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ABSTRACT

Polydopamine has been found to be a biocompatible polymer capable of sup-

porting cell growth and attachment, and to have antibacterial and antifouling

properties. Together with its ease of manufacture and application, it ought to

make an ideal biomaterial and function well as a coating for implants. In this

paper, atomic force microscope was used to measure the adhesive forces

between polymer-, protein- or polydopamine-coated surfaces and a silicon

nitride or polydopamine-functionalised probes. Surfaces were further charac-

terised by contact angle goniometry, and solutions by circular dichroism.

Polydopamine was further characterised with infrared spectroscopy and Raman

spectroscopy. It was found that polydopamine functionalisation of the atomic

force microscope probe significantly reduced adhesion to all tested surfaces. For

example, adhesion to mica fell from 0.27 ± 0.7 to 0.05 ± 0.01 nN nm-1. The

results suggest that polydopamine coatings are suitable to be used for a variety

of biomedical applications.

Introduction

The ideal coating for a biomedical device should be

non-toxic, non-inflammatory, resistant to bacterial

colonisation and support growth of host cells to

improve integration [1]. The use of a coating allows

the device interface to have favourable properties

with the biological environment, even if the coating

material is not the most appropriate for the core,

exemplified by coated stainless steel cardiovascular

stents which have appropriate biomechanical prop-

erties of the metal core. Additionally, a coating is

particularly useful if it can be applied to the surface

easily and uniformly. The mussel adhesive-inspired

polydopamine (PD) appears to be an ideal biomate-

rial coating since it fulfils all these criteria. It exhibits

low cytotoxicity [2], antibacterial properties [3, 4],

promotes cell growth [5–8], resists corrosion [9], can

aid antibiotic release [10, 11], is simple to produce

Address correspondence to E-mail: d.lamprou@kent.ac.uk

DOI 10.1007/s10853-017-1806-y

J Mater Sci

Biomaterials

http://orcid.org/0000-0003-2615-633X
http://orcid.org/0000-0001-7475-5543
http://orcid.org/0000-0002-8740-1661
http://crossmark.crossref.org/dialog/?doi=10.1007/s10853-017-1806-y&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10853-017-1806-y&amp;domain=pdf


with control over film thickness [12] and can be

attached to a variety of surfaces including silanes

[13], metals [9, 14], polymers [7, 15–17] dentine [18]

and even hair [19].

Zhong et al. [20] found that while PD functionali-

sation of TiO2 nanotubes improved attachment, pro-

liferation and nitric oxide release of endothelial cells,

the same functionalisation reduced attachment and

proliferation of smooth muscle cells. Despite pro-

motion of cell attachment, modification of PD with

polymer carpets, such as poly (3-sulphopropyl

methacrylate) (PSPMA), can also be used to confer

antifouling properties [8]. The ability to support cell

attachment and growth is likely, at least partly, to be

a result of its good hydrophilicity. For example,

Hafner et al. [8] showed that PD nanosheets had a

water contact angle (hA) of 35�. Moreover, PSPMA

surfaces are negatively charged; negatively charged

fibroblasts resisted cell attachment. Other research

has similarly been shown to lower the water contact

angles of poly(tetrafluoroethylene) (PTFE) from

108.5� to 58.7� [21, 22] or 46.5� [23] poly(dimethyl-

siloxane) (PDMS) from 104.4� to 65.5� [21, 22] and

titanium from 68.6� to 44.3� [21, 24]. This

hydrophilicity-conferring property and propensity

for modification make PD an ideal biomaterial and as

such has been considered for tissue engineering

applications and implants [9]. PD’s antibacterial

properties appear to be due to the fact that mono-

meric dopamine can be cytotoxic, but polymeric PD

is devoid of such activity. Hong et al. [2] found that

some of the dopamine in the PD remains unpoly-

merized, but trapped within the PD matrix and can

be released over time to provide an antibacterial

effect.

The generation of PD is typically through the

simple process of self-polymerisation/auto-oxidation

of dopamine in a slightly basic environment [25]. The

final product can be applied as a coating on a wide

range of surfaces including metals, polymers and

glasses [21]. The substrate can be removed after

functionalisation if desired, with hydrofluoric acid or

ammonium fluoride [8, 26], for example, to produce a

nanosheet [8]. Despite the ease of its production, the

structure of PD remains elusive, though Hong et al.

