
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions 

for further reuse of content should be sought from the publisher, author or other copyright holder. 

Versions of research

The version in the Kent Academic Repository may differ from the final published version. 

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the 

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact: 

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down 

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Worthington, H and McCrea, Rachel S. and King, Ruth and Griffiths, Richard A.  (2019) Estimating
Abundance from Multiple Sampling Capture-Recapture Data via a Multi-State Multi-Period Stopover
Model.   Annals of Applied Statistics .    ISSN 1932-6157.    (In press)

DOI

Link to record in KAR

https://kar.kent.ac.uk/64508/

Document Version

Author's Accepted Manuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/189718275?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Submitted to the Annals of Applied Statistics

ESTIMATING ABUNDANCE FROM MULTIPLE

SAMPLING CAPTURE-RECAPTURE DATA VIA A

MULTI-STATE MULTI-PERIOD STOPOVER MODEL

By Hannah Worthington1∗, Rachel McCrea2†, Ruth
King3 and Richard Griffiths2

University of St Andrews1, University of Kent2 and University of

Edinburgh3

Capture-recapture studies often involve collecting data on nu-
merous capture occasions over a relatively short period of time. For
many study species this process is repeated, for example annually,
resulting in capture information spanning multiple sampling peri-
ods. To account for the different temporal scales, the robust design
class of models have traditionally been applied providing a frame-
work in which to analyse all of the available capture data in a single
likelihood expression. However, these models typically require strong
constraints, either the assumption of closure within a sampling pe-
riod (the closed robust design) or conditioning on the number of
individuals captured within a sampling period (the open robust de-
sign). For real datasets these assumptions may not be appropriate.
We develop a general modelling structure that requires neither as-
sumption by explicitly modelling the movement of individuals into
the population both within and between the sampling periods, which
in turn permits the estimation of abundance within a single consis-
tent framework. The flexibility of the novel model structure is further
demonstrated by including the computationally challenging case of
multi-state data where there is individual time-varying discrete co-
variate information. We derive an efficient likelihood expression for
the new multi-state multi-period stopover model using the hidden
Markov model framework. We demonstrate the significant improve-
ment in parameter estimation using our new modelling approach in
terms of both the multi-period and multi-state components through
both a simulation study and a real dataset relating to the protected
species of great crested newts, Triturus cristatus.”

1. Introduction. In this paper we develop a model capable of analysing
capture-recapture data from multiple sampling periods within a single like-
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2 H. WORTHINGTON ET AL.

lihood expression. In comparison to existing models we retain the ability to
estimate total population size through the likelihood. Hidden Markov model
(HMM) methods are used to estimate state- and time-dependent abundance.
Following the structure of existing models used to analyse multiple periods
of capture-recapture data we allow parameters to be dependent both on time
and time spent in the population.

Standard capture-recapture studies consist of several capture occasions
where attempts are made to capture individuals from the population of in-
terest. When an individual is captured for the first time it is marked, or
unique physical marks recorded, to permit unique identification of each in-
dividual. At subsequent capture occasions it is then possible, using these
unique marks, to identify new individuals (which are subsequently marked)
or recaptured individuals (those that have been previously captured). In this
paper, we assume that all sampled individuals are returned to the popula-
tion after capture, i.e. that there are no removals upon capture from the
population. By repeating this process at each capture occasion it is possible
to identify on which occasions each unique individual was recorded. This
information is stored in the form of individual capture histories. Typically
these capture histories are of binary form, for example,

0 1 1 0 0 1 0 0

where 0, and 1, indicate an individual was not captured, or captured, at
each capture occasion, respectively. During some capture-recapture studies
it may be possible to collect additional individual covariate information.
We consider the case where an individual time-varying discrete covariate is
recorded corresponding to the state of the individual upon capture. This
additional information is recorded in the capture history where non zero
entries now indicate the observed state. This discrete state information may
refer, for example, to behavioural states such as breeding or foraging, or
alternatively it may refer to a discrete location such as which pond in a
study site.

The Schwarz–Arnason (SA) model (Schwarz and Arnason, 1996) esti-
mates the size of the super-population which includes both individuals that
are captured at least once as well as those that are never captured (but are
available for capture on at least one occasion). The inclusion of the super-
population in the SA model, denoted N , allows for births to be modelled
within the likelihood expression. The stopover model presented by Pledger
et al. (2009) is an extension of the SA model in which the capture and re-
tention probabilities are dependent both on time and time since arrival. In
the stopover model the term ‘age’ is used to refer to the time since joining
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the population (not necessarily physical age) and is generally unknown due
to the unknown arrival time (an individual may have joined the population
on an occasion before their first capture). We note that when collecting data
to which we wish to fit a stopover model it is advisable to sample both be-
fore the first arrivals and after the final departures (this results in capture
histories with leading and trailing zeros). Whilst the easiest approach is to
analyse only the subset of data corresponding to when the site is occupied,
the extended sampling before and after occupation can verify the implicit
assumptions that those present on the first occasion a capture occurs have
only recently arrived and those present on the final occasion where captures
occur are imminently about to depart. This second assumption can be par-
tially relaxed and sampling need not necessarily continue until all individuals
have departed; if this is the case the probability an individual is present at
the site for the whole period the site is occupied (for example present for
the entire breeding season) must be negligible (Kendall et al., 2018).

