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ABSTRACT: Valence tautomeric interconversion (VTI) is a reversible process
occurring in metal complexes in which an intramolecular metal−ligand electron transfer
is accompanied by a change of metal ion spin state, creating two switchable electronic
states (redox isomers). Herein, we describe the low-temperature, 30−100 K, single-
crystal study of the [Co(diox)2(4-CN-py)2]·benzene complex (1) (diox = 3,5-di-t-
butylsemiquinonate (SQ•‑) and/or 3,5-di-t-butylcatecholate (Cat2−) radical; 4-CN-py =
4-cyano-pyridine) using hard synchrotron X-ray radiation with different intensities. We
demonstrate for the first time that hard X-rays can induce VTI, and that the
interconversion molar fraction is dependent on both intensity and exposure time. This in
turn shows that X-rays, as a probe, might be altering the very nature of many structures
under investigation at low temperatures, and consequently their properties. Our findings
add new perspectives to VTI studies and might be of significant interest to the entire
community investigating photoresponsive complexes.

T he development of solid-state “smart” materials that
exhibit bistability, and can readily “switch” between two

states when exposed to external stimuli such as changes in
temperature, pressure or light irradiation, is one of the key
challenges of modern materials chemistry. This is because such
materials have potential for application as sensors, signal
processors or in information storage devices.1−3 Two of the
most promising classes of material are spin-crossover4−6 and
valence tautomer complexes,7−9 since both involve electronic
transitions within a single metal center or within a molecular
complex, without substantial disruption of the solid-state
structure.
Complexes that undergo VTI present a reversible, entropy-

driven rearrangement of intramolecular bonding electrons and
a single-site spin crossover, that creates two switchable redox
isomers with different spectroscopic and magnetic properties.10

VTI can be induced in complexes of some metallic ions of type
3dn (4 ≤ n ≤ 7) with a variety of different redox active ligands.9

VTI has been reported to occur under physical stimuli such as
change of temperature,11 pressure,12 and magnetic and electric
fields.13 VTI can also be modulated by chemical changes14 and
solvation.15 Long-lived metastable states have also been
observed as a result of light irradiation at very low temperatures
in materials presenting VTI.16,17

A soft X-ray absorption spectroscopy (XAS) experiment on
[Co(Me2tpa)(diox)][PF6].toluene (Me2tpa = bis(6-methyl-(2-

pyridylmethyl)) (2-pyridylmethyl)amine) showed that soft X-
rays (ca. 780 eV) themselves provide sufficient stimulus for the
interconversion between two redox isomers as evidenced by the
LIII-edge X-ray absorption spectrum, recorded at ca. 10 K,
which shows the presence of both hs-[Co2+(SQ•‑)2] and ls-
[Co3+(SQ•‑)(Cat2−)] states.18 It has also been shown that hard
X-rays induce the formation of a trapped excited spin state in
the spin crossover complex, [FeIII(bis(3-salicylidene
aminopropyl)amine)py]BPh4 (py = pyridine).19 This phenom-
enon has been described as hard-X-ray-induced excited-spin-
state trapping (HAXIESST) by analogy to the common light-
induced excited-spin-state trapping (LIESST) observed in
many spin crossover complexes.20 Co Kβ X-ray emission and
L-edge X-ray absorption spectroscopies were used to
investigate the electronic configuration of valence tautomers
at low temperature, suggesting the possibility of hard X-ray-
induced VTI [Co(diox)2(Phe)] at 34 K (phe = phenantro-
line).21 These results raise the question of whether hard X-rays
could induce VTI, and what level of X-ray intensity would be
required to stimulate such phenomenon. The answer to this
question would not only be important for a whole plethora of
complexes that exhibit photochromism, but it also concerns the
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determination of the structure of metal complexes carried out
by single-crystal X-ray diffraction using synchrotron radiation
coupled with cryogenic crystal cooling. Therefore, it reveals
whether X-rays, as a probe, might be altering the very nature of
the structures under investigation, and consequently their
properties.
Previously, we conducted a VTI study on single crystals of 1