[2] report that it is the result of both physical self-

assembly and covalent oxidative polymerisation of

dopamine and 5,6-dihydroxyindole (the oxidative

product of dopamine). The self-polymerisation

method creates small spherical particles of PD with a

range of sizes (100–500 nm) which aggregate on

surfaces into larger particles (0.5–5 lm) to provide

thicker films, with higher self-polymerisation tem-

peratures providing smaller particles and thinner

films [27, 28]. The rate of polymerisation/oxidation

has also found to be dependent on the dopamine

concentration, oxygen concentration and pH [27].

Despite previous experiments with PD-coated

particles and surfaces, the adhesive forces between

PD and various surfaces have yet to be quantified.

This research investigates the adhesion to protein-,

polymer- and PD-coated surfaces via atomic force

microscopy. Serum albumin, mucin and trypsin were

used as model proteins.

Mucins are heavily glycosylated proteins forming

mucous layers found throughout the digestive and

pulmonary systems forming a protective physical

barrier for mucosal surfaces. Though experiments

have been performed with PD and mucin (MUC1)

antibodies [29], to the authors’ knowledge no other

PD mucin adhesion experiments have been per-

formed. However, it was expected that adhesion to

mucin would be low since a PEG-PD coating was

found to reduce mucin adsorption even though the

effect of PD alone was not significant; [18] and low

mucin–mucin adhesive forces were seen by Berry

et al. [30]. This agrees with Dague et al. [31], who

observed that Lactococcus lactis adhesion decreased

after mucin adsorption. PD has been considered for

use in oral formulations which benefit from the effect

of pH on its release of encapsulated drugs [32], so it is

of interest to investigate its interactions with mucin.

Albumin is the principal blood plasma protein and

plays a role in maintenance of osmotic pressure and

transport of critical biomolecules, such as hormones

[33]. Albumin is therefore relevant to understand

interactions with vascular stent devices. Zelasko-

Leon et al. [29] have previously immobilised MUC1

antibodies and albumin to gold nanorods via a PD

coating which could suggest that BSA-PD adhesion,

or at least adsorption, does occur. Human serum

albumin has been observed to reduce the size of PD

aggregates formed on a surface [34].

Trypsin is a proteolytic enzyme found in verte-

brates’ digestive systems so is relevant for devices

such as diagnostic intestinal imaging cameras and

orally administered drug formulations. Koutsopoulos

et al. [35] investigated trypsin adsorption to poly-

styrene (PS) and to silica and found that its affinity

for hydrophobic PS was greater than for hydrophilic
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silica. Since PD has exhibited hydrophilic tendencies,

it may again be expected that PD trypsin adhesion

may be low. Despite this, it is not clear what the

difference will be, since the unfunctionalised silicon

nitride probe used as the control is also hydrophilic

with a water contact angle of 32 ± 12� [36]. Therefore,

it is important to understand the interactions of PD

with synthetic materials, such as polymers used in

biomedical applications.

Poly(e-caprolactone) (PCL), poly (L-lactic acid)

(PLLA) and poly (2-hydroxyethylmethacrylate)

(PHEMA) were used as test polymers because they

have applications as biomaterials due to their corrosion

resistance, cytocompatibility and degradability that

allowsdrug release [37, 38]. PCLfibreshavebeencoated

with PD and investigated for use as bone tissue scaf-

folds [39], and 3D-printed scaffolds of PCL have been

coated with PD resulting in an improvement in cell

density versus control [17]. PLLA can be used for ten-

don repair [40], as a coating for stents [41] or made into

scaffolds andcoatedwithPDwhich improvedadhesion

andcellproliferation [7, 42].PHEMAhasuses asa tissue

engineering scaffold, sometimes as a hydrogel [38], and

for the immobilisation of proteins [43].

In this investigation, the adhesive forces between

PD-, protein- or polymer-coated surfaces and bare

silicon nitride or polydopamine-functionalised AFM

probes are measured. Surfaces are also characterised

with AFM for roughness (Ra) and morphology, with

contact angle goniometry (CAG) for hydrophobicity

and surface energy and with RAMAN and FTIR for

spectroscopic evaluation.

