (hβ,2−p−k) ≥ 1

P (n)
(2−p−1F (hα,2−k) − 2p−n+1).

Proof. We decompose hα,2−k as a sum of 22p functions hβi,2−p−k , i = 1 . . . , 22p

where βi ranges over the set B = {α ± j2−p−k : 0 ≤ j < 2p} of cardinality
2p+1 − 1 (see Figure 4). Each β is the center of at most 2p functions, so

Figure 4: hα,2−k =
∑22p

i=1 hβi,2−p−k . Here, p = 3.

F (hα,2−k) ≤ 2p
∑

β∈B
F (hβ,2−p−k).

We split B into a disjoint union B0 ∪ B1: β ∈ B0 iff d(β,Qn) < 2−p−k.
First, |B0| ≤ 2|Qn|. Indeed, to each β ∈ B0 one can associate some q ∈ Qn
such that |β − q| < 2−p−k. This mapping is two-to-one so |B0| ≤ 2|Qn|.

Let M = maxβ∈B0 F (hβ , 2
−p−k). Observe that M = 0 if B0 = ∅. If

β ∈ B1 then F (hβ,2−p−k) ≤ 2−n+1, so

F (hα,2−k) ≤ 2p
∑

β∈B0

F (hβ,2−p−k) + 2p
∑

β∈B1

F (hβ,2−p−k)

≤ 2p|B0|M + 2p−n+1|B1|
≤ 2p+1P (n)M + 22p−n+2.

As a result,

M ≥ 1

P (n)
(2−p−1F (hα,2−k) − 2p−n+1).
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If the term on the right-hand side is positive thenM is positive so B0 6= ∅
and M = F (hβ,2−p−k) for some β ∈ B0. If the right-hand side is nonpositive
then every β satisfies the required condition.

Claim B.1. There exist k0 and d such that for all k ≥ k0 and p = ⌈d
√
k log(k)⌉,

2−p−2−k−
√
k

P (2p+ 4 + k +
√
k)

> 2−(p+k)−
√
p+k.

Proof. We look for p satisfying
√
p+ k −

√
k > 2 + logP (2p+ 4 + k +

√
k).

Let d0 be the degree of P and d > 2d0. Let p = ⌈
√
k log k⌉ ∈ o(k).√

p+ k−
√
k ∼ p

2
√
k
≥ d log k/2 and 2+logP (2p+4+k+

√
k) ∼ d0 log k

so the inequality is satisfied for all sufficiently lage k.

Lemma B.2. If F (hα,2−k) > 2−k−
√
k then there exists β ∈ N(α, 2−k) such

that F (hβ,2−p−k) > 2−p−k−
√
p+k where p = ⌈

√
k log k⌉.

Proof. Let p ∈ N and n = ⌈2p + 3 + k +
√
k⌉. Applying Lemma B.1 gives

β ∈ N(α, 2−k) such that

F (hβ,2−p−k) ≥ 2−p−2−k−
√
k

P (2p+ 4 + k +
√
k)
.

When p tends to infinity, the right-hand side eventually exceeds 2−(p+k)−
√
p+k.

Actually, it happens early.
As a result, F (hβ,2−p−k) > 2−(p+k)−

√
p+k for p = ⌈d

√
k log k⌉, if k ≥

k0.

Proof of Theorem 3.5. Observe that if the result holds for a norm F ′ = NF
with N ∈ N then the result holds for F .

Lemma B.2 provides d and k0. We define by induction αi, pi, ki. We
start from k0, α0 ∈ [2−k0 , 1−2−k0 ] and we assume that F (hα0,2−k0 ) > 2−λk0 ,
multiplying F by a constant if necessary. Applying Lemma B.2 to αi and
ki gives β. Let pi = ⌈d

√
ki log(ki)⌉, αi+1 = β and ki+1 = ki + pi. One has

F (hαi,2−ki > 2−ki−
√
ki and |αi − αi+1| < 2−ki for all i.

As ki is increasing, αi is a Cauchy sequence so it converges to some α.
One has |αi − α| ≤ 2−ki+1.

