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Abstract

Pest insects pose a significant threat to food production worldwide resulting in an-

nual losses worth hundreds of billions of dollars. Pest control attempts to prevent pest

outbreaks that could otherwise destroy a sward. A good practice of the integrated pest

management is to recommend control actions (usually pesticides application) only when

the pest density exceeds a certain threshold. Accurate estimation of pest population den-

sity in ecosystems, especially in agro-ecosystems, is therefore very important, and this is

the overall goal of the pest insect monitoring. However, this is a complex and challenging

task: providing accurate information about pest abundance is hardly possible without

taking into account the complexity of ecosystems’ dynamics, in particular, the existence

of multiple scales. In case of pest insects, the monitoring has three different spatial scales,

each of them having their own scale-specific goal and their own approaches to data collec-

tion and interpretation. In this paper, we review recent progress in mathematical models

and methods applied at each of these scales and show how it helps to improve the accuracy

and robustness of the pest population density estimation.

Keywords: Insect monitoring, trapping, trap counts, random walk, diffusion, Levy
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1 Introduction

Ecosystems’ structure and functioning have long been paradigms of complexity [25, 85].

In particular, it has been increasingly recognized that ecosystem properties arise as a

result of coupling between processes going on different spatial scales [60, 74, 83, 169]. The

notion of multiple scales applies to virtually all aspects of ecosystem functioning and to

ecosystem monitoring, in particular, to pest insect monitoring. Pest monitoring is an issue

of huge practical importance, especially in agricultural ecosystems or ‘agro-ecosystems’.

Indeed, pests are a sustained and significant problem in the production of food across the

globe. Crops are vulnerable to attack from pests both during the growing process and

after they have been harvested. Estimates of the annual worldwide loss due to pests at

the pre-harvest stage lie between 35 and 42% [105, 133]. In particular, the pre-harvest

loss of 14-15% of the world’s crops has been attributed to harmful insects [136, 134].

Effective and reliable ecological monitoring is required in order to provide detailed and

timely information about pest species. In agro-ecosystems, monitoring is usually a part

of the integrated pest management (IPM) [27, 81]. The basic principle of the IPM is that

a control action is only used if and when it is necessary. The decision of whether or not

to implement a control action is made by comparing the abundance of pests against some

threshold level, i.e. the limit at which intervening becomes worth the effort and expense.

Such threshold values can be decided upon by taking a variety of factors into consideration.

The most often used are economic thresholds [162] as the overriding concern is that the

pest management program is financially viable (e.g. see [62]).

Once the pest abundance exceeds the threshold, the IPM decision is to intervene and

implement a control action, usually application of chemical pesticides. However, use of

chemical pesticides has many drawbacks. Firstly, it is the damage caused to the environ-

ment. It has been estimated that around 3 · 109 kg are used across the globe per year

[134]. As a result, pesticides significantly contribute to air, soil and water pollution, and

there is growing evidence linking their use to human illnesses [4, 135]. Note that the per

capita efficiency of chemical pesticides is estimated to be quite low as, on average, less

than 0.1% of them reach their targeted pest [132].

Secondly, use of chemical pesticides results in significant additional costs added to the

agricultural product. Indeed, it is estimated that around $40 billion per year is spent

on pesticides [134]. Hence a reduction in the amount of pesticides used would be clearly

desirable from the economic perspective. Finally, indiscriminate or preemptive use of

pesticides can make them less efficient. For instance, regular use of pesticides can result

in the pest becoming resistant, thus making future management a more difficult task [8].

Another unwanted side effect is that the pesticide can have lethal or sub-lethal effects on

natural enemies [157] which can cause a resurgence in the pest population or a secondary

pest to emerge. Thus, accurate monitoring is key to the decision process [27, 91]. There is

an urgent need in reliable methods to estimate the pest population size in order to avoid

unjustified pesticides application and yet to prevent pest outbreaks.

In this paper, we review some of the recent research in pest monitoring models and

methods applied on different spatial scales. Two essential components of monitoring are
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data collection and data processing and/or interpretation. These are not independent as

a reliable estimate of the population density resulting from data processing can only be

obtained if the collected data contain sufficient information. The latter can be achieved

if the spatial arrangement of the data is made consistent with the spatial structure of

the agro-ecosystem as given by the self-organized spatiotemporal patterns in the pest

species distribution and by the environmental forcing through heterogeneous landscape

and weather patterns.

A common method to collect field data regarding the insect abundance is trapping. A

number of traps is installed across the monitored area, e.g. in a field or grassland, they

are emptied on a regular basis, their content is analyzed, different species identified and

counted. The trap counts are then used to estimate the population density of the harmful

species at the position of traps. Correspondingly, there are three basic spatial scales in the

pest monitoring problem. The research approaches depend on the spatial scale where the

data are collected, and in this paper we discuss relevant physical/biological mechanisms

and an adequate mathematical framework for each spatial scale involved.

The first and smallest spatial scale is related to a single trap. The relevant biological

process is the individual insect movement and the corresponding theoretical framework

is a random walk [127]. The main challenge here is to separate the effects of popula-

tion density from the effects of movement1, in particular, to reveal how the trap counts

(and, consequently, the estimate of the population density in the vicinity of the trap)

may be affected by the type of the stochastic process, i.e. whether it is the Brownian

motion or a Levy flight. The problem is made more difficult by the inherent stochastic

variation of individual traits that sometimes can make it impossible to distinguish be-

tween the Brownian motion and Levy flights [124]. Also, the presence of other movement

modes (cf. “composite Brownian motion”) or discretization of the continuous individual

movement on an inadequate time-scale may result in “superficial Levy flights” [68, 77].

The next spatial scale arises when the information about the pest density obtained at

several different locations (e.g. from several traps) has to be used in order to estimate the

average pest density over a certain area, e.g. over a large agricultural field. A standard

approach used in ecology is based on calculating the arithmetic average of local densities.

This approach, although being efficient in case of an approximately uniform spatial popu-

lation distribution, becomes ineffective and inaccurate in case of a heterogeneous distribu-

tion, e.g. due to pattern formation. However, pattern formation in ecological populations

is a phenomenon commonly seen in ecological data and explained by well-developed the-

ories [109, 87]. Respectively, a new approach to estimate the average population density

from sparse discrete spatial data (e.g. trap counts collected in the nodes of a spatial grid)

has recently been developed [115, 116] and was shown to be effective even in case of very

coarse spatial data and a very patchy population distribution [118]. In the case of the

‘extreme aggregation’, i.e. when the population density forms a sharp narrow peak, it was

shown that the system attains probabilistic properties: the average population density

1This problem is also known as the “activity-density paradigm” [165]: apaprently, a similar increase

in the trap counts may result either from an increase in the pest population density or from an increase

in the intensity of the individual movement.
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becomes a stochastic variable and the system is quantified by the probability to have

its value in a pre-defined range [43]. A general conclusion is that, at this spatial scale,

a robust estimate of the population size can be possible even on a very coarse grid if

some properties of the population distribution are known, thus linking this problem to

the problem of pattern formation [117].

The largest spatial scale in the problem of pest monitoring is the landscape scale that

may include many agricultural fields as well as non-farmed habitats and non-agricultural

areas. The main problems here are to reveal long-distance cross-correlations between the

pest abundance in different fields or habitats, the phenomenon known as synchronization,

and to identify the mechanisms resulting in synchronization. Two main mechanisms that

can synchronize the population dynamics in different fields are known to be the coupling by

inter-habitat dispersal and the effect of spatially correlated noise. Whilst synchronization

by noise is usually isotropic, the synchronization by dispersal can exhibit clear directional

preference [15]. Having revisited some recent results, we show that dispersal between

different habitats can occur through a certain self-organized network. Such a network can

arise as a result of the interplay between the landscape properties, the weather conditions

and the behavioral response of the dispersing insects. As a result, close fields can be

virtually uncorrelated but some fields as far away from each other as a few hundred

kilometers can be almost perfectly synchronized.

The paper is structured according to the three spatial scales outlined above; see Sec-

tions 2 to 4, respectively. After the scale-specific problems and research approaches are

discussed, we then consider the coupling between the scales (Section 5). In particular, we

discuss how the processes acting on these different spatial scales can be related, what are

the mechanisms and the relevant modeling approaches, and how the information obtained

on one scale can be translated to the other scales in order to increase the robustness and

effectiveness of pest insect monitoring across spatial scales.

2 Single trap problem

In pest insect monitoring, as well as in insect studies in general, the information about the

local abundance of a given species is usually obtained by installing traps and analyzing

trap counts. Depending on the traits of the target species, the traps can be of different

design. In case of walking or crawling insects, a trap is essentially just a hole in the

ground, often with a cup or bowl inserted inside in order to make it easier to empty.

They can be of different shape. Traps of a circular shape are most common, although a

variety of other shapes and design are used too [130, 47]. The size of the trap is usually

much larger (by the factor of ∼ 102) than the typical body size of the monitored insects.

Traps are escape-proof; once an insect gets inside, it is held captive and is eventually

killed. Also, traps can be either baited, i.e. using a certain agent that attracts insects to

the trap such as light or pheromone, or non-baited. Because baited traps alter the insect

behavior, they are much more difficult to model and the corresponding theory is largely

absent. Here we mostly consider non-baited traps.
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In this section, we revisit two different (albeit related) approaches to trap counts mod-

eling and interpretation such as the individual-based approach when the movement of

each individual is followed explicitly, and the mean-field approach when trap counts are

described in term of the population density in the vicinity of the trap. We will show that,

in order to achieve a good understanding of trap counts, the two approaches should be

used together.

Interpretation of trap counts aiming to estimate the population abundance in the

vicinity of the trap is not at all straightforward. The essence of the challenge is readily

seen from the following example. Consider a trap of radius r that has caught C1 insects

after having been exposed for time T . This simple situation brings forward a number of

questions as to whether we can obtain the population density U0 from this information.

If this information is sufficient, how do we actually calculate U0? If this information is

insufficient, then what else (e.g. how many more counts) do we need to know in order to get

a reasonably accurate estimate of the population density? How the additional information

can be used in order to improve the accuracy of the estimate? Further in the text, we will

refer to it as the ‘single trap problem’. Existing semi-empirical approaches suggest that

U0 = κC1/(DT ) whereD is the diffusion coefficient and κ is a certain numerical coefficient,

thus regardingDT as the effective ‘catchment area’ [29, 165]. However, this approach does

not work in the case of repeated trap counts because it does not take into account the

perturbation introduced by the trap to the spatial distribution of the insects. Moreover,

a consistent theory and robust computational algorithms only exist in the case where

insects perform Brownian motion. There is increasing evidence that animals may perform

non-Brownian motion such as Levy flights, but a theory relating the corresponding trap

counts to population density is lacking. Note that the problem of trapping has been

studied extensively in physics (e.g. see [48]) including the case of anomalous diffusion

[92], but most of the studies are concerned with large-time asymptotics while for insect

monitoring short-time dynamics is of primary interest.

2.1 Individual-based approach

It is a common knowledge that animals move in space. Such motion is regarded as an

essential feature of animal’s life. Through their individual movement, animals make better

use of the environment, e.g. by foraging, by searching for a mating partner, by avoiding

predators etc. Once a trap is installed, it introduces a perturbation into the movement;

when an animal (e.g. insect) meet the trap on its way, it will fall into it with a certain

probability p∗. This probability can depend on the trap design (e.g. it is larger for baited

traps than for non-baited ones) and on the species traits. For well-designed traps, p∗ is

close to one. In the below, we assume that p∗ = 1 unless its value is explicitly given

otherwise.

Before the animal will have a chance to fall into the trap, it has to get close to the

trap boundary. Therefore, we first need to consider the movement in a more formal way.

For the sake of clarity, here we focus on movement in two spatial dimensions, i.e. in the

plane (x, y). Our analysis therefore immediately applies to trapping of walking or crawling
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insects in a field. Reduction of the approach to a simpler 1D case or its extension onto a

slightly more general 3D case are relatively straightforward.

Generally, movement of an individual animal takes place along a certain curvilinear

path or trajectory. In observations, animal’s position is usually recoded not continuously

but at certain moments (say, t0, t1, . . . , ti, . . .), for instance, by taking snapshots of the

movement arena. Correspondingly, the curvilinear path is mapped into a broken line

defined by the positions ri = r(ti), i = 0, 1, . . . , of the animal [168]; see Fig. 1. For the

sake of simplicity, we assume that ti+1 − ti = ∆t = const for all i. Over the interval

∆t, the animal moves along the straight line from ri−1 to ri, thus covering the distance

li−1 = |ri − ri−1| with the average velocity vi = (ri − ri−1)/∆t. When it reaches its next

position ri, it immediately turns by an angle αi and moves to ri+1 covering distance li
with the average velocity vi+1 = (ri+1 − ri)/∆t, then turns by the angle αi+1, moves in

the new direction, and so on. Apparently, this is a caricature of the actual movement

and, unless the interval ∆t is very small, some information about the animal movement

is lost. (It is perhaps more appropriate to talk about the animal displacement from its

initial position rather than about actual movement.) However, this approach still works

well in case the temporal scale of the particular phenomenon under study (which depends

on the ecological context of animal movement) is much larger than the time-scale ∆t

of observations [33, 42, 69, 143, 168]. Indeed, for ∆t → 0, the broken line apparently

converges to the original curvilinear path.

Figure 1: A sketch of animal movement path and its discretization (from [69], with permissions).

An uninterrupted movement along the broken line is completely determined by the

two sequences, i.e., the sequence of step lengths l0, l1, . . . , li, . . . , and the sequence of the

turning angles α1, α2, . . . , αi, . . . . A major issue is the statistical properties of these

sequences. To a certain extent, the answer depends on ∆t. Assuming that the movement

path is a smooth curve and ∆t is sufficiently small, the (i+1)th step will be almost in the

same direction as the ith one because in the limit ∆t→ 0 both directions converge to the

direction of the tangent line; therefore, αi ≈ 0. Similarly, one can expect li+1 ≈ li; indeed,

abrupt changes in the movement speed of a ‘particle’ of a finite mass are forbidden by
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Newton’s Second Law as they would require infinitely large force. However, in the course of

time small deviations accumulate. For a larger ∆t, the piece of the animal path contained

between ri and ri+1 can be of a complicated shape. Correspondingly, αi is not necessarily

small anymore, and li+1 can be very different from li.

The next question is whether the variables l and α are deterministic or ‘random’,

i.e. stochastic. For biological arguments, it seems improbable that at any given moment

an animal moves randomly; a common assumption is that the speed and direction of its

movement appear as a response to certain external stimuli [168]. However, the number of

stimuli affecting the animal’s movement can be large. As a result, even if the response to

each stimulus is well defined and perfectly deterministic, the resultant response is likely

to be complicated. This is exactly the context where Newtonian mechanics gives way to

statistical mechanics [10]. Especially when the focus is on the path ‘as a whole’, as it

often is in the dispersal studies [174], it is not instructive to look for a particular reason

behind every animal’s turn or move. On the contrary, a convenient description of the

individual movement is obtained by considering the step length l and the turning angle α

as stochastic variables defined by their probability distribution functions (pdf), say, ϕ(l)

and ψ(α).

It is clear from the above argument that ψ(α) → δ(α) for ∆t → 0, where δ(α) is the

Dirac function. For any ∆t finite but small, ψ(α) is a dome-shaped function with the

maximum at α = 0. It means that the preferred direction of the next step coincides

with the direction of the previous step and large turning angles are suppressed; the cor-

responding movement pattern is called the Correlated Random Walk (CRW) [75]. With

an increase in ∆t, the animal will eventually ‘forget’ the direction of its previous step as

the part of the original curvilinear path between ri and ri+1 will include more and more

bends and curls; therefore, for a sufficiently large ∆t the random walk becomes isotropic,

i.e. ψ(α) ≈ const = 1/(2π). This is sometimes referred to as the tangling impact of the

turning angles [13] and is obtained from the CRW in the multi-step limit [75]. In the

following, we will mostly focus on isotropic random walks where the pdf for the turning

angle is uniform around the circle.

The procedure described above is a standard protocol used in field or laboratory studies

on animal movement where the distribution of steps and/or turning angles can be obtained

from the collected data [49, 89]. It can also be used as a baseline for a theoretical insight

into the dynamics of trap counts. Having the probability distribution functions available

(e.g. from a previous study on the given species), one can simulate the movement of each

individual in the field [30, 69] and calculate the trap counts straightforwardly [127, 179].

Consider an individual that is situated at a position ri = (xi, yi) at time ti. Its position

ri+1 = (xi + ξi, yi + ηi) at the next moment ti+1 can be written down as ri+1 = ri +

(∆r)i where (∆r)i is the ith step along the path. In the local polar coordinates, ∆ri =

(li, αi) where li is the step length and αi is the turning angle. Alternatively, in Cartesian

coordinates (∆r)i = (ξi, ηi) and the path is defined by the pdfs for the random variables

ξi and ηi, and can be simulated accordingly.

Consider the case of insects performing the Brownian motion defined by the following
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pdfs:

̺(ξ) =
1

δ
√

2π
exp

[

− ξ2

2δ2

]

, ̺(η) =
1

δ
√

2π
exp

[

− η2

2δ2

]

. (1)

Note that our choice of the zero mean and the same variance δ2 for ̺(ξ) and ̺(η) implicitly

assumes that the movement does not have any directional bias and hence it occurs in an

isotropic environment, e.g. it is not affected by the wind.

The distribution of steps and turning angles can be easily obtained from (1). Indeed,

consider an animal positioned at the origin. The probability that it will move into an

(infinitesimally) small vicinity of the point (ξ, η) = (l, α) over the next time step is

dP = ̺(ξ)̺(η)dσ , (2)

where dσ is the area of the vicinity. For an infinitesimally small vicinity, the details of its

geometry do not matter and therefore dσ = dξdη = ldldα. Taking into account Eqs. (1)

and recalling that ξ2 + η2 = l2, from (2) we then obtain

dP =
1

2πδ2
exp

(

− l2

2δ2

)

ldldα . (3)

However, in the polar coordinates, the probability dP is

dP = ψ(α)dα · ϕ(l)dl (4)

(assuming that l and α are mutually independent) where ϕ(l) and ψ(α) are the probability

distribution functions for l and α, respectively.

Comparing the right-hand sides of (3) and (4), we obtain the expression for ϕθ:

ψ(α) =
1

2π
. (5)

Indeed, in the absence of a preferable direction, all the directions are equivalent and

therefore α must be distributed uniformly over the circle.

As for the distribution of step length, we obtain

ϕ(l) =
l

δ2
exp

(

− l2

2δ2

)

. (6)

Obviously, the description of the movement path in terms of the pdfs (5–6) for the

step and turning angle is equivalent to the description with pfds for ξ and η as given by

Eqs. (1). Interestingly, in a more general case this is not necessarily true. Indeed, for any

probability distribution function other than exponential, ξ2 and η2 do not fold into l2. In

particular, in case of a Levy flight, the increments in x and y are not independent [76].

Considering them as independent may result in an artificial movement path where all long

jumps are aligned with either axis x or y, cf. Fig. 3 from [76]. Correspondingly, in order

to simulate a sample path, one should either use another procedure of generating the
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Figure 2: A sketch of animal movement in vicinity of a trap.

increments that is considerably more complicated [76] or use the alternative description

of the steps in the polar coordinates.

