
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions 

for further reuse of content should be sought from the publisher, author or other copyright holder. 

Versions of research

The version in the Kent Academic Repository may differ from the final published version. 

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the 

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact: 

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down 

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Zhou, Zhongbao and Liu, Cenjie and Zeng, Ximei and Jiang, Yong and Liu, Wenbin  (2017) Carbon
emission performance evaluation and allocation in Chinese cities.   Journal of Cleaner Production,
172 .   pp. 1254-1272.  ISSN 0959-6526.

DOI

https://doi.org/10.1016/j.jclepro.2017.10.208

Link to record in KAR

http://kar.kent.ac.uk/64276/

Document Version

Author's Accepted Manuscript

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/189718073?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 1 

R3.4 

R2.1/3.4 

CC BY-NC-ND 

Carbon Emission Performance Evaluation and Allocation in Chinese 

Cities 
 

Abstract: This paper presents a DEA approach with multiple abatement factors to 

evaluate CO2 emission performance and allocate CO2 emission quotas in Chinese 

cities. We first consider the difference of marginal abatement costs among cities, and 

construct the non-radial directional distance function with multiple abatement factors. 

The total-factor CO2 emission performance index and its dynamic change index are 

then proposed to measure CO2 emission performance. Considering equity and 

efficiency, we develop a composite index by the hybrid method to allocate emissions 

quota, which considers CO2 emissions as well as CO2 emission performance. Then we 

conduct an empirical study using inputs and outputs dataset of 71 Chinese cities in 

2005-2012. Chinese cities have poor energy efficiency and still have high CO2 

emissions. The eastern region outperforms the central region and the western region 

performs worst, whereas the dynamic CO2 emission performance of the central region 

has the largest increase. The change of CO2 emission performance is driven mainly by 

technological advances. As for the CO2 emission allocation, the composite index 

method encourages cities to reduce emissions and enhance emission performance 

through carbon trading market. It also motivates cities with high historical emissions 

to reduce their emissions by improving technology when they have poor CO2 

emission performance. 

Keywords: data envelopment analysis; total-factor CO2 emission performance; CO2 

emission allocation; multiple abatement factors; urban environment 

1. Introduction 

China has been the largest CO2 emitter in the world since 2008 (BP, 2013). 

Auffhammer and Carson (2008) pointed out that there would be a sharply increase of 

China’s CO2 emissions per capita in the future, which would be far more than the 

emission quota of Kyoto agreement. It will certainly bring a lot of burden for China 

and even the world. As the biggest energy consumer and carbon emitter, China is 

under great pressure to reduce carbon emissions. In 2009 Copenhagan Climate 

Change Conference, Chinese government committed mandatory goal of a 40-45% 
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decrease in carbon intensity by 2020 compared to the 2005 level. In 2015 Paris 

Climate Change Conference, this goal was committed to be dropped by 60-65% in 

2030 compared to the 2005 level. Chinese government need to allocate the national 

carbon reduction targets among regions in order to achieve the total targets 

successfully.  

Given the diversity of economic and social development among different regions 

in China, regions’ reduction capacity and potential are also different. China is in a 

period of rapid urbanization, which has led to increased demands for energy (Wang et 

al., 2013). Approximately 85% of China’s CO2 emissions are related to urban energy 

consumption (Mi et al., 2016). Therefore, there is an urgent need to allocate emission 

quotas among cities, as such work is fundamental to achieve national reduction goals. 

It helps us to undertake “common but differentiated reduction responsibilities”, so as 

to promote urban green transformation.  

In literature, emission quota allocation principles can be mainly divided into two 

categories, namely fairness and efficiency principle (Rose, 1990; Zhou and Wang, 

2016; Zhou et al., 2017). Under the two principles, many different methods have been 

proposed for emission quota allocation. Indicator method based on the fairness 

principle is the most commonly approach. It consists of single and composite 

indicator approaches. Single indicator like the cumulative emissions per capita, GDP 

and population (e.g., Ding et al., 2009; Zhou et al., 2013; Wei et al., 2014) are selected 

as the allocation indicator based on fairness principle. Composite indicator approach 

(e.g., Hatefi and Torabi, 2010; Yi et al.,2011; Luzzati and Gucciardi, 2015) has 

received growing attention recently as it can integrate different fairness criteria. 