Materials and methods

Materials

Dopamine hydrochloride (H8502) was purchased

from Sigma (Germany), and Tris (hydroxymethyl)

aminomethane (Tris; C 99.8%) from Sigma Aldrich

(USA). Porcine gastric mucin type II (PGM; Sigma

M2378), bovine serum albumin (BSA; Sigma A7906),

trypsin (Sigma T4549), diiodomethane (DIM; 99%)

and phosphate-buffered saline (PBS; pH 7.4) tablets

were purchased from Sigma (USA). Ethylene glycol

(EG; 99.8%) was purchased from Sigma Aldrich (UK),

and dichloromethane (DCM), N-dimethylformamide

(DMF) and 3-aminopropyltriethoxysilane (APTES;

99%) were all purchased from Sigma Aldrich (China).

PLLA (MW * 55000 g mol-1) was purchased from

Aldrich (Germany), and PCL (MW 14000 g mol-1)

and PHEMA (MV 20000 g mol-1) were purchased

from Aldrich (USA).

Preparation of substrates and AFM
cantilevers

PD was grafted onto surfaces by immersion in a basic

(pH 8.5) solution of 10 mM Tris and 2 g L-1

(10.5 mM) dopamine hydrochloride in DW overnight

(* 18 h) as per previous groups (Fig. 1) [25, 44–46].

AFM probes were APTES-functionalised in a manner

equivalent to Hong et al. [47] and Lyubchenko et al.

[48], to act as a primer to further functionalisation; the

probes were left in APTES vapour for at least 30 min.

Though PD is a good coating material for surfaces,

APTES may ensure that it stays attached throughout

the experiment. The probes were removed from the

vapour and then washed with DW. Thereafter, the

PD functionalisation was as above.

Drop casting was used to coat silicon wafer (SW)

with polymers other than PD. Solutions were made

with a polymer concentration of 2% w/v. PLLA and

PCL were dissolved in DCM, while PHEMA was

dissolved in DMF. Polymer solution was added to

squares of SW (10 9 10 mm2). Solvent was allowed

to evaporate in a fume cupboard until dry and sam-

ples were stored in a desiccator until measurement.

Drop casting was also used to coat SW with protein.

Table 1 Surface

characterisation: contact

angles (n C 6) and surface

energies by CAG, and

roughness (Ra) by AFM

Contact Angle (h, �) Surface energy (mJ m-2) Roughness (nm)

Surface DW EG DIM cs
? cs

- cs
LW cs Ra

PHEMA 52.7 ± 1.9 64.5 ± 2.8 32.3 ± 1.2 2.53 50.21 43.24 65.77 4.3 ± 4.1

PLLA 94.8 ± 7.3 70.5 ± 1.9 56.4 ± 2.1 0 2.12 30.65 30.72 41.7 ± 14.8

PCL 93.1 ± 2.5 65.3 ± 2.5 32.9 ± 1.2 0.18 1.41 42.98 43.98 39.4 ± 4.7

PD 16.8 ± 4.0 20.1 ± 1.9 54.6 ± 4.6 0.51 67.17 31.68 43.33 9.8 ± 0.5

Mica \ 10 33.8 ± 2.5 37.2 ± 1.8 0.16 77.12 47.95 47.91 0.4 ± 0.2
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BSA and PGM were each dissolved in PBS to

3.0 mg mL-1. After vortexing, a maximal volume (as

above; up to 300 lL cm-2) was placed on a square of

SW (10 mm 9 10 mm). This was allowed to dry in a

fume cupboard overnight. A large range of concen-

trations have been used previously in our laboratory

in order to produce protein films, and this combina-

tion of concentration and volume was found to be

sufficient to leave a visible deposit on the surfaces.

Contact angle and surface energy
measurements

To probe liquid–surface interactions, contact angles

(h at 20 �C) of small drops (typically 2–10 lL; 2–3

drops per substrate and 2–3 substrates per sample) of

deionised water (DW; Millipore, 18.2 MX cm; surface

tension cL = 73.5 mN m-1 at 15 �C [49]), DIM

([ 99%; cL = 50.8 mN m-1 at 20 �C [50]) and EG

([ 99%; cL = 47.7 mN m-1 at 20 �C [50]) placed on

horizontal substrates were measured using a Krüss

DSA30B contact angle goniometer (CAG) with Krüss

ADVANCE drop analysis software. Static contact

angles (h; ± 0.1�) were obtained for both left and

right contact angles 5 s after placement of the drop.