over the temperature range of 90−300 K.22 A noncooperative
hs-[Co2+(SQ•−)2] → ls-[Co3+(SQ•‑)(Cat2−)] interconversion
takes place during the cooling from 290 down to 90 K with
pure hs-[Co2+(SQ•−)2] isomer being found above 290 K, while
pure ls-[Co3+(SQ•−)(Cat2−)] isomer is observed at around 100
K depending on the thermal history of the sample. Herein we
report new results of a single crystal study of 1 at temperatures
between 30 and 100 K, using synchrotron hard X-ray radiation
(25516.4 eV) of different intensities.
The preparation of [Co(diox)2(4-CN-py)2] has been

reported previously.17 Benzene-solvated single crystal samples
of 1 were grown by slow evaporation under an inert N2(g)

atmosphere and stored in this condition until the beginning of
the X-ray diffraction experiments. I19, the small molecule single
crystal diffraction beamline at Diamond light source23 was used
to probe the effect of hard X-rays on the VTI in this complex in
the temperature range between 30 and 100 K. Sample
temperature was controlled during the experiments by a
commercially available open-flow He cryostat (nHeliX, Oxford
Cryosystems) apparatus with stability better than ±0.3 K.
Two experiments were undertaken in order to qualitatively

assess the effects of the hard X-rays on the samples. In the first
experiment (denoted HAX: hard X-ray), a single crystal of 1
was fast-cooled, in the dark, to 30 K and a data set was recorded
using an X-ray beam without attenuation (about 1010 photons·
s−1, distributed over a spot of 0.1 × 0.1 mm2). Subsequent data
sets were recorded in the dark at 10 K intervals while heating
the sample from 30 to 100 K. In a second experiment (denoted
AHAX; 78% attenuated hard X-ray), data sets were recorded
while a different sample was slowly cooled down from 290 to
30 K in the dark. The 78% beam intensity attenuation was
achieved thanks to a 3 mm thick aluminum filter.24 HAX and
AHAX detailed experimental descriptions are given in the
Supporting Information (SI).
The complex 1 crystallizes in the monoclinic space group

P21/c, with two [Co(diox)2(4-CN-py)2] molecules in the unit
cell (Z = 2), such that the Co atom sits on a crystallographic
center of symmetry, with one diox, one 4-CN-py ligand, and
one benzene solvent molecule in the asymmetric unit. Because
of the symmetry requirement, the diox ligands are super-
imposed, and so X-ray diffraction techniques are unable to
distinguish the SQ•‑ and/or Cat2− forms in the ls-[Co3+(SQ•‑)-
(Cat2−)] isomer.21 The crystal data as well as representative
refinement data are shown in Tables S5−S6 of the SI. Figure 1
shows the molecular structure and packing of 1, at 30 K, as well
as the atomic labeling scheme used for the selected atoms.
The new structure determinations at temperatures ranging

between 30 and 100 K show that the overall geometry of 1
remains similar to that observed previously at 100 K.21 Indeed
1 is geometrically ordered and shows the same packing and
similar intermolecular interactions over the entire temperature
range investigated. As shown in Figure 2, molecules of
[Co(diox)2(4-CN-py)2] within the layer of interacting mole-
cules (molecules in b × c plane) are linked by two major
hydrogen bonds: C16−H···O2i and C18−H···N2ii (i = x, y, 1 +
z; ii = x, −y + 1/2, z − 1/2).

