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Abstract: Monitoring of pest insects is an important part of the integrated pest management.

Insect monitoring aims to provide information about pest insect abundance at a given location. This

includes data collection, usually using traps, and their subsequent analysis and/or interpretation.

However interpretation of trap counts (number of insects caught over a fixed time) remains a chal-

lenging problem. Firstly, an increase in either the population density or insects activity can result

in a similar increase in the number of insects trapped (the so called “activity-density” paradigm).

Secondly, a genuine increase of the local population density can be attributed to qualitatively differ-

ent ecological mechanisms such as multiplication or immigration. Identification of the true factor

causing an increase in trap counts is important as different mechanisms require different control

strategies. In this paper, we consider a mean-field mathematical model of insect trapping based on

the diffusion equation. We first show that, although the diffusion equation is a well-studied model,

its analytical solution in a closed form is actually available only for a few special cases, whilst in a

more general case the problem has to be solved numerically. We then choose finite differences as

the baseline numerical method and show that numerical solution of the problem, especially in the

realistic 2D case, is not at all straightforward as it requires a sufficiently accurate approximation

of the diffusion fluxes. Once the numerical method is justified and tested, we apply it to the corre-

sponding boundary problem where different types of boundary forcing describe different scenarios

of pest insect immigration and reveal the corresponding patterns in the trap counts growth.

Keywords: pest monitoring; insect trapping; random walk; diffusion; numerical methods

1Corresponding author. Email: sp237@le.ac.uk; tel./fax: +44 116 252 3916 / 3915.

1



1 Introduction

Pest insect monitoring is an important component of the integrated pest management (IPM) (Ko-

gan, 1998; Burn, 1987; Peshin and Dhawan, 2009). Its purpose is to obtain a reliable estimate of

the pest abundance basing on the data collected in the field. A reliable estimate is required in order

to help the IPM specialists to make an informed decision about control measures, e.g. application

of chemical pesticides when the pest density exceeds a certain threshold (Stern, 1973; Higley and

Pedigo, 1996) and yet to avoid their unjustified use.

Data on insect abundance are usually collected with traps (Pedigo and Buntin, 1994; Raworth

and Choi, 2001). After a trap is set up in the field and has been exposed for a certain time, it

catches a certain number n1 of insects of a given species. This number is called a trap count; if, for

instance, the trap was exposed for one day, it is called the daily count. In case n1 > 0, this can be

regarded as a proof that the species is present in the vicinity of the trap. However, relating the trap

counts to the population density is a much more difficult problem. Previous approaches tended

to provide a relative rather than absolute estimate (Thomas et al.,1998). Recently, Petrovskii et

al. (2012, 2014) showed that, if information is available about the insect movement pattern, the

population density can be obtained by placing the sequence of daily counts against the predictions

of a relevant mean-field mathematical model of the population dispersal. The simplest model of

this type is the diffusion equation, which assumes that insects perform the Brownian motion, and

indeed there is considerable evidence that they often do so (Turchin, 1998) although this may not

always be readily seen from data (Petrovskii et al., 2011; Jansen et al., 2012) [but see Barthumeus

et al. (2013) for a discussion of conditions for a genuine non-Brownian movement].

The diffusion equation is a well-known and well-studied model and, in case of one spatial di-

mension, its general solution can often be found analytically, albeit not always in a compact form.

The situation is essentially different in case of higher dimension. In a 2D case, analytical solution

of the diffusion equation is only possible for a few special cases where the domain possess a certain

symmetry, e.g. has the shape of a rectangle or a disk. Even in those cases, however, the analytical

solution often becomes impractical. For instance, in case of a disk-shaped domain, the solution

can only be obtained as a formal infinite series where the eigenvalues are solutions of transcendent

algebraic equations and hence can only be found numerically. In this situation, i.e. when numer-

ical methods have to be used anyway, a reasonable alternative approach is to solve the diffusion

equation numerically right away instead of using the semi-analytical method described above.

In this paper, we use a combination of analytical and numerical approaches to investigate the

patterns in the trap counts resulting from different boundary conditions as given by different eco-

logical situations. One of the goals of pest insect monitoring is to detect an early signal of the

population growth in order to prevent a pest outbreak. It is therefore important to understand how

an increase in the population density can affect the trap counts. It seems intuitively obvious that a

larger population size should eventually result in larger trap counts. The rate of increase can, how-

ever, be different for different situations. An increase in the total population size can be attributed

to different reasons. It can result from the growth of the local population, i.e. the population inside

the given field, and indeed some insects species are capable of producing several generations in one

year. It can also result from migration of the pest into the field from an external source, i.e. from

another habitat. For the goals of the pest control, it is important to distinguish between these situ-
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ations (as the control measures are likely to be different) as well as between different immigration

patterns. Misidentification of the reason behind the pest abundance increase can result is a com-

pletely wrong estimate of the pest population density and that can have a detrimental effect on the

efficiency of control measures. Here we are mostly concerned with the effect of immigration as

the most common scenario; the effect of local population growth will be considered elsewhere.

There is a variety of numerical methods that can be used to solve numerically a PDE, in par-

ticular, the diffusion equation (e.g. Thomas, 1995). However, we mention here that that their ap-

plicability and efficiency depend on the geometry of the domain. A typical domain in the trapping

problem is not simply connected as it has an external boundary (i.e. the boundary of the monitored

farm field) and the internal boundary (the boundary of the trap). Moreover, the size of the trap is

usually much less than a typical farm field; therefore, the problem has at least two clearly different

spatial scales. Application of standard methods to a system like this may bring significant com-

putational difficulties (Petrovskii and Petrovskaya, 2012). Besides, in order to calculate the trap

counts, one has to calculate the population density gradient at the trap boundary which can also be

challenging, especially at the corner points if the trap has a shape other than circular, and indeed

use of traps of various shapes and designs has been increasingly common (cf. Flechtmann et al.,

2000).

The paper is organized as follows. In section 2.1, we describe the mathematical model and pro-

vide a comprehensive analytical study of trap counts in the hypothetical 1D case under different

migration scenarios. Although the 1D case is hardly realistic, it provides an important theoretical

background for the understanding of a more realistic 2D case. We then briefly revisit the finite-

difference method for numerical solution of the diffusion equation and show how it can be used to

calculate the trap counts in the 1D case (section 2.2). In section 3, we carefully test our computa-

tional technique against the analytical results in the 1D case. In section 4, we apply our approach to

a hypothetical 1D system in order to reveal generic patterns in the trap counts arising from different

ecological scenarios. In section 5, we consider an extension of our method onto the more realistic

2D case and discuss the arising computational issues. We then provide a thorough analysis of trap

counts for different migration scenarios by solving the 2D diffusion equation numerically (section

6). Finally, in section 7 we discuss the ecological implications of our results.

2 Mathematical model and numerical method, 1D case

2.1 Model

The equation describing the population dynamics is essentially the mass conservation law which,

in the 1D case, has the following form:

∂u(x, t)

∂t
+

∂j(x, t)

∂x
= 0 , (1)

where u(x, t) is the population density at the position x and time t, and j is the population density

flux in the direction of axis x. The mathematical description of the flux depends on the type of the

individual movement. In a relatively general case, individual insects perform a combination of the

non-directed random-like movement, that can often be regarded as the Brownian motion (Turchin
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1998; Okubo and Levin 2001), and a directed movement with a certain speed v. The corresponding

population flux is then given by

j(x, t) = − D
∂u(x, t)

∂x
+ vu(x, t) , (2)

where D is the diffusion coefficient. Whilst the directed movement becomes important in the

presence of environmental gradients, the non-directed random-like motion is an inherent property

of almost all ecological populations.

Insect monitoring is done with traps. Once an insect encounters the trap, it is caught with a

certain probability p0 < 1 where p0 depends on the species traits and the trap design. Throughout

this paper, we assume that the trap design is sufficiently efficient so that p0 ≈ 1. Indeed, this is

often the case with walking insects, even for a simple pitfall trap design. With regard to the effect

of species traits and/or the movement mode, many insects combine flying with walking. Whilst

flying is the preferred movement mode when insects travel over long distances (e.g. looking for a

new feeding or breeding ground), their movement on the feeding site is typically a combination of

walking and very short flights. Correspondingly, here assume that, once the insects arrive at the

farm-field, they mostly move around by walking.

Regarding the trap design, traps can be either baited or non-baited. Baited traps use a certain

substance (e.g. pheromone) or agent (e.g. light or color) in order to attract insects to the trap. This

introduces an advective component to the insect movement as they are more likely move towards

the trap rather than in any other direction. On the contrary, non-baited traps do not introduce any

directional bias as they capture insects just because of their random encounters with the trap. In

this paper, we focus on non-baited taps only; consideration of baited traps involves an essentially

different set of assumptions (in particular, about the insect’s behavioral response to the attracting

agent) and hence will be done elsewhere (Bearup et al., 2015).

Let us consider an idealized 1D farm-field described by the domain 0 < x < L. We assume

that the field is homogeneous and the trap is non-baited. Correspondingly, inside this domain – but

not necessarily outside, see below – the monitored insect population performs only random motion

(i.e. v = 0 in Eq. (2)) and hence is described by the diffusion equation:

∂u(x, t)

∂t
= D

∂2u(x, t)

∂x2
. (3)

The trap, which we assume to be escape-proof, is installed at the left-hand side boundary of the

domain, i.e. at x = 0. The corresponding condition at the trap boundary is

u(0, t) = 0 . (4)

Once the solution u(x, t) of the diffusion equation is known, the corresponding trap count over

time t can be obtained as

∆U(t) =

∫ t

0

j0(τ)dτ , (5)

where

j0(t) = D
∂u(0, t)

∂x
≥ 0 (6)

is the population density flux into the trap.
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In order to make the mathematical problem complete, the diffusion equation must be comple-

mented with the initial condition and with a boundary condition at x = L. In this paper, we are

mostly interested in the effect of the conditions at the field boundary arising from different eco-

logical situations. Hence, in order to avoid unnecessary complexity, for the initial condition we

consider the simplest case when the population is distributed uniformly around the domain:

u(x, 0) = U0, for 0 < x < L , (7)

where U0 ≥ 0 is a parameter with the obvious meaning.