Surface energies of substrates (cs) were calculated

from the contact angles and the interfacial energies of

the three probe liquids using the Good and Oss [51]

three-liquid formula (Eqs. 1, 2 and 3), using an in-

house Visual Basic program as per Lamprou et al.

[52]. Contact angle measurements were performed

after AFM or on alternate surfaces in order to ensure

that the drops dip did not affect the surface mor-

phology. Because mica’s water contact angle proved

too low to accurately measure on our apparatus, a

value of 10� was chosen. The value has previously

been shown to be\ 10� [53].

cS ¼ cLW
S

þ cAB
S

¼ cLW
S

þ 2 cþ
S
c�
S

� �1=2
; ð1Þ

cL ¼ cLW
L

þ cAB
L

¼ cLW
L

þ 2 cþ
L
c�
L

� �1=2
; ð2Þ

cLð1þ cos hÞ ¼ 2 cLW
S

cLW
L

� �1=2
þ cþ

S
c�
L

� �1=2
þ c�

S
cþ
L

� �1=2
h i

;

ð3Þ

where superscripts denote components of surface

energy, LW Lifshitz–van der Waals, AB acid–base, c?

Lewis acid and c- Lewis base.

Atomic force microscopy

A Bruker Multimode 8 atomic force microscope with

Nanoscope V controller was used for the AFM mea-

surements. Measurements were made in air under

ambient conditions. Spring constants and resonant

frequencies for the cantilevers were determined with

the thermal noise method at the start of each exper-

iment. Force–distance plots were obtained at random

locations on the sample using a V-shaped ScanAsyst

air probe (nominal spring constant 0.4 N m-1; nom-

inal resonant frequency 70 kHz; nominal length

600 nm) in force–volume which performs ramps in a

grid. Force curves were selected at random from a

32 9 32 array. Adhesion forces (Fa; n = 80–90) were

extracted from the force curves (example given in

Supplementary Information 1) using a on house

prepare Python script, previously used in Mallinson

et al. [54]. Forces were then normalised for tip radius

by dividing the force by tip radius proportional to

Sugawara et al.’s [55] correction shown in Eq. 4.

A ¼ 4pRT; ð4Þ

where A is corrected adhesion, R tip radius and

T medium surface tension.

The tip radius (R) was determined by scanning

(scan size 5 lm, scan rate 1 Hz) an etched silicon

surface (PA01, MikroMasch, San Jose, CA, USA) in

peak force-quantitative nanomechanical mapping

(PF-QNM) mode followed by using the tip qualifi-

cation function within Nanoscope Analysis. Surface

morphology was imaged in PF-QNM mode. The

surface roughness (Ra) of each substrate was deter-

mined by using Nanoscope Analysis’ algorithm to

Figure 1 Production of PD-coated SW. Squares of SW were left

in solution overnight and loosely covered with foil to keep dust

out but allow oxygen in.
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analyse several scans of the surface from different

locations.

Circular dichroism

Circular dichroism (CD) was used to probe the sec-

ondary structure of the proteins and attempt to

identify any secondary structure in the PD. Spectra

were read in the wavelength range of 190–280 nm

with a Chirascan Plus spectrophotometer (Applied

Photophysics). A step size of 1 nm, bandwidth of

1 nm and reading time of 1 s per point were chosen.

The samples were placed in a quartz cuvette (Hellma)

with a path length of 0.1 mm. DW (Millipore) was

used as the background. Whole PD, the product of

the above process, and the same solution passed

through a 0.2-lm syringe filter such that no particles

were visible were used as samples. Three spectra

were recorded for each sample, averaged, smoothed

and the background subtracted. Data were processed

with Chirascan Viewer and Microsoft Excel.

Spectroscopic analysis

Fourier-transform infrared spectroscopy (FTIR)

spectra were taken for dopamine hydrochloride and

PD. PD, as prepared above, was centrifuged at

2000 rpm for 5 min, and then supernatant was

removed. The pellet was spread on a glass slide and

allowed to dry before measurements. Spectra were

recorded with a Bruker Tensor II FTIR spectrometer

in the wavenumber range 400–4000 cm-1. Each

sample spectrum was made of 16 scans.

