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Abstract

This paper provides a criterion based on interpretation methods on term
rewrite systems in order to characterize the polynomial time complexity of sec-
ond order functionals. For that purpose it introduces a first order functional
stream language that allows the programmer to implement second order func-
tionals. This characterization is extended through the use of exp-poly interpre-
tations as an attempt to capture the class of Basic Feasible Functionals (bff).
Moreover, these results are adapted to provide a new characterization of poly-
nomial time complexity in computable analysis. These characterizations give a
new insight on the relations between the complexity of functional stream pro-
grams and the classes of functions computed by Oracle Turing Machine, where
oracles are treated as inputs.

Keywords:
Stream Programs, Type-2 Functionals, Interpretations, Polynomial Time,
Basic Feasible Functionals, Computable Analysis, Rewriting

1. Introduction

Lazy functional languages like Haskell allow the programmer to deal with
co-inductive datatypes in such a way that co-inductive objects can be evaluated
by finitary means. Consequently, computations over streams, that is infinite
lists, can be performed in such languages.

A natural question arising is the complexity of the programs computing
on streams. Intuitively, the complexity of a stream program is the number of
reduction steps needed to output the n first elements of a stream, for any n.
However the main issue is to relate the complexity bound to the input structure.
Since a stream can be easily identified with a function, a good way for solving
such an issue is to consider computational and complexity models dealing with
functions as inputs.

In this perspective, we want to take advantage of the complexity results
obtained on type-2 functions (functions over functions), and in particular on
bff [1, 2], to understand stream program complexity. For that purpose, we
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set Unary Oracle Turing Machine (uotm), machines computing functions with
oracles taking unary inputs, as our main computational model. This model
is well-suited in our framework since it manipulates functions as objects with
a well-defined notion of complexity. uotm are a refinement of Oracle Turing
Machines (otm) on binary words which correspond exactly to the bff algebra
in [3] under polynomial restrictions. uotm are better suited than otm to study
stream complexity with a realistic complexity measure, since in the uotm model
accessing the nth element costs n transitions whereas it costs log(n) in the otm
model.

The Implicit Computational Complexity (ICC) community has proposed
characterizations of otm complexity classes using function algebra [3, 4] and
type systems [5, 6] or recently as a logic [7].

These latter characterizations are inspired by former characterizations of
type-1 polynomial time complexity based on ramification [8, 9]. This line of
research has led to new developments of other ICC tools and in particular to
the use of (polynomial) interpretations in order to characterize the classes of
functions computable in polynomial time or space [10, 11].

Polynomial interpretations [12, 13] are a well-known tool used to show the
termination of first order term rewrite systems. This tool has been adapted
into variants, like quasi-interpretations and sup-interpretation [14], that allow
the programmer to analyze program complexity. In general, interpretations are
restricted to inductive data types and [15] was a first attempt to adapt such a
tool to co-inductive data types including stream programs. In this paper, we
introduce a second order variation of this interpretation methodology in order
to constrain the complexity of stream program computation and we obtain a
characterization of uotm polynomial time computable functions. Using this
characterization, we can analyze functions of this class in an easier way based
on the premise that it is practically easier to write a first order functional pro-
gram on streams than the corresponding Unary Oracle Turing Machine. The
drawback is that the tool suffers from the same problems as polynomial inter-
pretation: the difficulty to automatically synthesize the interpretation of a given
program (see [16]). As a proof of versatility of this tool, we provide a partial
characterization of the bff class (the full characterization remaining open), just
by changing the interpretation codomain: for that purpose, we use restricted
exponentials instead of polynomials in the interpretation of a stream argument.

A direct and important application is that second order polynomial inter-
pretations on stream programs can be adapted to characterize the complexity
of functions computing over reals defined in Computable Analysis [17]. This
approach is a first attempt to study the complexity of such functions through
static analysis methods.

This paper is an extended version of [18] with complete proofs, additional
examples and corrections.

Outline of the paper.

In Section 2, we introduce (Unary) Oracle Turing Machines and their com-
plexity. In Section 3, we introduce the studied first order stream language. In
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Section 4, we define the interpretation tools extended to second order and we
provide a criterion on stream programs. We show our main characterization re-
lying on the criterion in Section 5. Section 6 develops a new application, which
was only mentioned in [18], to functions computing over reals.

2. Polynomial time Oracle Turing Machines

In this section, we will define a machine model and a notion of complexity
relevant for stream computations. This model (uotm) is adapted from the Or-
acle Turing Machine model used by Kapron and Cook in their characterization
of Basic Feasible functionals (bff) [3]. In the following, |x| will denote the size
of the binary encoding of x ∈ N, namely ⌈log2(x)⌉.

Definition 1 (Oracle Turing Machine). An Oracle Turing Machine (denoted
by otm) M with k oracles and l input tapes is a Turing machine with, for each
oracle, a state, one query tape and one answer tape.

Whenever M is used with input oracles F1, . . . Fk : N −→ N and arrives on
the oracle state i ∈ {1, . . . , k} and if the corresponding query tape contains the
binary encoding of a number x, then the binary encoding of Fi(x) is written on
the corresponding answer tape. It behaves like a standard Turing machine on
the other states.

We now introduce the unary variant of this model, which is more related
to stream computations as accessing the n-th element takes at least n steps
(whereas it takes log(n) steps in otm. See example 2 for details).

Definition 2 (Unary Oracle Turing Machine). AUnary Oracle Turing Ma-
chine (denoted uotm) is an otm where numbers are written using unary no-
tation on the query tape, i.e. on the oracle state i, if w is the content of the
corresponding query tape, then Fi(|w|) is written on the corresponding answer
tape.

Definition 3 (Running time). In both cases (otm and uotm), we define the
cost of a transition as the size of the answer of the oracle, in the case of a query,
and 1 otherwise.