The situation at the field boundary (i.e. at x = L) requires a much more careful consideration.

In order to understand what form of the boundary condition may be relevant, generally speaking,

one has to consider the population dynamics not only inside the domain of interest (farm-field) but

also in the adjacent habitat (non-farmed field); see Fig. 1. Moreover, sometimes the inter-habitat

boundary itself may have to be accounted for as a separate domain, in particular, in the cases where

the boundary has an inner structure and may by itself be a habitat (cf. “hedge ecosystem”).

The focus of this paper is the population dynamics in the given domain resulting from the

immigration. Correspondingly, a relevant starting point is the quantification of the immigration’s

impact. The population flux (cf. Eq. (2)) is the number of individuals crossing the boundary per

unit time and hence is a relevant quantity. Note that, whilst we have assumed that inside the domain

0 < x < L insects move randomly, outside of the domain insects can perform either a random

motion or a directed movement, or a combination of both. With regard to the relative importance

of the directed and non-directed movement, we consider two different cases.

Case I: the insect movement in the adjacent habitat is not affected by the presence of the

neighboring farm-field (i.e. there is no odor or smell that could act as an attractant). The insects
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 Figure 1: A sketch of the boundary forcing of the monitored habitat (farm-field) because of the

insect immigration from the adjacent habitat (non-farmed) described by the population flux; see

details in the text.
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move randomly in a diffusive manner, i.e. there is no advection. Additionally, we assume that the

population density distribution over the non-farmed habitat is approximately uniform. Then at any

location x = L + ǫ > L, j(x + ǫ, t) = −D∂u(x + ǫ, t)/∂x ≈ 0, i.e. the left-hand and right-hand

diffusive fluxes compensate each other. The population in the non-farmed domain is therefore at an

equilibrium state. The insects that moves in the close vicinity of the boundary x = L can, because

of the randomness of their movement, occasionally move across the habitat boundary x = L,

i.e. to the farm-field. However, this loss of individuals is immediately compensated by arrival, due

to the diffusion, of insects from areas further inside the non-farmed domain so that the value of the

population density at any location L + ǫ close to the boundary remains unchanged. We consider

that this value, say Ub, does not depend on time. Thus, since the population density is a continuous

function of space, we arrive at the following Dirichlet-type condition:

u(L, t) = Ub . (8)

Below we will refer to this case as the diffusive boundary forcing referring to the fact that the

population outside of the domain (i.e. in the non-farmed field) performs diffusive movement.

Case II: there is an attractant emanating from the farm-field into the adjacent non-farmed habi-

tat. In the non-farmed habitat, it results in the directed movement of the insects from inner areas

towards the inter-habitat boundary. Because of this, the left-hand and right-hand fluxes do not com-

pensate each other and, at any location x = L + ǫ sufficiently close to the boundary (ǫ is small),

there is a population flux towards the boundary. We now additionally assume that the boundary

has no capacity, that is, the number of the individuals per unit time coming to the boundary from

the right (from the non-farmed habitat, see Fig. 1) must be balanced by the same number going

away from the boundary to the left (to the farmed habitat). The flux at the right-hand side of the

boundary, say J , which in this case can be a combination of the advective and diffusion fluxes,

must therefore be balanced by the purely diffusion flux at the left-hand side of the boundary, so

that we arrive at the Neumann-type boundary condition:

D
∂u(x, t)

∂x

∣

∣

∣

∣

x=L

= J or
∂u(L, t)

∂x
= G , (9)

where G = J/D is thus the value of the density gradient. For the sake of simplicity, we assume that

J is constant, so that G is constant as well. Below we refer to this case as the advective boundary

forcing referring to the fact outside of the domain the population performs advective movement.

Now we are going to consider what is the mathematical expression for the trap counts in case

of different boundary conditions.

Impenetrable boundary. We begin with the simplest case where there is no forcing at all,

i.e. no insect immigration or emigration, because the boundary is impenetrable:

∂u(L, t)

∂x
= 0. (10)

The problem (3), (4) and (7) together with (10) can be solved analytically using the separation

of variables method (e.g. Crank 1975). The solution u(x, t) is given by the following infinite series:

u(x, t) =
4U0

π

∞
∑

k=0

1

(2k + 1)
sin

(

(2k + 1)πx

2L

)

exp

(

−(2k + 1)2π2Dt

4L2

)

. (11)

6



From (11), the diffusion flux (6) at the trap boundary is obtained as

j0(t) =
2DU0

L

∞
∑

k=0

exp

(

−(2k + 1)2π2Dt

4L2

)

, (12)

and, correspondingly, the number of insects caught over time t of the trap exposure is calculated

as

∆U(t) =
8LU0

π2

∞
∑

k=0

1

(2k + 1)2

[

1 − exp

(

−(2k + 1)2π2Dt

4L2

)]

, (13)

where LU0 is the total number of insects for x > 0 at t = 0. Note that, since
∞

∑

k=0

1

(2k + 1)2
=

π2

8
, (14)

in the large-time limit ∆U(t) → LU0, i.e. all insects are trapped.

It also follows from (13) that the trap count can be approximated as

∆U(t) ≈ 2U0√
π

√
Dt, (15)

which shows a very good accuracy when either time t is sufficiently small or the domain length

L is sufficiently large, or both; see Petrovskii et al. (2012) for details of this approximation. A

straightforward derivation of Eq. (15) in case of a semi-infinite domain x > 0 can be found in

Petrovskii et al. (2014).

Diffusive boundary. We now consider the case of the diffusive forcing, i.e. the diffusion

problem (3), (4) and (7) together with the condition (8). Using the same method as above, we

arrive at the following expression for the trap counts:

∆U(t)Dir =
DUb

L
t +

2UbL

π2

∞
∑

k=1

(−1)k

k2

[

1 − exp

(

−Dk2π2t

L2

)]

+
4U0L

π2

∞
∑

k=1

1

(2k − 1)2

[

1 − exp

(

−D(2k − 1)2π2t

L2

)]

. (16)

Advective boundary. Finally, in the case of advective forcing, we consider (3), (4) and (7)

together with (9). The corresponding expression for the trap counts is:

∆U(t)Neu = GDt +
16GL2

π3

∞
∑

k=1

(−1)k

(2k − 1)3

[

1 − exp

(

−D(2k − 1)2π2t

4L2

)]

+
8U0L

π2

∞
∑

k=1

1

(2k − 1)2

[

1 − exp

(

−D(2k − 1)2π2t

4L2

)]

. (17)

In the special case of impenetrable boundary, i.e. for G = J = 0, (17) coincides with (13).

Solutions (13), (16) and (17) will be used below to test the numerical method.

We mention here that, in case of any more complicated boundary condition at the external field

boundary (e.g. of the Robin type), the solution of the corresponding diffusion problem would not

be available in the closed form. Each term in the series would include a coefficient that could only

be obtained numerically by solving a transcendent algebraic equation. This emphasizes the need

for an alternative, numerical method to solve the diffusion equation that will be discussed below.
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2.2 Numerical method

In this section, we look at the numerical method we use to obtain the solution, i.e., a finite dif-

ference method. We aim to discuss finite difference discretization of the 1D problem in detail, as

most of computational issues arising when the 2D problem is considered are already present in the

1D case.

Let us introduce a uniform computational grid G in the domain x ∈ [0, L] in order to discretize

the diffusion equation (3). We have x1 = 0, xi+1 = xi + h, i = 1, . . . , N , where h = L/N is the

grid step size, and N is the number of grid subintervals.

Let u(x, tn) be the solution to the problem (3), (4), (7) (complemented with a relevant boundary

condition at the external boundary, as discussed in 2.1) at the fixed time t = tn. Let also u(x, tn+1)

be the solution at the fixed time t = tn+1, where tn+1 = tn + τ , τ > 0. A finite difference

discretization scheme is a method widely used for numerical solution of parabolic differential

equations (e.g. see Hirsch 1992, Holmes 2006, Morton 1994, Smith 1985). The scheme defines

the approximate solution u(x, tn+1) at each grid node xi of a uniform grid G from solving a system

of linear algebraic equations

1

τ
(un+1

i − un
i ) = Λ[σun+1

i + (1 − σ)un
i ], (18)

where we use the notation un
i ≡ u(xi, tn) and un+1

i ≡ u(xi, tn+1). The definition of discrete spatial

operator Λ is

Λ[vi] =
D

h2
(vi+1 − 2vi + vi−1), (19)

where vi is a discrete function defined at nodes of the grid G, h is the grid step size and D is the

diffusion coefficient.

The weight parameter σ defines a type of the scheme. The weight coefficient σ = 1 provides

us with an implicit (and therefore unconditionally stable) scheme. The weight σ = 0 results in

an explicit scheme, where the solution un+1
i at time tn+1 is readily computed from the solution un

i

taken from the previous time layer tn. In our work we employ the latter version of the scheme with

σ = 0. The theoretical approximation error2 related to this scheme is O(h2 + τ) and the scheme is

stable if the following condition holds:
Dτ

h2
≤ 1

2
. (20)

While we are fully aware of the issues of the stability and accuracy raised when the explicit

scheme σ = 0 is used, we advocate our choice because of simplicity of computations. Let us

note that we are interested in the solution at small times t, where we assume that the approximate

solution is not noticeably affected by approximation error O(τ) of the scheme. This assumption is

further carefully checked in a series of numerical tests discussed in section 3. Also, the condition

(20) implies a very small time step size τ on fine grids with h ≪ 1, but it does not significantly

increase the cost of our computations at small times.