Multi-state capture-recapture models allow the inclusion of individual
time-varying discrete covariates. Dupuis and Schwarz (2007) consider a multi-
state extension of the SA model for estimating abundance in open popula-
tions fitted within a Bayesian (data augmentation) framework. This model
allows for time- and state-dependence in the capture probabilities but not
the age-dependence of the stopover model. Typically these models assume a
first-order Markov model for the transition of individuals among the differ-
ent discrete states. King and Langrock (2016) relax this assumption through
a semi-Markov model where the dwell-time distribution (the time spent in
the state) has some parametric form. Brownie et al. (1993) use a second-
order Markov approach and suggest analysis be based on the conditional
likelihood.

The SA and stopover models consider only a single group of capture oc-
casions. However, for many studies, capture occasions are spaced closely
in time, for instance during the breeding season, and the sampling pro-
cess is repeated many times, for example every year. The robust design
class of models consider the data at these two sampling levels; primary and
secondary sampling periods. In general the robust design models assume
that the capture-recapture data of the secondary periods are collected over
a relatively short period of time, while the duration between the primary
sampling periods is much larger. The closed robust design model (Pollock,
1982; Kendall et al., 1995), uses closed-population capture-recapture models
to estimate abundance within each primary occasion. The more generally
applicable (since animal populations are rarely closed) open robust design
model (Schwarz and Stobo, 1997; Kendall and Bjorkland, 2001) retains the
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open primary occasions, but also permits the secondary occasions to be
open to arrivals and departures. Kendall et al. (2018) extend this class of
models to include a multi-state open robust design (MSORD) model which
includes state information on the primary level and includes the estimation
of abundance for each primary period.

We develop a general multi-state multi-period stopover model and formu-
late the explicit likelihood expression as an HMM. Similar to the MSORD
model, this model permits time dependence in the survival (probability of
remaining in the population on the primary level) and capture probabili-
ties and dependence on time and time since arrival (within each sampling
period) in the retention probabilities (probability of remaining at the site be-
tween capture occasions in the secondary level). In contrast to the MSORD
model, our model also includes dependence on time since recruitment (time
since arrival in the primary level) in the survival probabilities, time since
arrival dependence in the capture probabilities, and permits transitions be-
tween states within the primary periods. The model retains the flexibility
of movement into and out of the population, assuming an open population
both between and within each sampling period. In particular, by allowing
survival to depend on the time since recruitment, transient individuals who
spend very little time in the population may be accounted for differently to
those more permanent (longer staying) individuals. We apply a similar argu-
ment to the stopover and SA models, assuming a total population across all
the periods consisting of both those individuals that are observed and those
that are not observed but available for capture. This approach allows the
size of the total population to be estimated as a parameter in the model.
Subsequently, algorithms for HMMs can be implemented to estimate the
size of the population in each primary period along with state-dependent
abundance on occasions within each primary period. Doing so allows the
investigation of trends over time and comparisons of population size in the
different states. This is demonstrated in the simulation study and newt ap-
plication below. The multi-state aspect of the model is included so that
additional information can be incorporated such as different mark types, lo-
cation information or breeding status. We focus in particular on allowing the
capture probabilities to be state-dependent thus allowing for heterogeneity
in the population. This new multi-state multi-period stopover model can be
considered a general model for capture-recapture data from which many of
the existing models can be obtained by placing appropriate restrictions on
the model parameters.

The motivation for developing this new multi-period stopover model is a
long-term study on great crested newts, a protected species in Europe. Al-
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though up to £43 million is spent on mitigating the impacts of development
on this species in England alone (Lewis et al., 2017), current population
assessment protocols for this species are inadequate (Griffiths et al., 2015).
There is consequently a need for more reliable statistical models that take
account of the seasonal dynamics of this species. The study population con-
sidered here is unique in that it is based on replicated ponds that have been
intensively monitored for nearly two decades. Individuals in this population
visit the study site for the breeding season. Arrivals and departures occur
over a number of weeks with the traps being set once per week during the
breeding season with the process repeated annually. The additional state
information for this population is the pond in which each individual newt
is captured. Geographically, the area of the field study site has remained
consistent. Originally the site contained four constructed ponds, a further
four ponds were constructed in 2009 and first colonised in the 2010 breeding
season. Given that pond creation is regarded as a fundamental component
of amphibian conservation, of particular biological interest is how these new
ponds have been colonised, whether capture probabilities differ between the
old well-established ponds and the new ponds and the trap effectiveness at
capturing the newts. The old and new ponds may exhibit differences due to
differing amounts of vegetation, with these differences perhaps disappearing
as the new ponds become established. The ponds are located in close prox-
imity to one another and so newts can freely move between them throughout
each breeding season. For this population of newts there is particular inter-
est in the total number of newts visiting the site and the number of newts
using, and moving between, the old and new ponds.

We express the multi-state multi-period stopover model using an HMM.
HMMs provide a flexible way of modelling series of observations collected
through time that depend on underlying and often unobserved correlated
states. After the initial capture and marking of an individual, the capture
history can be considered as a combination of two processes: the observation
process which depends on the availability of an individual for capture; and
an underlying availability process. The HMM separates the underlying state
process (i.e. availability for capture) from the observation process (i.e. cap-
ture process, conditional on availability). For further discussion see for ex-
ample Gimenez et al. (2007); Schofield and Barker (2008); Royle (2008);
King et al. (2009); King (2012, 2014); Langrock and King (2013); Zucchini
et al. (2016).