In order to introduce a notion of complexity, we have to define the size of
the inputs of our machines.

Definition 4 (Size of a function). The size |F | : N −→ N of a function F :
N −→ N is defined by:

|F |(n) = max
k≤n

|F (k)|

Remark 1. This definition is different from the one used in [3] (denoted here
by ||.||). Indeed, the size of a function was defined by ||F ||(n) = max|k|≤n |F (k)|,
in other words, ||f ||(n) = |f |(2n− 1). The reason for this variation is that in an
uotm, the oracle is closer to an infinite sequence (or stream as we will see in the
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following) than to a function, since it can access easily its first n elements but
not its (2n)th element which is the case in an otm. In particular, this makes
the size function computable in polynomial time (with respect to the following
definitions).

The size of an oracle input is then a type-1 function whereas it is an integer
for standard input. Then, the notion of polynomial running time needs to be
adapted.

Definition 5 (Second order polynomial). A second order polynomial is a
polynomial generated by the following grammar:

P := c | X | P + P | P × P | Y 〈P 〉

where X represents a zero order variable (ranging over N), Y a first order
variable (ranging over N −→ N), c a constant in N and 〈−〉 is a notation for the
functional application.

Example 1. P (Y1, Y2, X1, X2) = (Y1〈Y1〈X1〉 × Y2〈X2〉〉)
2 is a second order

polynomial.

The following lemma shows that the composition of polynomials is well be-
haved.

Lemma 1. If the first order variables of a second order polynomial are replaced
with first order polynomials, then the resulting function is a first order polyno-
mial.

Proof. This can be proved by induction on the definition of a second order
polynomial: this is true if P is constant or equal to a zero order variable and
also if P is a sum, a multiplication or a composition with type-1 variable, since
polynomials are stable under these operators.

In the following, P (Y1, . . . , Yk , X1, . . . , Xl) will denote a second order poly-
nomial where each Yi represents a first order variable, and each Xi a zero order
variable.

This definition of running time is directly adapted from the definition of
running time for otms.

Definition 6 (Polynomial running time). AnuotmM operates in time T :
(N −→ N)k −→ Nl −→ N if for all inputs x1, . . . xl : N and F1, . . . Fk : N −→ N,
the sum of the transition costs before M halts on these inputs is less than
T (|F1|, . . . , |Fk |, |x1|, . . . , |xl |).

A function G : (N −→ N)k −→ Nl −→ N is uotm computable in polynomial
time if there exists a second order polynomial P such that G is computed by an
uotm in time P .

The class bff is defined in a similar manner substituting ||.|| to |.|.
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Lemma 2. The set of polynomial time uotm computable functions is strictly
included in the set of polynomial time otm computable functions (proved to be
equal to the bff algebra [3]):

Proof. In order to transform a uotm into an otm computing the same func-
tional, we have to convert the content of the query tape from the word w (rep-
resenting |w| in unary) into the binary encoding of |w| before each oracle call.
This can be done in polynomial time in |w| and we call Q this polynomial. In
both cases, the cost of the transition is |F (|w|)|, so the running time of both
machines is the same, except for the conversion time. If the computation time
of the uotm was bounded by a second order polynomial P , the size of the con-
tent of the query is at most P (|F |) at each query, so the additional conversion
time is at most Q(P (|F |)) for each query and there are at most P (|F |) queries.
Thus, the conversion time is also a second order polynomial in the size of the
inputs, and the computation time of the otm is also bounded by a second order
polynomial in |F |. Finally, since ||F || bounds |F |, the computation time is also
bounded by the same polynomial in ||F ||, so F is in bff.

Example 2. The function G : (N −→ N) × N −→ N defined by G(F, x) =
F (|x|) = F (⌈log2(x)⌉) is uotm computable in polynomial time. Indeed, it is
computed by the function which copies the input word representing x on the
query tape before entering the query state before returning the content of the
answer tape as output. Its running time is bounded by 2× (|x|+ |F |(|x|)).

However H(F, x) = F (x) is not uotm computable in polynomial time, be-
cause it would require to write x in unary on the query tape, which costs 2|x|.
Nonetheless, H is in bff because an otm only has to write x in binary, and the
oracle call costs |F (x)| ≤ ||F ||(|x|).

3. First order stream language

3.1. Syntax

In this section, we define a simple Haskell-like lazy first order functional
language with streams.

F will denote the set of function symbols, C the set of constructor symbols
and X the set of variable names. A program is a list of definitions D given by
the grammar in Figure 1:

p ::= x | c p1 . . . pn | p : y (Patterns)

e ::= x | t e1 . . . en (Expressions)

d ::= f p1 . . . pn = e (Definitions)

Figure 1: Program grammar
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where x, y ∈ X , t ∈ C ∪ F , c ∈ C \ {:} and f ∈ F and c, t and f are symbols
of arity n.

Throughout the paper, we call closed expression any expression without
variables.

The stream constructor : ∈ C is a special infix constructor of arity 2. In a
stream expression h : t, h and t are respectively called the head and the tail of
the stream.

We might use other infix or postfix constructors or function symbols in the
following for ease of readability.

In a definition f p1 . . . pn = e, all the variables of e appear in the patterns pi .
Moreover patterns are non overlapping and each variable appears at most once
in the left-hand side. This entails that programs are confluent. In a program,
we suppose that all pattern matchings are exhaustive. Finally, we only allow
patterns of depth 1 for the stream constructor (i.e. only variables appear in the
tail of a stream pattern).

Remark 2. This is not restrictive since a program with higher pattern match-
ing depth can be easily transformed into a program of this form using extra
function symbols and definitions. We will prove in Proposition 1 that this mod-
ification does not alter our results on polynomial interpretations.