2Theoretical approximation error shows the convergence rate in the limiting case of infinitesimal h and τ ; for any

finite values of the grid steps, the actual error can be somewhat different
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The equations (18) are solved for i = 2, . . . , N . For the discretization of the boundary condi-

tions (4)-(10) at any time tn > 0 we have the following equations

un+1
1 = 0 for x = 0,

un+1

N+1
= un

N+1 +
2τD

h2
(un

N − un
N+1) for x = L.

(21)

Equations (21) provide us with the second order approximation of the boundary condition (e.g. see

Thomas 1995) and is therefore consistent with the accuracy of approximation (18).

Similarly, we have

un+1

N+1
= un

N+1 +
2τD

h2
(un

N − un
N+1 + hG) for x = L, (22)

when the boundary condition (9) is used. The discretization of the boundary condition (16) is

straightforward and results in

un+1

N+1
= Ub for x = L. (23)

Finally, the discretization of the initial condition (47) is

u0
i = U0, i = 2, . . . , N. (24)

Calculation of trap counts. Let the solution u(x, tn+1) be known to us at any fixed time t =

tn+1. In our further discussion in this section we omit the notation tn+1 for the sake of convenience

and consider a spatial distribution u(x). The flux j(x) of the population density u(x) at point x

is given by the formula (6). Hence the flux computation requires approximation of the derivative
du(x)

dx
at grid node x1 = 0. The accuracy of this approximation should be consistent with the

accuracy of finite difference approximation (18), that is the approximation error should be O(h2).

It is explained in Appendix A that the required order of accuracy can be achieved by using the

following flux approximation at the trap boundary x = 0:

j(0) ≈ D

2h
|4u2 − u3|. (25)

Once the flux j(0) has been computed, an approximation of the total number of insects ∆Un,n+1

crossing the trap boundary between time tn and tn+1 is obtained as ∆Un,n+1 = j(0)τ . The cumu-

lative trap count ∆U(tn+1) = ∆Un+1 at time tn+1 is then computed by adding this value to that

obtained at the previous time tn:

∆Un+1 = ∆Un + ∆Un,n+1. (26)

3 1D case: Validation of the method and numerical tests

In this section we validate our finite difference discretization through the number of numerical

tests. Our first test case is to check the spatial convergence of a numerical solution on a sequence
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of refined grids. The convergence graph is shown in Fig. 2a where the trap count error is computed

as a difference between the analytical solution (13) and a numerical solution (26). The time t

is fixed as t = 100 and the diffusion coefficient is D = 1. We conclude from the slope of the

convergence graph that our spatial discretization is indeed second order accurate.

Consider now the temporal-spatial discretization. The trap counts obtained from a numerical

solution have been computed for various time t on a sequence of grids with grid step size varying

from h = 0.5 to h = 0.05. The results are shown in Fig. 2b. It can be seen from the figure that the

trap counts obtained from the numerical solution are, over the given time, visually indistinguish-

able from those produced by the truncated exact solution on the scale used.

More accurate validation of the numerical solution requires computation of the trap counts

error. We introduce the trap counts error en+1 at time t = tn+1, n = 0, 1 . . . as the relative

difference between the exact trap counts ∆Un+1
exact and the approximate trap counts ∆Un+1

approx obtained

from a numerical solution,

en+1 =
∆Un+1

exact − ∆Un+1
approx

∆Un+1
exact

. (27)

In computation of the error (27) the exact solution (13) was truncated as

∆U(t) =
8LU0

π2

K=200
∑

k=0

1

(2k + 1)2

[

1 − exp

(

−(2k + 1)2π2Dt

4L2

)]

, (28)

The truncated solution has been verified against the approximation (15) at small times to guarantee

that K = 200 terms in the above sum is sufficient to approximate an infinite series. The error en+1

is shown in Fig. 2c as a function of time. It has been computed on a sequence of grids refined from

from h = 0.5 to h = 0.05. Obviously, the finer the grid is the smaller the relative error. Overall

the relative errors obtained on any sufficiently fine grid (e.g. with h ≤ 0.125) are very small (on

the order of 1 percent or smaller) at any time point.

Let us note that, for the validation of our numerical method, we have used the exact solution

obtained for the simplest boundary and initial conditions as given by (4), (7) and (10). In the

case that a different, more complicated boundary condition and/or initial condition are used in the

diffusion problem, the exact solution may not always be available in an explicit form; in particular,

it is rarely available in the 2D case (considered in sections 5 and 6 below). Therefore, an alternative

approach is required to corroborate a numerical solution. Thus our next test is to compare the trap

counts obtained from flux calculations with trap counts calculated by a different method.

We mention here that, in the strict sense, validation of the numerical method in the absence

of the exact solution is hardly possible: indeed, having calculated the solution on a sequences of

refined grids, what can we compare it to? Note that good agreement between the results obtained

by two different methods does not, by itself, prove anything as, generally speaking, both methods

can be equally wrong. Yet if we can reproduce the results (i.e. trap counts) by using a different

numerical method, that, albeit not being a proof as such, should be regarded as an indirect evidence

of the results’ plausibility.

As an alternative method, we consider the numerical integration of the solution u(x, tn). The

integration gives the size of the ‘free’ population inside the computational domain at time tn.

Recall that our population model assumes no reproduction or mortality of individuals within the

10
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Figure 2: (a) Spatial convergence of the numerical solution on a sequence of uniformly refined

spatial grids. (b) Trap counts obtained by (15) on a sequence of refined grids with the grid step

size h (see inset key) in comparison with the truncated exact solution (28). The six different curves

are visually indistinguishable. (c) The trap count error (27) as a function of time. In all cases (a-c),

the parameters are L = 49.5, D = 1.0, τ = 1/1600 and U0 = 10.

11



10
0

10
1

10
-4

10
-3

10
-2

Nodes per unit length

T
ra

p 
co

un
t e

rr
or

(a)

0 200 400 600
0

200

400

600

Time

T
ra

p 
co

un
ts

h = 0.5
h = 0.25
h = 0.125
h = 0.1
h = 0.05
Exact

(b)

0 200 400 600
10

-6

10
-5

10
-4

10
-3

10
-2

Time

T
ra

p 
co

un
t e

rr
or

h = 0.5
h = 0.25
h = 0.125
h = 0.1
h = 0.05

(c)

Figure 3: (a) Spatial convergence test. The error is computed as a difference between the solution (30)

and the integral of the truncated density function on a sequence of uniformly refined spatial grids. (b) Plots

of trap counts obtained using numerical integration on increasingly fine grids (see inset key) in comparison

with the exact solution obtained as the integral of the truncated exact density function. The six different

curves are visually indistinguishable. (c) Relative differences between the numerical solution and the exact

solution plotted against time. In all cases (a-c), the parameters are the same as in Fig. 2.
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domain. Furthermore, for the boundary condition (10), the impermeable external boundary admits

no migration into or out of the domain. As such the population changes only as a result of trapping.

Hence the sum of the free population and the trap count remains constant and is equal to the initial

population LU0 at any given time.

The free population Un+1 is calculated by numerical integration of the population density dis-

tribution over the domain x ∈ [0, L] at the time tn+1. Once the population density u(x, tn+1)

has been defined at the nodes of a uniform computational grid G, a composite rule of numerical

integration can be applied to integrate the spatial distribution u(x) at the fixed time tn+1,

Un+1 ≡ U(tn+1) =

L
∫

0

u(x)dx ≈
N+1
∑

i=1

ωiui, (29)

where ui ≡ un+1
i , i = 1, . . . , N +1 are function values at grid nodes and the weights ωi are defined

according to the chosen rule of numerical integration. In our work we apply the trapezoidal rule,

where the weights are ω1 = ωN+1 = h/2, ωi = h, i = 2, . . . , N . The accuracy of this integration

rule on a uniform grid with the grid step size h is O(h2) (e.g. Davis 1975).

The trap count can then be computed as

∆Un+1 = LU0 − Un+1, (30)

where LU0 and Un+1 are the free population at time t = 0 and t = tn+1 respectively.

The results of numerical integration (29–30) are presented in Fig. 3. The spatial convergence

of a numerical solution on a sequence of refined grids is shown in Fig. 3a, where the time t is fixed

as t = 100 and the other parameters are L = 49.5, D = 1. In order to calculate the error, we

compare a solution obtained by numerical integration of the density function with the truncated

integral of the exact density.

The trap count as a function of time is shown in Fig. 3b on a sequence of grids with grid step

size varying from h = 0.5 to h = 0.05. The trap counts obtained from the numerical solution

appear to be visually indistinguishable from those produced by integrating truncated exact density.

This conclusion is further confirmed by computation of the error (27), where ∆Un+1
approx is now a

numerical solution (30). The relative error as a function of time is shown in Fig. 3c on spatial grids

with the grid step size from h = 0.5 to h = 0.05. It is clear from the figure that the accuracy of

computation is very good on any grid used.