In Section 2 we derive the multi-state multi-period stopover model. In
Section 3 we perform a simulation study before applying the new model to
a data set on great crested newts in Section 4. We conclude with a discussion



6 H. WORTHINGTON ET AL.

in Section 5.

2. Model derivation. In this section we derive the multi-state multi-
period stopover model. Within each primary period we assign an individual
with time since arrival value 1 on the first occasion they attend the site
to indicate that they have spent one capture occasion in the population.
On the primary level we assign an individual with time since recruitment
value 1 on the first primary period they join the population. We use the
general terms ‘arrival’ and ‘recruitment’ to indicate an individual becoming
available for capture in the different levels of the model. These will in practice
have different interpretations and could refer to births, recruitment to the
breeding population, or arrival at a specific colony for migratory species.
Likewise departures may refer to different ways of leaving a site, including
deaths or permanent emigration from the study area. In this derivation we
incorporate the state-dependence in the capture probabilities. We allow for
movement between the states within the primary periods to be first-order
Markov with initial choice of state in the next primary period independent
of the states used in the current primary period; generalisation of the initial
choice of state is discussed further in Section 5. We also assume that the state
of an individual is recorded without misclassification when an individual is
observed, though this assumption can be relaxed (King and McCrea, 2014)
in a multi-state capture-recapture setting.

2.1. Notation. In defining the notation of the multi-state multi-period
stopover model we extend, where possible, the notation of Pledger et al.
(2009). Let N denote the total population (to be estimated) consisting of all
individuals who visit the study site for at least one capture occasion during
the study period (all capture occasions and periods). Further, let n denote
the number of observed individuals (those captured on at least one capture
occasion) and nm the number of individuals that are missed (those that are
never captured). Thus N = n + nm. Let the entire study period consist
of T primary periods, labelled t = 1, . . . , T , with K(t) secondary capture
occasions in primary period t. We let the capture history for individual i
be denoted by xi = {xi(t, k) : k = 1, . . . ,K(t); t = 1, . . . , T} and let the
set of capture histories for all observed individuals be denoted by x = {xi :
i = 1, . . . , n}. Note that from the histories we can easily extract in which
primary periods each observed individual was captured at least once.

We now define the set of model parameters (in addition to N above). We
define the recruitment probabilities to be the set r = {r(t) : t = 1, . . . , T}
where r(t) is the probability of being recruited into the population and
first becoming available for capture in primary period t. Since an individ-
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ual belonging to the total population must visit the site during at least
one primary period,

∑T
t=1 r(t) = 1. For the HMM formulation of the model

we define r∗(t) = r(t)/
∑T

j=t r(j) for t = 2, . . . , T which denotes the con-
ditional recruitment probability (probability of being recruited in primary
period t given the individual has not been recruited in any primary periods
1, . . . , t − 1). We define the set of arrival probabilities to be β = {β(t, k) :
k = 1, . . . ,K(t); t = 1, . . . , T} where β(t, k) is the probability of arriving at
the study site and first being available for capture from occasion k within
primary period t, given the individual is in the population and available
for capture in primary period t. By definition, within each primary period

t = 1, . . . , T ,
∑K(t)

k=1 β(t, k) = 1. Similarly to the recruitment probabilities,
the HMM formulation requires conditional arrival probabilities which we de-

fine as β∗(t, k) = β(t, k)/
∑K(t)

j=k β(t, j) for k = 2, . . . ,K(t) and t = 1, . . . , T
(probability of arriving on occasion k in primary period t given the individ-
ual has not arrived on occasions 1, . . . , k − 1 in primary period t). We let
s = {sA(t) : A = 1, . . . , t; t = 1, . . . , T −1} denote the set of survival proba-
bilities, where sA(t) is the probability an individual is available for capture
in primary period t+1 given in primary period t they are available for cap-
ture and have been present in the population for A primary periods. We let
φ = {φa(t, k) : a = 1, . . . , k; k = 1, . . . ,K(t) − 1; t = 1, . . . , T} denote the
set of retention probabilities where φa(t, k) is the probability that an indi-
vidual is available for capture on occasion k + 1 in primary period t given
on occasion k in primary period t the individual is available for capture and
has been present in the population for a secondary capture occasions within
primary period t.

In order to model the movement of individuals between the different ob-
servable discrete states we first need to consider the discrete state that an
individual enters when they first arrive at the site within each primary pe-
riod. In this derivation we assume initial choice of state within a primary
is independent of previous state occupation, see Section 5 for a discussion
of alternative structures. We denote these initial discrete state probabilities
by α = {αg(t) : t = 1, . . . , T ; g = 1, . . . , G} where αg(t) is the probability
of being in state g = 1, . . . , G (where G is the total number of observable
states) on the first occasion an individual is available for capture in primary
period t. In this derivation we assume these initial discrete state probabili-
ties are constant over time and so regardless of when an individual arrives
at the site the probability they enter each of the observable states remains
the same.

The set of transition probability matrices between the discrete states is
denoted by Ψ = {Ψ(t) : t = 1, . . . , T}. The transition probabilities in pri-
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mary period t are given by,

Ψ(t) =











ψ11(t) ψ12(t) . . . ψ1G(t)
ψ21(t) ψ22(t) . . . ψ2G(t)

...
...