3.2. Type system

Programs contain inductive types that will be denoted by Tau. For example,
unary integers are defined by:

data Nat = 0 | Nat +1

(with 0, +1 ∈ C), and binary words by:

data Bin = Nil | 0 Bin | 1 Bin.

Consequently, each constructor symbol comes with a typed signature and
we will use the notation c :: T to denote that the constructor symbol c has
type T. For example, we have 0 :: Nat and +1 :: Nat -> Nat. Note that in
the following, given some constants n, k, . . . ∈ N, the terms n, k,. . . denote their
encoding as unary integers in Nat.

Programs contain co-inductive types defined by data [Tau] = Tau : [Tau]

for each inductive type Tau. This is a distinction with Haskell, where streams
are defined to be both finite and infinite lists, but not a restriction since finite
lists may be defined in this language and since we are only interested in showing
properties of total functions (i.e. an infinite stream represents a total function).

In the following, we will write Tk for T -> T -> ...-> T (with k occurrences
of T).

Each function symbol f comes with a typed signature that we restrict to
be either f::[Tau]k -> Taul -> Tau or f::[Tau]k -> Taul -> [Tau], with
k, l ≥ 0.
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Throughout the paper, we will only consider well-typed programs where the
left-hand side and the right-hand side of a definition can be given the same
type using the simple rules of Figure 2 with A, Ai ∈ {Tau, [Tau]}. Γ is a typing
basis for every variable, constructor and function symbol (we assume that each
variable is used in at most one definition, for the sake of simplicity).

Γ(x) = A

Γ ⊢ x :: A
x ∈ X ∪ C ∪ F

∀(f p1 . . . pn = e) ∈ D, Γ ⊢ e :: A ∀i,Γ ⊢ pi :: Ai
Γ ⊢ f :: A1 -> . . . -> An -> A

f ∈ F

Γ ⊢ t :: A1 -> . . . -> An -> A ∀i ∈ {1, . . . , n}, ei :: Ai
Γ ⊢ t e1 . . . en :: A

t ∈ C ∪ F

Figure 2: Typing rules

3.3. Semantics

Lazy values and strict values are defined in Figure 3:

lv ::= e1 : e2 (Lazy value)

v ::= c v1 . . . vn (Strict value)

Figure 3: Values and lazy values

where e1, e2 are closed expressions and c belongs to C \ {:}. Lazy values are
stream expressions with the constructor symbol : at the top level whereas strict
values are expressions of inductive type where only constructor symbols occur
and are used to deal with fully evaluated elements.

Moreover, let S represent the set of substitutions σ that map variables to
expressions. As usual the result of applying the substitution σ to an expression
e is denoted σ(e).

The evaluation rules are defined in Figure 4:
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(f p1 . . . pn = e) ∈ D σ ∈ S ∀i ∈ {1, ..., n}, σ(pi) = ei

f e1 . . . en → σ(e)
(d)

ei → e′
i

t ∈ F ∪ C \ {:}

t e1 . . . ei . . . en → t e1 . . . e′
i
. . . en

(t)

e → e′

e : e0 → e′ : e0
(:)

Figure 4: Evaluation rules

We will write e →n e′ if there exist expressions e1, . . . , en−1 such that
e → e1 · · · → en−1 → e′. Let →∗ denote the transitive and reflexive closure
of →. We write e →! e

′ if e is normalizing to the expression e′, i.e. e →∗ e′

and there is no e′′ such that e′ → e′′. We can show easily wrt the evaluation
rules (and because definitions are exhaustive) that given a closed expression e,
if e →! e

′ and e :: Tau then e′ is a strict value, whereas if e →! e
′ and e :: [Tau]

then e′ is a lazy value. Indeed the (t) rule of Figure 4 allows the reduction of
an expression under a function or constructor symbol whereas the (:) rule only
allows reduction of a stream head (this is why stream patterns of depth greater
than 1 are not allowed in a definition).

These reduction rules are not deterministic but a call-by-need strategy could
be defined to mimic Haskell’s semantic.

The following function symbols are typical stream operators and will be used
further.

Example 3. s !! n computes the (n+ 1)th element of the stream s:

!! :: [Tau] -> Nat -> Tau

(h:t) !! (n+1) = t !! n

(h:t) !! 0 = h

Example 4. tln s n drops the first n+ 1 elements of the stream s:

tln :: [Tau] -> Nat -> [Tau]

tln (h:t) (n+1) = tln t n

tln (h:t) 0 = t

4. Second order polynomial interpretations

In the following, we will call a positive functional any function of type
(N −→ N)k −→ Nl −→ T with k, l ∈ N and T ∈ {N,N −→ N}.
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Given a positive functional F : ((N −→ N)k × Nl) −→ T , the arity of F is
k + l.

Let > denote the usual ordering on N and its standard extension to N −→ N,
i.e. given F,G : N −→ N, F > G if ∀n ∈ N \ {0}, F (n) > G(n) (the comparison
on 0 is not necessary since we will only use strictly positive inputs).

We extend this ordering to the set of positive functionals of arity k + l by:
F > G if

∀y1, . . . yk ∈ N −→↑ N, ∀x1 . . . xl ∈ N \ {0},

F (y1, . . . yk , x1, . . . , xl) > G(y1, . . . yk , x1, . . . , xl)

where N −→↑ N is the set of increasing functions on positive integers.

Definition 7 (Monotonic positive functionals). A positive functional is
monotonic if it is strictly increasing with respect to each of its arguments.

Definition 8 (Types interpretation). The type signatures of a program are
interpreted as types this way:

• an inductive type Tau is interpreted as N

• a stream type [Tau] is interpreted as N −→ N

• an arrow type A -> B is interpreted as the type TA −→ TB if A and B are
respectively interpreted as TA and TB.

Definition 9 (Assignment). An assignment is a mapping of each function
symbol f :: A to a monotonic positive functional whose type is the interpretation
of A.