Let ni = ⌈ki +
√
ki⌉ for some i. hαi,2−ki is supported on N(α, 2−ki+2)

and F (hαi,2−ki ) > 2−ki−
√
ki ≥ 2−ni so dF,α(ni) ≥ 2ki−2.

One has ni+1 − ki ∼ ki+1 − ki ∼ d
√
ki log ki, so if i is sufficiently large

then ni+1 − ki ≤ (d+ 1)
√
ki log ki ≤ (d+ 1)

√
ni log(ni).

Now given n ∈ N, let i be such that ni ≤ n < ni+1. If i is suffi-
ciently large then ki ≥ n− (d+ 1)

√
n log n so dF,α(n) ≥ dF,α(ni) ≥ 2ki−2 ≥

2n−(d+1)
√
n logn−2.

As a result, for all sufficiently large n, dF,α(n) ≥ 2n−(d+2)
√
n logn.
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C Proof of Theorem 4.1

Notation C.1. Assume a function m : N → N. Let Cm[0, 1] denote the set
of continuous functions defined over the interval [0, 1] having a modulus of
continuity m.

We prove 1 ⇒ 2, the other direction is straightforward. Let M be an
oracle Turing machine computing F and such that on each input n the
machine does at most one oracle call to the approximation oracle. We have
two cases.

Case 1. Assume F is constant. That is F (f) = a for some a ∈ R.
Let φ(y) = a and α = 0 for instance. Obviously, F is (polynomial-time)
computable if and only if φ is (polynomial-time) computable.

Case 2. Assume F is not constant. We first define φ(y) = F (gy) where
gy is the constant function with value y.

Let f0, g0 and n0 be such that |F (f0) − F (g0)| > 2−n0+1. Let m be a
common modulus of continuity for f0 and g0. We can assume w.l.o.g. that
m(p) ≥ p andm is nondecreasing, replacingm(p) with max(m(0),m(1), . . . ,m(p), p)
if necessary. Let M(p) = m(p+ 1). M ≥ m is also a modulus for f0 and g0.

When the machine computing F is run on oracle (M,ψ) and input n ≥ n0

for some approximation function ψ, the machine must consult ψ. Indeed,
otherwise it cannot distinguish between f0 and g0, which implies |F (f0) −
F (g0)| ≤ 2−n+1 ≤ 2−n0+1 contradicting the assumption. For every n ≥ n0,
let (qn, pn) be the query submitted by M(M,ψ)(n) to ψ ((qn, pn) does not
depend on ψ, as the machine is deterministic does not have consulted it yet).

Claim C.1. φ is uniformly continuous and n 7→ pn+1 is a modulus of uniform
continuity for φ.

Proof. Assume |x − y| ≤ 2−pn+1 . Let r be a rational number such that
|x − r| < 2−pn+1 and |y − r| < 2−pn+1 . When evaluating F (gx) and F (gy)
at precision 2−n−1, the oracle can answer r to the query (qn+1, pn+1). The
deterministic machine will produce the same output, so |F (gx) − F (gy)| ≤
2−n, hence |φ(x) − φ(y)| ≤ 2−n.

Observe that the modulus of uniform continuity of φ is computable. In
case the machine runs in polynomial time, the modulus is bounded by a
polynomial.

We now define α.

Claim C.2. Assume α is an accumulation point of the sequence (qn)n∈N
.

Then

1. Let f, g ∈ CM [0, 1]: if f = g on a neighborhood of α then F (f) = F (g).

2. Let f, g ∈ Cm[0, 1]: if f(α) = g(α) then F (f) = F (g).
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Proof. 1) Assume f = g on a neighborhood U of α where f, g ∈ CM [0, 1].
Both functions f and g have representations ψf and ψg such that ψf (q, p) =
ψg(q, p) for every q ∈ U ∩ Q and p ∈ N. Since α is an accumulation point
of (qn)n∈N

, there exists an infinite set E ⊆ N such that for all k ∈ E we
have qk ∈ U . Given the representations ψf and ψg, the machine cannot
distinguish between f and g for input precisions k ∈ E, that is MM,ψf (k) =
MM,ψg(k) = rk for every k ∈ E. We have |rk−F (f)| ≤ 2−k and |rk−F (g)| ≤
2−k, so |F (f)−F (g)| ≤ 2−k+1. Given that E is infinite we have the desired
result F (f) = F (g). This proves the first part of the claim.