Raman spectra were taken for dopamine

hydrochloride and PD, prepared as for FTIR, using a

Horiba Scientific XPloRA Plus Raman microscope

calibrated with SW. Measurements were taken with a

green (532 nm) laser in the wavenumber range of

50–3600 cm-1 with a grating of 1800 gratings mm-1, a

100 lm slit and a 9 10 objective lens. Spectra were

recorded at three locations per sample and the

backgrounds removed.

Statistics

Data were processed with Microsoft Excel 2016 and

Minitab 17. Pairwise differences in adhesion results

were analysed with a series of 2-sample t test with a

significance level of 0.05.

Results and discussion

Surface characterisation

After PD functionalisation, surfaces were visibly

different, displaying a black-sepia tint that remained

even after washing with DW. The PD layer could be

expected to be approximately 50 nm thick which is

the approximate thickness attained after immersion

for 18 h seemingly regardless of substrate according

to Liu et al. [12] and Lynge et al. [56]. The water

contact angle (Table 1) for PD-coated SW was low

(16.8 ± 4.0�), indicating high hydrophilicity and

showed good similarity with Perikamana et al.’s [21]

values for PD-coated PLLA-hemp composites

(16.9 ± 1.6�). This could be due to the coating being

powder like. However, an even more extreme

example was seen by Ku et al. [6] who observed a

water contact angle of 0�, i.e. complete wetting, for

PD-functionalised poly (lactic-co-glycolic acid)

(PLGA) nanofibres.

The water contact angle for PCL was higher than

recorded by other groups—93.1 ± 2.5� compared to

74� [57] or 82.7 ± 3.2� [58]—as was the water contact

angle for PHEMA—52.7 ± 1.9� compared to * 20�

[59]—though the PLLA water contact angle was in

agreement with other recorded values—94.8 ± 7.3�

compared with 98.0 ± 2.3� [60]. The difference may

be due to topographical differences since the dimpled

textures (Fig. 2a–c) can increase hydrophobicity

though this does not appear to have had the same

effect upon PLLA’s water contact angle.

Morphology

The images in Fig. 2 are shown at scales that best

display the features observed. The polymer films

(Fig. 2a–c) show flat but featured surfaces. Dimples

can be seen on the films which are likely from con-

densed water droplets acting as a template for the

polymer as it was cast by the evaporating solvent.

This is similar to the process for breath figure array

formation—where water droplets condensing as the

solvent evaporates act as a template for the polymer

as it is cast—but here the pores lack order, likely due

to the dry environment in which they were cast. With

a similar appearance to the PD previously observed

via AFM [5], the image of deposited PD (Fig. 2d)

shows a majority of small particles (100–250 nm) with

some larger aggregates (350–550 nm) which fall in
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the range of sizes observed by others [5, 27, 28]. This

sample was found to be smoother (Ra 9.8 ± 0.5 nm)

than reported values from Bi et al. [23]. (Ra

35.8 ± 2.1 nm) though the substrate of SW in our

studies was smoother (Ra 0.15 ± 0.04 nm [61]) than

the previously reported PTFE substrate

Figure 2 Morphology of surfaces by AFM: a PHEMA; b PCL; c PLLA; d PD; e PGM; f BSA; g trypsin; h mica.

Figure 3 Mean adhesion (± SD) to different surfaces with bare or PD-functionalised AFM probes adjusted for tip radius. All pairs are

significantly different (P\ 0.001).

J Mater Sci



(24.2 ± 1.3 nm) [23]. The dried protein films (Fig. 2e–

g) show textured surfaces with PGM (e) and BSA

(f) having rounder features than the relatively

‘mountainous’ trypsin (g). Mica (Fig. 2h), on the

other hand, is very flat–the z-axis was on the order of

nanometres.

Adhesion

When the forces are adjusted to the force tip radius,

all adhesive forces recorded with a PD-functionalised

probe are significantly (P\ 0.001) lower than with a

bare, silicon nitride probe (Fig. 3). Since it has been

found that PD supports cell growth [5], it might be

expected that the proteins would experience more

adhesion though the opposite appears to be true even

when the unadjusted values are considered (Sup-

plementary Information 2) except for mucin.

The low adhesion observed with the PD-function-

alised probes appears contradictory to the ease that

PD can functionalise surfaces, as enabled by the

displayed catechol, imine and amine groups [32]. The

apparent low adhesion to protein films suggests that

it may be ideal as a biomaterial or biomaterial coating

by minimising interactions with proteins. However,

these experiments took place in a dried environment

and a solvent (e.g. PBS or serum) might have an effect

on the adhesion and thus on the force–distance plots

that have been measured. Therefore, adhesion forces

might change in wet environment.

