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Background: Optical Coherence Tomography (OCT) of skin deliversalttimensional images of tissue microstructures. Although
OCT imaging offers a promising high resolution modality, O@@ges suffer from some artefacts that lead to migirgtation of
tissue structures. Therefore, an overview of methodstigate artefacts in OCT imaging of the skin is of paramoupbitance.
Speckle, intensity decay, and blurring are three majefaats in OCT images. Speckle is due to the low cohkgéhsource used

in the configuration of OCT. Intensity decay is a detation of light with respect to depth, and blurring is theseguence of
deficiencies of optical components.

Method: Two speckle reduction methods (one based on artificialah@etwork and one based on spatial compounding), an
attenuation compensation algorithm (based on Beer-lratatg and a de-blurring procedure (using deconvat)tare described.
Moreover, optical properties extraction algorithm basedextended HuygenBresnel (EHF) principle to obtain some additional
information from OCT images are discussed.

Results: In this short overview, we summarize some of the image eah@nt algorithms for OCT images which address the
abovementioned artefacts. The results glbavsignificant improvement in the visibility of the clinicallglevant featured the
images. The quality improvement was evaluated using sevengrital assessment measures.

Conclusion: Clinical dermatologists benefit from using these image enhamteatgorithms to improve OCT diagnosis and
essentially function as a non-invasive optical biopsy.

Keywords: Optical Coherence Tomographymage Enhancement, Speckle Reduction, Blurring Correclidansity Decay
Compensation.

1. INTRODUCTION

In dermatology, the gold standard for diagnosis of a diseasbitpsy that is sent for histopathological examinatidrhere is

still no reliable or definitive method of non-invasive diagnosis for digease. Histopathology requires slicing and staining a
sample, physically altering it each time it is staiAefihis method leaves room for human error, through slicing, stpiaimd
reading the image. In addition, biopsy can be traumatic and risky, espémialgerly patients, because of poor wound healin
and possibility of infectiod. Therefore, several non-invasive imaging modalities have been devétopedance the diagnosis

of skin disease$!®. Among several different modalitiesptical coherence tomography (OCT) stands out. When cothpéte
multispectral digital dermoscopy and spectroscopy, for example, it is thatetthese techniques lack adequate penetration depth
11-14 - Another technique, high frequency sonography has a better penetepidn however the contrast is not satisfactéry
OCT's intermediate resolution and penetration depth give it great potential tothmagjén Recently, OCT has been used as an
optical biopsy method for differentiation amondetiént tissues, e.g., healthy versus tumoftiis
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OCT is a non-invasive, non-ionizing optical imagmgdality which works based on low coherence iaterhetry*3%° To form an OCT
image, the magnitude and time delay of backscafiefrared light returned from a biological saniplmeasured transversay: Providing
high resolution images and a moderate penetratipthdi.e., one to three millimeters, OCT is culyeutilized in several medical and
biomedical applications including dermatology, @#myt?, oncology?, and cardiology* in addition to its initial successes in ophthatngyi

%, Quantitative analysis of OCT images through etitra of optical properties has made OCT an ever pmwverful modality®. An OCT
system is characterized by several parametersastiohaging speed, lateral and axial resolutiortspanetration dept. To assess these
system parameters, a virtual tissue, so-calledtqimarwith known optical properties, e.g., anisofrdgctor, absorption and scattering
coefficients, is utilized®®2 The phantoms are usually designed using Mieytheieere the concentration and particle size ofesest and
absorbers are determined.

OCT imaging is a favorable high-resolution imagimgthod in medical and biomedical applications,raady modifications have already
been applied on the OCT hardware and software JsnW@CT images still contain artefaf®$*. Three major artefacts in OCT images are
speckle noise, intensity decay and blurring. Sirtolather low coherent imaging modalities, OCTgemare contaminated by speckle which
degrades the quality of images and conceals diicallysrelevant features. Intensity decay is duehe decline in the incident and
backscattered light amplitude when it passes thrthegbiological sampfé. Blurring is a result of aberrations and is duaéaimperfection
of optical devices used in the configuration of @ET ¢ as well as aberrations introduced by superfiaigis of the tissue investigated.
Blurring mainly deteriorates the lateral resolubd@®CT images. Addressing these issues, OCT inmegpekto be enhanced in order to deliver
microscopic features of biological samples moreotitfely. In this manuscript, some of the mostizant image artifacts in OCT imaging
and the advancements to mitigate them are reviespedifically speckle noise, intensity decay andrinlg. A speckle reduction method, an
attenuation compensation algorithm and a de-bfppiacedure are described. Moreover, optical piep@xtraction routings obtain some
additional information from OCT images are discdsse

Enhancement of the quality of images in combinatittim assessment of optical properties can entiaadeasibility of differentiation of
melanoma from benign lesiofisas well as the differentiation of subtypes of beahcarcinoma”.