We also mention here that the properties of the individual animal movement can be

considerably different for different ϕ(l), in particular depending on whether the rate of

decay of ϕ at large l is fast enough to ensure the existence of the mean and the variance

or not; the latter is often referred to as a “fat-tailed” distribution [174]. In Section 2.5,

we will consider this issue in more detail.

A trap introduces a perturbation to the movement. Once the animal’s path crosses the

trap boundary, the animal is trapped and the path terminates (Fig. 2). Consider a trap

of circular shape with radius R and its center at (x̄, ȳ). In mathematical terms, a given

animal is caught at moment ti if

(xi − x̄)2 + (yi − ȳ)2 < R2 . (7)

In ecological applications, there is not just one insect wandering in the field but many

of them, say, K. Correspondingly, when the population dynamics is simulated using the

individual-based approach, at each time step the new positions for all K animals are

calculated using the probability distribution functions2. At each time step, after the new

position for each of the insects has been simulated, the condition (7) is applied. The trap

counts are obtained accordingly: when the position of an animal is first observed to be

inside the trap, the corresponding path is terminated and the trap count increases by one.

Figure 3 shows the snapshot of the population distribution simulated using the above

procedure in a square arena or domain L × L (with L = 100, in abstract units) and

a circular trap of radius R = 5 installed in the center of the domain. For the initial

condition (Fig. 3, left), we first took K insects and distributed them randomly across the

whole domain, and then removed those whose position appeared to be inside the trap.

This results in the average population density of U0 = KL−2. Figure 3 (right) shows

2Here we neglect the inter-individual interactions that can potentially lead to a variety of collective

phenomena in movement and behavior, e.g. see [35, 163]
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Figure 3: Population of insects performing the Brownian motion as defined by (1) with δ2 =

0.02; snapshots are shown at t = 0 (left) and t = 15 (right), i.e. after 1500 steps with a

hypothetical value ∆t = 0.01. Only a part of the computational domain is shown, the total

size is 100×100. The initial population density is U0 = 1 which corresponds to the total initial

population size of K = 104.

the distribution obtained after 1500 steps, the probability distribution functions of the

random walk being given by the normal distributions (1) with the variance δ2 = 0.02.

Note that this individual-based modeling procedure does not contain the time intervals

explicitly. For a given pdf, the evolution of the population distribution in discrete time

depends on the number of steps i but not on ∆t. However, here we recall that, in studies
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Figure 4: Insect density as a function of the radial distance from the center of the trap corre-

sponding to the snapshot shown in Fig. 3, right. The vertical line shows the position of the trap

boundary.
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on individual animal movement, the time-discrete random walk is not inherent but is

introduced as a theoretical framework to describe the time-continuous movement (e.g. see

the beginning of this section). The time thus appears implicitly through the value of the

variance: the larger the time interval ∆t between the two subsequent fixation of the animal

position, the larger is the variance of the step size distribution. Moreover, time becomes

explicit when the time-discrete random walk is linked to its time-continuous mean-field

counterpart (see Section 2.2). With this idea in mind, we can chose a certain value of ∆t;

in particular, for the simulation results shown in Fig. 3 we consider ∆t = 0.01.

In agreement with intuitive expectations, the trap introduces a spatially inhomogeneous

perturbation into the population distribution. A visual inspection of Fig. 3 immediately

reveals that the population density near the trap boundary is smaller than the density

far away from the trap. This is shown in more explicitly in Fig. 4. Due to the finite

population size, the density fluctuates stochastically around its average value U0 = 1.

Considering the evolution of the population density profile, we observe that the radius of

the perturbed area grows with time; as it will be further explained in the next section,

this transient behavior is a principle property of the system’s dynamics that determines

the pattern in the trap counts sequence over time.

It is readily seen that this emerging spatial pattern affects the trap counts. For any

given level of insects movement activity (i.e. for any given δ), the number of insects caught

per unit time increases with the population density in the vicinity of the trap. Therefore,

on average (up to fluctuations of stochastic origin), the number of insects caught per

unit time should gradually decrease with time. This heuristic argument appears to be

in full agreement with simulation results. Figure 5 (top) shows the daily trap count C

vs time over 3000 steps (100 steps = 1 day) obtained for the initial population density

U0 = 0.1. The general tendency of the daily counts to decrease with time can be readily

seen, although the strong effect of stochasticity obscures the details of the pattern.

The pattern in the trap counts sequence is seen more clearly if, instead of the daily

counts, we consider a cumulative trap count Jn defined as the sum of all daily counts up

to the given day n:

Jn = J(tn) =
n
∑

i=1

Ci , (8)

where Ci is the trap count obtained in day i. The cumulative trap count obtained from

the simulated daily counts shown in Fig. 5 (top) is shown in Fig. 5, bottom.

For a different initial distribution of the insects, both the emerging distribution and

the pattern of trap counts can be completely different. Figure 6 shows the snapshots of

the insect distribution at two moments of time obtained in the case of a point-source

release at the position x = −10, y = −10. Although the area occupied by the insects

eventually grows in time, only very few insects reach the position of the trap boundary

until approximately t = 5; see Fig. 7. For any earlier time, the obtained trap counts are

zero.

Note that, from the mathematical point of view, the choice of the initial conditions is

likely to affect only affects the early, transient stage of the dynamics before the system

approaches some kind of ‘equilibrium state’. However, in applications to pest monitoring
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Figure 5: Trap counts vs time (in days) obtained for U0 = 0.1 (which corresponds to the total

initial population size of K = 103 insects), other parameters as in Fig. 3. Top: daily trap count

C; bottom: the cumulative number J of the insects trapped, see Eq. (8).

and control, it is the transient stage – not the equilibrium state! – that is the focus of

interest. Indeed, different initial population distributions correspond to different ecolog-

ical situations that may requires different control strategies. In particular, population

aggregation (cf. Fig. 6) can arise for a variety of reasons such as a population response

to environmental heterogeneity (when a favorable ‘patch’ has a much higher population

density than the less favorable environment around it), self-organization due to spatiotem-

poral interspecific interactions [87], or swarming behavior [106]. Especially the latter is

important in the context of insect pest monitoring. Indeed, insect pest infestation often

starts when an invasive or migrating swarm of pest insects lands down in a small area

inside an agricultural field. In this paper, we will refer to this situation as a ‘point-source

release.’ From this initial source, the population then starts spreading over space. An

early detection of the location of the population source, as well as the estimation of pop-

ulation size of the landed swarm, are therefore tasks of high practical importance for pest

13
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Figure 6: Population of insects performing the Brownian motion (Eqs. (1) with δ2 = 0.01);

snapshots are shown at t = 2 (left) and t = 20 (right), i.e. after 200 and 2000 steps, correspond-

ingly. Only a part of the computational domain is shown. The initial population consists of

K = 103 insects and is released at the point (x, y) = (−10,−10).

monitoring and control [57].

However, not all insect species migrate or disperse over long distances. Correspond-

ingly, the uniform initial distribution may arise naturally from the residual pest popula-

tion (e.g. over-wintered or remaining after pesticides application) dwelling in a relatively

homogeneous environment.

As an ‘intermediate’ case between the point-source release and the uniform distribution,

insect pest infestation may occur as a result of short-distance migration, for instance, from

an adjoint non-farmed habitat. We consider this case in detail in Section 2.3.

Now we recall that the ultimate goal of trapping is to reveal the population density

distribution in the vicinity of the trap. The results shown in Figs. 5 and 7 are obtained

in computer simulations where all parameters are known. However, sequences of trap

counts similar to Figs. 5 and Fig. 7 are routinely obtained in pest monitoring. How can

we estimate the underlying population density or the location of point-source release,

especially when the effects of stochasticity are so strong that make it almost impossible

to distinguish any pattern in the counts sequences? In the next section, we will show

that this can be done (often with surprisingly good accuracy, sometimes using a dataset

consisting of just several trap counts) by considering the stochastic trap counts together

with their deterministic mean-field counterpart.

2.2 Mean-field approach: Diffusion equation

The individual-based approach considered in the previous section makes it possible to

simulate the trap counts directly for any chosen initial distribution of insects and for any

particular movement pattern as given by the probability distribution of the step length
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Figure 7: Trap counts vs time (in days) obtained for the point-source release with parameters

as in Fig. 6. Top: daily trap count C; bottom: the cumulative number J of the insects trapped,

see Eq. (8).

and turning angle. Therefore, it makes it possible to mimic various specific situations in

real-world pest control. However, a problem with the individual-based approach is that,

since it is essentially simulation-based, it does not allow us to draw general conclusions

about trap counts for different parameter values.

There is, however, another way to describe the trap counts. It is well known [17, 32, 33,

106, 160, 168] that the population density of a system of particles performing Brownian

motion is a solution of the diffusion equation. Below we give a heuristic derivation of

the diffusion equation; a rigorous derivation with a detailed discussion of all subtle issues

arising on the way can be found, for instance, in [50, 145].

Let us consider a single insect or ‘particle’ randomly browsing in an infinite space. For

the sake of simplicity, here we focus on the 1D case. Let G(x, t) be the probability density

for this random walker to be found at the position x at time t. Correspondingly, the

probability to find the walker at time t in the small vicinity of x, i.e. in (x, x + dx), is

15



Pdx(x, t) = G(x, t)dx.

The evolution of the probability density is described by the master equation [10, 32,

160]:

G(x, t+ ∆t) =
∫

∞

−∞

G(x− ξ, t)̺(ξ,∆t)dξ . (9)

In the context of the previous section, we consider Eq. (9) as a discrete-time model of an

inherently continuous insect movement, ∆t being the timescale of (discrete) observations.

The kernel ̺(ξ,∆t) is the probability density of the next position of the walker after time

∆t, i.e. after one step in time, in case its position at time t is at the origin. In ecological

studies, ̺(ξ,∆t) defined as above is often called the dispersal kernel. Function ̺ obviously

depends on ∆t: the longer is the time interval between the two subsequent fixations of the

insect position, the further (on average) is the corresponding displacement. We consider

the motion to be stationary (in the statistical sense) and going on in a homogeneous

space, so that ̺ does not depend on x or t.

Equation (9) is complemented by the initial condition

G(x, 0) = δ(x− x0), (10)

where x0 is the position of the walker at t = 0.

Equation (9) is very general and, as such, describes a variety of different stochastic

processes. The type of the random walk can be specified by assuming certain properties

of the function ̺(ξ,∆t). In particular, under certain constraints, the continuous-time

limit ∆t→ 0 of the Eq. (9) turns into the Fokker-Planck equation, of which the diffusion

equation is a special case.

With the continuous limit in mind, we consider ∆t to be sufficiently small and apply

the Taylor expansion to the left-hand side of (9) keeping explicitly only the first two terms,

so that

G(x, t+ ∆t) = G(x, t) +
∂G(x, t)

∂t
∆t+ o(∆t). (11)

Since ̺(ξ,∆t) is the probability density,

∫

∞

−∞

̺(ξ,∆t)dξ = 1, (12)

hence ̺ must decay sufficiently fast at large ξ. Correspondingly, we assume that only

small values of ξ contribute significantly to the right-hand side of (9) and apply the

Taylor expansion to G(x− ξ, t):

G(x− ξ, t) = G(x, t) − ∂G(x, t)

∂x
ξ + . . .+

(−1)k

k!

∂kG(x, t)

∂xk
ξk + . . . . (13)

An important property of ̺ that distinguishes between different type of the random

walk is its rate of decay at large ξ. In particular, if the rate of decay is exponential or

faster, then, having substituted (11) and (13) into (9), Eq. (9) takes the following form:

∂G(x, t)

∂t
∆t+ o(∆t) =

∞
∑

k=1

(−1)k

k!

∂kG(x, t)

∂xk
< ξk >, (14)
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where < ξk > is the kth moment of the probability distribution ̺:

< ξk >=
∫

∞

−∞

ξk̺(ξ)dξ < ∞, k = 1, 2, . . . . (15)

We now restrict our analysis to the case where there random movement is isotropic so

that there is no directional bias. Correspondingly, ̺(ξ) = ̺(−ξ) and all odd moments

disappear, < ξ2m+1 >= 0 (m = 0, 1, . . .). From (14), we then obtain:

∂G(x, t)

∂t
+
o(∆t)

∆t
=

∞
∑

m=1

(−1)k < ξ2m >

k!∆t

∂2mG(x, t)

∂x2m
. (16)

Since ̺ depends on ∆t, the moments depend on ∆t as well. The type of their depen-

dence on the timescale is, in principle, another point that differentiate between different

movement scenarios. Here we assume that the variance < ξ2 > of the distribution ̺ does

not have a singularity at ∆t = 0 and that its Taylor expansion has a non-zero linear term:

< ξ2 > = A2∆t+ o(∆t) , (17)

where the numerical coefficient A2 has the meaning of the variance per unit time.

A further standard assumption [10, 50] is that, the higher the moment’s order the

higher is the power of the first non-zero term in the corresponding Taylor expansion, so

that

< ξ2m > = o(∆t) for m ≥ 2. (18)

The random walk that satisfies conditions (15) and (17–18) is called the Brownian motion.

From (16–18), considering the limit ∆t→ 0, we obtain the diffusion equation:

∂G(x, t)

∂t
= D

∂2G(x, t)

∂x2
, (19)

where D is the diffusion coefficient:

D = lim
∆t→0

< ξ2 >

2∆t
.

Here the existence of the limit is guaranteed by (17).

The solution of the diffusion equation corresponding to the initial condition (10) is well

known [36]:

G(x− x0, t) =
1√

4πDt
exp

[

−(x− x0)
2

4Dt

]

. (20)

It is readily seen that the corresponding mean squared displacement of the walker is

< (x − x0)
2 >∼ Dt. This property is widely regarded as a ‘fingerprint’ of the Brownian

motion.

Note that in the special case when the dispersal kernel is given by the normal distri-

bution,

̺(ξ,∆t) =
1√

4πD∆t
exp

[

− ξ2

4D∆t

]

, (21)

17



the probability density for the single walker at t = n∆t, i.e. after n steps, can be found

from Eq. (9) by direct calculation making use of the mathematical fact that the convolu-

tion of two normal distributions is also a normal distribution.

An important assumption made above is that ̺ decays sufficiently fast at large ξ to

ensure the existence of all moments of the distribution, see (15). It is readily seen that

this is true in case of ̺(ξ,∆t) being the normal distribution as well as, in fact, in case of

any kernel with the rate of decay exponential or faster. A question arises naturally as to

how the random walk properties may change if this constraint is relaxed and the kernel

̺(ξ,∆t) is fat-tailed, so that some of the moments do not exist. An immediate example

is given by the case when ̺ decays as an inverse power law, i.e. ̺ ∼ ξ−α for ξ → ∞ where

α > 1. The corresponding pattern of movement is often referred to as “superdiffusion”

[173] or, more broadly, as anomalous diffusion [80, 174]. A detailed discussion of this

phenomenon lies beyond the scope of this paper. Here we only very briefly mention some

of its properties.

The situation appears to be different for α > 3 where the kernel possesses a finite

variance and for 1 < α ≤ 3 where the finite variance does not exist. In the former

case, the Central Limit Theorem applies [44], which predicts that the probability density

G(x, n∆t) of the walker after n steps (i.e. the sum of n independent identically distributed

random values) converges to the normal distribution for n→ ∞; see Fig. 8. Interestingly,

the convergence occurs non-homogeneously in space, so that, for any finite n, the rate of

decay at the tail of the probability distribution G(x, n∆t) coincides with the rate of decay

of the kernel [82], that is G ∼ (x− x0)
−α. Therefore, the tail of the evolving distribution

remains fat. Thus, in spite of the normal distribution arising in the large-time limit, at

any finite t = n∆t the probability of a long jump remains to be high (compared to the

vanishingly very probability described by the thin Gaussian tail), which results in a faster

displacement [82].

In case 1 < α ≤ 3, the variance does not exist and the Central Limit Theorem does

not hold; there is no convergence to the normal distribution. The corresponding random

process is called the Levy walk. At any time t, the asymptotical rate of decay in the

probability density G is the same as in the kernel, i.e. G(x, t) ∼ (x−x0)
−α. An interesting

special case is given by the Cauchy distribution [50]:

̺(ξ,∆t) =
ν∆t

π[ξ2 + (ν∆t)2]
=

1

πν∆t



1 +

(

ξ

ν∆t

)2




−1

, (22)

where ν is the distribution parameter. A direct calculation (cf. [82]) shows that the

probability density distribution G of the random walker with the dispersal kernel (22) is

to be the Cauchy distribution at all time, i.e. after any number n of steps in time:

G(x, t = n∆t) =
νn∆t

π[(x− x0)2 + (νn∆t)2]
. (23)

For most of this paper (except Section 2.5), we assume that insects perform the Brow-

nian motion. Correspondingly, let us now consider a point-source release of K ≫ 1 in-

dependent identical walkers, the movement of each of them being described by Eq. (19).
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Figure 8: Probability density distribution for the position of a random walker obtained in

individual-based simulations after 104 realizations. At t = 0 the walker is released at x = 0.

The symbols show the probability density given by the frequency per unit length in the interval

or ‘bin’ centered at a given location x; the bin width is ∆x = 0.2. The dispersal kernel used

is ̺ = C(|ξ| + γ)−α where C = 0.5(α − 1), α = 3.5 and γ = 1. (top) The emerging spatial

distribution after 10 steps (circles) and after 100 steps (crosses). The solid curve shows the

normal distribution N (0, 7.8). (bottom) A fragment of the total domain showing the tail of

the distribution emerging after 100 steps (in semi-logarithmic coordinates). Clearly there is a

considerable deviation between the normal distribution and the actual population distribution

at large x.

Since all the walkers are identical and independent, we may regard it as the same stochas-

tic event repeated K times. Correspondingly, the number dK of the walkers to be found

at time t in the vicinity of x is going to be dK(x, t) = KPdx(x, t) = KG(x, t)dx. Having

defined the population density in the usual way as u(x, t) = dK(x, t)/dx = KG(x, t),

we obtain that it should be a solution of the same equation as G, i.e. of the diffusion

equation:
∂u(x, t)

∂t
= D

∂2u(x, t)

∂x2
. (24)

The diffusion equation (19) for the probability density of a single walker is precise in
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the continuous limit ∆t → 0. However, one can expect that it remains valid, at least

approximately, for a small but finite value of ∆t. In the corresponding approximate

expression for the diffusion coefficient,

D ≈ δ2

2∆t
, (25)

δ2 is the variance of the probability density ̺ of the next step’s length for the given value

of ∆t. This is obviously the same δ2 that was used in the individual-based simulations

in section 2.1. Therefore, the diffusion coefficient links the “microscale” of an individual

walker to the “macroscale” of the population density. We mention here that the diffusion

equation for the population density could be derived in a completely different way based

on the Fick law relating the population flux to the density gradient [17, 36]. However, in

that case the relation between micro- and macro- scales would remain obscure.

We mention here that, in mathematical terms, Eq. (19) (or (24)) should be classified

as deterministic because it does not contain any random values. Although the random

walk is a paradigm of the stochastic dynamics, it is described by a purely deterministic

diffusion equation. Therefore, the stochastic nature of the process does not necessarily

requires an explicitly stochastic model. This observation is well known in physics3 but it

is less commonly appreciated in biological applications.