An assignment can be canonically extended to any expression in the program:

Definition 10 (Expression assignment). The assignment is defined on con-
structors and expressions this way:

• LcM(X1, . . . , Xn) =
∑n

i=1 Xi + 1, if c ∈ C \ {:} is of arity n.

•

{

L:M(X,Y )(0) = X

L:M(X,Y )(Z + 1) = 1 +X + Y 〈Z〉

• LxM = X, if x is a variable of type Tau, i.e. we associate a unique zero
order variable X in N to each x ∈ X of type Tau.

• LyM(Z) = Y 〈Z〉, if y is a variable of type [Tau], i.e. we associate a unique
first order variable Y : N −→ N to each y ∈ X of type [Tau].

• Lt e1 . . . enM = LtM(Le1M, . . . , LenM), if t ∈ C ∪ F .
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Remark 3. For every expression e, LeM is a monotonic positive functional, since
it is true for function symbols, for constructors, and the composition of such
functionals is still monotonic positive.

Example 5. The stream constructor : has type Tau -> [Tau] -> [Tau]. Con-
sequently, its assignment L:M has type (N × (N −→ N)) −→ (N −→ N). Let us
consider the expression p : (q : r), with p, q, r ∈ X , we obtain that:

Lp : (q : r)M = L:M(LpM, Lq : rM) = L:M(LpM, L:M(LqM, LrM)) = L:M(P, L:M(Q,R))

= F (R,Q, P )

where F ∈ ((N −→ N)×N2) −→ (N −→ N) is the positive functional such that:

• F (R,Q, P )(Z + 2) = 1 + P + L:M(Q,R)(Z + 1) = 2 + P +Q+R(Z)

• F (R,Q, P )(1) = 1 + P + L:M(Q,R)(0) = 1 + P +Q

• F (R,Q, P )(0) = P

Lemma 3. The assignment of an expression e defines a positive functional in
the assignment of its free variables (and an additional type-0 variable if e ::
[Tau]).

Proof. By structural induction on expressions. This is the case for variables
and for the stream constructor, the inductive constructors are additive, and
the assignments of function symbols are positive (the composition of a positive
functional with positive functional being a positive functional).

Definition 11 (Polynomial interpretation). An assignment L−M of the
function symbols of a program defines an interpretation if for each definition
f p1 . . . pn = e ∈ D,

Lf p1 . . . pnM > LeM.

Furthermore, LfM is polynomial if it is bounded by a second order polynomial.
In this case, the program is said to be polynomial.

The following programs will be used further and have polynomial interpre-
tations:

Example 6. The sum over unary integers:

plus :: Nat -> Nat -> Nat

plus 0 b = b

plus (a+1) b = (plus a b)+1

plus admits the following (polynomial) interpretation:

LplusM(X1, X2) = 2×X1 +X2

Indeed, we check that the following inequalities are satisfied:

Lplus 0 bM = 2 +B > B = LbM

Lplus (a+1) bM = 2A+ 2 +B > 2A+B + 1 = L(plus a b)+1M

10



Example 7. The product of unary integers:

mult :: Nat -> Nat -> Nat

mult 0 b = 0

mult (a+1) b = plus b (mult a b)

The following inequalities show that LmultM(X1, X2) = 3×X1 ×X2 is an inter-
pretation for mult:

Lmult 0 bM = 3× L0M × LbM = 3×B > 1 = L0M
Lmult (a+1) bM = 3×A×B + 3×B

> 2×B + 3×A×B = Lplus b (mult a b)M

Note that these interpretations are first order polynomials because plus and
mult only have inductive arguments.

Example 8. The function symbol !! defined in Example 3 admits an interpre-
tation of type ((N −→ N)× N) −→ N defined by:

L!!M(Y,N) = Y 〈N〉.

Indeed, we check that:

L(h:t) !! (n+1)M = Lh:tM(LnM + 1) = 1 + LhM + LtM(LnM) > LtM(LnM) = Lt !! nM

L(h:t) !! 0M = Lh:tM(L0M) = Lh:tM(1) = 1 + LhM + LtM(0) > LhM

Example 9. The function symbol tln defined in Example 4 admits an inter-
pretation of type ((N −→ N)× N) −→ (N −→ N) defined by:

LtlnM(Y,N)(Z) = Y 〈N + Z + 1〉.

Indeed:

Ltln (h:t) (n+1)M(Z) = 1 +H + T (N + Z) > T (N + Z) = Ltln t nM(Z)

Theorem 1. The synthesis problem, i.e. does a program admit a polynomial
interpretation, is undecidable.

Proof. It has already been proved in [19] that the synthesis problem is unde-
cidable for usual integer polynomials and such term rewriting systems without
streams. Since our programs include them, and that their interpretations are
necessarily first order integer polynomials, the synthesis problem for our stream
programs is also undecidable.

Now that we have polynomial interpretations for !! and tln, we can prove
that restricting to stream patterns of depth 1 was not a loss of generality.

Proposition 1. If a program with arbitrary depth on stream patterns has a
polynomial interpretation, then there exists an equivalent depth-1 program with
a polynomial interpretation.
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Proof. If f has one stream argument using depth k+1 pattern matching in a
definition of the shape f(p1 : (p2 : . . . (pk+ : t) . . . )) = e, we transform f in a
new equivalent program using !! and tln defined in Examples 3 and 4, and an
auxiliary function symbol f1

f s = f1 (tln s k) (s !! 0) ... (s !! k)

f1 t p1 ... pk+1 = e

This new definition of f is equivalent to the initial one, and if it admitted a
polynomial interpretation P , then the equivalent function symbol f1 can be
interpreted by:

Lf1M(T,X1, . . . , Xk+1)(Z) = P (
∑

1≤i≤k+1

Xi + T 〈Z〉+ k + 1).