Meanwhile, the optimization method, especially DEA model, has been explored for 

emission quota allocation based on the efficiency principle. The ZSG-DEA model was 

employed by Wang et al. (2013) and Miao et al. (2016) to allocate CO2 emissions in 

China. Wei et al. (2012) used a slacks-based DEA model to allocate CO2 abatement 

among provinces in China. In addition, game theoretic method has been advocated to 

search for the optimal allocation of emission permits (e.g., Mackenzie et al., 2008; 

Liao et al., 2015). Some approaches that uses multiple indicators without constructing 

a composite indicator (e.g., den Elzen, 2008; Ekholm et al., 2010) or incorporate 

multiple groups of the above methods (e.g., Yu et al., 2014; Zhang et al., 2014) can be 

divided into the hybrid method. It can consider different fairness and efficiency 

principle simultaneously. 
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On the one hand, fairness principle is often linked to more general concepts of 

distributive justice (Rose, 1990). The fairness principle ensures emitters to undertake 

reduction burden justly. On the other hand, allocation methods under the efficiency 

principle may not only take regional economic development into consideration, but 

also the regional mitigation potential. Although few research (Wei et al.,2013; Zhang 

and Hao, 2016; Yang et al., 2017) proposed allocation methods based on equity and 

efficiency principle, it should be noted that the majority literature rarely consider 

fairness and efficiency principle simultaneously, especially taking the emission 

performance as efficiency principle. It is significant for regional emission quota 

allocation as it not only take regional equity into consideration, but also the efficiency 

to achieve the total reduction goal, while at the same time emphasizing regional 

development conditions. 

As for the efficiency principle, CO2 emission performance reflects the emission 

efficiency, which can be used as the allocation method based on the efficiency 

principle. Previous studies are likely to use single indicator (e.g., carbon emission 

intensity, CO2 emissions per unit output) to assess the CO2 emission performance (e.g., 

Ang and Choi, 2002; Sun, 2005; Tol et al., 2009). It only reflects a part of CO2 

emission performance, while CO2 emission performance is the result of energy 

consumption and economic development (Ramanathan, 2009). Zhou et al. (2010) 

proposed the concept of total-factor carbon emission performance with DEA model, 

which reflects the dynamic change of total-factor carbon emission performance. It is 

later employed and extended by many studies. Examples of such studies include Zhou 

et al. (2012), Wang et al. (2013), Zhang and Choi (2013). Recently, allowing the 

incorporation of group heterogeneity and non-radial slack, Zhang and Choi (2013) 

constructed the metafrontier non-radial Malmquist CO2 emission performance index 

to measure change of total-factor CO2 emission performance. Nabavieh et al. (2015) 

assessed the carbon emission performance of Iran fossil fuel power plants with this 

method. Zhang et al. (2015) developed a bootstrapped non-radial Malmquist index to 

analyze Chinese transportation industry’s carbon emission performance. Duan et al. 

(2016) used the bootstrapped directional distance function approach to evaluate 

energy and CO2 emission performance of China’s thermal power industry. 

Nevertheless, the previous studies analyze total-factor CO2 emission performance are 

satisfied with the Shephard production technology. The Shephard production 

technology uses a single abatement factor. It is proved that single abatement factor is 



 4 

R1.1 

R3.1 

R2.1 

insufficient to correctly represent a convex technology exhibiting weak disposability 

of undesirable and desirable outputs (Kuosmanen and Podinovski, 2009). Meanwhile, 

DMUs have different marginal abatement costs. Using a single abatement factor does 

not satisfy environmental economics theory. It can not reflect the differences among 

production units correctly (Kuosmanen, 2005).  

With regard to CO2 emission performance, studies mainly focus on the CO2 

emission performance of China at the national or provincial level (Guo et al., 2011; 

Wei et al., 2012; Song et al., 2013), industry level (Lee and Zhang, 2012; Chang et al., 

2013; Zhou et al., 2013) or plant level (Zhou et al., 2012; Zhou et al., 2014; Lin and 

Wang, 2015). Meanwhile, many scholars propose emission quota allocation from 

multiple perspectives such as emission allocation among countries (e.g., Persson and 

Azar, 2006; Ding et al., 2009; Pan et al., 2014), decomposition of national emission 

quotas into provinces (e.g., Wei et al., 2012; Zhang et al., 2013; Yu and Wei, 2014; 

Zhang and Hao, 2015), and distribution of tradable CO2 emission quota in carbon 

emission trading system (e.g., Bohringer and Lange, 2005; Neuhoff et al., 2012; Park 

et al., 2012). However, most literature rarely did research from urban perspective. 