In fact, an explicitly stochastic model may only be required if we are interested in

fluctuations, i.e. the deviations from the mean. In the particular case of the Brownian

motion, by virtue of the Central Limit Theorem the relative magnitude of the fluctuations

is
∆u

u
∼ 1√

u
.

Hence fluctuations are negligible for large population densities but may become important

at small densities.

In the case of the point-source release, the initial condition for Eq. (24) is given as

u(x, 0) = Kδ(x−x0) and the spatial distribution of the population density is immediately

obtained from (20) as u(x, t, x0) = KG(x− x0, t). In a more general case, u(x, 0) = u0(x)

where u0(x) is a certain function, it is straightforward to see (cf. [36]) that the solution

of the diffusion equation is

u(x, t) =
∫

∞

−∞

G(x− ξ, t)u0(ξ)dξ . (26)

In practical applications concerned with trapping of walking or crawling insects, the

diffusion equation should be considered on a 2D domain (on a 3D domain for flying

insects). However, it is instructive to begin with an 1D case when the population density

depends on one spatial coordinate only. Moreover, the traps used in pest monitoring often

have the shape of a long narrow slot (R. Blackshaw, personal communication; also [47])

and in that case 1D approximation can be expected to provide not only a qualitative but

also a quantitative insight into the problem.

3The Schrödinger equation could be another good example.
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When the trap is installed, the movement space is not infinite anymore and the dif-

fusion equation must be complemented with the boundary conditions. Let us consider a

population of randomly walking insects in the field of size L. For the moment, we assume

L to be very large, DTL−2 ≪ 1 where T is the characteristic trapping time. Correspond-

ingly, we consider the diffusion equation in the semi-infinite domain 0 < x < ∞ (the

effects of the finiteness will be addressed later) where the trap is installed at the left-hand

side so that x = 0 corresponds to the trap boundary. Since there is no live insects in the

trap, the relevant boundary condition is

u(0, t) = 0 . (27)

The corresponding solution of the diffusion equation is

u(x, t) =
∫

∞

0
[G(x− ξ, t) −G(x+ ξ, t)]u0(ξ)dξ (28)

(e.g. see [36]) where G is given by (20).

Once the solution is known, the cumulative trap count over time t can be calculated as

J(t) =
∫ t

0
|j(τ)|dτ , (29)

where

j(t) = −D
∂u(x, t)

∂x

∣

∣

∣

∣

∣

x=0

(30)

is, according to the Fick law, the diffusive flux of the population density through the trap

boundary.

Considering (29–30) together with (28), after some standard calculations we obtain:

J(t) =
∫

∞

0
u0(ξ)

[

1 − erf

(

ξ√
4Dt

)]

dξ, (31)

where erf(z) is the error function.

The properties of J as a function of time can therefore be different for different initial

population distributions. In the special but ecologically meaningful case of a homogeneous

distribution u0(x) = U0 = const, from Eq. (31) we readily obtain:

J(t) =
2U0√
π

√
Dt. (32)

The corresponding solution of the diffusion equation is given by

u(x, t) = U0 erf

(

x√
4Dt

)

(33)

and is shown in Fig. 9. Note that the size of the spatial perturbation induced by the trap

grows with time as ∼
√
Dt.
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Figure 9: Population density vs space as given by the solution (33) of the diffusion equation

(24) at t = 0.1 (solid curve 1), t = 1 (dashed-and-dotted curve 2) and t = 10 (dashed curve 3)

for parameters D = 1 and U0 = 10. The diffusion equation is solved numerically in the domain

0 < x < L with L = 30 with the boundary conditions u(0, t) = 0 and ∂u(L, t)/∂x = 0.

Another relevant case is given by a distribution with a constant gradient U1, i.e. u0(ξ) =

U0 + U1ξ. This type of the initial distribution may account for the migration of the pest

species through the domain boundary; see Section 2.3. In this case, from (31) we obtain:

J(t) =
2U0√
π

√
Dt+ U1Dt . (34)

A somewhat different case is given by the initial condition when the population is

aggregated at a certain position in space, i.e. u0(x) = Kδ(x − x0) where K is the total

number of insects released at t = 0 at location x0 and δ is the Dirac function. In this

case, Eq. (31) becomes

J(t) = K

[

1 − erf

(

x0√
4Dt

)]

= Kerfc

(

x0√
4Dt

)

. (35)

Recall that in the pest monitoring problem we are mostly interested in small time

dynamics. Also, the position x0 of the insects release is unlikely to be in close vicinity

of the trap, so x0 can be regarded as large. Correspondingly, of particular interest is

the limiting case when the argument z of erfc(z) is large. We can then make use of the

following asymptotic expansion [1]:

erfc(z) ≃ 1√
π
e−z2

[

1

z
+ o

(

1

z

)]

. (36)

Retaining only the leading term, from (35) and (36), we obtain

J(t) ≃ K√
π

√
4Dt

x0

exp

(

− x2
0

4Dt

)

. (37)
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Equation (37) gives the small-time dependence of the cumulative trap count in case of

the point-source release.

Coming back to the main goal of the single-trap scale of the pest monitoring, now we

are going to consider how Eqs. (31–35) can be used for the estimation of the population

density or size of the monitored species. Indeed, predictions obtained from the diffusion

equation result in smooth, continuous, deterministic curves while the trap count data

are given by a discrete/discontinuous set often wildly oscillating due to stochastic effects,

e.g. see Fig. 5. In order to answer this question, we recall that, given the individual

insect movement can be regarded (at least on a certain time scale) as Brownian walk, the

oscillations seen in the data occur around the value predicted by the diffusion equation.

The unknown population density or total population size can be obtained by looking for

the best fit between theory and data [127]. The best fit can be found by using appropriate

statistical tools.

The choice of the statistical tools is a controversial issue. The recent trend is to calculate

the maximum likelihood function and the Akaike weights as they are regarded as more

reliable compared to other approaches [28, 54]. In this paper, however, in order to avoid

unnecessary complexity, we use a simpler method called nonlinear regression [40] and the

parameter estimation is done by using NLREG statistical software4. Also, since our goal

here is more to justify the concept rather than to develop a ready-to-use practical toolkit,

we restrict the analysis to a 1D case. Extension of the results onto a more realistic 2D

case is discussed at the end of this section.

In order to simulate the trap counts in the 1D case, we apply the procedure described in

Section 2.1. Figure 10a shows a population of K = 103 insects that at t = 0 is distributed

uniformly (in the statistical sense) over the domain 0 < x < L = 100. Note that the

actual values of the population density (defined as the number of insects inside a ‘bin’ of

a certain width ∆x) oscillates rather wildly around the mean value U0 = 10. The trap is

installed at the left-hand end of the domain so that any insect crossing x = 0 falls into

the trap, and the right-hand side boundary is reflecting. Since Eq. (32) were obtained

for the semi-infinite domain, we chose L large enough in order to minimize finite size

effects. Figure 10b show the corresponding daily trap counts over the period of 30 days,

i.e. consisting of 30 data points, simulated in case of the Brownian motion with D = 1.

The cumulative trap counts are shown in Fig. 10c; the best fit approximation of the data

by Eq. (32) is obtained for U0 = 10.6. Therefore, our approach (originally proposed in

[127] and further developed here) makes it possible to estimate the value of the population

density in the vicinity of the trap with a very good accuracy, i.e. with the relative error

of just a few percent. This approach works with good accuracy for a shorter dataset as

well. Figure 10d shows the result of best fitting the data by Eq. (32) in case only first 10

data points are used; the corresponding estimate for the population density is U0 = 9.6.

Use of the more general formula (34) also allows to obtain the parameters (in this

case, U0 and U1) with reasonable accuracy. In particular, having applied it to the data

shown in Fig. 10d (i.e. the trap counts after the first ten days), we find that the best fit

4 c© Phillip H. Sherrod; a demonstration version is available from http://www.nlreg.com

23



0 20 40 60 80
0

5

10

15

20

Space

P
op

ul
at

io
n 

D
en

si
ty

0 5 10 15 20 25 30
0

2

4

6

8

10

Days

D
ai

ly
 T

ra
p 

C
ou

nt

(a) (b)

0 5 10 15 20 25 30
0

10

20

30

40

50

60

Time

C
um

ul
at

iv
e 

T
ra

p 
C

ou
nt

 (
da

ily
)

0 2 4 6 8 10
0

5

10

15

20

25

30

35

Time

C
um

ul
at

iv
e 

T
ra

p 
C

ou
nt

 (
da

ily
)

(c) (d)

Figure 10: (a) The initial statistically-uniform distribution of the population of size K = 103:

the circles show the number of insects per unit length after they are binned with the width

∆x = 2, the dotted curve shows the mean value of the population density U0 = 10; (b) the daily

trap counts; (c) the corresponding cumulative trap counts (shown by crosses) and their best-fit

by the mean-field model (32) (shown by the solid curve), the best fit is obtained for U0 = 10.6;

(d) the results of data fitting in case of a smaller dataset, the best fit is obtained for U0 = 9.6.

is reached for U0 = 9.5 and U1 = 0.04 where the latter is not significantly different from

0. In general, data fitting with a two-parameter formula is more demanding and, in order

to reach a good accuracy, application of (34) may require a longer dataset compared to

the one-parameter fit.

Our approach works well in case of the aggregated initial conditions (point-source

release) too. As an example, let us consider the 1D domain 0 < x < 100 where at t = 0

the population of K = 1000 insects is aggregated at x = 10. Figure 11a shows the daily

trap counts resulting from the Brownian motion with D = 1. Figure 11b shows the

corresponding cumulative trap counts and their best fit with the theoretical expression

(35). The best fit is obtained for K = 1176 and x0 = 10.6 that provide parameter
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Figure 11: (a) the daily trap counts obtained in case of a point-source release of K = 1000

insects at the distance of x0 = 10 from the trap; (b) the corresponding cumulative trap counts

(shown by crosses) and their best-fit by the mean-field model (35) (shown by the solid curve),

the best fit is obtained for K = 1176 and x0 = 10.6; (d) the results of data fitting in case of a

smaller dataset, the best fit is obtained for K = 848 and x0 = 9.8.
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estimation of a reasonable accuracy. Therefore, we are able not only to get an estimate

of the pest population size but also its location, which is an important issue for practical

applications [57]. As well as above, the need to estimate two parameters rather than one

makes the accuracy somewhat worse than in the basic case (32); however, in the case

shown in Fig. 11c it still provides a reasonable estimate for the parameter values based

on just 15 datapoints, despite that the counts over the first several days are either zero

or very small and hence do not contribute much.

In the above, the domain was assumed to be large enough so that the effect of the

‘external’ domain’s boundary at x = L can be neglected. In case this does not hold, one

needs to define the boundary condition and consider the solution of the corresponding

boundary problem. Here we assume that there is no migration through the external field

boundary:

∂u(L, t)

∂x
= 0 . (38)

Applying the method of variable separation [36] to diffusion equation (24) with the

boundary conditions (27) and (38), we obtain the solution u in the form of an infinite

series:

u(x, t) =
4U0

π

∞
∑

k=1

1

(2k − 1)
sin

(

(2k − 1)πx

2L

)

exp

(

−(2k − 1)2π2Dt

4L2

)

. (39)

From (30) and (39), we arrive at the expression for the diffusion flux at the trap

boundary:

j(t) = −D
∂u(0, t)

∂x
= − 2DU0

L

∞
∑

k=1

exp

(

−(2k − 1)2π2Dt

4L2

)

, (40)

so that the number of insects trapped over time t is then obtained, according to (29), as

J(t) =
8LU0

π2

∞
∑

k=1

1

(2k − 1)2

[

1 − exp

(

−(2k − 1)2π2Dt

4L2

)]

, (41)

where LU0 is the total initial number of insects in the domain.

Expression (41) is valid for any t. The more compact expressions obtained above for

the semi-infinite domain still apply, albeit approximately, if the observation time is not

very large. In particular, in the case of a homogeneous initial distribution, we obtain that

the same formula (32) works with a good accuracy until the perturbation from the trap

reaches the outside boundary, i.e. unless t becomes very large or else L is small [127].

The above results were obtained for a 1D system. A straightforward consideration of

the diffusion equation in the 2D case poses considerable technical difficulties; the corre-

sponding solution is given by a series of the Bessel functions where an explicit expression

for the coefficients is not known. An extension of the 1D results onto the 2D case was done

in [127] based on scaling and dimensions analysis and a relatively simple, semi-empirical

formula for the trap counts was obtained. The formula predicts that, in an infinitely large

domain, the cumulative trap count J(t) should become a linear function of time in the
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large-time limit. However, in a general case where the finiteness of the system cannot be

neglected, J appears to be a linear combination of the small-time (∼
√
t) and large-time

(∼ t) asymptotics. The use of the formula to best-fit simulation data using nonlinear

regression was shown to return an estimate of the corresponding population density with

a reasonable accuracy of about 20% [127].

2.3 Boundary forcing

The goal of insect pest monitoring is to obtain information about pest abundance, in

particular, with the purpose to detect signs of the pest population growth and hence to

provide timely advice on pesticide application. An increase in the pest population size in a

given agricultural field can occur because of the within-field population dynamics such as

population multiplication due to reproduction. However, an increase in the pest density

can also occur due to migration of the species to the field from the outside areas. This

leads to the questions as to how this effect of pest immigration can affect the trap counts,

whether it may be possible to distinguish between the effects of the native and immigrating

populations, and what is the relevant timescale of trap counts collection. Mathematically,

immigration can be taken into account by imposing relevant conditions at the domain

boundary, e.g. by defining the value of the in-flowing flux of the population density.

Correspondingly, we will refer to the effect of the pest immigration as the boundary

forcing.

In Sections 2.1 and 2.2, pest immigration was taken into account indirectly by consid-

ering the point source release, i.e. the spatially aggregated initial population distribution.

However, that only accounted for one possible ecological scenario where a swarm of in-

sects arrives and lands at a certain location in the field. Another typical scenario occurs

when the given agricultural field adjoins a non-farmed area such as grassland or meadow.

Non-farmed areas are rarely treated against pests; as a result, such areas often become

refuge for pest species. The insects may then start spreading from their refuge into the

neighboring field(s).

Spreading can take place in different ways. If individual insects move around in a

random manner, the migration from the refuge to an adjoint farm-field goes against the

population density gradient as described by the Fick law. Alternatively, there can be

a directed movement towards the farm-field, for instance due to the transport with the

favorable wind (for airborne species) or as a response to the odor emanated by the culture

grown in the field.

We first consider the case when immigration occurs due to a directed movement. Trans-

port through the field boundary is then described by the population flux jb = vUb where v

is the velocity of the advection/migration and Ub is the population density outside (i.e. in

the non-farmed habitat). Assuming that inside the field the insects move in a diffusive

manner, the corresponding boundary condition is

− D
∂u(r, t)

∂n

∣

∣

∣

∣

∣

Λ

= (jb,n) , (42)

27



where Λ is the field boundary and n is a unit normal vector pointing outside.

In the analysis below, we focus on a 1D case where the field is described by the domain

0 < x < L. The trap is installed at x = 0 and x = L is the external boundary where

the immigration occurs. Condition (42) then turns into the following Neumann-type

boundary condition at x = L:

∂u(L, t)

∂x
= G , (43)

where G is thus the value of the density gradient. For the sake of simplicity, here we

assume that both v and Ub are constant, and hence G is constant as well.

Using the method of variable separation [36], it is relatively straightforward to obtain

the solution of the diffusion equation with the boundary conditions (43) and (27) and to

calculate the trap counts accordingly:

J(t)Neu = DGt+
16GL2

π3

∞
∑

k=1

(−1)k

(2k − 1)3

[

1 − exp

(

−D(2k − 1)2π2t

4L2

)]

+
8U0L

π2

∞
∑

k=1

1

(2k − 1)2

[

1 − exp

(

−D(2k − 1)2π2t

4L2

)]

, (44)

where the product DG is the population density flux at the right-hand side (external)

boundary of the domain. In the special case of impenetrable boundary, i.e. for G = 0,

(44) coincides with (41).

Note that the first term in Eq. (44) corresponds to the large-time asymptotics. The

linear increase of the trap count indicates the steady-state behavior. Indeed, it is readily

seen that the large-time, steady-state limit of the diffusion equation,

d2us(x)

dx2
= 0 where us(x) = lim

t→∞

u(x, t), (45)

considered together with the boundary conditions (43) and (27), has the solution us(x) =

Gx and hence the constant value of the density gradient dus/dx = G all over the domain.

The second and third terms in (44) thus describe the transient phase of the system. Here

the third term describes the impact of the initial conditions (as it contains U0 but not G)

and the second term describes the transient boundary forcing (as it contains G but not

U0).

Recall that, for t sufficiently small, the third term in (44) behaves like
√
t (see the

end of Section 2.2 and also [127] for more details) and hence is the leading term. Thus,

the dynamics of the trap counts is a transition between the two different asymptotics,

i.e. between the small-time behavior J(t)Neu ≃
√
t and the large-time linear behavior

J(t)Neu ≃ DGt + const. This is clearly seen in the graphs of J(t) shown in Fig. 12.

Note that this transitional dynamics may result in a curve of sigmoidal shape in case G

is sufficiently large, e.g. see the topmost curve in Fig. 12a.

The duration of the early stage dominated by the initial conditions depends on the

distance L between the trap and the external boundary of the domain, cf. Figs. 12a and

12b. The boundary condition at x = L will not have any significant impact on the trap
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counts until a certain time t∗; the large L the larger is t∗. This is readily seen from the

fact that, in the diffusion equation, the time can be scaled as t′ = tDL−2 (for a general

discussion of scaling and its implications see [12]). Note that, in the examples shown in

Fig. 12, the horizontal axis shows time in abstract units because the diffusion coefficient

is scaled to one. Therefore, the relatively large t∗ (on the order of 500 for L = 45, see

Fig. 12a) when the effect of the boundary forcing becomes important does not necessarily

translate to a long time of trap collection in a real-world system.

Now we consider another case of boundary forcing when immigration to the field occurs

due to random movement of individual insects. The boundary condition at x = L is then

described by the Dirichlet-type condition

u(L, t) = Ub , (46)

where Ub has the meaning of the pest population density in the adjoint non-farmed habitat.

For the sake of simplicity, we assume Ub to be constant.

Using the method of the variable separation, we arrive at the following expression for

the trap counts:

J(t)Dir =
DUb

L
t+

2UbL

π2

∞
∑

k=1

(−1)k

k2

[

1 − exp

(

−Dk
2π2t

L2

)]

+
4U0L

π2

∞
∑

k=1

1

(2k − 1)2

[

1 − exp

(

−D(2k − 1)2π2t

L2

)]

. (47)

The expression (47) has a structure similar to (44), i.e. the first term corresponds to the

large-time steady-state solution of the diffusion equation, us(x) = Ubx/L, and the third

term accounts for the effect of the initial conditions. The dependence of trap counts on
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Figure 12: Trap count vs time in case of the Neumann-type boundary forcing, see Eq. (43), for

the initial population density U0 = 10 and for different size of the domain, (a) for L = 45, (b)

for L = 5. Different curves correspond to different values of the gradient G as it varies between

0 and 1 (bottom to top, respectively).
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time exhibits similar features, too, showing a transition between the square-root behavior

at small time and the linear large-time asymptotics; see Fig. 13a. As well as in the case

of Neumann-type forcing, the duration of the early stage depends on L and, for a smaller

domain, can be almost imperceptible (Fig. 13b).