Circular dichroism

Due to the structure PD assumes when it self-poly-

merises [2] it is expected that it would be unlikely to

display peaks that are synonymous with protein

secondary structure noticeable by CD and indeed it

does not since it is not a polypeptide. Although there

do not appear to be any spectra of PD in the litera-

ture, Zelasko-Leon et al. [29] show a spectrum of PD-

functionalised gold nanorods which exhibits no

positive or negative maxima. The filtered PD product

had a sepia colour, but had no visible particles.

Neither this filtered PD product nor the unfiltered,

whole PD product gave any discernible signal above

the background (Fig. 4).

The crystal structure of BSA (Protein Data Bank

(PDB) 4F5S) [62] shows an abundance of alpha

Figure 4 Circular dichroism spectra of PD, BSA and PGM.
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helices. The negative and positive maxima at 208 nm

and 193 nm, respectively, seen in Fig. 4 are in very

good agreement with what is expected for alpha

helices [63]. Alpha helices also show negative ellip-

ticity at 222 nm which may be present in the spec-

trum. This suggests that the protein retained its

expected structure when reconstituted.

Mucins tend to have very little beta secondary

structure and even less alpha secondary structure

and are instead mostly random coil [64]. This could

be reflected by the very weak ellipticity that is barely

above the background.

Trypsin contains some alpha helices and beta-ple-

ated sheets (RCSB entries 5GXP [65] and 5JYI [66]).

The spectrum reported in Supplementary Informa-

tion 3 agrees with this by the positive maximum at

193 nm [63]. It also shows negative maxima at

197 nm which corresponds to random coil structures

[67] as well as at 202 and 204 nm, but these do not

appear to correspond to any obvious secondary

structure. There is also a local negative minimum at

208 nm which may be due to alpha helices.

Spectroscopic analysis

The FTIR spectrum (Fig. 5) for dopamine

hydrochloride is consistent with spectra gathered by

other groups [68]. A peak that is common for both

dopamine hydrochloride and PD near 1500 cm-1

may be attributed to aromatic regions that are com-

mon in both structures. The spectrum for the PD

product appears to resemble the spectrum that would

be achieved by overlaying the spectra for dopamine

hydrochloride and Tris base, and also shows simi-

larity to spectra obtained by Iqbal et al. [4] for PD

with the 1200–1500 cm-1 region being assigned to C–

C, C–O and C–N, and the 3000 cm-1 region assigned

to C, N, O and 3500 cm-1 to primary amine stretch-

ing which is supportive of PD. There is also similarity

to Mei et al.’s [18] spectrum with a common peak

near 1600 cm-1 indicative of aromatic rings. There is

further similarity to spectra obtained Iqbal et al. [69]

for PD-coated nanoparticles and good similarity to

the spectrum obtained by Steeves et al. [5] for PD

with nanoporous titanium.

Figure 5 FTIR spectra of dopamine hydrochloride and the PD product.
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Raman spectra were consistent between scans in

different locations for the same samples (data not

shown); however, the spectra (Fig. 6) for each mate-

rial are different. The dopamine hydrochloride

spectra show peaks typical of aliphatic chains

(600–1300 cm-1), while the peaks (not shown) in the

low wavelength range (10–200 cm-1) were suggestive

of crystallinity. The dopamine hydrochloride spec-

trum matched that of the supplier [70]. The Raman

spectra for PD show similarities to those obtained

previously by other groups such as Ma et al. [71],

Steeves et al. [5] for PD with nanoporous titanium,

Lee et al. [9] for coated titanium and Qiu et al. [72] for

MnCO3 with PD which show bands at 1350 and

1580 cm-1 which, as for dopamine hydrochloride, are

suggestive of aliphatic and aromatic components

[6, 71].

Conclusion

PD has been considered as a biomaterial due to its

ease of application and promotion of cell growth. The

product was found to resemble the PD produced by

previous groups. By atomic force microscopy, PD-

functionalised probes to protein films and polymer

films were significantly lower than with an unfunc-

tionalised silicon nitride probe, suggesting that a PD

could be a useful coating for reducing interaction

with protein that may otherwise lead to fouling. This

supports the trend towards using PD as a coating for

biomedical devices.
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