China is in rapid urbanization process, which increases energy consumption and 

contributes heavily towards climate change. Cities are critical for fully realizing 

carbon reduction goals. 

Technically, we first construct the total-factor CO2 emission performance index 

(TCPI) and non-radial global CO2 emission performance dynamic change index 

(NGMCPI) with multiple abatement factors to estimate CO2 emission performance 

and its dynamic change. Then we take historical cumulative CO2 emissions and CO2 

emission performance index as outputs, and use Index DEA model to calculate the 

composite allocation index, which considers fairness and efficiency principle 

simultaneously. We apply the models to the urban dataset to evaluate Chinese urban 

CO2 emission performance and CO2 emission allocation. We compare our emission 

performance results with the result using single abatement factor production 

technology. Meanwhile, we compare our results with results under fairness principle 

and results under efficiency principle.  

This paper differs from the previous studies in the following aspects. First, as 

most studies related with emission quota allocation often only focus on the fairness or 

efficiency principle, we consider fairness and efficiency principle simultaneously and 

propose a composite index for emission quota allocation by combining historical 
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cumulative CO2 emissions and CO2 emission performance. It not only take regional 

equity into consideration, but also the efficiency to achieve the total reduction goal, 

while at the same time emphasizing regional development conditions. Second, 

different from earlier studies using single abatement factor, we start from considering 

DMUs have different pollution treatment capacity, and define the total-factor CO2 

emission performance index (TCPI) and non-radial global CO2 emission performance 

dynamic change index (NGMCPI) with multiple abatement factors to measure 

total-factor CO2 emission performance and its dynamic change. Such production 

technology comply with environmental economics theory and meet the convexity 

assumptions. Third, while previous relevant studies mainly focus on the performance 

and allocation measurement at China’s national/provincial level, this study does 

empirical research at urban level as a large amount of China’s CO2 emissions are 

related to urban energy consumption. There is an urgent need to evaluate CO2 

emission performance and allocate emission quotas among cities, as such work is 

fundamental to achieve national reduction goals.  

The rest of this paper is organized as follows. In section 2, we first introduce the 

Kuosmanen production technology with multiple abatement factors. We then propose 

the non-radial global directional distance function and develop total-factor CO2 

emission performance index and its dynamic change index. The composite allocation 

indicator is also proposed. Section 3 presents an empirical study using the proposed 

approach to modeling the CO2 emission performance and CO2 emission allocation in 

Chinese cities. Section 4 concludes this study. 

2. Methodology 

2.1. Total-factor CO2 emission performance index 

In the use of DEA model to deal with CO2 and other undesirable outputs, there 

are three main methods. The first method is to treat the undesirable outputs as inputs 

(Reinhard et al., 1999; Hailu and Veeman, 2001). But this method can not reflect the 

true production process and involve two problems. On the one hand, free disposability 

of inputs and undesirable outputs means a finite amount of inputs can produce infinite 

amount of undesirable outputs. It violates the law of mass conservation. On the other 

hand, free disposability assumption does not reflect the links between desirable and 

undesirable outputs, especially the weak disposability between desirable outputs and 

undesirable outputs. The second method is to make data transformation of undesirable 
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outputs, and then use conventional efficiency evaluation model (Seiford and Zhu, 

2002; Hua et al., 2007). However, this method adds a strong convexity constraint, 

which can only be solved under variable returns to scale condition. The third method 

is to introduce an abatement factor reflecting weak disposability between desirable 

and undesirable outputs, which is called Shephard production technology. Färe et al. 

(1986, 1989) proposed the concept of strong disposability and weak disposability, and 

defined production possibility sets respectively. Using DEA model with undesirable 

outputs to measure environment efficiency, weak disposability assumption is widely 

used (e.g., Yu, 2004; Zhou et al., 2010; Zhang and Choi, 2013; Lee, 2014). However, 

the production technology should satisfy the minimum extrapolation principle, model 

should be the smallest possible and does not contain any arbitrary activities (Banker et 

al.,1984). Shephard production technology using a single abatement factor is 

insufficient to correctly reflect convexity exhibiting weak disposability of desirable 

and undesirable outputs. It may lead to bias estimation of production efficiency 

(Kuosmanen and Podinovski, 2009). Kuosmanen (2005) considered multiple 

abatement factors and propose Kuosmanen production technology. It can effectively 

solve the above problems. Podinovski and Kuosmanen (2011) compared the 

production possibility set size of Shephard production technology and Kuosmanen 

production technology, it was verified that the Kuosmanen technology can meet the 

convexity assumptions. In this paper, we adopt the Kuosmanen technology to model 

undesirable outpus and construct the total-factor CO2 emission performance index.     