2) Now assume f(α) = g(α) with f, g ∈ Cm[0, 1]. There exists a function
gn such that: (1) gn coincides with f on N(α, 2−n), (2) ‖g − gn‖∞

≤ 2−n+1

and (3) M is a modulus for gn (gn cannot have modulus m in general, this
is why we need to consider M). gn can be constructed as follows.

Let βn = max(α − 2−n, 0) and γn = min(α + 2−n, 1). Let δ1 = f(βn) −
g(βn) and δ2 = f(γn)−g(γn). We have |δ1| ≤ |f(βn)−f(α)|+|f(α)−g(α)|+
|g(α) − g(βn)| ≤ |βn − α| + 0 + |βn − α| ≤ 2−n+1. Similarly, |δ2| ≤ 2−n+1.

Now define gn : [0, 1] → R as follows. For βn ≤ x ≤ γn: gn(x) = f(x).
For x ≤ βn: gn(x) = g(x) + δ1. For x ≥ γn: gn(x) = g(x) + δ2. It can be
easily verified that gn satisfies the required properties. We have f = gn on a
neighborhood of α, so from Part (1) of the Claim we have F (f) = F (gn). As
F is continuous and gn converge to g in the uniform norm, F (gn) converge
to F (g) so F (f) = F (g). This completes the proof of Claim C.2.

Claim C.3. If (qn)n∈N
has more than one accumulation point, then F is

constant on Cm[0, 1].

Proof. Assume that (qn)n∈N
has two different accumulation points α and β.

Let f, g ∈ Cm[0, 1] be arbitrary. We will show that F (f) = F (g), hence F is
constant. We consider two cases. First, assume |g(β)− f(α)| ≤ |β−α|. Let
h be the linear function such that h(α) = f(α) and h(β) = g(β). By the
current assumption, h ∈ Lip1[0, 1] ⊆ Cm[0, 1] as m(p) ≥ p so by Claim C.2
we have F (f) = F (h) = F (g).

Next consider the case |g(β)−f(α)| > |β−α|. Without loss of generality
assume that f(α) > g(β). One can find h1, . . . , h2k+2 ∈ Lip1[0, 1] such that,
letting h0 = g and h2k+2 = f , h2i+1(β) = h2i(β) and h2i+2(α) = h2i+1(α),
i = 0, . . . , k. From Claim C.2, F (g) = F (h1) = . . . = F (h2k+2) = F (f).

As F is not constant by assumption, the sequence (qn)n∈N
has a unique

accumulation point α. Recall the function φ(y) = F (gy) where gy is the
constant function with value y. By Claim C.2, F (f) = φ(f(α)) for all
f ∈ Cm[0, 1], as f coincides with gf(α) at α.

Claim C.4. φ is uniformly continuous and n 7→ pn+1 is a modulus of uniform
continuity for φ.
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Proof. Assume |x − y| ≤ 2−pn+1 . Let r be a rational number such that
|x − r| < 2−pn+1 and |y − r| < 2−pn+1 . When evaluating F (gx) and F (gy)
at precision 2−n−1, the oracle can answer r to the query (qn+1, pn+1). The
deterministic machine will produce the same output, so |F (gx) − F (gy)| ≤
2−n, hence |φ(x) − φ(y)| ≤ 2−n.

Observe that the modulus of uniform continuity of φ is computable. In
case the machine runs in polynomial time, the modulus is bounded by a
polynomial.

In order to prove that α is (polytime) computable, we first show that
the speed of convergence of (qn)n∈N

to α is also a modulus of continuity for
φ.

Claim C.5. The function n 7→ − log2 |α− qn+1| − 1 is a modulus of uniform
continuity for φ. In other words, |x−y| ≤ 2|α−qn+1| implies |φ(x)−φ(y)| ≤
2−n.