Let us now compare the trap counts obtained by the two different methods, i.e. by the flux cal-

culation at the trap boundary, see Eqs. (25–26), and by the numerical integration of the population

density of the free population, see Eq. (30). Figure 4 shows the relative difference between the two

numerical solutions obtained on a fine grid with h = 0.05 for parameters L = 49.5 and D = 1. It

is readily seen that the two methods are in a very good agreement between themselves, and both

numerical solutions are very close to the exact solution of the problem; see also Figs. 2 and 3.

We therefore assume that, when the exact solution is not available, the trap counts obtained from

numerical integration can be used to verify those obtained from flux calculations. This conclusion

is going to be practically important for the analysis of the 2D problem.
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Figure 4: Comparison of two numerical solutions on a fine grid with h = 0.05. The relative

difference between the solution obtained from direct flux calculation and the solution by numerical

integration is computed as a function of time.

4 1D results for various ecological conditions

We are now going to consider the trap count dynamics subject to different types of forcing at the

external boundary as given by Eqs. (8) and (9). For doing this, we combine analytical approaches

with numerical simulations. The diffusion problem in the 1D case can be studied analytically,

e.g. see Eqs. (16) and (17) and the theorem at the end of this section. However, basic properties of

the corresponding solutions are sometimes easier to see from numerical simulations. We therefore

begin with numerical results and their semi-quantitative, heuristic analysis.

Recall that in the 1D system the analytical expression for the trap count is available, cf. Eqs. (16)

and (17). It is readily seen that a truncated series with a sufficiently large number of terms pro-

vides a very good approximation to the exact solution. This approximate solution is used below

to analyze the trap counts for different conditions. Some of those approximate-analytical results

are also reproduced using the numerical method described in the previous section, thus using the

analytical solution as a test, with the idea to later apply numerical simulations extensively in the

2D case where the analytical solution is not available.

In order to provide a convenient framework for the understanding of the trap count dynamics,

we notice that, both for diffusive forcing (8) and advective forcing (9), the solution of the diffusion

equation has stationary large-time asymptotics, ūD(x) and ūN(x) respectively, where

ūD(x) =
Ubx

L
and ūN(x) = Gx . (31)

We therefore obtain that, in the large-time limit, the trap count is a linear function of time, that is

∆U(t)Dir ≃ DUbt

L
+ C1 and ∆U(t)Neu ≃ DGt + C2 , (32)

respectively, where the value of the constants C1 and C2 results from the transient short-time and

intermediate-time dynamics; in particular, it depends on the initial conditions. If we consider
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Figure 5: Trap counts vs time as given by the series (16) (upper curve) and (17) (lower curve),

i.e. for diffusive and advective forcing respectively, and as obtained from numerical solutions of

the corresponding systems. Parameters are: D = 1, L = 45, U0 = 0, Ub = 10 and G = Ub/L. Red

curves correspond to the analytical solutions (truncated at 100 terms), black symbols correspond

to numerical solutions. Note the excellent agreement between the analytical and numerical results.

G = Ub/L, then the only difference between the two types of forcing is due to the transient stage.

In order to make the solutions for diffusive and advective forcing comparable, throughout this

section we choose G to be equal to Ub/L.

Diffusion is a slow process; whatever it the type of the boundary forcing, it clearly takes some

time for its effect to propagate through the domain and to reach the trap (we will address this

issue more quantitatively below). It is less clear which type of the forcing may result in a stronger

effect. Intuitively, the Neumann-type advective boundary condition corresponds to a more active

forcing, hence it seems reasonable to expect that the trap count should grow faster in that case than

in case of the diffusive, Dirichlet-type, boundary condition. Interestingly, this intuitive argument

appears to be misleading. Figure 5 shows the trap counts obtained both analytically (red curves)

and numerically (black symbols) for diffusive forcing (upper curve) and advective forcing (lower

curve). As was expected, the effect of the external forcing is not seen until after a considerable

delay. However, diffusive forcing appears to have a much stronger effect on the trap counts than

advective forcing.

In order to make a more detailed insight into the effect of the domain length, we introduce

a certain threshold count and consider how the time t1 required for the trap count to reach the

threshold depends on the distance L between the trap and the external boundary (i.e. the domain

length). Figure 6 shows this time t1 vs L for the threshold count equal to one, i.e., effectively,

the time when the first insect from the monitored population is caught. We therefore observe that,

the larger is the distance L the higher is the efficiency of diffusive forcing compared to advective

forcing.

The faster-than-linear (approximately quadratic) growth in the time t1 as a function of L can be
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Figure 6: The time t1 at which trap counts exceed one against length L of domain. Crosses for

diffusive (Dirichlet) forcing, circles for advective (Neumann) forcing. Parameters are: D = 1,

U0 = 0, Ub = 10 and G = Ub/L.

explained using the dimensions analysis (Barenblatt 1996). From the quantities t1, L, D, U0 and

Ub or G one can make exactly two dimensionless combinations, that is Π = t1DL−2 and either

Π1 = U0/Ub or Π2 = U0/(GL), for diffusive and advective forcing, respectively. Then, according

to the so called Π-theorem (Buckingham 1914; also Barenblatt 1996), one of these dimensionless

combinations must be a function of the other, i.e.,

Π = f1(Π1) or Π = f2(Π2), (33)

for diffusive or advective forcing, respectively, where f1 and f2 are certain ‘universal’ functions.

For time t1, we therefore obtain:

t1 =
L2

D
f1(Π1) or t1 =

L2

D
f2(Π2). (34)

Functions f1 and f2 are not known; however, we observe that, in the special but important case

U0 = 0, their argument is zero as Π1 = Π2 = 0. The values f1(0) and f2(0) then just act as

coefficients. We therefore obtain that t1 is proportional to L2, which agrees very well with Fig. 6.

The above results were obtained for U0 = 0, i.e. when there is no native population in the

domain and the trap counts only account for the boundary forcing resulting from the immigration.

The dynamics becomes different and somewhat more complicated when the native population is

present, i.e. for U0 > 0. (This, for instance, can be seen from Eqs. (34) where time t1 remains

proportional to L2 in case of diffusive forcing but turns into a more complicated relation in case

of advective forcing as L now enters the argument of f2.) For U0 > 0, the trap count growth at

small t (i.e. before the effects of the boundary reach the trap) is determined solely by the effect of

the initial conditions (i.e. by the native population) and is known to increase as
√

t (Petrovskii et

al. 2012). If considered over a long time, the pattern in the trap count growth can be regarded as a

transition between the two asymptotics, i.e. the small time behavior ∆U ∼
√

t and the large-time
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Figure 7: Trap counts vs time as obtained from Eqs. (16) and (17). Solid and dashed curves

correspond to the Dirichlet (diffusive) and Neumann (advective) boundary conditions, respectively.

Parameters are: D = 1, L = 45, U0 = 10, Ub = 50 and G = Ub/L.
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Figure 8: Trap counts vs time as obtained from Eqs. (16) and (17) for Ub = 10 and G = Ub/L, other

parameters are the same as in Fig. 7. Solid and dashed curves are for the Dirichlet and Neumann

boundary conditions, respectively. Note that, contrary to the case shown in Fig. 7, diffusive forcing

(Dirichlet) now results in lower trap counts than advective forcing (Neumann).

behavior ∆U ∼ t (cf. Eqs. (32)); this transition is clearly seen in Figs. 7. Note that, at small t, the

trap counts are the same irrespective of the boundary condition as only the initial conditions are

having effect.

The effect of the initial conditions does complicate the behaviour of the system. We showed

above that for U0 = 0 diffusive forcing always has a stronger effect on the trap counts than the

equivalent3 advective forcing. For U0 > 0, the type of forcing that results in a larger trap count

(or in a faster growth of the trap count with time) depends on parameters Ub and G. For a given

3i.e. when G = Ub/L.
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U0, diffusive forcing is stronger than advective forcing for a large Ub (Fig. 7) but it gives way to

the equivalent advective forcing when Ub becomes sufficiently small; see Fig. 8. Similarly, for a

given Ub, the diffusive forcing is stronger for small U0, but the advective forcing is stronger for

large U0. The value of Ub where the relative strength of the different forcing types interchanges

depends on U0. We also observe that the shape of the curves describing the trap count dynamics

changes as well; from being convex for small values of Ub (Fig. 8) they become sigmoidal for large

Ub (Fig. 7). Recall that for U0 = 0 the generic shape of the curve is concave, cf. Fig. 5.

The above results were obtained numerically. However, the relation between the trap counts

obtained for the two types of boundary forcing can also be addressed analytically, as is shown by

the following theorem.

Theorem 1. Consider the diffusion equation in the domain 0 < x < L with the condition at

the left-hand side boundary as u(0, t) = 0 (as corresponds to the trap) and the initial con-

dition u(x, 0) = u0(x). Let uD(x, t) and uN(x, t) be the solutions obtained for the Dirichlet

and Neumann boundary conditions at the right-hand side boundary, i.e. for u(L, t) = Ub and

∂u(L, t)/∂x = G, respectively. Consider the trap count ∆U(t) as defined by (5-6). Let the pa-

rameters be related as Ub = GL. Then:

if u0(x) < Gx then ∆U(t)Dir > ∆U(t)Neu, (35)

if u0(x) > Gx then ∆U(t)Dir < ∆U(t)Neu. (36)

Proof. We first recall that, under condition Ub = GL, both the Dirichlet and the Neumann

problems have the same stationary solution ūD(x) = ūN(x) = Gx.