Following the change of the electronic population of the
metal orbitals observed in all cobalt dioxolene complexes
during VTI,9 three major reversible structural changes
characterize the hs-[Co2+(SQ•‑)2] → ls-[Co3+(SQ•‑)(Cat2−)]
interconversion of 1: (i) isotropic contraction of the Co−L (L
= O1, O2, N1 atoms) coordination sphere, (ii) change of the
relative orientation of benzene solvent molecules and cyano-
pyridine planes and (iii) shortening of the C15−H···O1 and
C19−H···O1i (iii = −x, 1 − y, 1 − z) intramolecular hydrogen
bonds. C15, C16, C18, and C19 are atoms of the pyridine ring,
N2 is the nitrogen atom of the cyano group, and O1 and O2
are the oxygen atoms of the dioxolene group binding the cobalt
ion. Selected bond distances as well as the overlay of the
structure of 1 at representative temperatures are shown in
Tables S7−S8 and Figures S1 of the SI, respectively.
In general cobalt dioxolene complexes, Co2+−L bond lengths

are ca. 0.3 Å longer than similar Co3+−L ones. Hence, the VTI
can be characterized at each temperature by converting the
refined Co−L distances in the Co first coordination shell
obtained from single-crystal X-ray diffraction data into a molar
fraction following the procedure proposed in Ribeiro et al.22

This approach has no limitation other than the single crystal

Figure 1. (a) The molecular geometry and (b) view of the crystal
packing with some interactions of 1 at 30 K. Ellipsoids are drawn at the
50% of probability level. Hydrogen atoms are represented by sticks for
the sake of clarity.

Figure 2. Intermolecular hydrogen bonds Car−H···Odiox (red) and
Car−H···Ncyano (blue); Car, Ncyano, and Odiox are carbon atoms of the
pyridine ring, nitrogen from the cyano group, and the oxygen atoms of
the dioxolene group, respectively. t-Butyl groups were omitted for the
sake of clarity.
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sample quality that assures an accurate structural data
refinement with high precise interatomic distances to compute
the mole fraction. Figure 3 shows the calculated hs-
[Co2+(SQ•−)2] molar percentage (mole fraction multiplied by
100) as a function of temperature for 1 for the HAX and the
AHAX experiments described above.

At low temperatures, where VTI free energy changes are
largely determined by the enthalpy contributions, the valence
tautomer ground state is characterized by unpopulated
antibonding eg* orbitals, i.e., shorter metal−ligand bonds, and
thus only the ls-[Co3+(SQ•−)(Cat2−)] isomer of 1 was expected
to be found in the absence of external stimulus like
illumination.16,17

However, in the HAX experiment, irradiation of 1 induced
the metastable hs-[Co2+(SQ•−)2] isomer appearance with
maximum conversion observed at 30 K, with molar percentage
of ca. 80%, with the remaining 20% being the ground state ls-
[Co3+(SQ•−)(Cat2−)] redox isomer. At temperatures above 30
K the molar percentage of the metastable hs-[Co2+(SQ•−)2]
isomer reduces rapidly with only 15% being present at 70 K.
Between 70−100 K it appears to be a slight increase in the
percentage of the hs-[Co2+(SQ•−)2 species, with a maximum of
ca. 20% at 100 K.
The AHAX experiment performed using a different sample

shows that lowering the temperature of 1 under an attenuated
beam irradiation also resulted in the appearance of the
metastable hs-[Co2+(SQ•−)2] redox state with a molar
percentage reaching 50% down to 30 K. A final measurement
performed at 30 K, using the same sample and collecting data
with the same beam intensity used in the HAX experiment,
results in hs-[Co2+(SQ•−)2] molar percentage increase to 65%.
The 15% additional increase in molar fraction is due to the
increase of the hard X-ray beam intensity. It is worth noting
that the temperature profile of hs-[Co2+(SQ•−)2] molar
percentage evolution below 70 K is quite different in both
the HAX and AHAX experiments.
Figure 4 shows the dependence of the metastable hs-