An interesting question is which type of the boundary forcing may result in a faster

build-up of the pest population and hence can be potentially more dangerous. Intuitively,

it seems reasonable to expect that the case of directed movement should result in a faster

growth. However, the reality appears to be somewhat more complicated. Which type

of the forcing results in a faster population growth appears to depend on the relation

between the initial density U0 and the boundary density Ub.

In order to make the two cases comparable, we first set G = Ub/L thus making the

large-time rate of the trap count increase the same in both cases. Figure 14 shows the

trap counts for the two cases, (44) and (47). As can be expected, the trap counts are

the same during the early stage when the boundary forcing has no impact at all. At a

later stage, the Neumann-type forcing is more efficient when Ub is equal to U0 (or just

slightly higher, not shown here); see Fig. 14a. However, if Ub is much larger than U0, the

Dirichlet-type forcing becomes more efficient; see Fig. 14b.

Correspondingly, one can expect that the Dirichlet-type forcing should always result

in larger trap counts if the domain is initially un-infested and the only source of the pest

population is immigration. This indeed appears to be a property of the expressions (44)

and (47). Figure 15 shows the two courses of the trap counts calculated for U0 = 0. The

relative efficiency of different types of forcing does not depend on the distance L: Figure

16 shows the moments of time t1 when the trap count for the first time exceeds 1 (i.e.,

approximately, the time when the first migrating insect is caught), i.e. when J(t1) = 1.

It is readily seen that this time is always shorter for the Dirichlet-type forcing.
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Figure 13: Trap count vs time in case of the Dirichlet-type boundary forcing, see Eq. (46), for

the initial population density U0 = 10 and for different size of the domain, (a) for L = 45, (b)

for L = 5. Different curves correspond to different values of Ub as it varies from 0 to 20 (bottom

to top, respectively).
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Figure 14: Trap counts obtained from for (a) Ub = 10, and (b) Ub = 50. Other parameters

are D = 1, L = 45, U0 = 10 and G = Ub/L. Dashed curve for the Neumann forcing, solid

curve for the Dirichlet forcing, Eqs. (44) and (47) respectively.

For the sake of simplicity, the above analysis was restricted to the 1D case. The 2D

case is technically much more complicated and will be considered elsewhere [14]. Here we

mention that, as we have observed in numerous numerical simulations (not shown here),

the results described in this section are generic and most of them remain valid, at least

quantitatively, in the 2D case.

2.4 Random walk of non-identical dispersers

In the above, the analysis of the population dispersal has been done under an implicit

assumption that all individuals are identical. In reality, it is not so and this is in fact

one of the main factors that makes the laws of living matter significantly different from

those of physical particles or substances. No any two individuals are identical; this basic

observation has a variety of important implications, in particular for movement and dis-

persal. Indeed, consider the following illuminating example: select a group of men born

on the same day, of a similar disposition and life-style, and make them to run a mile; their

timing will be different and for some of them it will be strikingly different! Differences

between two invertebrates taken from the same cohort may be not as obvious as between

humans, yet there is always a certain inherent variation of their traits (such as body size,

wings span etc.) which affects their movement behavior [39, 61, 104].

As an immediate consequence, when dispersal is considered in a population, i.e. when

the details of individual animal movement (e.g. the probability distribution of the step size

along the path) are pooled together, their description with a single parameter such as the

diffusion coefficient D may become grossly oversimplified. In order to take into account

the fact that individuals can have different dispersal abilities and hence a different value

of D, a concept of “statistically structured population” was introduced [120, 124, 125].

Variability of dispersal abilities is described by the probability density χ(D) that, for a
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Figure 15: Trap counts obtained for parameters D = 1, L = 45, Ub = 10, U0 = 0. Curve
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Figure 16: Plot of time t1 (y-axis) at which trap counts J(t0) = 1 against length of

domain (x-axis). Crosses for the Dirichlet-type forcing, circles for the Neumann-type

forcing. Parameters are: D = 1, U0 = 0, Ub = 10 and G = Ub/L.

randomly chosen individual, its diffusivity will have a given value D.

Consider a population of animals performing 1D Brownian motion, so that the proba-

bility density of making the step of length ξ is given by the normal distribution, cf. Eqs. (1)

and (21), that we write down in the following form:

̺D(ξ) =
1√

4πD∆t
exp

(

− ξ2

4D∆t

)

, (48)

32



where we consider ∆t is a fixed parameter. In case all animals are identical, the distribu-

tion of the step size pulled together from all individuals will coincide with (48). However,

in case the diffusivity D is a random variable distributed with the probability density

χ(D), the resulting distribution of the step size becomes [120, 125]

̺(ξ) =
∫

∞

0
̺D(ξ)χ(D)dD =

∫

∞

0

1√
4πD∆t

exp

(

− ξ2

4D∆t

)

χ(D)dD . (49)

Apparently, apart from the singular case χ(D) ∼ δ(D−D0) (which corresponds to the

unstructured population of identical individuals), distribution ̺ is not normal anymore.

The properties of the step size distribution ̺(ξ) in a population of non-identical dispersers

will depend on the properties of χ(D). Available data [61, 124] suggest that, at least in the

intermediate range of diffusivity values, χ(D) is well approximated by an inverse power

law and this is in agreement with theoretical arguments [120]. Therefore, here we assume

that χ(D) ∼ D−γ for D not very small, where γ > 1 is a positive parameter.

The singularity of the inverse power law at D = 0 is hardly realistic. (Recall that

the integral
∫

∞

0 χ(D)dD must converge because χ(D) has the meaning of a probabil-

ity density.) Function χ should therefore include a factor suppressing the singularity.

Moreover, if we assume that the power law decay is generic and hence can possibly take

place with different values of the exponent γ (e.g. for different species), then the decay at

D = 0 should be faster than any power law, i.e. at least exponential. Correspondingly,

we consider χ(D) as follows:

χ(D) =
αγ−1

Γ(γ − 1)
·D−γ exp

(

− α

D

)

, (50)

for D > 0 and χ(0) = 0, where α is an auxiliary parameter and Γ is the gamma function.

Equation (49) then turns into

̺(ξ) =
1√

4π∆t
· αγ−1

Γ(γ − 1)

∫

∞

0

1

Dγ+ 1

2

exp

[

−
(

α+
ξ2

4∆t

)

1

D

]

dD . (51)

The integral in (51) can be readily calculated resulting in

̺(ξ) =
1√

4π∆t
· α

γ−1Γ(γ − 1
2
)

Γ(γ − 1)

(

α+
ξ2

4∆t

)

−γ+ 1

2

. (52)

Obviously, for any fixed ∆t and for sufficiently large ξ (so that ξ2 ≫ α∆t), from (52)

we obtain:

̺(ξ) ∼ ξ−2γ+1. (53)

Thus, function χ(D) given by (50) results in a step size distribution with the large-

distance asymptotical behavior described by a power law. We mention here that, in a

more ecologically realistic 2D case, the analysis is similar and leads as well to a fat-

tailed distribution of the step size with a power law rate of decay [120]. The value of the

exponent γ as is indicated by the data [61, 124] lies between 1 and 2. The power law decay
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at large step size with these values of the exponent (when the variance does not exist) is

usually regarded as a fingerprint of a Levy walk; remarkably, in our case the underlying

individual movement is perfectly Brownian! For γ = 1.5, Eq. (52) formally coincides with

the Cauchy distribution which is a common model of the Levy-type random walk [174].

Interestingly, while in the Levy flight described by the Cauchy distribution (22) the jump

size ξ is scaled linearly by the interval ∆t [50, 82, 174], in our case the emerging dispersal

kernel exhibits the diffusion-type scaling ξ2/∆t.

In the context of this paper, our primary aim here is to understand how the inherent

variation of the dispersal traits may affect the trap counts. Similarly to the above analysis,

the expression (31) for the trap counts should now be considered as the contribution from

the population fraction consisting of individuals with diffusivity D. The actual trap count

is then obtained by integrating over the whole range of possible diffusivity values:

J(t) =
∫

∞

0
χ(D)JD(t)dD . (54)

We now focus on two ecologically relevant cases where the initial spatial population

distribution is either uniform or aggregated; see Eqs. (32) and (35), accordingly. It is

readily seen that in the uniform case the dependence on time remains the same, J(t) ∼
√
t,

the changes only affect the coefficient. However, the situation is different in the case of

population aggregation. In this case, from (35) and (54) we immediately obtain

J(t) = K
∫

∞

0
χ(D)erfc

(

x0√
4Dt

)

dD, (55)

where K is the initial population size. With χ(D) given by (50), Eq. (55) turns into

J(t) =
Kαγ−1

Γ(γ − 1)

∫

∞

0
D−γ exp

(

− α

D

)

erfc

(

x0√
4Dt

)

dD . (56)

Having introduced a new variable as z = x0/
√

4Dt, Eq. (56) takes the following form:

J(t) =
2Kαγ−1

Γ(γ − 1)
·
(

4t

x2
0

)γ−1
∫

∞

0
z2γ−3 exp

(

−4αt

x2
0

z2

)

erfc(z)dz. (57)

Unfortunately, integral (57) can only be calculated analytically in case 2γ − 3 = 1,

i.e. for γ = 2. In this case, from (57) we obtain:

J(t) = K



1 −
(

1 +
4αt

x2
0

)

−
1

2



 . (58)

In the small-time limit (and/or for large x0), Eq. (58) turns into

J(t) ≃ 2αK

x2
0

t, (59)

which is completely different from the time dependence expected in the corresponding

unstructured population, cf. Eq. (37).
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2.5 Trapping of Levy-walking insects: time-dependent diffusion

as an alternative framework?

In the previous sections, we presented a theory allowing to estimate the parameters of

the monitored population such as the population density in the vicinity of the trap (or

the population size and the position of the point-source release) from the trap counts. A

presumption of our analysis is that the insects perform the Brownian motion. Although

this in many cases is true [73, 75, 108, 124], there has also been growing evidence that,

under certain conditions, animals of some species can follow a different movement pattern,

such as Levy flight or walk5 [143, 172, 173]. An essential difference between the two

patterns is that the relative frequency of long steps along the movement path is much

higher in a Levy walk than in the Brownian motion. Correspondingly, it can result in a

faster dispersal, the phenomenon that is known as “superdiffusion” [80, 154].

In mathematical terms, a higher frequency of long steps means a lower rate of the

probability density decay at large distances, the property often referred to as the ‘fat tail’

(contrary to the ‘thin tail’ of the normal distribution). Note that having a probability

density distribution with a fat tail is not by itself sufficient for having a Levy walk. Due

to the Central Limit Theorem [44], a sum of independent identical distributions having

finite first three moments converges to a normal distribution when the number n of steps

tends to infinity (but preserving the power law decay at the distribution’s tail for any

finite n, see Fig. 8 and also [82]). Therefore, in a 1D case, a genuine Levy walk only

occurs if the probability density ̺(ξ) of the step size ξ behaves at large ξ as ̺ ∼ ξ−α

with α ≤ 3. Obviously, a stochastic process with the distribution tail as fat as this does

not have a variance; random walks with this property are usually referred to as being

‘scale-free’, although this terminology can be confusing [77].

Whether animals really perform Levy walk or not remains a highly controversial issue

[16, 167]. Some cases that were originally branded as evidence of Levy walk [172] were

later re-classified to Brownian motion [42] and then have recently been re-classified to Levy

walk again [142]. Standard statistical tools may sometimes fail to distinguish between the

power law and the exponential rate of decay in the step size distribution [137]. The

‘observed’ movement type can depend on technical details of data collection such as the

time scale of the study [13] and/or the time resolution at which the data are obtained [77].

Pooling together movement tracks of non-identical individuals (of the same species) can

create an appearance of a Levy flight [124]. In some cases, the correlated random walk

can be mistaken for the Lévy walk as it results in a similar pattern [141]. Also, animals

of different taxa often employ more than one movement mode [95, 102]; in case each of

those modes is a Brownian motion, their mixture results in a composite Brownian motion

that can have an appearance of a Levy flight [39, 68].

To the best of our knowledge, none of the cases provided in ecological literature as the

evidence of the Levy walk appear to be free of criticism and, in principle, all of them allow

different interpretation. Convincing evidence from movement data is still lacking. Also the

5Due to a long-standing confusion that has almost turned into a tradition, what is called a Levy walk

in ecology often corresponds to what is known as a Levy flight in physics [154].
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theoretical argument in support of Levy flights/walks is sometimes rather metaphysical,

for instance, operating with irrelevant objects like moving robots and using unrealistic

assumptions like an infinitely fine resolution of animal’s location [52]. Moreover, there are

growing doubts as to whether unambiguous evidence can be obtained at all because of the

complexity and variability of the behavioral response that animals exhibit to inherently

stochastic environmental factors.

Along with this intense and sometimes even heated ongoing debate, there is also an

emerging feeling that this discussion is going to nowhere. Behind elaborated pro- and

contra- arguments and the subtleness of advanced statistical analysis, some important

questions seem to be almost forgotten: whichever pattern occurs, what are the ecological

implication of that? How much should we care about the type of the movement pattern in

the context of a specific problem? Levy walks are thought to be essentially different from

the Brownian motion but does it necessarily mean that the corresponding mathematical

framework should always be different too? Let us consider the single-trap scale of the pest

monitoring problem. In this section, we show that, even in case of a genuine Levy walk,

the problem of trap counts interpretation can still be addressed basing on the diffusion

equation [2, 3].

As a specific model, we consider a population where individual insects perform a ran-

dom walk with the step length drawn from the Cauchy distribution:

̺k(ξ) =
1

πk[1 + (ξ/k)2]
, (60)

where k is the distribution parameter; ξ = k is the distance where the probability density

̺k(ξ) falls twice compared to its maximum value at ξ = 0. Obviously, the larger k the

higher is the relative frequency of long steps.

We consider the 1D domain 0 < x < L with the trap installed at x = 0. For each of the

insects, its position at ti+1 = ti + ∆t is calculated as xi+1 = xi + ξ where, in accordance

with Eq. (60), the random step ξ is computed as

ξ = k∆t tan
[

π
(

ζ − 1

2

)]

, (61)

where ζ is a random number uniformly distributed in (0, 1). The corresponding trap

counts obtained in the individual-based simulations are shown in Fig. 17a for a few values

of k.

Intuitively, the higher the frequency of long jumps the larger is the contribution to the

trap counts from remote parts of the population. Correspondingly, in the case where the

insects perform Levy walk, the trap counts can be expected to grow faster with time than

they do for the Brownian motion. However, the last statement is not necessarily true if

the diffusivity changes with time:

∂u(x, t)

∂t
= D(t)

∂2u(x, t)

∂x2
, (62)

where u is the population density. Indeed, since the diffusion coefficient is a measure of

the dispersal rate, e.g. see Eq. (25), if D grows with time then the trap counts will likely

grow faster than in the standard case D = const.
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This can be shown in a more formal way. It is readily seen that, by introducing a new

variable

τ =
∫ t

0
D(t′)dt′ , (63)

Eq. (62) turns into the standard diffusion equation with D = 1:

∂u(x, t)

∂τ
=
∂2u(x, t)

∂x2
, (64)

and hence the results of Section 2.2 immediately apply, up to the change t → τ(t), so

that the cumulative trap count is given by

J(t) =
2U0√
π

√

Dτ(t). (65)

Therefore, if τ(t) increases faster than a linear function, the trap counts are going to grow

faster than in the time-independent case and hence may mimic the superdiffusive pattern.

What can be an appropriate choice of D(t) is a subtle issue [2] and will be considered

in detail elsewhere [3]. Here we only consider two tentative examples:

(a) D(t) = at+ b and (b) D(t) = at+ btH , (66)

where a, b and H are parameters. Note that (66a) is a special case of (66b) for H = 0

but we want to keep the linear case separate as the simplest possible extension to the

time-independent case.
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Figure 17: (a) Trap counts simulated for Levy walks as given by (60–61) (different symbols

correspond to different values of k) and their approximation with time-dependent diffusion for

linear D(t) (red curves) and nonlinear D(t) (green curves). Simulations were stopped when the

number of trapped insects reached 90% of the total population. (b) The diffusion coefficient D

as a function of time for the simulations shown in (a). At t = 0 the population of K = 104

insects is distributed uniformly over the domain of size L = 20.
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Now we want to check whether the time-dependent diffusion can really provide a rea-

sonable approximation of the Levy-walking population and to find the appropriate values

of the parameters. For this purpose, similarly to the approach used in Section 2.2, we

look for the best-fit approximation of the simulation data with the analytical solution

of the mean-field model with D being given by either (66a) or (66b). Trap counts are

simulated for 12 different values of k such as k = 0.1, 0.5, 1, 2, . . . , 10. The results of

the fitting for three values of k are shown in Fig. 17a by the solid curves. We therefore

conclude that the time-dependent diffusion equation with D(t) given by the nonlinear

function (66b) can provide an almost perfect fit for the Levy walk, with the relative error

being consistently within one percent for all considered values of k. We also observe that

the accuracy of the approximation is, in fact, rather robust to the choice of D(t): while

the linear function (66a) gives lower accuracy, it still provides a reasonably good fit to

the data.

A technical problem with this approach is that, before it could be applied to real data,

we have three parameters to determine. However, results of the regression analysis show

that the best-fitting value of H does not change much for different k so that its value

remains close to 1/3. We therefore fix H = 1/3.

Moreover, parameter b can be obtained analytically. Let ui−1(x) is the population

density distribution over space after (i − 1) steps of the random walk. Then, for any

probability density distribution ̺(ξ) of the step size ξ, the expected (mean) number Ki

of insects trapped as a result of the next (ith) step is

Ki =
∫ L

0
dx · ui−1(x)

∫ 0

−∞

dx′̺(x− x′) . (67)

Since ui−1(x) is unknown, to obtain an explicit analytical expression for Ki for an

arbitrary i does not seem possible. However, it is not difficult to find the number of

insects caught after the first step because u0(x) is given by the initial condition. Here

we focus on the case u0(x) = U0 = const. Applying Eq. (67) to the Levy walk with the

Cauchy distribution (60) of the step size, we obtain

K
(L)
1 =

(

U0

πk

) ∫ L

0
dx
∫ 0

−∞

dx′

1 + ((x− x′)/k)2
, (68)

where we added the superscript (L) in order to emphasize that (68) is obtained for the

Levy walk. Having the integral calculated, (68) turns into the following:

K
(L)
1 =

U0L

2
− U0L

π
arctan

(

L

k

)

+
U0k

2π
log

(

1 +
L2

k2

)

. (69)

On the other hand, the number of insects trapped after the first step can be obtained

from the diffusion equation:

K
(D)
1 =

2U0√
π

[

∫ ∆t

0
D(t′)dt′

]1/2

=
2U0√
π

[

a

2
(∆t)2 +

b

1 +H
(∆t)1+H

]1/2

, (70)

cf. Eq. (65), where we have assumed that L is not very small so that the effect of the

domain finiteness can still be neglected at time ∆t.
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Setting K
(L)
1 = K

(D)
1 , from (70) we obtain the expression for b:

b =
π(1 +H)

4





K
(L)
1

U0L





2

· L2

(∆t)1+H
− a(1 +H)

2
· (∆t)1−H . (71)

Here K
(L)
1 /(U0L) is the fraction of the total population trapped at the first step.