Let us consider condition (35), i.e. u0(x) < Gx. Since both u0(x) and Gx satisfy the diffusion

equation and the same boundary conditions, u0(0) = 0 and u0(L) = GL = Ub, by virtue of the

comparison theorem for parabolic PDEs (also known as the monotonicity principle, cf. Volpert

and Hudjaev 1985) we obtain that uD(x, t) ≤ Gx for any t > 0 and all 0 ≤ x ≤ L. Assume that

there exist certain x∗ ∈ (0, L) and t∗ such as uD(x∗, t∗) = Gx∗. By virtue of the strong maximum

principle, we then obtain that uD(x, t) ≡ Gx in (0, L) for any t > 0. But uD(x, t) does not

coincide with Gx at any finite t. Therefore (x∗, t∗) does not exists and hence uD(x, t) < Gx for

all 0 < x < L, in particular in the vicinity of x = L. Applying then the Hopf’s lemma (boundary

point principle), we obtain that

∂uD(L, t)

∂x
> G . (37)

Recall that G is the value of the gradient in the Neumann boundary condition; relation (37)

therefore reads as

∂uD(L, t)

∂x
>

∂uN(L, t)

∂x
. (38)

We therefore obtain that uD(x, t) and uN(x, t) satisfy the same diffusion equation, the same

initial condition u0(x) and the same left-hand side boundary condition uD(0, t) = uN(0, t) = 0

but have different value of the gradient at the right-hand side boundary as given by (38). Then, by

virtue of the comparison theorem, uD(x, t) ≥ uN(x, t) for any t > 0 and all 0 ≤ x ≤ L. Similarly
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to the above, let us assume that there exist x∗ ∈ (0, L) and t∗ such as uD(x∗, t∗) = uN(x∗, t∗).

Applying the strong maximum principle, we obtain that uD(x, t) ≡ uN(x, t) in (0, L) for any

t > 0, which is impossible. Therefore (x∗, t∗) does not exists and uD(x, t) > uN(x, t) for all

0 < x < L, in particular in the vicinity of x = 0. Applying now the Hopf’s lemma to the left-hand

side boundary, we obtain that

(−1)
∂uD(0, t)

∂x
< (−1)

∂uN(0, t)

∂x
, (39)

(where −1 accounts for different direction of the outwards normal vector) so that

∂uD(0, t)

∂x
>

∂uN(0, t)

∂x
. (40)

It then immediately follows from (5–6) that the population flux jDir
0 > jNeu

0 and hence the corre-

sponding trap count ∆U(t)Dir > ∆U(t)Neu.

In the opposite case, i.e. where u(x, 0) > Gx, a very similar argument (subject to signs reversed

in relevant places) could be used to show that the flux into the trap is less with Dirichlet forcing

than with Neumann forcing, i.e. the statement (36) holds.

Obviously, the results shown in Figs. 5 and 8 correspond to the conditions (35) and (36), re-

spectively. Note that the intermediate case where the initial condition u0(x) and the line Gx have

intersection points in the interval 0 < x < L (i.e. when 0 < U0 < Ub for the initial condition (7),

cf. Fig. 7) is not addressed by the theorem.

5 The 2D problem

5.1 Model

Having established how our numerical solutions behave in a 1D system we now move on to the

more complex, more realistic 2D case. The diffusion equation in the 2D case is written as

∂u

∂t
= D

(

∂2u

∂x2
+

∂2u

∂y2

)

, (41)

where u(x, y, t) is the density of the pest insect population, D is the diffusion coefficient. The

equation (41) is considered in the domain Ω = {(x, y) : |x| < Ld, |y| < Ld} where 2Ld thus

gives the overall size of the domain.

We will focus on a case where a single trap is installed at the origin, i.e. in the center of the

domain. Generally speaking, the shape of the trap can be different and that may significantly affect

the complexity of the computational problem. However, it was shown by Petrovskii et al. (2012)

that, in case the insects perform the Brownian motion (which is the pattern of individual movement

corresponding to the diffusion equation, e.g. see Berg, 1983; Chorin and Hald, 2006), then the trap

counts depend on the perimeter of the trap but not on its shape. Correspondingly, in order not

to increase unnecessarily the computational complexity, we consider the trap of a square shape,

S = {(x, y) : |x| < l/2, |y| < l/2}, where l is thus the trap size.
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Hence, in order to calculate the trap counts, the solution of the diffusion equation is sought in

the following domain:

Ωs = {(x, y) : l/2 < |x| < Ld, l/2 < |y| < Ld}.

The equation (41) must be augmented by boundary conditions and initial conditions. Note

that the computational domain Ωs is not simply-connected (see Fig. 9 below) and has the external

boundary, which we denote as ∂Ω, and the internal boundary (i.e. the boundary of the trap S),

which we denote as ∂S.

As well as in the 1D case, we assume that the trap is escape-proof and use the following

condition at the internal boundary ∂S:

u(x, y, t) = 0 for any (x, y) ∈ ∂S. (42)

At the external boundary of the domain, aiming at taking into account different types of bound-

ary forcing, we consider the condition in the following general form:

k1u(x, y, t) + k2

∂u(x, y, t)

∂n

= k3 for any (x, y) ∈ ∂Ω, (43)

where n is the outward unit normal vector to ∂Ω, and k1,2,3 are parameters. Obviously, for a

different choice of k1,2,3 the boundary condition (43) can describe either diffusive or advective

forcing, that is

(a) u(x, y, t) = Ub at ∂Ω or (b)
∂u(x, y, t)

∂n

= G at ∂Ω (44)

(obtained for k1 = 1, k2 = 0, k3 = Ub and k1 = 0, k2 = 1, k3 = G, respectively). The no-flux

case corresponding to the impenetrable boundary is obtained for k1 = k3 = 0 when (43) turns into

∂u(x, y, t)

∂n

= 0 at ∂Ω. (45)

When condition (45) is applied at every point of the external boundary ∂Ω, the number of insects

in the domain can only change as a result of trapping, i.e. because of the flux through the internal

boundary ∂S. As a relevant alternative, for k2 = k3 = 0, Eq. (43) described an ‘absorbing’

boundary with zero population density:

u(x, y, t) = 0 at ∂Ω, (46)

which can be used, for instance, to describe the emigration of the insects into a hostile environment

outside of the field.

Note that, generally speaking, in the 2D system different conditions can be used at different

parts of the external boundary if needed to account for the given ecological scenario, e.g. if insect

immigration takes place through one edge only. Obviously, this more general case can still be

described by (43) with k1,2,3 being piecewise constant functions along the domain boundary ∂Ω.

With regard to the initial condition, as our main focus is on the effect of the boundary forcing,

we consider the baseline case of the uniform population distribution:

u(x, y, 0) = U0 > 0 for any (x, y) ∈ Ωs, (47)
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where U0 is a parameter.

For convenience, we now introduce dimensionless variables by considering the length l of the

trap side as a characteristic spatial scale in the problem so that x̃ = x/l, ỹ = y/l. We then have a

trap as the unit square S̃ = {(x̃, ỹ) : |x̃| < 1/2, |ỹ| < 1/2} installed at the origin of the square

domain Ω̃ with the linear size scaled as L = Ld/l. In the below, the tildes are omitted for the sake

of notations simplicity.

5.2 Discretization of the 2D problem

We use a finite difference method for numerical solution of the problem (41-43,47). A two-

dimensional Cartesian grid G is defined in the domain Ωs as a tensor product of the two one-

dimensional grids. We first generate a 1 − D grid in the x -direction with grid nodes given by

x1 = −L, xi+1 = xi + h, i = 1, . . . , 2Nm, and x2Nm+1 = L, where h = 1/(2m) for integer

parameters m and N used in the problem. Similarly, a 1 − D grid in the y-direction is y1 = −L,

yj+1 = xj + h, j = 1, . . . , 2Nm. It follows from the definition of 1 − D grids that the trap

boundaries xiI = −1/2, iI = (N − 1)m + 1, xiII
= 1/2, iII = (N + 1)m + 1, yjI

= −1/2,

jI = (N − 1)m + 1 , and yjII
= 1/2, jII = (N + 1)m + 1 are accurately represented on the

2 − D grid and a grid node is placed at each corner of the trap (see Fig. 9). It also is worth noting

here that we can take an advantage from the problem symmetry and to solve it in the sub-domain

x > 0, y > 0 only, if the initial condition (47) is employed. However, we choose to solve the

problem in the entire domain Ωs as we bear in mind further asymmetric cases, e.g application of

(L,L)

(L,-L)(0,-L)

(-L,0)

(-L,-L)

(-L,L)

i,j-1

i,j+1

i,j
i+1,ji-1,j

A

B

C

D

Figure 9: A computational grid in the domain Ωs. The trap is placed at the origin (0, 0). The

discretization of the equation (41) at the grid node nij requires the values of the function u(x, y, t)

at the nodes nij , ni−1j , ni+1j , nij−1 and nij+1. Letters A, B, C and D denote the domain edges

where different boundary conditions can be used; see section 6.
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an asymmetric initial distribution, installation of several traps in the domain, etc.

Let u(x, y, tn) be the solution to the problem (41-43,47) at the fixed time t = tn and u(x, y, tn+1)

be the solution at the fixed time t = tn+1, where tn+1 = tn+τ , τ > 0. Again, we use a finite differ-

ence discretization of (41-43,47) in order to compute the solution u(x, y, tn+1) from the solution

u(x, y, tn). The discretization scheme for the equation (41) is written as

1

τ
(un+1

ij − un
ij) = (Λ1 + Λ2)[u

n
ij], (48)

where we use the notation un
ij ≡ u(xi, yj, tn) and un+1

ij ≡ u(xi, yj, tn+1). Discrete spatial operators

Λ1 and Λ2 act upon any two-dimensional function vij ≡ v(xi, yj) as follows

Λ1[vij] =
D

h2
(vi+1,j − 2vij + vi−1,j), Λ2[vij] =

D

h2
(vi,j+1 − 2vij + vi,j−1). (49)

As in the 1D case, the discretization (48) is an explicit scheme. Again, our choice of the scheme

is advocated by simplicity of computations. It is important to note here that the explicit scheme

allows us to avoid inversion of the discretization matrix that is required when implicit schemes are

used. While in the current problem the structure of the discretization matrix is relatively simple, our

future work should be to investigate several traps installed at arbitrary locations of the domain Ω.