2. LOW COHERENCE INTERFEROMETRY

An OCT image is constructed based on the princigfiéisne of flight and low coherence interferomeftyThe interferometry is used to
magnify the small time delay between the backsedittight returned from the sample and the refielét from a reference mirror (Fig.1).
The basic components of an OCT system are a loeraathlight source, with a short enough coheresugth to be able to have depth
sectioning capability, a beam splitter to splitfigetween two arms; a reference mirror, and squtaeatectronic components such as a XY
galvo scannef®. Coherence length is a measure of temporal categrerpressed as the propagation distance ovehn igsiccoherence
significantly decays. The schematic of a time dor@CT system is shown in Fig.1

3. SPECKLE REDUCTION

In OCT imaging, if the central wavelength of tightisource is equal to or larger than the compatswethin the sample under investigation,
the interference of the reflected light with diéfet amplitudes and phases generates a grainyetéxttive image called speckle. Speckle
degrades the quality of OCT images, particuladylibrders of cellular layef&in comparsion with speckle-free imaging methtid$he
probability density function (PDF) of the speckiesibeen approximated by Rayleigh distribution,iciaR distributiorf. Speckle pattern is
highly dependerdgnthe microstructural content (size and densityh@fsample being imaged. Due to this correlatjmegide is also known

to carry some morphological information, thus isappropriate to consider it as an image noise.i$$ile has made finding a suitable solution
to reduce the speckle quite challenging. The spee#lliction methods are categorized into two nag@gories: software based and hardware
methodg5:404%3,

3.1 Software-Based Speckle Reduction Methods; Digital Filtering

Software based speckle reduction methods relyraathematical model of the speckle, and they carlassified into adaptive and non-
adaptive filters. The former are implemented bagaah the local first order statistics, such as naeah variance, while the latter are
implemented based on the overall statistics irntlage. Wiener filter is one of the most populamptisla method$**> Some of the non-
adaptive algorithms are Kuwahara filter, Hybrid Medfilter, Enhanced LEE filter (ELEE), Symmetri@dtest Neighborhood (SNN),
thresholding with fuzzy logie®>” Wavelet based de-speckling has been a sucaessfabiaptive de-speckling method in which the inimge
decomposed into its wavelet bases, allowing diffetion of noise components through signal praeggs°°¥C, Considering the importance
of wavelet mother function in this method, Haar lmeoffunction has proven a fast and efficient smtenabling speckle noise reduction
without substantially diminishing contrast or sglatsolution in the imag&®2 Another adaptive speckle reduction method hasdmesloped
based on artificial neural network (ANRE* ANN offers an intelligent solution which redusgeckle while preserving the morphological
information in the image. In this method, the steeiskfirst modelled. The model us&d’ follows Rayleigh distribution and is given by Eq.1
—x;
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wherex; ; is the image pixel andis the noise variance of the image (noise par@néteascade forward back propagation ANN is then
used to estimate a noise parameter for the imaltpeyéd by a numerical solution to the inverse Bigy distribution functiof. The block
diagram of this algorithm is illustrated in Fig.2scan (en-face) OCT images of Drosophila heéstdand after applying ANN based de-
speckling method are presented in Fig. 3.