Proof. Let n ∈ N. Assume x, y ∈ R such that |x−y| ≤ 2−(− log2 |α−qn+1|−1) =
2|α−qn+1|. Then let f, g be the affine functions satisfying f(α) = x, g(α) =
y, and f(qn+1) = g(qn+1) = x+y

2 . As |x−y| ≤ 2|α−qn+1|, f, g ∈ Lip1[0, 1] ⊆
Cm[0, 1]. Then f and g have representations ψf and ψg that give the same
answer for the query (qn+1, pn+1). Hence, MM,ψf (n+ 1) = MM,ψg(n+ 1).
Thus we have |F (f) − F (g)| ≤ 2−n. Therefore, |φ(x) − φ(y)| = |φ(f(α)) −
φ(g(α))| = |F (f)−F (g)| ≤ 2−n. This completes the proof of the Claim.

As φ is not constant, its modulus cannot be sub-linear, so qn must con-
verge quickly to α.

Claim C.6. There exists k ∈ N such that for all n ∈ N the following holds:
|α− qn| ≤ 2k−n.

Proof. By assumption F is not constant, so φ is not constant. As we show
now, it implies that its modulus must be at least linear, i.e. m(n) ≥ n − k
for some k and all sufficiently large n.

Let a < b be such that φ(a) 6= φ(b). Let k ∈ N be such that |φ(a)−φ(b)| ≥
2−k(b−a). Letm be a modulus of uniform continuity of φ. Let n be such that
|φ(a) − φ(b)| > 2−n: one must have b− a ≥ 2−m(n). We divide the interval
[a, b] into intervals of length ≤ 2−m(n). We can take p = ⌊(b− a)2m(n)⌋ ≥ 1
subintervals. As φ does not vary more than 2−n on each subinterval, a
repeated use of the triangular inequality gives |φ(a) − φ(b)| ≤ p2−n ≤ (b −
a)2m(n)−n so m(n) ≥ n− k.

As m(n) = − log2 |α− qn+1| − 1 is a modulus of φ, one has |α− qn+1| ≤
2k−n−1. This completes the proof of the Claim.

To summarize, for every f ∈ Cm[0, 1], F (f) = φ(f(α)). Observe that the
construction of α may depend on m. We show that it does not.
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Let m′ be a nondecreasing function satisfying m′(p) ≥ p and such that
F is not constant on Cm′ [0, 1]. The argument developed so far associates to
m′ a real number α′ ∈ [0, 1] such that F (f) = φ(f(α′)) for all f ∈ Cm′ [0, 1].

Claim C.7. α′ = α.

Proof. Assume α′ 6= α. As φ is not constant there exist a, b such that
φ(a) 6= φ(b). a and b can be chosen arbitrarily close to each other: we
can assume without loss of generality that |a − b| ≤ |α − α′|. Let f be the
affine function satisfying f(α) = a and f(α′) = b. Then f is in Lip1[0, 1] ⊆
Cm[0, 1] ∩ Cm′ [0, 1]. As a result, φ(f(α)) = F (f) = φ(f(α′)) which implies
φ(a) = φ(b): we get a contradiction.

As a result, for every f ∈ C[0, 1], F (f) = φ(f(α)). Indeed, f has a
modulus m′ ≥ m so F (f) = φ(f(α′)) = φ(f(α)).

Now, to compute α, we need a modulus m such that F is not constant on
Cm[0, 1]. The point is that m can be assumed to be m(n) = n+k for some k.
Indeed, as F is not constant and the Lipschitz functions are dense in C[0, 1],
there exist two such Lipschitz functions f0 and g0 such that F (f0) 6= F (g0).
If 2k bounds the Lipschitz constants of f0 and g0 then m(n) = n + k is
a common modulus for f0 and g0 so F is not constant on Cm[0, 1]. From
this m, the sequence qn can be computed (in polynomial time) so α can be
computed (in polynomial time) thanks to Claim C.6.

This completes the proof of the theorem.
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