Such geometry of the domain may in turn result in a complex structure of a discretization matrix,

so that we want to investigate a simple explicit 2D scheme first and move to a more sophisticated

discretization scheme if and only if the explicit discretization has been proved to be unacceptable

for our purpose.

The equations (48) are solved for i = 2, . . . , iI−1, iII+1, . . . , 2Nm and j = 2, . . . , jI−1, iII+

1, . . . , 2Nm. The discretization of boundary conditions at the external boundaries is based on the

results of the 1D case for which a detailed discussion has been provided. Consider, for example,

the boundary x = 0 and the boundary condition (45). We have the following approximation

h2

τD

(

un+1
1,j − un

1,j

)

+ 4un
1,j+1 − 2un

2,j − un
1,j+1 − un

1,j−1 = 0, for j = 2, . . . , 2Nm. (50)

The discrete boundary conditions at the rest of external boundary have a similar structure.

The condition at the trap boundary at any time tn+1 > 0 is

un+1
ij = 0, (51)

for i = iI , j = jI , . . . , jII (the left boundary of the trap) and i = iII , j = jI , . . . , jII (the right

boundary of the trap). The condition (51) is also imposed for j = jI , i = iI , . . . , iII , and j =

jII , i = iI , . . . , iII (the bottom and top boundaries of the trap).

The discretization of the initial condition (47) is

u0
ij = U0, i = 1, 2, . . . , 2Nm + 1, j = 1, 2, . . . , 2Nm + 1. (52)

The idea behind trap counts approximation in the 2D case is similar to our approach in the 1D

problem. Several specific approximation issues arise because of the geometry of a 2D domain and

we refer the interested reader to the appendix B where those issues are discussed.
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Figure 10: Validation tests for the 2D problem. (a) Convergence of the trap counts obtained by

calculating the population flux through the trap boundary, see Eqs. (61-64); (b) Convergence of the

numerical integration method, see Eqs. (53-55); (c) Comparison between the two approaches on

the finest grid h = 0.1 (showing the difference between the two solutions versus time).
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Validation of the 2D discretization In the 2D case we cannot compare a numerical solution

with the exact solution to the problem and we therefore look for alternative ways to validate our

discretization scheme. One approach can be to consider the direct integration of the density func-

tion and compare it with the results obtained by the flux calculation. Namely, we consider the test

case where the boundary condition (45) is employed in the problem. For the condition (45) it is

possible to obtain the number of insects in the trap by direct integration over the domain Ωs. The

integral

Un+1 =

∫ ∫

Ωs

u(x, y, tn+1)dxdy (53)

gives us the number of insects left in the domain Ωs at time t = tn+1. The trapezoidal rule of

integration can be readily applied for integration over a two-dimensional domain (10). We then

compute the integral

U0 =

∫ ∫

Ωs

u(x, y, 0)dxdy (54)

for the initial distribution u(x, y, 0) and the difference

δUn+1 = Un+1 − U0 (55)

will provide us with the number of insects in the trap at time tn+1. The trap counts obtained by

direct integration are then compared with the trap counts obtained by the flux calculation across

the trap boundary as discussed in the previous paragraphs.

The validation tests for the 2D problem are shown in Fig.10. The convergence test is presented

in Fig.10a where cumulated trap counts have been computed on a sequence of refined spatial grids

for time t ∈ [0, 600]. The problem parameters are L = 40, D = 0.1, U0 = 10, l = 1.0 (trap

size). It can be seen from the figure that transition from a computational grid with the grid step

size h = 0.5 to a finer grid with h = 0.1 does not make significant difference to the results. The

same conclusion can be derived from the consideration of graph in Fig.10b where trap counts on

a sequence of spatial grids have been obtained as a result of direct integration (55). Hence, we

compare the trap counts obtained by flux computation on the finest grid with h = 0.1 with the

trap counts obtained on the same grid by direct integration. The relative difference between the

two solutions is shown in Fig.10c. It can be seen from the figure that while the relative error gets

bigger as the time progresses the two methods still remain in a very good agreement for a whole

time interval where we are interested in the solution. Hence we believe that our discretization

scheme meets the accuracy requirements and we intend to use it for further study of ecologically

relevant test cases.

6 Numerical results for the 2D problem

There are several aspects that make the 2D problem different from the corresponding 1D problem.

To mention just a few, firstly, the boundary condition on the field boundary (i.e. on the external

boundary of the computational domain) can be a combination of different types applied at different

parts of the boundary. And secondly, the 2D problem has a few different spatial scales such the
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trap size l, the field size L and the distance d between the trap and the closest boundary of the field

through which immigration can occur.

In this section, we present the simulation results obtained for several different configurations

of the problem. We consider the case where pest immigration takes place through one edge of a

square-shaped field, say edge A (see Fig. 9). The immigration is described by considering either

diffusive or advective forcing, with the boundary conditions (44a) or (44b) respectively, or by their

combination as given by the more general Robin-type boundary condition (43). The edges on

the sides of the domain, i.e. B and D, are assumed to be impenetrable boundaries and hence the

Neumann ‘no-flux’ condition (45) is used there. The edge C opposite to the forcing boundary A

can be either impenetrable, with the no-flux condition (45), or absorbing, with the condition (46).

With regard to the spatial arrangements, we consider that, in the square field, the square trap

of a fixed size l = 1 (recall out choice of dimensionless variables) is either placed in the center

of the square domain (see Fig. 9) or off center, closer to the forcing boundary. We consider three

different configurations; Field 1: a small field (2L = 9) with the central trap (so that d = 4); Field

2: a large field (2L = 19) with the central trap (so that d = 9); Field 3: a large field (2L = 19)

with an off center trap (so that d = 4).

We begin with the case when the field edge C is an impenetrable boundary and the immigration

through the edge A is described by diffusive forcing. Figure 11 shows the trap counts obtained

when Field 2 is subjected to diffusive boundary forcing (solid curve for Ub = 0, dashed curve for

Ub = 10, dotted curve for Ub = 20). The results are intuitively clear and qualitatively similar to

those obtained in the 1D case as more intense forcing is expected to lead to larger trap counts. Also,

we observe that the trap counts obtained for different Ub only becomes different after a certain time,

i.e. after the perturbation introduced by the boundary forcing reaches the trap. However, we note

that, although the shape of the curves is similar to that observed in the 1D case (cf. Figs. 7 and 8),

the actual value of the trap counts is more than ten times larger in the 2D case.
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Figure 11: Trap counts obtained from numerical solution of the 2D problem in Field 2 (L = 19

and d = 9) with other parameters as D = 1 and U0 = 10 and diffusive forcing with Ub = 0 (solid

curve), Ub = 10 (dashed curve) and Ub = 20 (dotted curve).
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Figure 12: Trap counts obtained from numerical solution of the 2D problem in different spatial

arrangements (solid curve for Field 1, dashed curve for Field 2 and dotted curve for Field 3, see

details in the text) and for different value of diffusive boundary forcing: top for Ub = 0, middle for

Ub = 20 and bottom for Ub = 10. Other parameters are D = 1 and U0 = 10.
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The effect of proximity to the field boundary is revealed in Fig. 12. The top panel of Fig. 12

shows the trap counts for the special case Ub = 0, i.e. in the case when the forcing boundary acts

as a sink rather than a source. It is readily seen that d is a controlling parameter as the trap counts

are lower in Field 3 (dotted curve) than in Field 2 (dashed curve). For the cases with the same d

(cf. solid and dotted curves), it is the field size that determines the rate of the trap counts growth;

the larger the field size the larger the trap counts are.

However, the situation is different and somewhat counter-intuitive when Ub is large; see Fig. 12,

middle, obtained for Ub = 20. In this case, the boundary forcing becomes the main factor affect-
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Figure 13: Trap counts obtained from numerical solution of the 2D problem in the spatial config-

uration of Field 1 with advective forcing (Neumann boundary condition) at the forcing boundary

and for different boundary condition at the opposite boundary: (a) for no-flux condition, Eq. (45),

(b) for the absorbing boundary, Eq. (46). In each panel, the value of the boundary gradient G varies

from 0 to 20, bottom to top, respectively.
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ing the trap counts. Correspondingly, the effect of distance d on the trap counts becomes more

prominent and different from the above. Although the highest rate of the trap counts growth is still

reached for the combination “small d – large L” (dotted curve), small d may actually result in larger

trap counts when L is small; compare the solid and dashed curves in Fig. 12, middle. In the inter-

mediate case when the magnitude of the boundary forcing (as described by Ub) is as the same as

the effect of the initial population (as described by U0), see the bottom panel of Fig. 12, the pattern

observed in the trap counts growth can be regarded as a competition between the two factors: the

field size is more important (hence resulting in larger trap counts) during the early stage, i.e. until

the perturbation from the forcing boundary reaches the trap, afterwards the proximity of the trap

to the forcing boundary becomes the main controlling parameter. This interplay between the two

factors results in the intersect of the solid and dashed curves seen in Fig. 12, bottom. Once again,

we notice that the trap counts are much larger in the 2D case (more than an order of magnitude)

compared to what was observed in the corresponding 1D case.