3.2 Hardwar e-based specklereduction methods; Compounding techniques
The most common hardware-based speckle reductitioadis compounding. In compounding technicBigsartially de-correlated images
acquired from a stationary sample are averagedyUédnities to be averaged specify the compounmiogedure.
Some of the quantities used in compounding methibackscattering angles, central wavelengtheizations, and displacements. This
results in techniques referred to as angular contjiiag, frequency compounding, polarization compgdand spatial compounding,
respectively®46.70.71
For instance, in the spatial compounding meth@latreraging quantity is the tissue or the imagnotyg motion, which comes from the
inherent imperfection of the scanners used indhiguiration of the imaging systefaFive different algorithms including averagingyadam
weighted averaging, random pixel selection andaianplixel selection together with median filteringrev used to average their partially
correlated images obtained from the spatial congingrmethod’? The flowchart of the spatial compounding methath ifferent
algorithms is illustrated in Fig. 4.
The authors demonstrated that the random pixetisgi¢ogether with median filtering represent ffinient, simple, and edge-preserving de-
speckling method compared to the common averagitigoair

4. IMAGE BLURRING CORRECTION

Blurring stems from wavefront aberration in theging systent® Aberrations are produced by the imperfectiomgpbal devices that are
used in the interface optics of the imaging sysfEmay result in resolution and contrast degradati@me way to reduce aberration is by
adaptive optics (AO). AO systems are composeavafafront sensor (WFS) to measure the wavefraairtiis, a deformable mirror (DM),
or a spatial light modulator (SLM) to correct thistattion, and a control loop algorithm to contiw correction procegd Recently, less-
expensive sensor-less AO methods utilizing blirtahégation have been studiét In a sensor-less AO system, an optimization ithgor
with a cost function, e.g. photo-detected intenaitye,is used. Improving the cost function means redutiegberrations and diminishing
the blurriness in the images. Some of the effeciptenization methods used in sensor-less AO sgstemsimulated annealing algorithm
(SA), genetic algorithm (GA), and particle swarntirojzation (PSOY®. Avanaki et al. compared the performance of ttheee optimization
methods in a sensor-less AO syst&tsnother popular method to reduce blurriness ismigiation. Several deconvolution techniques have
been studie®®. For some deconvolution methods, the point sgiteeation (PSF) of the imaging system needs to tedined. There are
two main methods to obtain the PSF; (a) analytiwethods, (b) imaging very small particles embeddeal solid phantom. Fish et al.
successfully used the Ludgichardson algorithm, which is a well-establishedativolution algorithm, to deblur OCT imade®. Lucy-
Richardson algorithm is based on the maximumlikell calculation to recover an undistorted imagetwias been blurred by a known
PSF®". In Fig.5, the result of using deconvolution algwriton an image of skin is shown.

5 INTENSITY DECAY COMPENSATION

On OCT image, several layers and structures ofkireare distinguishabl¥. The stratum corneum, or top keratin-full layer loé t
epidermermis is visible as a hyperreflective lirth@skin-air interface. The other epidermal laygan sometimes be visualized depending on
the location being imaged. The dermal-epidermaitijoin, which is disrupted in many skin diseasescamders, is visualized as a junction
between a less intense signal area (epidermisinanel intense signal area (dermis). The dermiseis as an area of intense signal with
hyporeflective patches, which are hair follicleseipaceous glands.

The turbidity of biological tissues results in attation in the incident light amplitude in relatisfth the depth of penetration, therefor an
attenuation compensation algorithm is required. @a to model light attenuation is to use Montel&Caimulation. In attenuation
compensation of an OCT image, it is beneficiakteetprior information about the tissue. The authwdelled the skin based on its lager
histological architecture in OCT skin imagéJ hey then estimated the attenuation of light@TGkin images for each layer separately. They
segmented the OCT image prior to attenuation egtinar compensation similar to the methoffiThey assume that theles’ intensity
profile extrema correspond to different lay&® When the border between two adjacent layers henigwot easily distinguishable, a more
complex segmentation algorithm is requifédror instance, a semi-automatic segmentation mhéthsed on a user defined threshold, has
been described by Blomberg. et%l.Hori et al. proposed another segmentation atgoribased on A-scan peaks and some statistical
operation$? In the mentioned work, rubber-band algorithm glaith some interpolations was used to resolve demyrproblems.