Correspondingly, the diffusion equation with D given by (66b) has now the only param-

eter to be determined, i.e. a. Note that, with just one free parameter instead of three, the

accuracy of the best-fitting approximation of the Levy walk data with the time-dependent

diffusion remains very good; see Fig. 18.
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Figure 18: Time dependent diffusion curves fitted to Levy walk trap counts, where H = 1/3,

and b is determined from the first datapoint (at t = 0.1).

Therefore, we have the one-parameter solution of the diffusion equation which, for an

appropriate choice of a, approximates very well the one-parameter stochastic model (60–

61). We hypothesize that there is a relation between a and k, i.e. a = a(k). Indeed, the

existence of such relation seems obvious from Fig. 19a that shows the best-fitting values of

a obtained for different k. Although we cannot calculate this relation analytically, the data

shown in Fig. 19a are very well approximated by a square polynomial a = 0.64k− 0.36k2

(shown by the solid curve). This completes our analysis. Whatever is the specific value of

k for the given Levy-walking population, say k0, using the obtained relation we calculate

the corresponding value of a, i.e. a0 = a(k0). The population density in the vicinity of

the trap is then obtained in the same way as in Section 2.2, i.e. by best-fitting the data

with the corresponding mean-field solution.

As an example of this approach, we consider a set of trap counts simulated using

the Levy-walking population (60–61) with k = 5.5; see Fig. 19b. The corresponding

cumulative trap counts are approximated by the mean-field solution, see Fig. 19c, the

best fit is obtained for U0 = 9.7 which therefore provides an excellent accuracy with the

relative error of just 3%. As a drawback, we notice that this very good estimate of the

population density is obtained basing on a large number of trap counts. However, the
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Figure 19: (a) Variation of parameter a with k. The solid curve is the best-fitting quadratic

polynomial. (b) the daily trap counts obtained for the Levy-walking population (60–61) that

at t = 0 is distributed uniformly (in the statistical sense) over the domain 0 < x < 20 with the

mean density U0 = 10; (c) the corresponding cumulative trap counts (shown by crosses) and

their best-fit (shown by the solid curve) by the mean-field model with time-dependent diffusion,

the best fit is obtained for U0 = 9.7; (d) the results of data fitting in case of a smaller dataset,

the best fit is obtained for U0 = 9.3.

best-fit approximation of a shorter dataset, see Fig. 19d, still provides a good estimate of

U0 with the relative error of about 7%.
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3 Single field problem: multiple traps

In the previous section, we showed how the population density of a pest insect can be

evaluated basing on the trap counts obtained by a single trap. However, the information

obtained in this way is local in the sense that it only reflects the pest abundance in a

certain vicinity of the trap. Indeed, typical dispersal distances for walking insects are

estimated to be on the order of 1 meter or less per day [171], which obviously corresponds

to the diffusion coefficient D ∼ 1 m2day−1. Assume that the counts are collected daily. It

was shown in Section 2.2 that ten trap counts are usually enough to obtain a population

density estimate of good accuracy. Therefore, consider the total time T of trap exposure

to be ten days. The mean squared displacement over this time is < x2 >= 2DT ∼ 20 m2,

thus giving the characteristic radius of the catchment area as 4.5m. Agricultural fields

rarely have area less than 1ha, which gives a typical linear size of at least about 100m,

whereas the spatial scale of variations in the population density distribution for walking

insects is known to be 30-40 meters [64]. Therefore, an accurate monitoring may require

more than one trap.

Correspondingly, we now consider the situation when the data are collected with several

traps that are installed at certain locations ri, i = 1, . . . , N . That gives N values of

the population density, u1, . . . , uN , where ui = u(ri). The question is how to estimate

the average population density based on this information. An approach that is usually

employed in ecology suggests that it can be calculated as the arithmetic mean [37, 159]:

m(N) =
1

N

N
∑

i=1

ui . (72)

An approximate value of the pest population size I can then be found by multiplying the

sample mean by the area of the field A, that is

I ≈ m(N) · A. (73)

For convenience, below we will refer to (72-73) as the statistical rule.

Reliability of the estimate (72) remains to be a disputable issue though [23, 26]. One

way to improve the accuracy is to ensure that the size of the data set is large enough,

i.e. that enough traps are installed. In theory, the sample mean value given by Eq. (72)

is known to converge to the exact value of the population size when N tends to infinity

(cf. [44]). Hence we can expect better accuracy of the estimate when N gets larger. In

practice, however, there is a trade-off between the number of traps needed to achieve

sufficient accuracy and the number that can be afforded. If trapping is used in ecological

research, the number N of traps per given area can be made quite large, e.g. on the order

of hundreds. Meanwhile, in routine pest monitoring programs N rarely exceeds twenty

[90] and, in some cases, it can be as small as just one or a few traps per field [103]. There

are several reasons why the number of traps cannot be made large. An increase in the

number of traps or samples equates to an increase in the amount of labour and hence

finances required. In any real-world situation, such resources are limited. Besides, traps
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introduce a disturbance into the field and installing a large number of them can damage

the corresponding agricultural product.

Another problem with Eq. (72) is that it is spatially implicit, i.e. it takes into account

neither the spacing between the traps (which, generally speaking, can be variable) nor

any information about the properties of the population spatial distribution. Apparently, a

spatially-explicit generalization of (72) is likely to provide, for the same number of traps,

a better quality estimate of the average populaiton density.

The essence of the problem can be seen from Fig. 20. For the sake of simplicity, we show

it in a hypothetical 1D domain. Five traps are installed over the field. However, their

location misses the high-density peak between the second and third traps. As a result,

the estimate obtained with (72) is going to underestimate the actual average density

considerably. The questions therefore arise as to (i) whether the existence of the peak

could possibly be better accounted for if a more advanced approach is used instead of

Eq. (72) and (ii) how the number of the traps and/or their location can be optimized

respective to the population spatial distribution. These two issues will be the main focus

of this section.

Interestingly, the problem of evaluation of the average population density basing on

local density values, if addressed formally, almost coincides with the problem of numer-

ical integration. One important difference is that, for the reasons mentioned above, the

number of the grid nodes (i.e. traps) cannot be made large as is usually assumed in the

numerical integration theory. This brings forward the challenging problem of integration

on coarse grids. In recent years, intensive study of numerical integration methods for eco-

logical applications has been carried out [43, 113, 114, 115, 117, 118] and here we briefly
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Figure 20: A sketch of data collection with multiple traps. The diamonds gives the value of

the density at the location of the traps X1, . . . , X5 whilst the dashed curve shows the actual

population distribution.
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summarize our experience and highlight the main results obtained.

3.1 Evaluation of pest insect abundance from discrete data

3.1.1 Basic concepts

In this section, we briefly revisit the basics of numerical integration. Consider the domain

Ω where the pest insect monitoring is carried out (e.g. a farm-field). Let N be the

total number of traps installed across the field Ω. Let us assume that we have already

reconstructed the pest population density ui ≡ u(ri) at the trap locations ri, i = 1, . . . , N

(e.g. using the approaches described in Section 3). Hence our next goal is to evaluate pest

abundance I from the pest population density values ui ≡ u(ri).

If we had a continuous pest population density function u(r) defined at any point

r = (x, y) of the domain Ω, then the pest abundance I in the field would, by the definition

of density, be computed as the following integral:

I =
∫ ∫

Ω

u(r) dr. (74)

However, the pest population density is only available to us at a discrete set of points

ri, i = 1, . . . , N . Consequently the above integral cannot be evaluated exactly and is

instead approximated by means of numerical integration. A generic numerical integration

formula is given by (e.g. see [38])

I ≈ Ia(N) =
N
∑

i=1

ωiui , (75)

where Ia(N) is an approximation of the exact integral I, and ωi, i = 1, . . . , N , are weight

coefficients that define a particular method of integration. Correspondingly, in the context

of numerical integration, the set of points {ri} is called the numerical grid.

For any chosen method of numerical integration and any fixed number N of traps used

to collect the data, the accuracy of an approximation Ia(N) is assessed by analysing the

integration error. Let us assume that the value I of the integral (74) is known to us. The

relative integration error e(N) is defined as

e(N) =
|I − Ia(N)|

I
. (76)

The integration error e(N) (also known as the approximation error) emerges because

we replace a continuous function u(r) with a discrete set of points. The smaller number

of data we use in the approximation (75), the bigger integration error we should expect.

The aim of the pest monitoring is to obtain a reliable estimate of the pest abundance;

therefore, large values of the approximation error are unacceptable. The largest acceptable

value of the error e is called the tolerance τ of the estimate. In other words, the relative

error (76) should satisfy the following condition:

e(N) ≤ τ, (77)
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where τ is a specified tolerance. In ecological applications, the tolerance of τ ∼ 0.2 − 0.5

is usually considered as acceptable accuracy [110, 152].

The integration error (76) depends on the number of the grid nodes N (i.e. the number

of traps) but it also depends on the definition of weight coefficients in the formula (75).

For a given N , different methods of numerical integration can result in a different value

of e(N). In the next subsection, we will briefly discuss the choice of weight coefficients in

several methods of numerical integration.

3.1.2 Weight coefficients in various methods of numerical integration

In a general case, the definition of weight coefficients depend on location of traps. The

most straightforward case is that the traps are located at the nodes of a regular Cartesian

grid. Suppose that an agricultural field where traps have been installed has a rectangular

shape. A linear transformation then maps the original domain onto the unit square

Ω1 = [0, 1] × [0, 1] where a Cartesian grid is generated as the tensor product of two one-

dimensional (1D) grids. Namely, let us consider a set of points xi, i = 1, . . . , N1 at the

interval [0, 1], where we require that x1 = 0, xi+1 = xi + h1, i = 1, . . . , N1 − 1, and the

grid step size h1 is defined as h1 = 1/(N1 − 1). Similarly, a set of points yj, j = 1, . . . , N2

in the domain [0, 1] generates a 1D grid in the y-direction as y1 = 0, yj+1 = yj + h2, j =

1, 2, . . . , N2 − 1, where h2 = 1/(N2 − 1). The grid node position in the unit square is

then given by (xi, yj). In the simplest case when h1 = h2 ≡ h, we have a grid of square

elements cij = [xi, xi+1] × [yj, yj+1].

Since the Cartesian grid is defined as the tensor product of 1D grids, it suffices to design

weight coefficients for a 1D problem and then extend their definition to the 2D problem.

Let the function u(x) be given to us at the nodes xi, i = 1, . . . , N of a 1D grid generated

with a constant grid step size h over the unit interval [0, 1]. The most straightforward way

to define the weight coefficients is to consider piecewise polynomial approximation of the

continuous function u(x). Consider a polynomial pk(x) of the degree k, where we require

that pk(xn) = u(xn) for n = i, i + 1, . . . , i + k. In other words, we consider a polynomial

passing through k+1 consecutive points where the function values are available. We then

approximate
xi+k
∫

xi

u(x)dx ≈ Ii =

xi+k
∫

xi

pk(x)dx, (78)

and the resulting integral I is computed by summation of all integrals Ii. Consideration

of the polynomial degree k = 1 and k = 2 in the formula (78) with consecutive summation

results in the composite trapezoidal rule and the composite Simpson’s rule of integration,

respectively. The integration formula for the composite trapezoidal rule is

I =

1
∫

0

u(x)dx ≈ Ia(N) =
h

2

[

u1 + 2
N−1
∑

i=2

ui + uN

]

, (79)

where ui ≡ u(xi). It is clear from comparison of (79) and (75) that the weight coefficients

are given by ω1 = ωN = h/2 and by ωi = h for i = 2, . . . , N − 1. The composite

44



Simpson rule of integration is only defined for an odd number of grid nodes, N = 2m+1.

Integration of a quadratic polynomial over a sub-interval [xi, xi+2] with the subsequent

summation results in

I

1
∫

0

u(x)dx ≈ Ia(N) =
h

3

[

u1 + 2
m−1
∑

i=1

u2i+1 + 4
m
∑

i=1

u2i + uN

]

. (80)

The weight coefficients in the Simpson rule are therefore given by ωi = 4h/3 for i =

2, 4, . . . , 2m, ωi = 2h/3 for i = 3, 5, . . . , 2m− 1, and ωi = h/3 for i = 1, i = N .

Consideration of the approach (78) for an arbitrary polynomial degree k > 0 leads to

the derivation of the Newton-Cotes formulas of numerical integration [38]. The trapezoidal

rule (k = 1) and the Simpson rule (k = 2) discussed above represent the first two rules

in the Newton-Cotes family on regular grids. Let us note that the idea of interpolating

the integrand function u(x) by a polynomial pk(x) of degree k can be further generalized

to include irregular grids into consideration, albeit derivation of weight coefficients on

irregular grids is not so straightforward (cf. [116]) as they should be re-computed every

time when an irregular grid is generated. For example, the trapezoidal rule on irregular

grids is given by

I ≈ Ia(N) =
N−1
∑

i=1

hi
(ui + ui+1)

2
, (81)

where the grid step size hi = xi+1−xi is variable rather than fixed. Similarly, the Simpson

rule on irregular grids is

I ≈ Ia(N) =

N−1

2
∑

i=1

h2i−1 + h2i

6
(u2i−1 + 4u2i + u2i+1) , (82)

which also relies on the variable grid step size hi = xi+1 − xi. As with the conventional

Simpson’s rule (80), the number of grid nodes N is required to be odd.

Once the integration techniques have been designed in the 1D case, they can be ex-

tended onto the two-dimensional (2D) case. Namely,

I =

1
∫

0

1
∫

0

u(x, y)dxdy =
∑

i,j

Iij, (83)

where

Iij =

xi+1
∫

xi

yj+1
∫

yj

u(x, y)dxdy. (84)

Hence, the integration problem is reduced to the evaluation of the integral in each sub-

domain cij = [xi, xi+1] × [yj, yj+1] of the Cartesian grid. Integration on rectangular ele-

ments cij can, in turn, be further reduced to consecutive application of the 1D formulas.

Consider, for example, the simplest case of a regular grid with a constant grid step size

h in both directions x and y. The integration technique is as follows. First, the integral

(84) is re-written as

Iij =

yj+1
∫

yj

U(y)dy, (85)

45



where U(y) =

xi+1
∫

xi

u(x, y)dx. We then employ 1D Newton-Cotes formulas in order to eval-

uate the function U(y) in the square cell cij. Once the values of U(y) have been computed,

the same integration rule can be applied to approximate the 1D integral (85). For exam-

ple, the trapezoidal rule of integration implies the approximation of u(x, y) by a linear

function on each sub-domain cij. Correspondingly, the integral Iij is evaluated as

Iij ≈
h2

4
[uij + ui+1,j + ui,j+1 + ui+1,j+1] , (86)

where uij ≡ u(xi, yj). The application of the Simpson rule in the cell cij requires that

the data u(x, y) are available at points (xi+q, yj+r), where q = 0, 1, 2 and r = 0, 1, 2. The

function u(x, y) is then integrated in the cell cij as

Iij ≈ h2

36
[uij + ui,j+2 + ui+2,j + ui+2,j+2

+ 4 (ui,j+1 + ui+1,j + ui+2,j+1 + ui+1,j+2) + 16ui+1,j+1] . (87)

Note that, like in the 1D case, integration by the Simpson rule requires an even number

N of grid sub-intervals in each direction x and y of the 2D regular grid.

In case of irregular grids, numerical integration in the 2D case can be significantly

more difficult compared to the 1D integration. If the irregular grid is of the Cartesian

type (with a variable grid step size in each direction) than an approach similar to the one

described above for regular grids (cf. Eq. 85) can still be applied. However, the situation

becomes much more complicated when the traps are located arbitrarily so that the grid

of traps cannot be mapped onto a regular Cartesian grid in the unit square. In scientific

computing, such ‘truly irregular’ grids are called unstructured grids. An unstructured grid

normally appears in a 2D problem as a set of non-overlapping triangles that covers the

entire domain [31]. There are two situations when such grids may be needed. First, the

domain can in some cases have a sophisticated geometry so that installation of traps at

nodes of a Cartesian grid may not well resolve a curvilinear boundary of the domain. Sec-

ond, an irregular grid may be required in order to avoid a bias in the trap counts [5, 90] in

case there is a reason to believe that such a bias can significantly affect the data, e.g. when

the environment has got its own regular structure like in an orchard or plantation.

On an unstructured 2D grid, Eq. (85) obviously does not apply and a different approach

should be used. After the triangulation of the domain, the vertices of each triangle are

considered as grid nodes where the function u(x, y) is defined (i.e. where the traps are

installed). One can then make local polynomial reconstruction of the integrand u(x, y)

by a least-squares method and integrate the resulting polynomial in each triangle. The

least-squares technique for polynomial reconstruction of the integrand function has been

discussed in our previous work [118].

Numerical integration on an unstructured grid is, in principle, an efficient technique

to evaluate the population size from discrete data collected with any random spatial

distribution of traps. However, to the best of our knowledge irregular grids remain rela-

tively rare in ecological applications, even when used or considered in a broader context
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[63, 66, 166, 177]. One problem with the use of unstructured grids, in particular in the

pest abundance evaluation problem, is that the accuracy of polynomial reconstruction on

such grids can depend heavily on the grid geometry [111, 112]. The issue of accuracy of

numerical integration on unstructured grids therefore requires further careful investiga-

tion before they can be employed for numerical integration of the pest population density.

For these reasons, in this paper we mostly focus on the application of regular grids. ow

t Our discussion in this subsection has mostly been concerned with the definition of the

weight coefficients basing on the idea that the integrand function u(x, y) is replaced with

a polynomial. It is worth mentioning here that there exists a big class of alternative

methods of numerical integration, Gauss quadrature being perhaps the most well-known

of them [38]. However, we are not aware of the application of those methods to ecological

problems and hence we do not discuss them in this paper.

3.2 Evaluation of population abundance on coarse grids

Application of numerical integration methods to the problem of insect pest abundance

evaluation has first been considered in [115] and then further developed in [43, 113, 114,

117, 118]. Examples of numerical integration of either field data or ecologically mean-

ingful simulation data can be found in [114, 115, 116, 118] where a detailed discussion

of the numerical procedure and the related issues has been provided. Several methods

of numerical integration have been considered. In particular, the trapezoidal rule and

the Simpson rule of integration have been discussed thoroughly both in the 1D and 2D

cases. Also, methods based on reconstruction of the integrand function by higher order

polynomials were studied in [115, 116] for a 1D problem and were briefly discussed in [118]

in the 2D case. Given the variety of available numerical integration techniques, questions

arise with regard to their relative accuracy and efficiency: are some methods better than

others and, if yes, what can be a criterion for the selection of the best one?