. . .
...

ψG1(t) ψG2(t) . . . ψGG(t)











such that ψij(t) denotes the probability of moving from state i to state j
between consecutive secondary occasions in primary period t, conditional
on the individual remaining available for capture in primary period t. For
simplicity we have defined the transition probabilities to be constant across
all occasions within a primary period. In general, this need not be the case,
however, there are likely to be issues with parameter redundancy and iden-
tifiability in the fully time-dependent case. Finally, we define the capture
probabilities to be p = {pga(t, k) : a = 1, . . . , k; k = 1, . . . ,K(t); t =
1, . . . , T ; g = 1, . . . , G} where pga(t, k) is the probability an individual is
captured given they are in state g and have been present at the site for a
secondary occasions on occasion k in primary period t. We include a dia-
gram in the supplemental article (Worthington et al. (2019), Appendix A)
of the ordering of events to aid the understanding of the model parameters.
The full set of model parameters for the multi-state multi-period stopover
model is given by θ = {N, r, s,α,Ψ,β,φ,p}.

The choice of model structure developed here is motivated by the under-
lying ecology and biological understanding of the behaviour of great crested
newts. For further discussion on how the model could be further generalised
see Section 5.

2.2. HMM formulation. Following the convention of the robust design
models we consider nested (or hierarchical) Markov chains, the first oper-
ating on the primary level and the second nested chain operating on the
secondary capture occasions. Let h = {h(t) : t = 1, . . . , T} be the hidden
states in the primary level where,

h(t) =



























1 not yet recruited into the attending population;
2 time since recruitment = 1 (recruited in this period);
...

...
A′ + 1 time since recruitment = A′ (A′ periods spent in population);
A′ + 2 departed from the attending population;

where A′ is the maximum observable time since recruitment of individuals in
the population on the primary level (A′ ≤ T ) implying individuals move to
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the absorbing state of having departed from the population (a combination
of death and permanant migration) after spending A′ primary occasions in
the population. Similarly, let h(t) = {h(t, k) : k = 1, . . . ,K(t); t = 1, . . . , T}
be the hidden states in the secondary level where,

h(t, k) =







































































































































1 not yet available for capture;
2 available for capture in primary occasion t,

time since arrival = 1 and in state 1;
3 available for capture in primary occasion t,

time since arrival = 1 and in state 2;
...

...
G+ 1 available for capture in primary occasion t,

time since arrival = 1 and in state G;
G+ 2 available for capture in primary occasion t,

time since arrival = 2 and in state 1;
...

...
2G+ 1 available for capture in primary occasion t,

time since arrival = 2 and in state G;
...

...
a′(t)G+ 1 available for capture in primary occasion t,

time since arrival = a′(t) and in state G;
a′(t)G+ 2 departed from the site in primary occasion t;

where a′(t) is the maximum observable time since arrival of individuals in
the secondary level (a′(t) ≤ K(t)) again implying that once an individual
has spent a′(t) secondary occasions at the site in primary period t, they
move to the absorbing state of having departed the site for that period. We
note that it is possible that a′(t) and G could be different in each primary
period. This would change the size of the matrices used within the secondary
level of the model but no other changes are necessary. We also note that the
age need not increment deterministically by one on each occasion but could
more generally refer to age classes, for example, immature, adult and senior,
we discuss this further below.

Let the initial hidden state distribution of the primary level HMM,

π(1) =
(

P(h(1) = 1) P(h(1) = 2) . . . P(h(1) = A′ + 2)
)

be the probabilities of entering each primary hidden state for primary period
1. Similarly, for the secondary level HMM,

π(t, 1) =
(

(P(h(t, 1) = 1) P(h(t, 1) = 2) . . . P(h(t, 1) = a′(t)G+ 2))
)
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for t = 1, . . . , T describes the probabilities of entering each secondary hidden
state on occasion 1 in each primary period t = 1, . . . , T . Then, by definition
of the model parameters above,

π(1) =
(

1− r(1) r(1) 0 . . . 0
)

π(t, 1) =
(

1− β(t, 1) β(t, 1)α(t) 0 . . . 0
)

where α(t) =
(

α1(t) α2(t) . . . αG(t)
)

is the set of initial discrete state
probabilities for primary period t. Next, we consider the transition matrices
which describe the movement between the states of the Markov chains. In
the primary level this concerns the survival between the primary periods
whilst in the secondary level it is the retention within the given primary
period. Let Γ(t) be an (A′ + 2)× (A′ + 2) matrix where

Γ(t)[a, b] = P(h(t+ 1) = b | h(t) = a)

for t = 1, . . . , T − 1, a = 1, . . . , A′ + 2 and b = 1, . . . , A′ + 2. Similarly, let
Γ(t, k) be an (a′(t)G+ 2)× (a′(t)G+ 2) matrix where

Γ(t, k)[a, b] = P(h(t, k + 1) = b | h(t, k) = a)

for k = 1, . . . ,K(t) − 1, t = 1, . . . , T , a = 1, . . . , a′(t)G + 2 and b =
1, . . . , a′(t)G+ 2. By definition,

Γ(t) =























1− r∗(t+ 1) r∗(t+ 1) 0 0 . . . 0 0
0 0 s1(t) 0 . . . 0 1− s1(t)
0 0 0 s2(t) . . . 0 1− s2(t)
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0 0 0 0 . . . sA′−1(t) 1− sA′−1(t)
0 0 0 0 . . . 0 1
0 0 0 0 . . . 0 1























Γ(t, k) =



















1− β∗(t, k + 1) β∗(t, k + 1)α(t) 0 . . . 0 0
0 0 φ1(t, k)Ψ(t) . . . 0 (1− φ1(t, k))G
...