An attenuation compensation algorithm for OCT insagfeskin is proposed #%* In this algorithm, a weighted median filter isdiso reduce
the speckle. Afterwards, the de-noised image das¢he input to a skin layer detection algorifmemsearches for the most probable position
of local extrema along A-scans by using a cumatiscurrence profile followed by some morphologaérations®. The attenuation
coefficient is calculated for each layer of skireéting an attenuation model for skin) using therBambert law; Beer-Lambert law relates
the total attenuation of the signal with the priypefthe tissues where light passes thrdghompensation is then performed for each layer
by using the attenuation coefficierftthat layer considering the impact of the upper layers’ attenuation. In Fig.6, the image enhancement



procedure is demonstrated in a block diagram.&dwts of attenuation compensation algorithm aghplieOCT skin images are demonstrated
in Fig.7.

6. OPTICAL PROPERTIESEXTRACTION
An OCT image carries important morphological infation. By quantitative analysis of OCT images, sopiieal properties can be extracted
and more informationanbe delivered to specialists to make diagnostisides. Some of the optical properties that caextracted from
OCT images include scattering coefficient, absanptioefficient, refractive index, and anisotropstda For instance, with the intention of
extracting the scattering coefficient of a regibmterest (ROI) on an OCT image, one should ref¢he equation of light propagation in
tissue. The solution to this equation can be diyeusing geometric optics approximations, Rytowaximation®, or extended Huygens
Fresnel (EHF) principl&®. Initial research into optical property extractmmd OCT signal modelling is presented by Schwiity used
single-scattering theory to model the scatterireffictent. He followed up his single scattering raololy a modified model for two-layer-
scattering geomet’#°t Thrane et al. proposed an approach for OCT nimgléll a multilayer-scattering geometry based erdly tracing
methodso-called ABCD matrix and the EHF princigfé'% They obtained the root mean squared (RMS) of tHE i§hal as a function of
scattering coefficient,, at different depths by Eq.2.
(12(2)) = CERES | pzpsz 1 2O 4 (g gz 4R ()
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wherea, is the conversion factor for power to curréqtandPs are the optical powers of the reference arm amplsaarm beams,
respectivelyo,, is the effective backscattering cross sectignandw? are the 1/e irradiance radii in the discontinplgne in the absence
and presence of scattering and they are givenlbg403, 4, and,5
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W, is 1£ irradiance radius at the lens plane. A and B are elements of the ABCD ray matrix, k = 2 / A is the wavenumbet, is the central

wavelength of the light source, gfids the focal length of the objective lepg, is the lateral coherence length, which is a fonaif depth
and obtained by Eq. (7)

po() = [Zx () ©

whered,.,.;is the rms scattering angle. In another study,pioab properties extraction (OPE) algoritiffis proposed to compute the
scattering coefficient of a ROI in an OCT imageln their OPE algorithm, the averaged A-scan ®RI®DI between pixel indices ranging
through a specified axial depth, was fitted onteaéign (4); the distance was minimized using theehbergMarquardt least-square method.
Avanaki et al. utilized a dynamic focus (DF)-OCTEteyn in their experiment® which made it possible to implement the OPE algwri
much easier. With DF-OCT it was then unnecessatig-4monvolve the reflectivity profile from the conél gate profile. They showed that
the scattering coefficients obtained from the Olg&rithm are consistent with those calculated by Bdiattering theory (see Fig.8).

As an applications of the OPE algorithm, they destmated differentiation between basal cell carcmaiffected and healthy eyelid tissues
via their scattering coefficients extracted by Giek the OCT image$+17

wf

w§

7. CONCLUSION

Optical coherence tomography presents a promisitigath of non-invasive skin imaging with the potart supplant biopsy as a diagnostic
technique. At this time, diagnosis via OCT relieie clinician identifying morphologic featureskiin disease present in the image. Reducing
artefact in the images carries the potential toenamrcurately discern borders between structudesyiray more accurate diagnosis.
Additionally, there is a great deal more informativailable in the image but beyond the abilitthefhuman eye to discern. Algorithms to
extract and analyze the optical properties in @Ages could provide tools to further support time@n in diagnosis. Image processing and
analysis techniques may result in enhanced diagoagiability for the average dermatologist whilemgling a more rapid and non-invasive
technique.

In this short overview, we summarized three majefacts in OCT images including speckle, interddtyay and image blurring. The issues
are described, along with some of the developéddtagies and algorithms to diminish them. Furtleeyoptical properties extraction from
OCT images and the possibility of using such datlifferentiate between healthy and non-healtbydis is explained.
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