Then, we redefine LfM by:

LfM(S)(Z) = 1 + Lf1M(S, S〈1〉, S〈2〉, . . . S〈k + 1〉)(Z)

which is greater than:

Lf1M(LsM, Ls !! 0M, . . . , Ls !! (k)M)(Z)

so it is indeed a polynomial interpretation for this modified f.

Lemma 4. If e is an expression of a program with an interpretation L−M and
e → e′, then LeM > Le′M.

Proof. If e → e′ using:

• the (d) rule, then there are a substitution σ and a definition f p1 . . . pn = d

such that e = σ(f p1 . . . pn) and e′ = σ(d). We obtain LeM > Le′M by
definition of an interpretation and since L·M > L·M is stable by substitution.

• the (t)-rule, then Lt e1 . . . ei . . . enM > Lt e1 . . . e
′
i
. . . enM is obtained by

definition of > and since LtM is monotonic, according to Remark 3.

• the (:)-rule, then e = d : d0 and e′ = d′ : d0, for some d, d′ such that
d → d′. By induction hypothesis, LdM > Ld′M , so:

∀Z ≥ 1, Ld : d0M(Z) = 1 + LdM + Ld0M(Z − 1)

> 1 + Ld′M + Ld0M(Z − 1) = Ld′ : d0M(Z)

Notice that it also works for the base case Z = 0 by definition of L:M.

Proposition 2. Given a closed expression e :: Tau of a program with an inter-
pretation L−M, if e →n e′ then n ≤ LeM. In other words, every reduction chain
starting from an expression e of a program with interpretation has its length
bounded by LeM.
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Corollary 1. Given a closed expression e :: [Tau] of a program with an inter-
pretation L−M, if e !! k →n e′ then n ≤ Le !! kM = LeM(LkM) = LeM(k + 1), i.e.
at most LeM(k + 1) reduction steps are needed to compute the kth element of a
stream e.

Productive streams are defined in the literature [20] as terms weakly nor-
malizing to infinite lists, which is in our case equivalent to:

Definition 12 (Productive stream). A stream s is productive if for all value
n :: Nat, s !! n evaluates to a strict value.

Corollary 2. A closed stream expression admitting an interpretation is pro-
ductive.

Proof. This is a direct application of Corollary 1.

Corollary 3. Given a function symbol f :: [Tau]k -> Taul -> Tau of a pro-
gram with a polynomial interpretation L−M, there is a second order polynomial
P such that if f e1 . . . ek+l →n

! v then n ≤ P (Le1M, . . . , Lek+lM), for all closed
expressions e1, . . . , ek+l . This polynomial is precisely LfM.

The following lemma shows that in an interpreted program, the number of
evaluated stream elements is bounded by the interpretation.

Lemma 5. Given a function symbol f :: [Tau]k -> Taul -> Tau of a pro-
gram with interpretation L−M, and closed expressions e1, . . . , el :: Tau, s1, . . . , sk ::
[Tau], if f s1 . . . sk e1 . . . el →! v and ∀n :: Nat, si !! n →! v

n
i
then for all

closed expressions s′1 . . . s
′
k
:: [Tau] satisfying:

∀n :: Nat if LnM ≤ Lf s1 . . . sk e1 . . . elM + 1 then s′i !! n →! v
n
i

we have:
f s′1 . . . s

′
k
e1 . . . el →! v.

Proof. Let N = Lf s1 . . . sk e1 . . . elM. Since pattern matching on stream
arguments has depth 1, the N th element of a stream cannot be evaluated in less
than N steps. f s1 . . . sk e1 . . . el evaluates in less than N steps, so at most
the first N elements of the input stream expressions can be evaluated, so the
reduction steps of f s1 . . . sk e1 . . . el and f s′1 . . . s

′
k
e1 . . . el are exactly the

same.

5. Characterizations of polynomial time

In this section, we provide a characterization of polynomial time uotm com-
putable functions using interpretations. We also provide a partial characteriza-
tion of Basic Feasible Functionals using the same methodology.

Definition 13. The expressions in a program represent integers, functions, or
type-2 functionals in the following sense:

13



• an expression e :: Bin computes an integer n if e evaluates to a strict
value representing the binary encoding of n.

• an expression e :: [Bin] computes a function f : N −→ N if e !! n

computes f(n).

• a function symbol f computes a function F : (N −→ N)k −→ Nl −→ N

if f s1 . . . sk e1 . . . el computes F (g1, . . . gk , x1, . . . xl) for all expressions
s1, . . . sk , e1, . . . el of respective types [Bin] and Bin computing some
functions g1, . . . gk and integers x1, . . . xl .

Theorem 2. A function F : (N −→ N)k −→ Nl −→ N is computable in poly-
nomial time by a uotm if and only if there exists a program f computing F , of
type [Bin]k -> Binl -> Bin which admits a polynomial interpretation.

To prove this theorem, we will demonstrate in Lemma 6 that second or-
der polynomials can be computed by programs having polynomial interpreta-
tions. We will then use this result to get completeness in Lemma 7. Soundness
(Lemma 9) consists in computing a bound on the number of inputs to read in
order to compute an element of the output stream and then to perform the
computation by a classical Turing machine.

5.1. Completeness

Lemma 6. Every second order polynomial can be computed in unary by a poly-
nomial program.

Proof. Examples 6 and 7 give polynomial interpretations of unary addition
(plus) and multiplication (mult) on unary integers (Nat). Then, we can define
a program f computing the second order polynomial P by f y1 . . . yk x1 . . . xl = e

where e is the strict implementation of P :

• Xi is implemented by the zero order variable xi.

• Yi〈P1〉 is computed by yi !! e1, if e1 computes P1.