We now consider how much the rate of the trap counts growth can be affected by changing

the type of the boundary forcing. Figure 13 shows the trap counts obtained in case of advective

forcing, see Eq. (44b), in case the opposite boundary of the domain is either impenetrable (top)

or absorbing (bottom), as described by Eqs. (45) and (46), respectively. Clearly, the type of the

boundary condition on the opposite boundary has little effect on the shape of the curves, although

it does affect the value of the trap counts, which are about 50% larger in case of the impenetrable

boundary. Comparing the results of Fig. 13 with those of Fig. 12 (bottom), we observe that, as

well as in the 1D case, diffusive forcing results in trap counts several times larger than the trap

counts for corresponding ‘equivalent’ advective forcing (see the lines below Eq. 32), although we

mention here that, rigorously speaking, the conditions of equivalency do not apply in the 2D case.

Finally, we consider a somewhat more realistic case where the forcing at the field boundary is

of a mixed type as described by the boundary condition (43). Indeed, in a real-world farmfield, pest

immigration is unlikely to result from a strictly diffusive or advective forcing but more probably to

appear as a mixture of different movement patterns and mechanisms. From the theoretical perspec-

tive, however, the question is how much different the corresponding trap counts can be. Fig. 14

shows the simulation results obtained for the spatial arrangement of Field 2 with the homogeneous

initial condition U0 = 10 for the mixed forcing (43) with k1 = 1, k3 = 10 and k3 = 20 ((a) and

(b), respectively) and the values of k2 = 0, 0.1, 0.2, . . . , 2.0 (curves top to bottom, respectively).

Interestingly, in this more realistic case the trap counts roughly follow the pattern observed in the

case of diffusive forcing. In fact, for each of the cases shown in (a) and (b), the whole family of trap

count curves appears to lie between the two curves obtained for purely diffusive forcing (shown

by red colour) where the upper bound obviously corresponds to the case Ub = k3 and the lower

bound is obtained for Ub ≈ 0.7k3 (where the coefficient 0.7 is found empirically). Therefore, in

agreement with our results shown above, we conclude that the diffusive component of the forcing

has much stronger effect on the trap counts than the advective component.
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Figure 14: Trap counts obtained from numerical solution of the 2D problem in the spatial con-

figuration of Field 2 with mixed forcing at the forcing boundary as given by the Robin boundary

condition (43), top for (a) k3 = 10 and (b) k3 = 20. In each panel, k1 = 1 and the value of k2

varies from 0 to 20, bottom to top, respectively. Red curves show the upper and lower bounds

for the trap counts obtained for ‘equivalent’ diffusive forcing (Dirichlet boundary conditions); see

details in the text.

7 Discussion and Concluding Remarks

Understanding of trap counts is an important component of pest insect monitoring. Control mea-

sures are likely to be more efficient when the process behind the trap counts increase is correctly

identified. In this paper, we have considered how trap counts can be used to monitor the insect

pest population growth when the growth is occurring due to the immigration through the habitat

boundary. Indeed, short- and long-distance dispersal is known to be a common phenomenon for
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many insect species (in particular for flying/wind-borne species, cf. Compton 2002) and it can

bring severe problems for farmers and pest control specialists (e.g. Northing 2009).

The purpose of this paper is threefold. Firstly, we want to draw the attention to the impor-

tant and largely overlooked (by mathematical ecologists) problem of the trap counts interpretation

with the ultimate purpose to identify the population dynamics resulting in given trap counts and/or

evaluate the population abundance. Traps are routinely used in insect monitoring as well as in

general insect studies and the need for a relevant theory has long been recognized (e.g. Byers

1993; Perry 1996; Thomas et al. 1998). Yet a consistent mathematical theory allowing for trap

counts modelling and simulation is missing, although some attempts to develop such theory have

recently been made (Petrovskii et al. 2012, 2014; Petrovskaya et al. 2012; Petrovskaya and Emble-

ton 2013). Secondly, our aim is to provide a sufficiently accurate, consistent and reliable “ready-

to-use” computational algorithm that can be used for understanding trap counts across a variety of

possible ecological scenarios and applications, a roadmap for potential users of the ideas, tools and

methods of the computational ecology (Petrovskii and Petrovskaya 2012). And thirdly, using the

algorithms revisited and/or developed in this paper, we want to make an insight into the problem

of pest insect monitoring subject to different immigration patterns.

With regard to the numerical accuracy, one of our more specific goals here is to emphasize that

an adequate choice of the numerical method is essential. We have shown that the commonly used

linear approximation of the diffusion fluxes (cf. Roache 1985; Morton and Mayers 1994; Thomas

1995) can lead to results of unacceptably low accuracy compared to the quadratic approximation

on the same numerical grid; see Tables 1 and 2. The linear approximation of the diffusion flux at

the trap boundary leads to the relative error in the calculated trap counts which is consistently 3-5

times larger (more than 10 times larger on some grids) than the corresponding error in the case of

quadratic approximation (Table 1). Approximation of the flux at the external ‘forcing’ boundary

can have even bigger effect (Table 2); here the relative error of the linear approximation can be

102 − 103 times larger than the error induced by the quadratic approximation!

Nodes per unit length 3 5 9 11 21

Linear (×10−3) 112 64.4 33.5 20.7 9.59

Quadratic (×10−3) 32.8 10.4 2.70 7.21 5.00

Table 1: Maximum relative error obtained in the 1D system for linear and quadratic flux approxi-

mation at the trap boundary. Parameters are: D = 1.0, L = 49.5, U0 = 10.

Nodes per unit length 3 5 9 11 21

Linear (×10−4) 359 183 92.4 74.1 37.2

Quadratic (×10−4) 0.949 0.288 0.110 0.194 0.100

Table 2: Maximum relative error obtained in the 1D system for linear and quadratic flux approx-

imation at the external boundary. Forcing is described by the Neumann boundary condition (9)

with G = 0.5, other parameters are D = 1.0, L = 49.5, U0 = 0.

30



In our approach, in order to solve the diffusion equation and to calculate thew diffusion fluxes,

we used the finite difference method. We mention here that, in principle, this is not the only pos-

sible option. One alternative is the method of lines. Another alternative numerical approach to

diffusion equation could be based on the finite elements method. Indeed, this method has been

applied successfully to several ecological and biological problems (Gurvie and Trenchea 2007;

Gurvie et al. 2010) and it is known to be particularly efficient for problems with curvilinear ge-

ometry. However, for a domain with rectangular geometry, this technique seems to be excessive;

being more elaborate and hence more expensive in terms of the code development, it does not

provide any new insights and, on a given numerical grid, does not provide a higher accuracy either.

With regard to our use of explicit scheme, we mention here that the only advantage of the

corresponding implicit scheme is its absolute stability, which allows for choosing a larger value of

the time-step τ . However, when the scheme is of the second order with regard to the space step h

(which, as we showed, is essential; see Tables 7 and 7 above), the stability condition (20) required

for the explicit scheme hardly introduces an extra restriction on τ . Indeed, as the accuracy of the

scheme is O(h2 + τ), in order to reach the required accuracy, τ should be chosen on the order

of h2. On the other hand, the computational simplicity of the explicit scheme is important as our

ultimate aim is to create a simple and practical computational approach that could eventually be

used by a broad interdisciplinary community.

In our numerical simulations, see Figs. 5–8 and 11–14, we have followed the trap count dynam-

ics over a long time, until it reaches the large-time asympotics which is determined solely by the

boundary forcing, cf. Eqs. (31–32). This gives the overall view of the solution properties and helps

to better understand the trap count behavior, e.g. to estimate the time when the effect of the initial

condition would give up to the effect of the boundary forcing. However, for the actual ecological

problem of insect pest monitoring, the large-time asymptotics is largely irrelevant. A realistic trap

count dynamics is essentially transient. Indeed, the goal of the pest control is not only to detect

the pest at a given location but, importantly, to do it as early as possible. Trap data are often used

as a part of the early-warning system in order to apply control measures before the growing pest

population can bring any significant damage to the crops. Therefore, the large time asymptotics

as predicted by our model (which does not take into account control measures) can hardly ever

be observed in reality. The human intervention (e.g. application of pesticides) would change the

system dynamics considerably by reducing almost instantly the pest density to a much lower value.

The subsequent trap count dynamics would then reflect the transient stage resulting from this new

population density, until the growing trap count would inflict another round of control measures,

and so on.

With regard to the insect immigration through the habitat boundary, we mention here that the

effect of boundary forcing on the system’s dynamics is a challenging problem in ecology as it

can have a complicated and sometimes counter-intuitive effect on the population dynamics and

population abundance (Fagan et al. 1999, Sherratt and Smith 2008; Smith et al. 2008). Note that

the whole issue as to what can be a proper description of the habitat boundary – which acts as an

interface between the given habitat and its surroundings – is complex and controversial. Contrary

to similar problems in physics and chemistry, the width of this interface is often not small compared

with the size of the habitat and may have its own structure (cf. “hedge ecosystem.”) and that makes

application of standard techniques questionable. In fact, it is often not clear even where the exact

31



position of the boundary is and/or what its exact shape is (cf. Fagan et al. 1999). Also, the boundary

is expected to affect the movement behavior of the animals (e.g. insects) but, yet again, it is not

always clear what exactly the effect is.