...
...

. . .
...

...
0 0 0 . . . φa′(t)−1(t, k)Ψ(t) (1− φa′(t)−1(t, k))G
0 0 0 . . . 0 1G

0 0 0 . . . 0 1



















where (1 − φa(t, k))G is a column vector of length G with each entry equal
to (1− φa(t, k)) and 1G is a column vector of ones of length G.

Here we assume a fully deterministic progression in time since recruit-
ment (it increases by 1 on each primary period) and time since arrival (it
increases by 1 on each secondary occasion). This implies that once an indi-
vidual has attained a time since recruitment of A′ they necessarily move to
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the absorbing state of having departed from the population (a combination
of death, migration, or if A′ = T the end of study so the probability of
further sighting is 0). If time since recruitment were instead grouped into
classes (e.g. first time attenders and then repeat attenders), but progres-
sion was still deterministic, then the above transition matrix would stay of
the same form but parameters within a class would be shared (e.g. s1(t),
s2(t) = s3(t) = . . .). Alternatively, transitions between classes, for example
young, adult and senior, may be stochastic in nature to include, for exam-
ple, individual variability in maturation rates. In this case a semi-Markov
approach could be used in which a distribution is specified for the time spent
in each age-class with the transition probabilities being determined from the
chosen distribution.

Finally we consider the observation process which connects the observed
data to the hidden states. The primary level relates to the probability of ob-
serving the capture histories within each primary period and the secondary
level relates to the probability of capture on each occasion. We first consider
the secondary level and work with unique capture histories y = 1, . . . , Y
rather than considering each individual in turn (Y ≤ n). Let P(t, k, xy(t, k))
be an (a′(t)G + 2) × (a′(t)G + 2) diagonal matrix for k = 1, . . . ,K(t)
and t = 1, . . . , T where P(t, k, a)[b, b] = P(xy(t, k) = a | h(t, k) = b) for
a = 0, 1, . . . , G, b = 1, . . . , a′(t)G + 2 and all off-diagonal entries are zero.
Then,

P(t, k, xy(t, k)) =



























































diag(1, 1− p11(t, k), 1− p21(t, k), . . . , 1− pG1(t, k),
. . . , 1− p1a′(t)(t, k), . . . , 1− pGa′(t)(t, k), 1) xy(t, k) = 0

diag(0, p11(t, k), 0, . . . , 0, p12(t, k), 0,
. . . , 0, p1a′(t)(t, k), 0, . . . , 0) xy(t, k) = 1

diag(0, 0, p21(t, k), 0, . . . , 0, p22(t, k), 0,
. . . , 0, p2a′(t)(t, k), 0, . . . , 0) xy(t, k) = 2

...
...

diag(0, . . . , 0, pG1(t, k), 0, . . . , 0, pG2(t, k), 0,
. . . , 0, pGa′(t)(t, k), 0) xy(t, k) = G.

Let L0(t) and Ly(t) denote the likelihood contribution for a single-period
stopover model (i.e. considering the secondary occasions within one primary
occasion only) for an all zero capture history (i.e. an individual that is not
captured) and a non-zero capture history in primary period t respectively.
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Then for each primary period t = 1, . . . , T ,

L0(t) = π(t, 1)P(t, 1, 0)





K(t)
∏

k=2

Γ(t, k − 1)P(t, k, 0)



1a′(t)G+2

Ly(t) = π(t, 1)P(t, 1, xy(t, 1))





K(t)
∏

k=2

Γ(t, k − 1)P(t, k, xy(t, k))



1a′(t)G+2

where 1a′(t)G+2 is a column of ones of length a′(t)G+2 (the number of states
in the secondary level of the HMM). We can now consider the observation
process in the primary level. Let zy(t) indicate whether capture history y =
1, . . . , Y contains a capture in primary period t. Then zy(t) = 0 if xy(t, k) = 0
for all k = 1, . . . ,K(t) and conversely zy(t) = 1 if xy(t, k) 6= 0 for at least one
occasion k = 1, . . . ,K(t). Let P(t, zy(t)) be an (A′ + 2)× (A′ + 2) diagonal
matrix for t = 1, . . . , T where P(t, a)[b, b] = P(zy(t) = a | h(t) = b) for
a = 0, 1, b = 1, . . . , A′ + 2 and all off-diagonal entries are zero. Then,

P(t, zy(t)) =

{

diag(1, L0(t), . . . , L0(t), 1) zy(t) = 0
diag(0, Ly(t), . . . , Ly(t), 0) zy(t) = 1.

Let L0 denote the probability an individual is never captured and Ly the
probability of observing the unique (non-zero) capture history y, then the
primary level expressions for the HMM are,

L0 = π(1)P(1, 0)

(

T
∏

t=2

Γ(t− 1)P(t, 0)

)

1A′+2

Ly = π(1)P(1, zy(1))

(

T
∏

t=2

Γ(t− 1)P(t, zy(t))

)

1A′+2

where 1A′+2 is a column of ones of length A′ + 2 (the number of states in
the primary level of the HMM).