• The constant n ∈ N is implemented by the corresponding strict value
n :: Nat.

• P1 + P2 is computed by plus e1 e2, if e1 and e2 compute P1 and P2

respectively.

• P1 × P2 is computed by mult e1 e2, if e1 and e2 compute P1 and P2

respectively.

Since plus, mult and !! have a polynomial interpretation, LeM is a second order
polynomial Pe in Ly1M, . . . Lyk M, Lx1M, . . . , LxlM and we just set LfM = Pe + 1.

Lemma 7 (Completeness). Every polynomial time uotm computable func-
tion can be computed by a polynomial program.

14



. . . B o1 o2 B . . . output tape

. . . B a1 a2 B . . . answer tape

. . . B q1 q2 B . . . query tape

. . . B n1 n2 B . . . input tape

Figure 5: Encoding of the content of the tapes of an otm (or uotm). w represents the mirror
of the word w and the arrows represent the positions of the heads.

Proof. Let f : (N −→ N)k −→ Nl −→ N be a function computed by a uotm

M in time P , with P a second order polynomial. Without loss of generality,
we will assume that k = l = 1. The idea of this proof is to write a program
whose function symbol f0 computes the output of M after t steps, and to use
Lemma 6 to simulate the computation of P .

Let f0 be the function symbol describing the execution of M:

f0 :: [Bin] -> Nat -> Nat -> Bin8 -> Bin

The arguments of f0 represent respectively the input stream, the number
of computational steps t, the current state and the 4 tapes (each tape is rep-
resented by two binary numbers as illustrated in Figure 5). The output will
correspond to the content of the output tape after t steps.

The function symbol f0 is defined recursively in its second argument:

• if the timer is 0, then the program returns the content of the output tape
(after its head):

f0 s 0 q n1 n2 q1 q2 a1 a2 o1 o2 = o2

• for each transition of M, we write a definition of this form:

f0 s (t+1) q n1 n2 q1 q2 a1 a2 o1 o2

= f0 s t q′ n′1 n′2 q′1 q′2 a′1 a′2 o′1 o′2

where n1 and n2 represent the input tape before the transition and n′1 and
n′2 represent the input tape after the transition, the motion and writing
of the head being taken into account, and so on for the other tapes.

Since the transition function is well described by a set of such definitions, the
function f0 produces the content of o2 (i.e. the content of the output tape) after
t steps on input t and configuration C (i.e. the state and the representations of
the tapes).
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f0 admits a polynomial interpretation Lf0M. Indeed, in each definition, the
state can only increase by a constant, the length of the numbers representing
the various tapes cannot increase by more than 1. The answer tape La2M can
undergo an important increase: when querying, it can increase by LsM(Lq2M),
that is the interpretation of the input stream taken in the interpretation of the
query.

Then we can provide a polynomial interpretation to f0:

Lf0M(Y, T,Q,N1, N2, Q1, Q2, A1, A2, O1, O2) =

(T + 1)× (Y 〈Q2〉+ 1) +Q+N1 +N2 +Q1 +A1 +A2 +O1 +O2

Lemma 6 shows that the polynomial P can be implemented by a program p

with a polynomial interpretation. Finally, consider the programs size, max,
maxsize and f1 defined below:

size :: Bin -> Nat

size Nil = 0

size (0 x) = (size x)+1

size (1 x) = (size x)+1

max :: Nat -> Nat -> Nat

max 0 0 = 0

max 0 (k+1) = k+1

max (n+1) 0 = n+1

max (n+1) (k+1) = (max n k)+1

maxsize :: [Bin] -> Nat -> Nat

maxsize (h:t) 0 = size h

maxsize (h:t) (n+1) = max (maxsize t n) (size h)

f1 :: [Bin] -> Bin -> Bin

f1 s n = f0 s (p (maxsize s) (size n)) q0 Nil n Nil ... Nil

where q0 is the index of the initial state, size computes the size of a binary
number, and maxsize computes the size function of a stream of binary numbers.
f1 computes an upper bound on the number of steps before M halts on input
n with oracle s (i.e. P (|s|, |n|)), and simulates f0 within this time bound. The
output is then the value computed by M on these inputs. Define the following
polynomial interpretations for max, size and maxsize:

LsizeM(X) = 2X

LmaxM(X1, X2) = X1 +X2

LmaxsizeM(Y,X) = 2× Y 〈X〉

Finally f1 admits a polynomial interpretation since it is defined by compo-
sition of programs with polynomial interpretations.
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Adapting the proof of Lemma 7 in the case of an uotm without type-1
input (i.e. an ordinary Turing machine) allows us to state a similar result for
type-1 functions (which can already be deduced from well known results in the
literature).

Corollary 4. Every polynomial time computable type-1 function can be com-
puted by a polynomial stream-free program.

5.2. Soundness

In order to prove the soundness result, we need to prove that the polynomial
interpretation of a program can be computed in polynomial time by a uotm in
this sense:

Lemma 8. If P is a second-order polynomial, then the function:

F1, . . . , Fk , x1, . . . xl 7→ 2P (|F1|,...,|Fk |,|x1|,...,|xl |) − 1

is computable in polynomial time by a uotm.

Proof. The addition and multiplication on unary integers, and the function
x 7→ |x| are clearly computable in polynomial time. Polynomial time is also
stable under composition, so we only need to prove that the size function |F |
is computable in polynomial time by a uotm. This is the case since it is a
max over a polynomial number of elements of polynomial length. Note that
this would not be true with the size function ||.|| as defined in [3] since is not
computable in polynomial time.

Lemma 9 (Soundness). If a function symbol f :: [Bin]k -> Binl -> Bin

admits a polynomial interpretation, then it computes a type-2 function f of type
(N −→ N)k −→ Nl −→ N which is computable in polynomial time by a uotm.