[Co2+(SQ•−)2] isomer molar percentage growth at ∼30 K as a
function of the hard X-ray time exposure. The Co−L bond
lengths used to compute the mole fraction were obtained from
the structure refinements performed using partial data sets from
the HAX and AHAX experiments (Tables S2 and S4 in the SI).
In the HAX experiment, the first set is composed of four runs
(first four points shown in its half exposure time); further and

without interruption, a second data set was collected, which is
plotted as the last three points in the graph also shown in its
half exposure time. In the AHAX experiment, the sample was
irradiated with 78% of attenuation in the first two runs and then
it was exposed to a nonattenuated hard X-ray beam. A modest
increase of the metastable hs-[Co2+(SQ•−)2] isomer molar
percentage in HAX as a function of X-ray exposure time and a
significant increase in AHAX experiments both as a function of
X-ray time exposure and as a function of the X-ray beam
intensity can be observed. The horizontal bars in each point
indicated the duration of each partial X-ray diffraction data
collection from which data was obtained. The large vertical
error bars observed reflect the low precision of the refined
distances due to the low redundancy, low completeness and
eventually lack of intense reflections of each used data set.
Notably, the irradiation of the samples with an intense hard

X-ray beam in the HAX experiment seems to induce the
metastable hs-[Co2+(SQ•−)2] isomer appearance with molar
percentage of ca. 80% with no remarkable time dependence.
The AHAX experiments, show a time dependence of the hs-
[Co2+(SQ•−)2] metastable isomer mole fraction as evidenced
by the molar percentage growth until ca. 40 min of X-ray
exposure.
The appearance of the metastable hs-[Co2+(SQ•−)2] isomer

in the HAX and AHAX experiments demonstrates that hard X-
rays can trigger the VTI of 1 at low temperatures, an effect that
we term hard-X-ray-induced valence tautomeric interconver-
sion (HAXIVTI). Under the experimental conditions for this
work, the hs-[Co2+(SQ•−)2] molar percentage grows to a
maximum of ca. 80% at 30 K. A comparison of the HAX and
AHAX experiments suggests a higher (80/50%) conversion to
the metastable hs-[Co2+(SQ•−)2] isomer with increased X-ray
intensity whereas a comparison of molar percentage evolution
with time suggests a faster conversion to the metastable hs-
[Co2+(SQ•−)2] with increased X-ray intensity. Hard X-ray
irradiation induces reversible spin-crossover in iron com-
plexes,19 reversible VTI in 1, and soft X-rays have been
known to induce VTI in some complexes similar to 1.18

Therefore, the very nature of such phenomena are likely to be
similar and triggered by the relaxation processes that follow
electronic excitations caused by secondary electron generation
after X-ray aborption.18,19

It is worth mentioning that the metastable hs-[Co2+(SQ•‑)2]
redox isomer photoexcitation of the complexes Co(diox)2L2 [L
= py, (4-OMe-py), (4-Me-py), (4-Me-py), (4-Br-py), (4-NO2-
py)] investigated using a SQUID magnetometer at 10 K,11

Figure 3. Metastable hs-[Co2+(SQ•−)2] isomer molar percentage
during VTI under sample exposure to a nonattenuated X-ray beam
(HAX) and to a 78% attenuated X-ray beam (AHAX). The encircled
spot indicates the additional non attenuated data collection performed
after AHAX experiment.

Figure 4. Exposure time dependence of the metastable hs-
[Co2+(SQ•−)2] isomer molar percentage at ∼30 K in the different
experiments. The horizontal bars indicate the duration of the partial X-
ray diffraction data collection from which data was obtained.
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indicated a maximum conversion percentages approaching only
∼30%. This behavior was attributed to the inability of the
incident light to fully penetrate the opaque samples and
promote VTI and/or to a photoinduced decay process as result
of absorption of wavelengths of light by hs-[Co2+(SQ•−)2]
form, thus future investigations to determine whether the final
excitation process that leads to the hard X-ray VTI can also be
modulated by light illumination are warranted.18,25

Hard X-rays have long been assumed to act as a
noninteracting probe; however, our findings show the opposite
effect. Hard X-rays might indeed substantially alter the structure
related properties of the system under investigation and can,
indeed, be used to populate VTI metastable states when optical
excitation is limited by any sample characteristics or
experimental setup.
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