The expression for the full likelihood is of multinomial form where individ-
uals with the same capture history are grouped together. We let ny denote
the frequency of each unique capture history y = 1, . . . , Y where Y is the
total number of unique non-zero capture histories. The likelihood expression
is given by:

L(θ|x) =
N !

(N − n)!
∏Y

y=1 ny!
LN−n
0

Y
∏

y=1

L
ny
y .

Thus we have an explicit likelihood expression.
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3. Simulation study. To demonstrate the ability to estimate the pa-
rameters of the multi-state multi-period stopover model we perform a sim-
ulation study. To explore the advantages of the new approach we compare
the results of fitting a multi-state multi-period stopover model against the
results of fitting separate multi-state stopover models independently to each
primary period of data.

We consider two different total population sizes, N = 100 and N = 1000,
to determine the effect of population size on the ability to estimate the
model parameters. We expect that for small total population sizes (where the
number of individuals captured in any one primary period will be relatively
small) the multi-period model will perform better than the single-period
models by taking strength from sharing parameters across the different pri-
mary periods. As the population size increases we expect the variation of
parameter estimates to decrease and the performance of the single-period
models to improve. Alternatively, a joint likelihood over the primary periods
could be formed which could also share parameters but such an approach
would not include the between primary modelling, thus would be unable to
estimate survival or recruitment probabilities.

We generate three primary periods of data (T = 3) with each primary
period having five capture occasions (K(t) = 5 for all t = 1, . . . , T ). We
let the number of individuals joining the population at each primary period
follow a multinomial distribution with probabilities r(1) = 0.4, r(2) = 0.2
and r(3) = 0.4. The probability of survival between each primary period is
assumed to be constant with value s = 0.7. We define a logistic regression for
the cumulative arrival probabilities within each primary period, B(t, k) =
∑k

j=1 β(t, j), from which the arrival probabilities for each occasion, β(t, k),
can be obtained. We include a primary-dependent intercept, such that

logit(B(t, k)) = ηk + δ(t)

where η = 1, δ(1) = −1, δ(2) = 0 and δ(3) = −2. The arrival probabilities
are then

β(t, k) =
B(t, k)−B(t, k − 1)

B(t,K(t))

where B(t, 0) = 0 and division by B(t,K(t)) ensures the arrival probabilities
sum to one. For the retention probabilities we include time effects and a
linear age term but no primary period effects,

logit(φa(t, k)) = τ(k) + γ(a− 1)
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where τ(1) = 2.5, τ(2) = 1.8, τ(3) = 2.1, τ(4) = 1.4, γ = −1 and a is the
time since arrival within primary t.

For the state-dependent parameters we assume them to be constant across
all primary periods. The initial discrete state probabilities are α1 = 0.35 and
so α2 = 0.65. The capture probabilities we assume to be dependent on state
only with p1 = 0.6 and p2 = 0.8. Finally we let the transition probability
matrix between the observable discrete states be

Ψ =

(

0.4 0.6
0.3 0.7

)

.

For each population size we generate 1000 data sets. For each data set
we fit the multi-state single-period stopover model to each period of data
and then the multi-state multi-period stopover model to the full data set
using the nlm function in R to maximise the likelihoods. The results for
population size N(t) (estimated using a forward-backward-type algorithm
for the multi-period model, details in the supplemental article Worthington
et al. (2019), Appendix B), initial discrete state probabilities α, transition
probabilities Ψ and the arrival probabilities β are displayed in Figures 1
and 2 for N = 100 and N = 1000 respectively (output for the remaining
parameters and state-dependent abundance within each primary is available
in the supplementary article Worthington et al. (2019), Appendix D).

From the simulation study we can clearly see the improved performance
through using the multi-period approach. All of the parameters are esti-
mated well and appear to be unbiased (or close to unbiased). We particularly
note the improvement in the bias of the estimates for the population size
in each primary period and the decrease in variability of the transition and
arrival probabilities. Of particular interest is the ability of the models to cor-
rectly estimate the state-dependent parameters. For these, when N = 100,
the multi-period model does provide lower variability in the MLEs than the
single-period approach though uncertainty in these parameters is quite large
compared to the other parameters in the model. Similar improvements to
the precision of transition parameters were found by McCrea et al. (2010)
where a multi-state integrated population modelling approach is used to
jointly analyse capture-recapture and census data. We also note the strong
improvement in the estimation of the retention probabilities (φ) using the
multi-period approach.

When the total population size is increased to N = 1000 the variation
in estimates for all parameters in both models is reduced. The multi-period
model still performs better than the single-period model with the most ob-
vious improvement now in the capture, initial discrete state and transition
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Fig 1. Results from the simulation study where N = 100: (top, left) percentage bias of
the population size estimates in each primary period for the single-period model (white)
and multi-period model (grey); (top, right) bias of the initial discrete state and transition
probabilities in each primary period for the single-period and multi-period model; (bottom,
left) bias of the arrival probabilities for each primary period for the single-period model and;
(bottom, right) bias of the arrival probabilities for each primary period for the multi-period
model.
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Fig 2. Results from the simulation study where N = 1000: (top, left) percentage bias of
the population size estimates in each primary period for the single-period model (white)
and multi-period model (grey); (top, right) bias of the initial discrete state an transition
probabilities in each primary period for the single-period and multi-period model; (bottom,
left) bias of the arrival probabilities for each primary period for the single-period model and;
(bottom, right) bias of the arrival probabilities for each primary period for the multi-period
model.
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probabilities. The variation in parameter p1 in the multi-period model re-
mains greater than the other parameters, this is most likely due to the low
capture probability and the probability of remaining in the state being 0.4.
This results in only a small number of captures in this state and so larger
uncertainty than the equivalent parameter in the other state. However, we
do note that the estimates are unbiased and so in general the parameters
appear to be estimated well.