Proof. From the initial program (which uses streams), we can build a program
using finite lists instead of streams as follows.

For each inductive type Tau, let us define the inductive type of finite lists
over Tau:

data List(Tau) = Cons Tau List(Tau) | []

The type of each function symbol is changed from [Bin]k -> Binl -> Bin

to List(Bin)k -> Binl -> Nat -> Bin (or from [Bin]k -> Binl -> [Bin]

to List(Bin)k -> Binl -> Nat -> List(Bin)): streams are replaced by lists,
and there is an extra unary argument. We also add an extra constructor Err to
each type definition.

For each definition in the program, we replace the stream constructor (:)
with the list constructor (Cons). We also add extra definitions matching the
cases where some of the list arguments match the empty list ([]). In this case,
the left part is set to Err. Whenever a function is applied to this special value, it
returns it. This defines a new program with only inductive types, which behaves
similarly to the original one.

The following program transforms a finite list of binary words into a stream
by completing it with zeros.
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app :: List(Bin) -> [Bin]

app (Cons h t) = h : (app t)

app [] = 0 : (app [])

It is easy to verify that LappM(X)(Z) = X+ 3Z is a correct interpretation. On
strict values, the new program:

f’ v1 ... vk vk+1 vk+l

reduces as the original one with lists completed with app:

f (app v1) ... (app vk) vk+1 vk+l.

The only differences are the additional reductions steps for app, but there is at
most one additional reduction step for each stream argument each time there is
a definition reduction ((d) rule in Figure 4), so the total number of reductions
is at most multiplied by a constant. The evaluation may also terminate earlier
if the error value appears at some point.

The number of reduction steps is then bounded (up to a multiplicative con-
stant) by:

LfM(Lapp v1M, . . . Lapp v
k
M, Lvk+1 M, . . . Lvk+lM)

Since Lapp v
i
M is a first order polynomial in the interpretation of vi , Lemma 1

proves that the previous expression is a first order polynomial in the interpre-
tation of its inputs. Several results in the literature (for example [21, 22]) on
type-1 interpretations allow us to state that this new program computes a poly-
nomial type-1 function (in particular because it is an orthogonal term rewriting
system).

Let us now build a uotm which computes f. According to Lemma 8, given
some inputs and oracles, we can compute LfM applied to their sizes and get a
unary integer N in polynomial time. The uotm then computes the first N
values of each type-1 input to obtain finite lists (of polynomial size) and then
compute the corresponding list function on these inputs. According to Lemma 5,
since the input lists are long enough, the result computed by the list function
and the stream function are the same.

5.3. Basic feasible functionals

In the completeness proof (Lemma 7), the program built from the uotm

deals with streams using only the !! function to simulate oracle calls. This
translation can be easily adapted to implement otms with stream programs.
Because of the strict inclusion between polynomial time uotm computable func-
tions and bff (cf. Lemma 2) and the Lemma 9, it will not always be possible to
provide a polynomial interpretation to this translation, but a new proof provides
us with a natural class of interpretation functions.

Definition 14 (exp-poly). Let exp-poly be the set of functions generated by
the following grammar:

EP := P | EP + EP | EP × EP | Y 〈2EP 〉
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The interpretation of a program is exp-poly if each symbol is interpreted by an
exp-poly function.

Example 10. P (Y,X) = Y 〈2X
2+1〉 is in exp-poly, whereas 2X ×Y 〈2X〉 is not.

Theorem 3. Every bff functional is computed by a program which admits an
exp-poly interpretation.

Proof. Let f be a function computed by an otm M. We can reuse the con-
struction from the proof of lemma 7 to generate a function symbol f0 (and its
definitions) simulating the machine. Since we consider an otm and no longer
a uotm, we should note that when querying, the query tape now contains a
binary word, which we have to convert into unary before giving it to the !!

function using an auxiliary function natofbin:

natofbin :: Bin -> Nat

natofbin Nil = 0

natofbin (0 x) = plus (natofbin x) (natofbin x)

natofbin (1 x) = (plus (natofbin x) (natofbin x)) +1

Its interpretation should verify, using the interpretation of plus given in Exam-
ple 6:

LnatofbinM(X + 1) > 3× LnatofbinM(X) + 1

This can be fulfilled with LnatofbinM(X) = 22X . Note that this conversion
function has no implementation with sub-exponential interpretation since the
size of its output is exponential in the size of the input.

Now, in the new program, oracle calls are translated into s !! (natofbin a2),
and the increase in La2M is now bounded by LsM(2L2q2M).

We can define the interpretation of f0 by:

Lf0M(Y, T, . . . , Q2, . . . ) = (T+1)×(Y 〈22Q2〉+1)+Q+N1+N2+Q1+A1+A2+O1+O2

Exp-poly functions are also computed by exp-poly programs using the same
composition of natofbin and !!. Finally, the adaptation of the initial proof
shows that f1 will also have an exp-poly interpretation.

Remark 4. The soundness proof (Lemma 9) does not adapt to bff and exp-
poly programs, because the required analogue of Lemma 8 (where P is an exp-
poly and the function is computable by a polynomial time otm) is false (in

particular, x, F 7→ 22
F (x)

is not basic feasible). Still, we conjecture that the
converse of Theorem 3 holds. That is exp-poly programs only compute bff

functionals.

6. Link with polynomial time computable real functions

We show in this section that our complexity results can be adapted to real
functions.
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Until now, we have considered stream programs as type-2 functionals in their
own rights. However, type-2 functionals can be used to represent real functions.
Indeed Recursive Analysis models computation on reals as computation on con-
verging sequences of rational numbers [23, 17]. Note that there are numerous
other possible applications, for example Kapoulas [24] uses uotm to study the
complexity of p-adic functions and the following results could be adapted, since
p-adic numbers can be seen as streams of integers between 1 ands p− 1.