The standard theory of numerical integration is based on the concept of convergence

rate. The key requirement to any method of numerical integration is that weight coeffi-

cients should satisfy the following condition:

Ia(N) → I for N → ∞, (88)

where N is the number of the grid nodes, and the design of weight coefficients in any

method of numerical integration is based on the condition (88). Meanwhile, apart from

the convergence as such, it is also important to understand how fast the approximate value

Ia(N) actually approaches the exact value of the integral I when N increases. Different

methods of numerical integration can have different convergence rate.

In order to illustrate the concept, let us consider a 1D problem on a regular grid. The

idea of the convergence rate can be broadly described by the following relation:

e(N) ≃ Chp = O(hp), (89)

where h is the distance between the grid nodes, and the coefficient C and the exponent

p depend on the method of numerical integration used in the problem. In particular,
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Figure 21: Comparison of the convergence rates. The relative integration error (76) is calculated

as a function of the number N of the grid nodes at a regular grid with h = 1/(N − 1). The

open circles (dashed line) and the closed squares (solid line) show the error (on the logarithmic

scale) for the statistical rule (72-73) and the Simpson rule (80), respectively.

p is fully determined by the choice of weight coefficients. On a regular Cartesian grid

h = 1/(N−1) and Eq. (88) can be re-written in terms of the grid step size h as Ia(h) → I

for h→ 0. Equation (89) gives us the information on how fast the integration error e(h)

tends to zero for a particular method of numerical integration. We emphasize here that

the theory of numerical integration normally deals with asymptotic convergence so that,

strictly speaking, Eqs. (88-89) are only valid when h is sufficiently small.

The theory states [38] that the statistical rule (72-73) has the convergence rate O(h)

and the convergence of the composite Simpson rule (80) is O(h4); see Fig. 21. It means

that doubling the number of grid points will decrease the error of the Simpson method

by the factor of 16, while the error of the statistical rule rule is getting smaller just twice.

Therefore, a much bigger number N of grid points (i.e. much larger number of traps) is

required to achieve the same accuracy τ (cf. Eq. 77) in the evaluation of insect abundance

if the statistical rule is employed compared to the Simpson rule. Other way round, for

the same number of grid points, the Simpson rule will give a much better accuracy.

The above consideration apparently leads to the conclusion that, in order to evaluate

the total pest population size, when choosing from available methods of numerical inte-

gration, the method with the fastest convergence rate (89) must be employed and other

methods should simply be ignored. If we approximate the integrand function by a polyno-

mial, the convergence rate will depend on the polynomial degree, higher order polynomial

approximation having faster convergence [38]. For example, the 1D composite Simpson

method with the convergence O(h4) should always be more accurate than the 1D com-

posite trapezoidal rule with the convergence O(h2), and both Simpson and trapezoidal

rules are superior to the statistical rule (72-73) which has the convergence rate as O(h).
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Similar conclusions about the convergence rate can also be made in the 2D case [38].

The convergence criterion is conventionally used whenever several methods of numerical

integration are compared. Other factors such as the complexity of a numerical integration

algorithm, speed of computation of the weight coefficients in the method etc. should be

taken into account too, especially in multi-dimensional problems. However, the conver-

gence rate remains the most important requirement that ultimately guarantee the best

accuracy of numerical integration.

Unfortunately, the convergence rate criterion does not always work in ecological ap-

plications. The matter is that, strictly speaking, the error estimate (89) only holds if

the grid step size h is sufficiently small, i.e. if the number N of grid points (traps) is

sufficiently large. In this case we can say that we have a fine grid where we can rely upon

the error estimate (89). Meanwhile, if N is small, Eq. (89) may become invalid and we

cannot readily tell which integration method is better based on their convergence rate

(89). Correspondingly, a coarse grid is defined as a grid where the error estimate (89) is

not valid because h is not small enough (or N is not large enough). The question therefore

arises as to how to evaluate the accuracy of integration on such grids.

The failure of the criterion (89) is a serious problem of pest abundance evaluation as

coarse grids are common in pest monitoring, for the reasons that are explained at the

beginning of Section 3. Here we want to emphasize that this difficulty arises not only

for more advanced methods like the trapezium rule or the Simpson rule but also for the

baseline method (72-73) as the latter effectively coincides with the simplest ‘mid-point

rule’ of numerical integration. Note that, if we are not happy with accuracy of the original

estimate, we cannot just increase the number of traps and repeat trapping. A repeated

trapping would be done under different environmental conditions and would have to do

with a different (unknown) population density distribution. This difficulty is, in fact,

related to a more fundamental problem with replicated experiments in ecology, e.g. see

[118]. Hence in the pest abundance evaluation problem we normally have to deal with a

coarse grid of traps where we cannot readily conclude about the accuracy of the integration

method.

The issue of accuracy of pest abundance evaluation from sparse sampled data has been

the focus of ecological research for a long time [41, 175, 176]. Some recommendations

have been provided on the minimum number N of traps required for getting a reliable

estimate. However, those recommendations are heavily based on the assumption that the

population density distribution is approximately homogeneous [18, 72, 161]. While the

above assumption is often true, there are also many cases where the pest density is strongly

heterogeneous and can be aggregated into several patches [11, 46]. In the latter case there

are no recommendations about the minimum number of traps required to achieve desirable

accuracy. In case of a heterogeneous spatial population distribution, it is very likely that a

small number of traps (as is normally used in the routine monitoring) may be insufficient

to resolve highly localized sub-domains (or “patches”) of high population density, and

we can anticipate an inaccurate estimate of the total pest population size. This generic

problem of accuracy control on grids of traps where the error estimate (89) does not

apply has been dubbed as a “coarse grid” problem in [115] and then further investigated
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in [115, 118, 116]. Below we provide several examples illustrating the challenges of insect

abundance evaluation on coarse grids.

Let us first consider the problem in the 1D case [115]. Although our final goal is

to develop the method of evaluation of the pest population size from spatially discrete

data, in order to reveal the properties of the course grid problem, we now consider a

hypothetical case when the population density u(x) is continuous, i.e. the value of u is

available for any x, so that can compare the accuracy obtained on different grids. For

this purpose, a continuous population density can be obtained from a relevant model.

Figures 22a and 22c show the population density versus space obtained from a spatially

explicit predator-prey model with the Allee effect [87, 100, 169]. The equations of the

model have been solved numerically by finite differences on a very fine spatial grid; details

of the model and the numerical procedure as well as parameter values and the initial and

boundary conditions used in simulations can be found in [115]. The properties of the

spatial distribution u(x) obtained from this model6 are known to be determined by the

diffusion coefficient D [87, 117, 123]). For D ∼ 1 or larger, the initial density distribution

normally evolves to a monotone function, e.g. as shown in Fig. 22a. For D ≪ 1, the model

describes pattern formation: the initial conditions evolve to a function with a complicated,

multi-peak structure (see Fig. 22c), the smaller D the larger is the number of peaks in

the domain [122, 123].

In order to look into the issue of accuracy, the two population density distributions

shown at the left-hand side of Fig. 22 are integrated numerically on a sequence of regular

grids with different (increasing) N using the statistical rule (72-73) and the Simpson rule

(80); the corresponding integration error (76) is shown at the right-hand side of Fig. 22.

For the monotone distribution of Fig. 22a, the error of the statistical rule exhibits its

asymptotical behavior already for a very small number of grid nodes (Fig. 22b). On the

contrary, for the same range of N between 3 and 17, the error of the Simpson rule behaves

quite erratically, having nothing to do with the prediction of Eq. (89. In spite of this,

integration by the Simpson rule gives very accurate results even on a grid with a very

small number of grid nodes (N = 3), while the statistical rule (72-73) generates a much

bigger error.

The situation becomes very different for the population density distribution u(x) shown

in Fig. 22c. The convergence curves for the statistical rule and the Simpson rule are shown

in Fig. 22d. It is readily seen that, regardless to which integration rule is used, we have

a coarse grid problem where the density u(x) is not well approximated on a grid with

the number of nodes in the considered range. Namely, the Simpson rule appears to have

a bigger error in comparison with the method (72-73) on grids with 3, 5 and 9 nodes.

Only when the number of grid nodes increases to N = 17, the error of the Simpson rule

becomes smaller than the error of the statistical rule.

One important observation that can be drawn from the above example is that the

accuracy of integration depends on the properties of the spatial density distribution. For

6The spatial population density distribution obtained from this model depends also on time; here by

u(x) we denote the population density obtained at a certain moment of time.
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Figure 22: The coarse grid problem. (a) A monotone spatial distribution of the pest population

density u(x) obtained for the diffusion coefficient D = 10−4. Other parameters along with

the initial and boundary conditions used to generate one-dimensional density distributions are

discussed in [115]. (b) The integration error (76) arising from numerical integration of the

distribution Fig. 22a using the statistical rule (72-73) (solid line, open circle) and the Simpson

rule (80) (solid line, closed square). The error is shown on the logarithmic scale. (c) A ‘multi-

peak’ density distribution obtained for the diffusion coefficient D = 10−5. (d) The integration

error (76) corresponding to Fig. 22c, the legend as the same as in Fig. 22b.

the same number on grid nodes, the same method can provide a good accuracy in one

case and a very poor accuracy in another. Correspondingly, the same grid can appear to

be a fine grid in one case, i.e. for a spatial population distribution with simple properties

(for instance, for a smooth monotone function, see Fig. 22a) but a coarse grid in another

case, i.e. for a population distribution with a more complicated structure, cf. Fig. 22c.

Indeed, in the former case the error of the statistical rule (72-73) is close to the asymptotic

behavior (89) already on the grid with just 3-5 nodes, whilst in the latter case it only

approaches its asymptotics for N = 17.

This observation is further confirmed by considering numerical integration in the 2D

case. The 2D examples shown in Fig. 23 are generated from the same mathematical model

(see also [118]). Again, we consider two spatial density distributions with qualitatively
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different properties. The population density u(x, y) shown in Fig. 23a consists of a single

wide peak with a steep gradient at one side but a shallow gradient at all other sides. On

the contrary, the population density shown in Fig. 23c consists of many narrow peaks

separated by areas where the population density is very small; this type of the spatial

pattern is characteristic for the late stage of the patchy invasion [126, 128].

The error of numerical integration by the methods (72-73) and (87) is shown in the

right-hand side of Fig. 23. Integration is carried out on regular grids with the grid step
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Figure 23: The coarse grid problem in the 2D case. (a,c) Population density u(x, y) obtained

from a mathematical model of population dynamics (see details in the text), (b,d) the corre-

sponding integration error (76) shown on the logarithmic scale, N is the number of nodes in

each direction x and y of a regular Cartesian grid. (a) A single peak population distribution

typical for the values of the diffusion coefficient D ∼ 1 or larger. (b) The integration error

for the statistical rule (solid line, open circle) and the Simpson rule (solid line, closed square)

corresponding to (a). (c) A snapshot of the patchy population density distribution typical for

D ≪ 1. (d) The integration error corresponding to (c), the legend as the same as in Fig. 23b.
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size h = const in each direction. It is readily seen from the figure that integration of

the population distribution of Fig. 23a gives a good accuracy7 already on grids with a

small number of nodes (N = 3 or N = 5 in each direction, which corresponds to the

total number of nodes/traps as 3 × 3 = 9 or 5 × 5 = 25) even that the range of the

asymptotical convergence (89) is obviously not reached yet, i.e. the grids are coarse. The

Simpson method remains to be consistently a more accurate method of integration on all

considered grids.

Meanwhile, the more complex spatial structure of the density distribution shown in

Fig. 23c requires a larger number of grid nodes to provide reasonable accuracy. On the

coarse grids with N = 3, the error is large for both statistical and Simpson rule; see

Fig. 23d. Interestingly, in this particular case, the statistical rule (72-73) appears to be

slightly more accurate compared to the Simpson rule. However, any conclusion about

accuracy on a particular method of integration is not reliable on coarse girds. It does not

follow from the above result that the rule (72-73) is always more accurate on a coarse grid

of 3× 3 nodes. As we will see below, for the same numerical integration method, a slight

change in the spatial pattern may result in a large increase in the integration error.

Let us now consider how the numerical integration works for field data and what factors

may affect it accuracy. Numerical integration techniques have been applied to field data

of ecological monitoring in [114, 118] and here we discuss some of their results. Figure

24a shows one of the six cases of different population density distributions of the New

Zealand flatworm (Arthurdendyus triangulatus) analyzed in [118] basing on the field data

collected by Murchie and Harrison [99]. The original data were collected with 121 traps

installed at the nodes of a regular grid of 11 × 11 nodes. As the first step, the values of

the population density available at the nodes of this fine grid were integrated in order

to obtain the ‘true’ value of the population size. (In Fig. 24a, the population density is

shown as a continuous function u(x, y) using linear interpolation.) At the second step,

a course grid of 3 × 3 = 9 nodes was generated by picking the first, sixth and eleventh

nodes in each direction. The locations of those selected 9 traps on a coarse grid is shown

in Fig. 24a by large black dots, the values of the population density at those locations

were taken from the original grid. The approximate value Ia of the population size was

then obtained by numerical integration over that coarse grid.

The values of Ia obtained with different integration rules [see case (a) in Table 1] were

compared to the ‘true’ value I in order to estimate the accuracy of the approach. Here

we want to mention that the case shown in Fig. 24a was the one with the worst accuracy.

For other five population distributions analyzed in [118], the accuracy of integration on

the coarse 3 × 3 grid was consistently less than 35% and the Simpson rule was shown

to be more accurate (with the integration error less than 0.1 in three our of six cases).

However, here we deliberately focus on the most difficult case shown in Fig. 24a as it

is instructive to understand the reasons resulting in the relatively large integration error

shown in Table 1.

7Recall that in ecological studies the relative error of up to 50% (i.e. e ∼ 0.5) is often deemed as

acceptable, while the error e < 0.3 is usually regarded as small, cf. [110, 152].
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Figure 24: Numerical integration of field data on a coarse regular grid of 3 × 3 nodes, the

nodes are shown as large black dots. (a) The population density u(x, y) based on the field data

collected in [99] (see also [118]). The two circled grid nodes fall into small patches of lower

density. Since the density values at those locations are not representative (“outliers”), 2/9 of

the total information is lost and hence numerical integration results in a large integration error.

(b) The density function u(x, y) based on the field data by [5]; see details in the text.

Table 1: The approximated value Ia of the total population size and the integration error e

on a regular grid of 3 × 3 nodes for the field data. The rows marked (a) and (b) correspond

to the population density distributions shown in Figs. 24a and 24b, respectively. Ia and e are

computed by the statistical rule (72-73) (the columns Istat
a and estat) and by the Simpson rule

(87)(the columns ISR
a and eSR).

case I Istat estat ISR eSR

(a) 544 289 0.469 247 0.545

(b) 1980 1507 0.239 2332 0.178

Firstly, we note that the larger error of the Simpson rule compared to the statistical

rule (see Table 1) clearly indicates that the 3 × 3 integration grid is indeed coarse as

on a fine grid it should have been otherwise; see Fig. 21. Secondly, consistently with

our analysis above, the accuracy of integration is determined by the properties of the

spatial pattern in the density distribution [118]. After a careful visual examination of

Fig. 24a, it becomes clear that, on the coarse grid, some information about the density

function u(x, y) is lost as two out of nine grid nodes are located inside small patches where

the density is significantly different (lower) from the density in the surrounding areas;

those nodes are circled in the figure. Hence 2/9 of the local density values available for

numerical integration will make a misleading contribution to the integral Ia, no matter

what integration technique is used. As a result, we have the relative integration error

e ∼ 0.5 for both statistical and Simpson rules.
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For the second example, Fig. 24b presents the field data from [5] where the trap counts

for the insect species Pterostichus melanarius was monitored with pitfall traps installed

at the nodes of 15 × 15 regular Cartesian grid. The corresponding density distribution

u(x, y) obtained as a linear interpolation of the local density values is shown in Fig. 24b.

The idea of our analysis is similar to the previous example, i.e. we obtain the ‘true’ value

I of the population size by integrating the data on the original fine grid, construct a

course 3×3 grid as a relevant subset of grid nodes, and then obtain an approximate value

Ia by integrating the data on the coarse grid. Note that, in this case, the population

distribution has not just one but several small patches of high density. Obviously, these

small patches can unlikely be resolved on a 3× 3 grid. The poor resolution of the pattern

hence can be expected to contribute to the integration error. On the other hand, there is

a large area inside the domain where the density is approximately homogeneous (shown

in various shades of blue in Fig. 24b), albeit rather small. The population density in

this area is well-resolved on the grid of 3 × 3 nodes and hence the contribution to the

integral from this sub-domain is expected to be sufficiently accurate. Since the number of

high-density patches is not large, we can therefore expect a reasonably small integration

error on the coarse grid. This heuristic argument is in agreement with the results of

numerical integration; case (b) of Table 1 shows that the relative error is less than 25%.

Interestingly, as it was shown in [114], an increase in the number of traps from 3 × 3 to

9 × 9 does not significantly increase the accuracy of integration because small patches of

high density remain unresolved on those grids.

The above results lead us to the conclusion that, on a grid with a given number of nodes

(traps), the accuracy of pest abundance evaluation is to a large extent determined by the

properties of the spatial pattern in the density distribution. Therefore, the following

simple classification can be offered:

(A) N (the number of nodes in each direction) is sufficiently large to make the grid fine

for a given spatial density distribution, so that the asymptotic error estimate (89)

holds and the integration error is small.

(B) N is not large enough so that, for a given spatial density distribution, the grid is

coarse and the asymptotic error estimate (89) does not hold, yet the integration

error appears to be small.

(C) N is not large enough, the grid is coarse (the spatial pattern is not resolved) and

the integration error is large.

Hence, a future research into numerical integration for the pest abundance evaluation

problem should be focused on understanding how the information about the spatial pat-

tern in population density, if available, can be used to correctly predict the integration

error and, ultimately, to improve the integration accuracy. Note that, in real-life appli-

cations, a priori information about a spatial density distribution is rarely available (but

see [117] for a discussion of this issue). However, it seems plausible to assume that some
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inferences about a typical population distribution can be made basing on field data col-

lected for a given pest species in previous years, especially for common pests where such

data are likely to be abundant.

Let us assume, for the sake of the discussion only, that we know the spatial pattern

u(x, y) and can classify the integration error. Then, in the case (A), a method based on

higher order polynomial approximation of the integrand will provide much better accuracy

in comparison with a low order method. Correspondingly, in this case the Simpson rule

would be definitely more preferable than the statistical rule (72-73). However, in the cases

(B) and (C), a better accuracy for an integration rule based on higher order polynomial

approximation cannot be guaranteed and other factors should be taken into account in

order to decide wisely about the choice of a numerical integration method.

Therefore, as we showed above, a population distribution with a simple structure

(e.g. like those shown in Figs. 22a and 23a) is easy to integrate with a good accuracy,

even on a very course grid consisting of just several nodes. Conversely, a population

with a complicated spatial pattern like a patchy distribution (cf. Figs. 22c, 23c and 24)

is usually difficult to integrate, the accuracy of integration depending on a characteristic

size of each patch and the number of patches. A generic result is that, if we have several

small patches of high population density and we have to use a coarse grid, i.e. a grid

with a large distance between neighboring nodes (traps), then the integration accuracy

heavily depends on the location of those nodes with regard to the position of the patches.