4. Application. Data on a population of great crested newts are col-
lected from a field study site on the University of Kent campus. The data
have been collected since 2002 on a weekly basis throughout the breeding
season following a standard and repeatable sampling routine. Whilst all
captured newts are recorded we analyse only the adult newt data since the
natural markings used to uniquely identify individuals may still be devel-
oping in juvenile newts. We consider the data collected between 2002-2013
inclusive, a total of 12 years of data (available as a supplementary file). In
total there are 241 capture occasions across the 12 years. The number of cap-
ture occasions each year varies; traps are set from the final week in February,
which is typically before any newts arrive, and continue to be set until no
further newts are captured or the water level in the ponds falls making trap-
ping problematic. We format the data such that the first capture occasion
occurs within the same week every year (this may require truncating leading
zeros from the capture histories within some years). Originally consisting of
four ponds the site was extended in 2009 to a total of eight ponds which
were then first colonised during the 2010 breeding season. We define the
observable capture states to be the type of pond (old or new) the individual
is captured in; the ‘old’ ponds were available in all years 2002-2013 whilst
the second state, ‘new’ ponds, were available in years 2010-2013. The ponds
are all located close together at the field study site (1-12m apart) and so
movement between all eight ponds is possible and it is the environmental
differences (for example the amount of vegetation) between the old and the
new ponds that is likely to affect the choice of pond. In total n = 106 unique
individuals were captured with a total of 1536 recaptures (ranging from 0
to 68 recaptures per individual, median 6.5 recaptures) during the 12 years
of sampling.

To consider the choice of model we first model the capture-recapture
data, without considering the additional state information, using the HMM
formulation of the multi-period stopover model. We perform a systematic
search through a series of models of varying complexity in terms of the pa-
rameter dependencies. We start with the most basic model where all the
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parameters are considered to be constant and shared across all years. Im-
provement in the model fit is determined through the AIC statistic using
a ‘step-up’ approach in order to avoid choosing an overly complex model
(McCrea and Morgan, 2011). Due to the large number of capture occasions,
we use a logistic regression over the secondary occasions for both the arrivals
and retentions within each primary period (rather than estimating probabil-
ities for each secondary occasion separately, this approach would require a
very large number of parameters and the sample size here is comparatively
small). The model chosen by AIC (where the state information is ignored)
includes year-dependent recruitment probabilities, a constant survival prob-
ability between each breeding season, and capture probabilities that are
both year- and occasion-dependent i.e. a different capture probability on
every capture occasion. For the logistic regressions on arrival and retention,
the intercepts are constant and shared across all years whilst the gradients
are year-dependent, with the gradient estimated separately for each year.
Assessing goodness-of-fit is challenging for complex capture-recapture mod-
els and appreciable pooling is generally required to be able to classically
compare observed and expected values. Due to the very sparse histories in
this application cell numbers are very small, the majority smaller than 5.
Pooling would make the identification of areas of poor model fit difficult to
diagnose. For this reason we rely on the stepwise search and prior under-
standing of the species to support our model selection.

We now consider the additional observable states (old or new ponds).
This additional information is available for the 2010-2013 breeding seasons
(all ponds in 2002-2009 are old ponds and so the multi-state parameters are
not required for these years). Due to the large number of capture occasions,
and very small population size, we remove the occasion-dependence from the
capture probabilities and instead allow them to be dependent on both year
and state. We also estimate the initial discrete state probabilities and transi-
tion probabilities between the different observable states for each year where
the multi-state data is available (2010–2013). The results from fitting the
multi-state multi-period stopover model are given in Figures 3 and Table 1.
Figure 4 shows the estimated abundance (through a forward-backward-type
algorithm, see supplementary article Worthington et al. (2019), Appendix
C) for each occasion and observable state in years 2010-2013. Estimated
abundance for each year 2002–2013 and estimated abundance on each oc-
casion for years 2002-2009 are given in supplementary article Worthington
et al. (2019), Appendix E. Standard errors and 95% confidence intervals are
estimated through a nonparametric bootstrap (resampling individual cap-
ture histories) to ensure intervals remain within permissible ranges and to
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avoid issues with boundary estimates (for example recruitment and arrival
probabilities very close to 0).
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Fig 3. Maximum likelihood estimates and 95% bootstrap confidence intervals from the
multi-state multi-period stopover model for: (top, left) recruitment probabilities for years
2002-2013; (top, right) logistic regression on arrival probabilities for years 2002-2013;
(bottom, left) capture probabilities for years 2002-2013 for the old ponds (black) and years
2010-2013 for the new ponds (grey) and; (bottom, right) logistic regression on retention
probabilities for years 2002-2013 of the great crested newt study.