Altogether, these various sources of uncertainty make the question about the ‘precise’ mathe-

matical formulation of the boundary condition rather senseless. Instead, one should rather check

how sensitive the properties of the system are with respect to the choice of the boundary condi-

tion. The high uncertainty and insufficient knowledge about the processes going on at the interface

makes it necessary to check how different can be the predictions obtained from a model when

different boundary conditions are used, e.g. Dirichlet or Neumann types, and this is where our

study is going to contribute. In particular, we have shown that the trap counts obtained in the

2D system for three different types of forcing, i.e. diffusive (Dirichlet), advective (Neumann) and

mixed (Robin), exhibit qualitatively similar patterns. However, we have also shown that, some-

what counter-intuitively, diffusive forcing results in larger trap counts than advective forcing. This

observation may have an important message for the insect pest managers: as larger trap counts

are usually associated with a larger population density, misidentification of the pest immigration

pattern can result in an unjustified application of pesticides, something that the IPM specialists

would definitely like to avoid.

In conclusion, we mention that, in this paper, we have considered the case of a single trap

installed in the monitored field. However, our results can be applicable, at least partially, to a

more general case of multiple traps if the traps are installed on a line along the field boundary; see

Fig. 15. Indeed, assuming the spatially homogeneous initial population distribution and the uni-

form boundary forcing (i.e. that the coefficients k1,2,3 have the same value everywhere along the

boundary), the mathematical problem obviously attains symmetrical properties so that the whole

field can be split to several mutually independent subdomains or ‘cells’, each of them being de-

scribed by our model.

       Forcing boundary condition        

Figure 15: A sketch of multiple trapping with the spatial arrangements making possible to ‘split’

the system into several individual subdomains, each of them having one trap only. Solid line

shows the boundary of the field, grey squares show the position of the traps, dashed vertical lines

indicate the position of the virtual boundaries where the no-flux conditions can be applied due to

the symmetry of the problem.
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Appendix A: Accurate calculation of the 1D flux.

Polynomial approximation of the density function. Our aim in this section is to construct

an accurate approximation of the flux function j(x) in the formula (6). Let us approximate the

density u(x) by a quadratic polynomial, i.e. u(x) ≈ pk(x) = a0 + a1x + a2x
2. We then have

j(x) ≈ D

∣

∣

∣

∣

dp(x)

dx

∣

∣

∣

∣

and therefore the flux at the trap boundary x = 0 is approximated as

j(0) ≈ D|a1|. (56)

The polynomial coefficient a1 in the flux approximation (56) is defined from the conditions

p(xi) = ui, i = 1, 2, 3, where the function values ui ≡ u(xi) are taken at corresponding grid nodes

xi. We have

p(0) = a0 = u1, p(h) = a0 + a1h + a2h
2 = u2, p(2h) = a0 + 2a1h + 4a2h

2 = u3. (57)

Solving these equations and taking into account that u1 = 0 at the trap boundary we arrive at

a1 =
4u2 − u3

2h
,. Hence the approximation of the flux is given by j(0) ≈ D

2h
|4u2 − u3|.

The order of approximation. Let us show that the quadratic approximation (56) of flux is sec-

ond order accurate, i.e. the approximation (25) has the error O(h2). Consider a one-dimensional

function v(x) on a uniform computational grid with the grid step size h. Let the function v(x) be

defined at points xi, xi+1 = xi +h and xi+2 = xi +2h. The function approximation by a quadratic

polynomial passing through xi, xi+1, xi+2 gives us the following value of the derivative at the point

xi
dv(xi)

dx
≈ 4v(xi+1) − v(xi+2)

2h
(58)

where we require that vi = 0. The Taylor series expansion of the function v(x) around the point xi

is

v(xi+1) = v(xi) + h
du(xi)

dx
+

1

2
h2d2u(xi)

dx2
+

1

6
h3d3u(η)

dx3
,

v(xi+2) = v(xi) + 2h
du(xi)

dx
+

1

2
(2h)2d2u(xi)

dx2
+

1

6
(2h)3d3u(µ)

dx3
,

where η ∈ [xi, xi+1] and µ ∈ [xi, xi+2].

Substituting the above expressions in the approximation
4v(xi+1) − v(xi+2)

2h
and taking into

account that v(xi) = 0 we arrive at

4v(xi+1) − v(xi+2)

2h
=

dv(xi)

dx
+

1

12
h2

(

d3u(η)

dx3
+

d3u(µ)

dx3

)

.

In other words, we have
dv(xi)

dx
=

4vi+1 − vi+2

2h
+ O(h2), (59)

where = vi ≡ v(xi). Let us note that a well-known upwind approximation of the derivative at

point xi is first order accurate,

dv(xi)

dx
=

vi+1 − vi

h
+ O(h), (60)
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and is therefore not consistent with the accuracy of the scheme (18).

Appendix B: The issues of flux approximation in a 2D domain.

Flux approximation at the trap boundaries. Let the solution u(x, y, tn+1) be computed at time

tn+1 over a computational grid generated in the domain Ωs. In the following discussion of 2D

flux computation we omit the notation tn+1 for the sake of convenience and consider a spatial

distribution u(x, y). The flux density j(x, y) at point (x, y) is given by the directional derivative:

j(x, y) =

∣

∣

∣

∣

du

dn
(x, y)

∣

∣

∣

∣

, (61)

where n is the outward unit normal vector along the trap boundary. Hence the flux density com-

putation requires approximation of the derivatives
∂u(x, y)

∂x
or

∂u(x, y)

∂y
at grid nodes that belong

to the trap boundary. Similarly to the 1D case, the accuracy of this approximation should be

consistent with the accuracy of finite difference approximation (48). As we have discussed in sec-

tion 2, such accuracy of approximation can be achieved by constructing a quadratic polynomial

u(x, y) ≈ pk(s) = ak
0 + ak

1s + ak
2s

2, where k = 1, 2, 3, 4 is the number of the trap edge and we use

the numeration in the counterclockwise direction from the left boundary of the trap. The distance

s is measured along the direction of the outward normal vector to the trap edge k as s = x, if

the left (k = 1) and the right (k = 3) boundaries of the trap are considered, s = y at the bottom

(k = 2) and top (k = 4) boundary of the trap. We also require s = 0 at the corresponding trap

boundary. We then have j(x, y) ≈
∣

∣

∣

∣

dp(s)

ds

∣

∣

∣

∣

and therefore the flux density at the trap boundaries is

approximated as

j(x, y) ≈ |ak
1|. (62)

The polynomial coefficient ak
1, k = 1, . . . , 4 in the flux approximation (62) is defined from the

conditions pk(s) = uij , where the function values uij are taken at grid nodes along the direction of

the outward normal vector to the trap edge k. Consider for instance the left boundary (k = 1) of

the trap. We require that the parameter s is s = 0 at the boundary. We also consider the polynomial

p1(s) at points s = −h and s = −2h and require that

p1(0) = a1
0 = uiIj, p1(−h) = a1

0−a1
1h+a1

2h
2 = uiI−1,j, p1(−2h) = a1

0−2a1
1h+4a1

2h
2 = uiI−2,j,

(63)

for any fixed j = jI , . . . , jII . Solving these equations and taking into account that uiIj = 0 we

arrive at

a1
1 =

uiI−2,j − 4uiI−1,j

2h
.

Similar expressions are then obtained for ak
1, k = 2, 3, 4.

Approximation at the corners. The flux density approximation (61) can be computed at all grid

points belonging to the trap boundary except for the corner points (xiI , yjI
), (xiII

, yjI
), (xiI , yjII

),

and (xiII
, yjII

). The approximation at corner points is obtained by averaging the flux values com-

puted at the neighboring points. In our method we assume that the flux density at any corner
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point depends on the flux in two orthogonal directions and therefore directional derivatives must

be computed according to (61) at all neighboring points involved into the flux computation at the

corner. For example, in order to compute the flux density j(xiI , yjI
) we first compute it at grid

nodes (xiI−1, yjI
), (xiI+1, yjI

),(xiI+2, yjI
), (xiI , yjI−1),(xiI , yjI+1) and (xiI , yjI+2). Given the flux

density values at these points, we then use quadratic polynomial interpolation in order to obtain

the flux density j(xiI , yjI
). Namely, we approximate the function j(x, y) as

j(x, y) ≈
6

∑

n=0

qnφn(x, y).

The polynomial basis functions φn(x, y) are defined as φn(x, y) = (x − xiI )
α (y − yjI

)β , where α

and β are nonnegative integers such as their sum s = α + β should take the values s = 0, 1, 2. We

therefore have j(xiI , yjI
) = q0, where the coefficient q0 is found from the approximation above.

The flux density values at the other corners of the trap are computed in a similar way. Let us

note here that our approach to the flux computation at corner points is, of course, not unique and

may require further discussion. Meanwhile, the findings of this paper along with the results of our

previous work (27) demonstrate that a quadratic approximation of the flux, while being a more

challenging technical task, gives a much more accurate answer than a linear approximation when

a regular geometric grid is used in the problem.

Calculation of the total flux. Once flux densities have been computed at each grid node on the

trap boundary, they are converted to a total flux J(∂S) by numerical integration of the flux density

j(x, y) along the boundary edges. The flux density is considered as a one-dimensional function

j(x, y) = f(γ) at each trap boundary, where −1/2 ≤ γ ≤ 1/2. At any trap boundary we have

2m + 1 nodes of a computational grid where the function f(γ) is defined. Hence the trapezoidal

rule of numerical integration can be applied to integrate the flux density along the trap edge,

1/2
∫

−1/2

f(γ)dγ ≈
2m+1
∑

p=1

ωpfp, (64)

where fp, p = 1, . . . , 2m+1 are function values at grid nodes on the trap edge where the integration

is carried out, and the weights ωp are defined as in the integration rule (29).

Given the flux J(∂S), an approximation of the total number of insects ∆Un,n+1 crossing the

trap boundary between time tn and tn+1 is obtained as ∆Un,n+1 = J(∂S)τ . The cumulative trap

count is then computed by the formula (26).
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