As the position of the patches is usually unknown and may depend on various factors

that are difficult to quantify, it can be regarded as a random value. Correspondingly, the

approximate value Ia of the population size calculated on a coarse grid becomes a random

value, too [118]. In this situation, none of the approaches described in this section (in-

cluding the baseline rule (72-73)) apply any more. To extend any of the above methods

onto this case with high uncertainty, the whole concept of numerical integration should

be amended. Clearly, the most extreme case of integration on coarse grids is given by the

population distribution consisting of a single patch of high population density where the

patch characteristic width is smaller than the distance between grid nodes. In the next

section, we discuss these highly aggregated density distributions in order to demonstrate

that, to evaluate the total population size, a conceptually different approach should be

applied.

3.3 Integration of high-aggregation density distributions

There are a few ecologically meaningful situations where the population of an insect

species can be highly aggregated so that all of it or most of it is confined, at least tem-

porarily, within a small area inside a given habitat. This may happen as a result of insect

migrations, e.g. when a swarm lands locally onto an agricultural field (cf. “point source

release” in Section 2, see Fig. 6). Alternatively, it may happen during the establishment

stage of biological invasion [119, 153]. Whichever is the case, timely and accurate evalu-

ation of the insect abundance through an efficient monitoring approach is important in

order to prevent potential damage to the agricultural product. At the same time, the
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application of numerical integration methods to highly aggregated density distributions is

a very challenging task, in particular because the exact location of the high density patch

is normally not known.

Highly aggregated population density distributions or “peak functions” have been de-

fined in [113] as spatial patterns where the entire population of a given species is confined

to a small single area within a (much) larger field or habitat. We will refer to this area as

the patch of high density. In the context of insect monitoring, here “small” means that

the typical size of the patch, say δ, is equal to or less than the characteristic distance

h between the neighboring traps. The properties of the numerical integration on such

“ultra-course” grids [118] appears to be different depending on whether the grid is regular

(h = const) or the traps are installed randomly (h varies). Below we briefly discuss both

these cases.

An example of a peak function in the 1D case is sketched in Fig. 25a where the black

dots show the position of the nodes of a regular grid that is used to evaluate the integral.

It is intuitively clear that the accuracy of integration of a peak function on grids with

a small number N of nodes (equivalently, for a large h, i.e. for h ≥ δ) depends on the

peak width and peak location with respect to the grid nodes. In the worst case scenario,

a narrow peak can fall entirely between two neighboring nodes of the grid and then the

integration gives exact zero, which is grossly misrepresentative of the true population size.

On the other hand, it is equally possible to find such peak location that integration of the

population density u(x) on the same regular grid would provide a very accurate answer

[117].

Correspondingly, the following issues arise: (i) what is the minimum ‘critical’ number

Nc of nodes/traps required to achieve desirable accuracy if a highly aggregated population

density distribution u(x) of a given width δ is integrated on a 1D regular grid, and (ii)

what can be an appropriate measure of integration accuracy on a regular grid of traps

where N < Nc? Following [113, 118], we address these issues by introducing the concept

of an ultra-coarse grid. An ultra-coarse grid is defined as a grid where the integration

error is essentially a random variable because of the insufficient information (uncertainty)

about the integrand function. When numerical integration is performed on ultra-coarse

grids, the integration error as such does not have much meaning as it can be very different

for a slightly different position of the peak (which is unknown). Instead, one can calculate

the probability p that the value of the error will remain smaller than the given tolerance

τ , cf. Eq. (77).

It does not seem possible to calculate p analytically for an arbitrary population density

u(x). However, here we recall that the spatial distribution of the population density

appears as a result of movement of individual insects; see Section 2.2. Depending on

the type of the movement (e.g. diffusion or superdiffusion), that will add up to either

the normal distribution or the Cauchy distribution. Both distribution are dome-shaped

so that the density profile around its maximum value (located at a certain x = xm) is

obviously described as u(x) = u(xm) − u′′(xm)x2 + o(x2). Correspondingly, by neglecting

the tail of the density profile (which does not affect the accuracy much, see [117]), we can

approximate u(x) with a square polynomial.
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Having based on the quadratic approximation of the peak function, the probability

p(h) that the value of the integration error does not exceed τ was obtained in [113]. The

exact shape of the graph p(h) depends on the chosen integration rule, on δ and on τ ;

the generic shape is shown in Fig. 25b. The probability p(h) appears to be a piecewise

function of the grid step h: there exists a critical, threshold value hc such that p(h) ≡ 1

for any h ≤ hc, and p(h) is a monotonously decreasing function for h > hc. It was also

shown in [113] that the critical grid step size hc is a linear function of the peak function’s

width:

hc = αc(τ)δ, (90)

where the coefficient αc depends on the tolerance τ .

In order to illustrate how this approach works, we consider a hypothetical aggregated

population density distribution u(x) with the width δ, so that the corresponding proba-

bility p(h) is given by the curve shown in Fig. 25b. In case the data on local abundance

are collected on a regular grid with the step size h0 > hc, then our chances to evaluate

the integral within the acceptable accuracy range τ are p(h0) ≈ 0.15. Therefore, for this

grid with N0 ≈ 1/h0 nodes, there is an 85% chance that the error of our evaluation will

be larger than the maximum affordable error τ . In other words, if this grid of traps is

installed in ten similar fields, it is likely that in 8 cases out of 10 the obtained estimate

of the pest population size will have little to do with reality. Apparently, this is a moni-

toring of a very poor quality. Consider now a regular grid with h1 < hc and the number

of nodes N1 ≈ 1/h1. The error of integral evaluation is now smaller than τ , no matter

where the peak is located. The probability p(h) of getting the error within the accuracy

range e(N1) < τ is p(h1) = 1. In this case, in all ten fields the pest population size is

evaluated meaningfully.

In case the grid is not regular, e.g. some of the traps are misplaced, the integration

accuracy may become worse [117]. Let us consider the integration of a peak function on

an irregular grid where the position of all the traps across the domain is chosen randomly

(according to a certain rule to ensure that the traps are distributed uniformly - now in the

statistical sense - across the whole area). Integration of a highly aggregated population

density on random grids using the statistical rule (72-73) was studied in [43] both in 1D

and 2D cases under an assumption that the total number of traps is small, so that only

one trap falls within the high density patch. Note that this assumption is very important

in the context of the real-life monitoring as it describes the existing typical constraints;

see the beginning of Section 3. Under this assumption, similarly to the regular case, the

grid is ultra-course because of the uncertainty of the peak location, and an estimate of

the total population size is a random variable.

The probability p to obtain an estimate with the error e < τ was calculated in [43]

basing on the quadratic approximation of the population density profile. An example

of the probability p as a function of the number N of grid nodes is shown in Fig. 25c.

Note that the function p(N) consists of two branches. The increasing branch reflects

the better resolution of the peak with an increase in N . The decreasing branch of the

graph p(N) shows the (decreasing) probability to have exactly one trap inside the patch;
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this range of N should therefore be regarded as unrealistic because of the constraints

mentioned above. Correspondingly, under the assumption of a single trap within the high

density patch, there is an optimum number Nmax of traps that provides the maximum

probability pmax of obtaining an accurate estimate. Interestingly, it appears that the

maximum probability is always pmax < 1 [43].
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Figure 25: (a) An example of a 1D highly aggregated distribution of the population density

u(x) (high density patch, peak function), black dots show the position of the grid nodes. (b) The

probability of obtaining an accurate estimate of the pest population size in the case that traps

are installed at nodes of a regular grid. (c) The probability of obtaining an accurate estimate

of the pest population size using the integration rule (72-73) on a random grid of traps under

the constraint that only a single trap falls into the high density patch.

Our study of high aggregation density distributions demonstrates that the conventional

conclusions that ecologists make about accuracy of pest abundance evaluation should be

regarded with care. Ecologists are well aware that there is uncertainty in the estimation

of the pest abundance, which may become worse as the number of samples decreases [18].

However, to the best of our knowledge, the idea of handling the error of the evaluation

as a random variable has not been discussed in the ecological literature so far. Under

the conditions that only a small number of traps per field is available and the highly

aggregated population distribution is likely to occur, our results may eventually lead to

a paradigm shift when the traditional ways to estimate the population abundance in

individual fields give way to the “probabilistic integration” across a group of fields or

habitats with similar properties.

4 Landscape scale: synchronization and self-organi-

zation

The largest spatial scale in the problem of pest monitoring is the landscape scale that may

include many agricultural fields as well as non-farmed habitats. Pest monitoring programs

are usually region-wide or even nation-wide. For instance, aphids have been a focus of

intensive monitoring program in the U.K. Aphids rarely cause any significant damage

by themselves but they are regarded as harmful species because of their high potential

to transmit viruses to crops. In order to monitor aphid abundance, the U.K. Food and
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Environment Research Agency created a monitoring system consisting of dozens of traps

installed at various locations across the country [103]. The system was set up in 2002,

and for the first two years consisted of around a dozen traps in 4 geographically distinct

regions (Scotland, North Yorkshire, East Anglia and Wiltshire). From 2004 onwards, the

system has consisted of around 100 traps in 8 regions; see Fig. 26.

Good understanding of trends and peculiarities in the trap counts is apparently im-

portant for providing timely and reliable information about the pest abundance to crops

growers. A visual inspection of the map shown in Fig. 26 immediately reveals that the

trap counts at different locations do not seem to be independent as the date of the first

catch of the pest insect appears to be correlated across a certain area. It indicates that

the aphid population numbers are not entirely independent either. A question thus arises

as to how typical this situation is and whether it originates in the landscape proper-

ties, in the weather conditions (e.g. seasonality) or in some inherent density-dependent

population self-regulation.

Environment is known to affect the population dynamics in space and time through

a variety of specific factors such as landscape structure [70, 131], seasonality and solar

cycles [155], weather conditions both on global and regional scale [9, 138, 139] etc. In many

cases, the population fluctuations in different habitats appear to be, to a certain extent,

correlated; the phenomenon known as synchronization [84, 86]. The example of aphids

considered above is therefore by no means unique. There is increasing recognition that an

 
 

Figure 26: A sketch of the aphid monitoring system in the U.K. showing the location of traps

(circles) in different regions (boxes) in 2009. Date is first capture of peach potato aphid in the

region. From [103], by courtesy of Phil Northing.
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efficient and reliable insect pest monitoring program should include consideration of scales

larger than a single field scale as the importance of the long-distance cross-correlations

between the pest abundance in different fields has become evident [15, 21, 22].

Due to the landscape heterogeneity, it often happens that the population of the same

species occupy disjoint habitats. Depending on the inter-habitat distance, individual

mobility and the nature of the environment between the habitats, these local populations

may or may not interact with each other through dispersal. The inter-habitat dispersal has

been identified as a synchronizing factor [84]. There is considerable evidence that dispersal

coupling by just a small fraction of the population may bring population fluctuations into

synchrony [58, 79, 144].

Dispersal coupling, however, is not the only factor that can result in population syn-

chronization. Environmental forcing, in particular through the effect of regional (spa-

tially correlated) transient weather conditions (that are usually regarded as environmen-

tal stochasticity or noise; e.g. see [170] and references therein), can synchronize the

fluctuations of disconnected populations. This phenomenon is known as the Moran ef-

fect [96, 97, 140, 149] and it has been widely observed in different taxa and in various

environments [84].

Synchronization of population fluctuations can therefore be driven by the regional en-

vironmental stochasticity, by the interaction between local populations through dispersal,

or by a mixture of both [53]. However, the relative importance of these two factors often

remains obscure apart from special cases when dispersal can be ruled out completely.

Synchronization has many implications across the whole range of ecological sciences, in

particular, for agro-ecology [148] and pest control [20, 93, 178]. Understanding the cou-

pling between different habitats is now being considered an essential prerequisite to good

management practices [65]. Identifying particular factor(s) resulting in synchronization is

therefore important. However, since both dispersal and the Moran effect can have a simi-

lar impact on population dynamics, it is often very difficult to distinguish between them.

Differentiating the effects of stochasticity from that of dispersal is sometimes regarded as

one of the greatest challenges to ecologists studying spatiotemporal population dynamics

[84].

A related problem is to identify the corresponding spatial scale of the mechanisms

involved. For species with low mobility, the scale of synchronization due to dispersal

is known to usually be smaller than the scale induced by the regional stochasticity. In

particular, in a field study on butterflies [164] it was shown that the spatial scale of

dispersal coupling is on the order of 5 kms while population synchrony can be observed

on much larger distances of up to 200 kms. The larger spatial scale of synchronization is

therefore likely to be linked to regional stochasticity, although this may not necessarily

be true if insect dispersal is assisted by the wind [15].

Note that the large, landscape spatial scale of the insect monitoring problem allows

for a different level of details in the description of local populations. We do not anymore

consider trap counts (like in Section 2) or population densities at particular locations (like

in Section 3). Instead, each monitored unit, e.g. an agricultural field, is now descried by

a single variable such as the total population size or the average density of the given pest
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species. In terms of the mathematical framework, it means that we consider a discrete

space – a lattice [7, 94, 146] or a network [67, 150] – rather than a continuous one.

Let us consider the populations of a certain species dwelling in two fields, say, X and

Y . The population census takes place at certain times, t1, . . . , tn (e.g. weekly, monthly or

annually), and results in the two time-courses, X1, . . . , Xn and Y1, . . . , Yn where Xi and

Yi are the population sizes of the monitored species in fields X and Y , respectively, at

time ti. The degree of synchronization between the two populations is usually quantified

by the Pearson product moment correlation coefficient:

r0(X, Y ) =

∑n
i=1(Xi − µX)(Yi − µY )

√

(
∑n

i=1(Xi − µX)2) (
∑n

i=1(Yi − µY )2)
, (91)

where n is the length of the monitoring time-course and µX and µY are the sample means

of the two time series, i.e.,

µX =
1

n

n
∑

i=1

Xi , µY =
1

n

n
∑

i=1

Yi . (92)

In order to consider application of this technique8, to reveal its limitations and to

discuss its possible extension and/or modification, we now consider a case study [15].

The population of T. paludosa, a common agricultural insect pest in the British Isles,

was monitored over 15 years between 1980 and 1994 across a region in South-Western

Scotland; see Fig. 27. The study covered the area of approximately 200 × 200 km2 with

the inter-field distances varying between 2 and 200 kms (Fig. 28).

Tipula paludosa Meig. is a univoltine insect species with adult emergence, under the

typical U.K. weather conditions, between mid-August and mid-September. Adult T. palu-

dosa are flying insects; however, their dispersal is thought to be limited as females are poor

fliers, emerging gravid and laying eggs within one day. The larval stages of T. paludosa,

known as leatherjackets, are soil dwelling and relatively lacking in mobility.

Annual census of the population abundance was taken in mid-winter (when the species

is in the larval stage) in each of 38 fields shown in the map. That resulted in 38 time-

courses, each of them containing 15 datapoints, i.e. values of the average population

density over 15 years. The correlation coefficient r0 was then calculated for all possible

pairs of these time-courses. The results are shown in Fig. 29. We observe that the

dependence of r0 on the distance exhibit a clear intermittent behavior with some fields

being strongly positively correlated (synchronized) up to distance of 150-170 kms, some

fields being significantly negatively correlated, and some fields (including the cases when

the fields are situated very close to each other) being not correlated at all. A general trend

in the correlation strength vs distance can be revealed using linear regression analysis

(solid line in Fig. 29), which shows a slow decay. We therefore conclude that, as such,

the distance between fields does not provide sufficient information to decide whether the

populations of two fields are likely to be synchronized.

8Sometimes it may be necessary first to remove the effects of density dependence from the original

data before calculating the cross-correlation coefficient (91) in order to make sure that the individual

time series are serially independent.

62



Map Data ©2012 Google, ©2012 Tele Atlas

DundrennanWest Freugh

Abbottsinch

Tiree

20 mi

20 km

1
5

8

3830

20

3, 29

16

18
6

13

25, 12

27
11

7

23
10
17
3433
14

24
31

19
2, 32

37
26

28
9

35

36

22

15
4

21

Edinburgh

Firth Of 

Clyde
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Figure 28: Frequency of the inter-field distances in the monitoring system shown in Fig. 27.
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Figure 29: Plot of the correlation coefficients, see Eq. (91), for pairs of fields against distance

between those fields. The solid line indicate the trend predicted by the linear regression analysis.
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Figure 30: Network of inter-field correlations. The dotted lines connect fields with significantly

correlated populations. Further details are given in the text. Scales indicate relative position in

tens of kilometers. The inset (top-left corner) shows a weather station that is situated outside

of the domain.

A better understanding of the system’s properties can be achieved if the correlation

strength is linked to the actual position of the fields. Figure 30 shows the location of all

38 fields where those that are significantly correlated are connected by a line. Interest-

ingly, the observed network exhibits anisotropic properties with more correlated pairs are

64



situated along the North-West to South-East direction than in other bearings. Since the

terrain does not seem to possess any clear directional structure, one can hypothesize that

the asymmetry in the network shown in Fig. 30 may have appeared because of the impact

of the wind. Indeed, having considered the weather data (location of the weather stations

is shown by the flag), a considerable similarity between the structure of the inter-field

correlations and the prevailing wind directions was discovered [15].

Note that, in spite of the apparent existence of long-distance spatial correlations, not

all fields are parts of the network. Inspection of Fig. 30 immediately reveals fields that are

not correlated to others, even if there are fields situated close by and along the prevailing

direction.

Thus, significance of the correlations taken together with field positions helps to reveal

the system’s spatial structure. However, it still remains unclear whether these correla-

tions are caused by the Moran effect or by wind-assisted dispersal coupling. In order to

differentiate between these two factors, we consider a time-lagged correlation coefficient

rk(X, Y ):

rk(X, Y ) =

∑n−k
i=1 (Xi − µX)(Yi+k − µY )

√

(

∑n−k
i=1 (Xi − µX,k)2

) (

∑n
i=k+1(Yi − µY,k)2

)

, (93)

where µX,k and µY,k are defined as follows:

µX,k =
1

n− k

n−k
∑

i=1

Xi , µY,k =
1

n− k

n
∑

i=k+1

Yi . (94)

Note that, generally speaking, rk(X, Y ) 6= rk(Y,X). The time-lagged correlation coef-

ficient makes it possible to distinguish between the effect that the populations of field X

have on field Y (described by rk(X, Y )) from the effect that the population of field Y may

have on X (described by rk(Y,X)). It therefore takes into account a possible asymmetry

in the inter-field coupling which is especially relevant in case insect dispersal is assisted

by the wind of a prevailing direction.

There is considerable evidence that the weather conditions are correlated in time,

cf. [170]. It seems reasonable to distinguish between the long-term weather trends and

short-term transient weather conditions as they are likely to have different effect on the

population dynamics9. It is the short-term weather fluctuations that creates the envi-

ronmental stochasticity behind the Moran effect. Recall that the population census on

T. paludosa abundance was taken once a year. It is unlikely that synchronization due to

the impact of stochasticity is subject to such a long delay. Therefore, in case the synchro-

nization pattern seen in Figs. 29–30 is caused by stochasticity, it is unlikely to be seen

in the behavior of the time-lagged correlation coefficient rk even for the shortest lag of

k = 1.