Table 1
Maximum likelihood estimates and bootstrap standard errors from the multi-state

multi-period stopover model for the initial discrete state and transition probabilities for
the old (state 1) and new (state 2) ponds for years 2010-2013 of the great crested newt

study.

Year (t)
Parameter 2010 2011 2012 2013

α(t, 1) 0.69 (0.12) 0.28 (0.08) 0.48 (0.23) 0.33 (0.11)
ψ12(t) 0.11 (0.03) 0.17 (0.06) 0.26 (0.08) 0.14 (0.05)
ψ21(t) 0.06 (0.02) 0.10 (0.03) 0.17 (0.08) 0.10 (0.06)

The results indicate the data collection process is close to a complete
census of individuals present at the site. The total population of newts that
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strap confidence intervals for years 2010–2013 of the great crested newt study.
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visited the site at least once during the 12 years of sampling is estimated
to be N = 107.2 (SE 0.47) of which n = 106 were captured. The parameter
estimates and estimated state-abundance in Figure 4 also indicate some
possible differences between the old and the new ponds. When the new ponds
were initially colonised in 2010 there appears to have been a preference for
the old ponds as an initial choice when newts arrived at the site. This is likely
due to the amount of vegetation and invertebrates in the ponds; the older
ponds had longer to mature than the new ponds and therefore contained
significantly more food, predators and plant cover. It appears that upon
arrival at the site the newts have moved towards the new ponds as their
initial choice as the new ponds have become more established. The capture
probabilities indicate clear temporal variation and with the exception of
2012 the capture probabilities in both old and new ponds are very similar.
The movement between the ponds is quite low, newts appear to show high
fidelity to the type of pond they are in (old or new) with a consistently higher
fidelity for the new ponds. The survival probability for this population of
newts between breeding seasons, assumed to be constant between years, is
estimated to be 0.82 (SE 0.027).

5. Discussion. In this paper we have developed a generalised multi-
state multi-period stopover model. This global model for capture-recapture
data offers extensions to many of the commonly applied capture-recapture
models. In particular the multi-state single-period stopover model combines
the AS model and stopover models to allow the capture probabilities to be
time-, age- and state-dependent. The new model is a fully open population
model able to estimate total abundance and therefore likely to resolve long-
standing issues concerning the assumption of closure when sampling animal
populations repeatedly over short time frames. The multi-state multi-period
stopover model is a further extension of this multi-state stopover model
considering multiple periods of capture occasions within a single tractable
likelihood. Forming the model as an HMM offers the estimation of abundance
for each primary period along with each occasion and state within primary
periods using standard techniques. Models that allow for the combining of
information, either across several years of data collection or different sources
of information e.g. count data, are widely used in ecological applications
(Besbeas et al., 2002).

The model could be further generalised in a number of ways. As stated
above the transition probabilities between states need not be constant within
each primary period, additionally the transition, arrival and retention prob-
abilities could have further dependence on the time since recruitment. For
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example, older individuals in the population may demonstrate different time
of arrival and state transition behaviour compared to newly recruited in-
dividuals. Similarly, retention probabilities may be different for more ex-
perienced breeders compared to first time breeders. Further consideration
could also be given to the initial discrete state distribution. Currently this
is modelled independently for each primary period with no information on
state-preference brought forward from preceding primary periods. Possible
extensions would be to allow choice of initial state to be related to the final
state of the previous primary period, or as a function of the time spent in
each state up to that point. A fully general model incorporating the above
is likely to require a large volume of data to estimate the model parameters
regardless of whether they are identifiable. Whilst it would be preferable to
use model selection techniques to determine an appropriate model structure,
it is reasonable that choice of model structure for such a complex model be
motivated by the underlying ecology of the species under study. The model
structure we have chosen to develop is motivated by the application on great
crested newts.

This likelihood is constructed using an HMM form leading to an efficient
likelihood expression that can be maximised using standard optimisation al-
gorithms and software. This structure also permits the extension to include
additional complexities in a straightforward manner. For example, in this
paper we assume that the state information is recorded with certainty. In
practice this may not be the case but the model can be extended further to
incorporate such state-uncertainty by introducing additional state assign-
ment probabilities (King and McCrea, 2014; King and Langrock, 2016).

In these derivations we assume the states are discrete. In the case of
continuous state information the approach of the HMMs above could still
be applied by using a fine discretization of the continuous states into a
discrete form (Langrock and King, 2013). Care would need to be adopted
in this instance to avoid the dimensions of the matrices involved becoming
too large leading to computational issues.

Further extensions to these models could include the addition of a state-
dependence to the retention probabilities. This would allow the departure
of individuals to be modelled differently depending on their final state in a
given year. To reduce the number of parameters estimated from the capture-
recapture data alone, covariates could also be considered. As with the multi-
period stopover model, consideration could also be given to temporary mi-
gration and the idea of individuals skipping attendance in some years. For
instance the success or failure to breed in a given year may lead an individual
to skip the following year to improve their body condition before returning
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in later years to reattempt breeding. In the case of the newts this behaviour
is more likely in females as they have to invest more energy to produce eggs
each year. This information would need to be incorporated in the primary
level of the model where the behaviour in a given year is summarised into
a state on the primary level. Again such extensions can be considered and
the efficient HMM likelihood exploited.
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