We will require a given convergence speed to be able to compute effectively.
A real x is represented by a sequence (qn)n∈N ∈ QN if:

∀i ∈ N, |x− qi| < 2−i.

This will be denoted by (qn)n∈N  x. In other words, after a query of size n, an
uotm obtains an encoding of a rational number qn approaching its input with
precision 2−n.

Definition 15 (Computable real function). A function f : R −→ R will
be said to be computed by an uotm if:

(qn)n∈N  x ⇒ (M(qn))n∈N  f(x). (1)

We will restrict to functions over the real interval [0, 1] (or any compact set).
Hence a computable real function will be computed by programs of type

[Q] -> [Q] in our stream language, where Q is an inductive type describing the
set of rationals Q. For example, we can define the data type of rationals with a
pair constructor /:

data Q = Bin / Bin

Only programs encoding machines verifying the implication (1) will make
sense in this framework. Following [17], we can define polynomial complexity of
real functions using polynomial time uotm computable functions.

The following theorems are applications of Theorem 2 to this framework.

Theorem 4 (Soundness). If a program f :: [Q] -> [Q] with a polynomial
interpretation computes a real function, then this function is computable in poly-
nomial time.

Proof. Let us define g from f :: [Q] -> [Q]:

g :: [Q] -> Nat -> Q

g s n = (f s) !! n

If f has a polynomial interpretation LfM, then g admits the polynomial inter-
pretation LgM(Y, N) = LfM(Y, N) + 1 (using the usual interpretation of !! defined
in Example 8).

The type of rational numbers can be seen as pairs of binary numbers, so
Theorem 2 can be easily adapted to this framework. A machine computes a real
function in polynomial time if and only if it outputs the nth element of the result
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in polynomial with respect to the size of the input (as defined in Definition 4)
and n. In this sense, the machine constructed from g using Theorem 2 computes
the real function computed by f.

Example 11. The square function over the real interval [0, 1] can be imple-
mented in our stream language, provided we already have a function symbol
bsqr :: Bin -> Bin implementing the square function over binary integers:

Rsqr :: [Q] -> [Q]

Rsqr (h : t) = Ssqr t

Ssqr :: [Q] -> [Q]

Ssqr ((a / b) : t) = (bsqr a / bsqr b) : (Ssqr t)

Ssqr squares each element of its input stream. Rsqr removes the head of its
input before applying Ssqr because the square function requires one additional
precision unit on its input:

∀n ∈ N, |qn − x| ≤ 2−n ⇒ ∀n ∈ N, |q2n+1 − x2| ≤ 2−n

This allows us to prove that the output stream converges at the right speed
and that Rsqr indeed computes the real square function on [0, 1]. Now, set the
polynomial interpretations:

LSsqrM(Y, Z) = 2× Z× LbsqrM(Y〈Z〉)

LRsqrM(Y, Z) = 2× Z× LbsqrM(Y〈Z+ 1〉)

They are indeed valid:

LSsqr ((a / b) : t)M(Z+ 1) = 2(Z + 1)LbsqrM(2+ A+ B+ T(Z))

> 2 + LbsqrM(A) + LbsqrM(B) + 2ZLbsqrM(T(Z− 1))

= L(bsqr a / bsqr b) : (Ssqr t)M

and
LRsqr (h : t)M(Z) = 2ZLbsqrM(1+ H+ T(Z− 1+ 1)

> 2ZLbsqrM(T(Z)) = LSsqr tM

Theorem 5 (Completeness). Any polynomial-time computable real function
can be implemented by a polynomial program.

Proof. Following [17], we can describe any computable real function f by two
functions fQ : N × Q −→ Q and fm : N −→ N where fQ(n, q) computes an
approximation of f(q) with precision 2−n:

∀q, (fQ(n, q))n∈N  f(q)

and fm is a modulus of continuity of f defined as follows:

∀n, x, y, |x− y| < 2−fm(n) ⇒ |f(x)− f(y)| < 2−n

21



For a polynomial-time computable real function, those fm and fQ are discrete
functions computable in polynomial time. Corollary 4 ensures that these func-
tions can be implemented by programs fQ and fm with polynomial interpreta-
tions. Then, we can easily derive a program that computes f by first finding
which precision on the input is needed (using fm) and computing with fQ an
approximation of the image of the input.

faux :: Nat -> [Q] -> [Q]

faux n y = (fQ n (y !! (fm n))) : (faux (n+1) y)

f :: [Q] -> [Q]

f y = faux 0 y

with Q an inductive type representing rational numbers.
We can easily check that these interpretations work:

LfauxM(Y, N, Z) = (Z+ 1)× (1+ LfQM(N+ Z, Y〈LfmM(N+ Z)〉))

LfM(Y, Z) = 1+ LfauxM(Y, 1, Z)

7. Conclusion

We have provided a characterization of polynomial time stream complexity
using basic polynomial interpretations and this the first characterization of this
kind. More complex and finer interpretation techniques on first order complex-
ity classes (e.g. sup-interpretations or quasi-interpretations) could probably be
adapted to stream languages.

This work also provides a partial characterization of bff and shows that
it is not the right feasible complexity class for functions over streams. Our
framework also adapts well to applications like computable analysis. We have
indeed characterized the class of polynomial time real functions, and this is
again the first time that this class is characterized using interpretations.

As a whole, this work is a first step toward higher order complexity. We
have used second order interpretations, but higher order interpretations could
also be used to characterize higher order complexity classes. The main difficulty
is that the state of the art on higher order complexity rarely deal with orders
higher than two.
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[14] J.-Y. Marion, R. Péchoux, Sup-interpretations, a semantic method for
static analysis of program resources, ACM Trans. Comput. Logic 10 (4)
(2009) 27:1–27:31, ISSN 1529-3785.
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