On the contrary, in case the synchronization pattern is caused by the dispersal coupling,

it is likely to be grasped by the coefficient rk. The annual population census was taken

9For a discussion of this issue and an example of possible effect of correlated weather conditions on

the spatial population structure see [129].
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in mid-winter. Dispersal is primarily associated with the flying stage of the insect species

that occurs in late August/early September. Therefore, the effect of dispersal will not be

seen in the census until the next year. The effect of delay is likely to be felt more strongly

if dispersal is asymmetric (which is clearly the case of wind-assisted dispersal), i.e. field

X delegates a fraction of its population to field Y but not vice versa.

We begin with the case when the time-lag is one year, k = 1, which seems to be

justified by the species traits, i.e. by the fact that it produces exactly one generation

per year. The correlation coefficient r1 vs inter-field distance calculated for all pairs of

fields used in the study is shown in Fig. 31. Time-lagged correlation strength vs distance

therefore exhibits an intermittent behavior roughly similar to that observed on the non-

lagged case (cf. Fig. 29). One important difference, however, is that the number of fields

that are negatively correlated is considerably larger in the time-lagged case.

The spatial structure of the correlations is shown in Fig. 32. It is readily seen that

all correlated fields are connected into a network. Since, as we have argued above, in

the time-lagged case the correlations are likely to be the result of inter-field coupling by

dispersal, the structure shown in Fig. 32 is the network of T. paludosa dispersal over the

study area. Note that, in the case of time-lagged correlations, this is a directed network

as we have influencing fields and influenced fields. As well as above, the network has clear

anisotropic properties.

We mention here that species dispersal through a certain network (rather then uni-

formly over space) is a frequent phenomenon in ecology; e.g. see [55] and references therein.

However, the dispersal network is usually related to the effect of clearly defined external

factors that shape the environment geometry and connectivity, e.g. by creating corri-

dors and/or stepping stones [78]. Well-known examples are given by dispersal of aquatic
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Figure 31: Plots of correlation coefficients r1 for pairs of distinct fields against distance between

those fields calculated using the time-lag of 1 year, cf. Eq. (93) with k = 1. The solid line indicate

the trend as predicted by linear regression analysis.
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Figure 32: Network of inter-field correlations subject to one year delay. The dotted lines connect

fields between which significant relationships exist. The red section of each line emanates from

the influencing field, the blue section terminates at the influenced field. Further details are given

in the text. Scales indicate relative position in tens of kilometers. The inset (top-left corner)

shows a weather station that is situated outside of the domain.

plants or animals through waterways [24] and (on a much larger spatial scale) dispersal

of zooplankton by ships with ballast waters [71]. On the contrary, the dispersal network

observed in the study on T. paludosa seems to be self-organized in the sense that the

location of the coupled fields cannot be straightforwardly linked to the terrain structure

but more likely arises as a result of an interplay between exogenous and endogenous fac-

tors. In particular, long-distance transport with the wind was proved to be important for

many small biological objects like seeds, pollen and ballooning spiders [101] that have no

ability to fly by themselves but can be kept in the air for a long time by turbulent air

flows. Landscape heterogeneity can interact with turbulent airflows resulting in ascending

currents and large travel distances [101]. Recall that adult T. paludosa are flying insects,

although they are regarded as poor flyers. There is currently no direct evidence that

T. paludosa can sail with the wind; however, there is plenty of evidence for many other

insect species [34, 51]. Moreover, insects are not always carried with the wind passively.

Some insect species are known to possess navigation abilities that allow them to control

the altitude of their flight and to choose the landing site [34, 51]. The T. paludosa disper-

sal network is therefore likely to emerge as a result of the interplay between the physical

transport and the behavioral response of the insects. Indeed, an insight into the weather

data shows that the orientational properties of the dispersal network agree very well with

the prevailing directions of the wind [15].
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Thus, the time-lag of one generation makes it possible to reveal the effect of dispersal

coupling between different habitats. The question may arise whether any new insight

can be made by considering a longer time-lag. There is some evidence (obtained from an

earlier study [90] performed in a different region of the U.K.) that T. paludosa may exhibit

a multi-annual cycle, see Fig. 33, although it remains unclear whether this cycle is induced

by ‘external’ environmental factors or by ‘internal’ density-dependent mechanisms, or by a

combination of both [22]. The population dynamics of T. paludosa therefore has at least

two different timescales. Whichever is the origin of the multi-annual cyclic dynamics,

one can expect that its effect may be seen in the behavior of the time-lagged correlation

coefficient rk for some k > 1.

Figure 34 shows the coefficients r2 and r3 vs the interfield distance. Generally, the

results are similar to those obtained for r1. As well as above, they exhibit a complicated

intermittent behavior with many fields being strongly negatively correlated up to 150-200

kms. The corresponding networks of the interfield coupling is shown in Fig. 35. Interest-

ingly, they exhibit properties somewhat different from the r1 network. In particular, the

number of cross-correlated fields in the central part of the study area has decreased but

more distant fields (e.g. west-most and north-most) are now connected to the network. In

case of the r3 network, the direction of the relationships swaps in several places, e.g. see

the cluster of blue links out of the south west corner where they were mostly red in case

of r1; these fields have become “influenced” rather than “influencing.”

A more detailed view of the spatial structure of the time-lagged cross-correlations

can also be obtained by considering the distribution of the inter-field distances between

significantly correlated fields. In order to avoid bias induced by to the peculiarities of the
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Figure 33: Phase trajectory of annual leatherjacket population (×103) changes in south-west

England. Each point is a plot of the population in the current year (Nt) against the population in

the previous year (Nt−1). The line connects points in chronological order with points numbered

sequentially. Data from Fig. 3 in [90].
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Figure 34: Plots of correlation coefficients for pairs of distinct fields against distance between

those fields calculated using the time-lag of (a) 2 years, (b) 3 years. The solid lines indicate

trends predicted by linear regression analysis.

system geometry, i.e. different distance frequencies in the original system (see Fig. 28), for

each distance range we scale the observed frequency by the height of the corresponding

bar in the underlying distribution shown in Fig. 28. The results are shown in Fig. 36 for

different values of the time delay. It is readily seen that in the non-delayed case (Fig. 36a)

the distribution of distances is approximately uniform in the range 0-160 kms showing

just a slight tendency to decrease. The apparent minimum in the middle (in 60-80 kms

bin) is likely caused by the effect of the terrain’s structure. The mean distance 72.9 km

-10 -5 0 5 10

-8

-4

0

4

8

13.15

-15.01

-10 -5 0 5 10

-8

-4

0

4

8

13.15

-15.01

(a) (b)

Figure 35: Network of significant inter-field correlations calculated using the time-lag of (a) 2

years, (b) 3 years. The red section of each line emanates from the influencing field, the blue

section terminates at the influenced field.
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is close to the median of the distribution which confirms the generic uniformity of the

distribution. The corresponding network therefore does not have characteristic spatial

scale. Note that the situation when all spatial scales are represented equally complies

well with our conclusion that, in the non-delayed case, synchronization is likely to occur

due to the Moran effect associated with regionally correlated transient weather conditions.

Distribution of distances remains approximately uniform in the case of cross-correlations

with time delay of one year (see Fig. 36b). As well as above, it indicates that the corre-

sponding network does not possess characteristic scale. This result agrees well with our

earlier conclusion that the time-lagged synchronization occurs due to dispersal coupling

as transport by turbulent flows is known to be scale-free.

The distribution pattern changes for a larger time-lag. For k = 2 (Fig. 36c), the

frequency of small distances decreases dramatically. The distribution now spans over a

larger spatial range 0-180 kms. The relative frequency of large distances become higher,

0 2 4 6 8 10 12 14 16 18 20

0.
0

0.
1

0.
2

Distance (10x km)

R
el

at
iv

e 
F

re
qu

en
cy

0 2 4 6 8 10 12 14 16 18 200.
00

0.
05

0.
10

Distance (10x km)

R
el

at
iv

e 
F

re
qu

en
cy

(a) (b)

0 2 4 6 8 10 12 14 16 18 200.
00

0
0.

02
5

0.
05

0
0.

07
5

Distance (10x km)

R
el

at
iv

e 
F

re
qu

en
cy

0 2 4 6 8 10 12 14 16 18 200.
00

0.
05

0.
10

0.
15

Distance (10x km)

R
el

at
iv

e 
F

re
qu

en
cy

(c) (d)

Figure 36: Distribution of distances between significantly correlated fields as obtained for (a)

r0, (b) r1, (c) r2 and (d) r3, i.e. for the time-delay of none, one, two and three years, respectively.

The corresponding mean distance is 72.9, 74.9, 100.0 and 94.7 kms.
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the mean distance being larger than the median of the distribution. Inspection of the

corresponding network suggests that the higher frequency of large distances may happen

because the network now includes a few more distant fields that were not connected in

the cases of k = 0 and k = 1.

This tendency becomes even stronger in case of the three year delay, i.e. for k = 3

(Fig. 36d). The spatial range has now become even bigger (spanning between 0-200 kms).

The mean distance is slightly less than the median of the distribution; however, the mean

distance is not informative in this case as the distribution exhibit a clear bimodal shape,

i.e. the short-distance mode and the long-distance mode. Recall that T. paludosa exhibits

the multi-annual cyclic dynamics with the estimated period of the cycle being about 6-

7 years; see Fig. 33. The three-year delay used in Fig. 36d is on the same order which

open a possibility of a resonance interaction. We therefore hypothesize that this change of

pattern, i.e. from approximately uniform to bimodal, may be an effect of the multi-annual

cycle, although we are currently not able to provide any proof of this.

5 Discussion

It is widely recognized that ecological dynamics has multiple spatial and temporal scales

[19, 60, 83, 109, 151]. Ecological monitoring aims to provide information about ecosys-

tem’s state at different time and under different conditions and hence is expected to grasp

the main features of the dynamics. In order to ensure that the information obtained is

reliable and robust, a comprehensive monitoring program therefore needs to take into

account the existence of multiple scales. This requires a careful, well-designed ecological

protocol of data collection and their subsequent interpretation based on an efficient and

consistent theoretical framework.

In this paper, we focused on pest insect monitoring10. We showed that insect monitor-

ing has at least three distinctly different spatial scales; throughout the paper we referred

to them as the single trap scale, the single field scale and the landscape scale. Informa-

tion on local insect abundance is usually obtained from trap counts. Correspondingly,

the smallest scale is defined by insect movement in the vicinity of the trap. An inter-

mediate scale comes into consideration when data are collected with multiple traps as

may happen, for instance, in a large agricultural field or plantation. The information

obtained at different locations then needs to somehow be ‘integrated’ to provide the value

of total population size or average population density. The largest scale appears when

pest abundance is considered over landscape where the effects of inter-field coupling and

synchronization become important.

We have shown that the theoretical framework and the mathematical approaches to

modeling and data interpretation are significantly different for these three scales. The

challenges are different, too. For the single trap scale, perhaps the biggest challenge

10We mention here that many of the approaches reviewed in this paper are not insect-specific and apply

to monitoring of other invertebrate species as well. One good example is flatworms considered in [118];

see also Section 3.2.
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is to extend the theoretical framework described in Section 2 onto baited traps as the

effect of the attracting agent (e.g. light, color or pheromone) on the insects movement

behavior is not straightforward and details are often unknown. For the single field scale,

the main challenge is to utilize a priori information about the properties of the population

spatial distribution. Such information may be obtained either from previous field studies

on the given species or from predictions of a relevant model and it can increase the

monitoring efficiency dramatically by tuning the location of the traps. For the landscape

scale, the challenge remains in identification species-specific mechanisms of the inter-field

synchronization and, in case of dispersal coupling, in revealing specific environmental and

biological features that results in a dispersal network.

Note that, if considered in the context of the integrated pest management (IPM)

[27, 81], the specific purpose of monitoring at different scales is different too; see Fig. 37.

The natural monitoring unit is an agricultural field and this is the scale where the de-

cisions on pest control measures (e.g. pesticides application) are made if/when the pest

density exceeds a dangerous threshold. Methods to estimate the average pest density are

therefore of primary importance; see Section 3. However, these methods use the infor-
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Figure 37: A sketch of the scale-specific goals of insect pest monitoring, corresponding theo-

retical frameworks and mathematical tools. The arrows indicate the information flow between

different scales and approaches; see details in the text.
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mation obtained locally from trap counts collected by a given trap; therefore, accurate

estimation of the local density is an essential prerequisite. The forecasting done on the

landscape scale aims to observe the regional tendencies in pest development. It also helps

to identify the location of fields where potentially dangerous pest development is likely to

take place (as well as, in principle, the timing of those events; see Fig. 26).

It is clear from the above that the information obtained at different scales is not inde-

pendent. There are certain ‘information flows’ between the scales. Precision of the local

density estimation affects the field-scale accuracy of the average density estimate. In its

turn, as the information on average population density is used in order to reveal regional

cross-field correlations, it can affect the conclusions made on the landscape scale. Under-

standing of the processes and phenomena that can affect the accuracy of monitoring at

the single-field scale is therefore crucial for insect pest monitoring as a whole. One such

phenomena is pattern formation when the distribution of the pest population density over

space can become prominently heterogeneous due to the impact of some environmental

and/or biological factors. For instance, a heterogeneous insect distribution can be ex-

pected to emerge as a likely response to spatially synchronized fruit production observed

in large orchards [148]. In Section 3, we showed that the accuracy of the average density

estimate in the single field problem can be improved significantly (or the number of traps

can be decreased) if some a priori information is available about the spatial pattern. The

other way round, once the properties of the spatial pattern are known, it often becomes

possible to draw conclusions about the population density at particular locations. This

additional information can then be used to significantly increase the accuracy of the local

density estimate at the single trap scale.

Thus, pattern formation at the intermediate, single-field level provides coupling be-

tween different spatial scales. Pattern formation in population dynamics is a complicated

phenomenon that has been a focus of intensive research for a few decades [106, 109, 87]. It

can be of different origin and controlled by different factors [6, 59, 88, 107, 147]. One factor

that seems to be particularly relevant to pattern formation in the agricultural context is

the geometry of the domain but the effects of the field shape seem to be largely overlooked

in standard agricultural practices. Indeed, the value of a farm field often depends on its

area but rarely on its shape. However, theory predicts (see below) that the properties of

the pattern can depend both on the size and shape of the domain. Hence, the efficiency of

pest monitoring (which, in its turn, can greatly affect costs of crops growing, cf. Section

1) can be significantly different in fields of different shape, or else fields of different shape

may require a different monitoring protocol.

In the theoretical perspective, there are a few situations where the effects of shape either

are known or can be readily seen. For the simplest example, let us consider a single-species

population U(r, t) that multiplies according to the logistic growth, f(U) = αU(1 − U
K

),

and diffuses inside a 2D domain of rectangular shape:

∂U(r, t)

∂t
= D∇2U(r, t) + f(U) ≈ D∇2U(r, t) + αU(r, t), (95)

r = (x, y), 0 < x < Lx, 0 < y < Ly ,
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where we have assumed, for the sake of simplicity, that U ≪ K and hence the growth

rate is approximately linear, f(U) ≈ αU . We also assume that the environment outside

of the domain is hostile so that the condition at the domain boundary Λ is of Dirichlet

type, U(r ∈ Λ, t) = 0.

The linearized equation (95) can be readily solved by the method of variable separation

[36]. Interestingly, the solution appears to have different properties depending on how

large is the domain size in x and y direction. Namely, the solution is decreasing for

α−Dπ2

(

1

L2
x

+
1

L2
y

)

< 0, (96)

which will eventually lead to population extinction, and it is increasing otherwise. Obvi-

ously, for fixed values of α and D, it means that the population can only survive if both

Lx and Ly are large enough. In particular, it means that the population will survive in a

square domain L× L for

L > Lcr = π
(

2D

α

)1/2

, (97)

but will go extinct in a rectangular domain of the same area LxLy = L2 where either Lx

or Ly are sufficiently small. Note that, although being very simple to demonstrate, this

effect of the domain shape is sometimes overlooked which may result in artificial or even

meaningless results, cf. [156].

More subtle effects of the domain shape and size are observed in case of a more com-

plicated population dynamics. Consider, for instance, a predator-prey system. In case of

the cyclic dynamics, which is rather common in nature [152], the predator-prey system

can exhibit two different types of spatiotemporal dynamics, i.e. either smooth patterns

in space (e.g. periodical) combined with periodical oscillations in time or spatiotemporal

chaos [122], the latter also being known as the “biological turbulence” [87].

Let us consider the situation where the populations occupy a ring-shaped domain,

r0 < r < r1 where r0 ≪ r1, i.e. there is an “obstacle” of radius r0 at the domain center so

that a part of the domain is not accessible. (In terms of a real-world system, for instance,

it can be a pond or a small lake.) It was shown in [158] that the type of the system’s

dynamics and, correspondingly, the type of the spatial pattern then depends on the radius

of the obstacle; see Fig. 38. The population spatial distribution forms a regular target-

like pattern in case of a small obstacle but an irregular (actually, chaotic) spatiotemporal

pattern in case of a sufficiently large obstacle. Apparently, in the former case the same

number of traps will result in a much more accurate estimate of the average population

density than in the latter case.

The effect of the domain shape on the dynamics of a predator-prey system was also

studied in [98]. It was shown that, if considered in a rectangular domain with a sufficiently

small width, the initial population distribution given by a complicated two-dimensional

pattern eventually evolves to a much simpler pattern consisting of almost parallel stripes;

see Fig. 39. The emerging population distribution in the form of stripes is effectively

one-dimensional and hence can be monitored with a much higher accuracy; see Section 3.
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Figure 38: The effect of the obstacle size on the spatial pattern in a predator-prey system.

Different shades of grey correspond to different population density. The obstacle of a larger size

turns the regular pattern to a chaotic one. From [158], with permissions.

Interestingly, the example shown in Fig. 39 seems to indicate that a field of an elongated

shape should be easier to monitor. However, this message should be regarded with some

care. The results shown in Fig. 39 were obtained under some specific assumptions about

the population dynamics (see [98] for details) and it is not clear how general they are. In

a broader context, a more reliable monitoring system is not yet sufficient to increase the

IPM efficiency. In particular, the nature of the adjoint areas can be important. For a field
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Figure 39: The population density of prey in a predator-prey system shown for three equidistant

moments. As the time increases (from left to right), the irregular 2D pattern converges to an

effectively 1D system of plane waves. From [98], with permissions.
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of a given area, the more elongated the shape the larger the length of the field boundary.

In case the neighboring areas are non-farmed, they can become a refuge for pest insects,

and then a stripe-shaped agricultural field may appear to be more susceptible to pest

migration from the adjoint habitats, cf. Section 2.3.

The domain shape therefore can act as a pattern selection mechanism and this should

be taken into account in designing the monitoring program. However, the current un-

derstanding of this issue is meager and incomplete. In particular, in the above examples

the domains are of a simple shape, i.e. either rectangular or with a cylindrical symmetry.

One can expect that in the case of a more intricate shape the selection mechanism can

also become more complex. That, along with other challenges mentioned above, should

become a focus of future research.
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[52] Gautestad AO, 2013. Lévy meets Poisson: a statistical artifact may lead to erroneous
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