In order to illustrative Kuosmanen technology clearly, we start with the weak 

disposability, which use one single abatement factor. Suppose the production activity 

is characterized by (X,Y,Z) , where N
N RxxX  ),,( 1   is the vectors of inputs, 

M
M RyyY  ),,( 1   is the vectors of desirable outputs and J

J RzzZ  ),,( 1   is the 

vectors of undesirable outputs. We assume there areK DMUs, and the observed 

activities are denoted by KkZYX kkk ,,1),,,(  . The production technology T  is 

said to be weak disposability if TZYX ˅˄ ,,  and  1,0 , TZYX ),,(  . With weak 

disposability, reducing undesirable outputs has an impact on other normal outputs. We 

need to sacrifice the desirable outputs to reduce the undesirable outputs. It is 

consistent with the actual production activities. But the production technology uses a 

single abatement factor to reflect weak disposability between desirable outputs and 

undesirable outputs, which does not satisfy the convexity assumption (Kuosmanen 
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and Podinovski, 2009). As DMUs (e.g., enterprises) have different pollution treatment 

capacity, it is cost effective for enterprises whose marginal abatement costs is low, 

while it is unfavorable for enterprises whose marginal abatement costs is high. Using 

a single abatement factor does not comply with environmental economics theory. 

Therefore, Kuosmanen (2005) propose a production technology with multiple 

abatement factors. It uses individual abatement factors k attached to each observed 

activity Kk ,,1 . The Kuosmanen technology is convex under the weak 

disposability of desirable and undesirable outputs. The production possibility set is as 

follows: 
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where variables ),,( 1 Kwww   are referred to as the intensity weights.  

We can use the formula for substitution: Kkww kkkkkk ,1,)1(, ̍  , 

so that kkk w  . Thus, the formula (1) can be converted to: 
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The directional distance function (DDF) based on the Kuosmanen technology 

proposed by Podinovski and Kuosmanen (2011) is radial. It means that the change 

ratio of undesirable outputs is the same as the ratio of desirable outputs. It may 

overestimate efficiency when there is some slack (Fukuyama and Weber, 2009). The 
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non-radial method is often advocated to overcome this limitation (Chang and Hu, 

2010; Zhang and Choi, 2013). Therefore, we propose the following non-radial 

directional distance function (NDDF) with Kuosmanen technology: 

   TgzgygxgggZYXND zzzyyyxxxzyx 


˅˄  000000 ,,sup,,;,,  (3) 

where TzyxT ),,(   denotes weight vector of inputs and outputs. zyx ggg ,, are 

directional vector. 0,,  Tzyx ˅˄ 
 
denotes a vector of scaling factors representing 

individual inefficiency measures for inputs and outputs. We can use the formula for 

substitution: x
n

x
nnn gxx -0 , 

y
m

y
mmm gyy  0

, z
j

z
jjj gzz -0 . 

We can calculate the NDDF value for a specific DMU0k , denoted as  

 zyx gggZYXND ,,;,, 000


 by solving the following DEA model: 
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Suppose that each DMU uses capital (K), labor (L), energy (E) as inputs to 

generate the gross product (Y), a desirable output, and CO2 emissions (C), an 

undesirable output. And we set the weight vector to (1/9, 1/9, 1/9, 1/3, 1/3) and the 

directional vectors to ),,,,( CYELKg  . We follow Zhou et al. (2012) and 

define the static total-factor CO2 emission performance index (TCPI) as the ratio of 

potential target carbon intensity to actual carbon intensity. The TCPI is formulated as 

follows: 
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TCPI seeks to measure the maximal possible reduction of carbon intensity, which 

can be used to measure the carbon emission performance. The higher value of TCPI, 

the better is the carbon emission performance. When calculating the dynamic changes 
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of carbon emission performance, conventional Malmquist index are defined as 

geometric mean of the directional distance functions of two consecutive periods. To 

measure environmentally sensitive productivity growth, Chung et al. (1997) proposed 

Malmquist-Luenberger productivity index (ML index). However, as the new frontier 

has shifted, the cross-periods DDFs are not free from the infeasibility problem in LP 

calculation, and the observed DMU may not be included in the production frontier. 

Moreover, the Malmquist index calculated by geometric mean does not have features 

of circularity and transitivity. To solve these problems, Pastor and Lovell (2005) 

developed the global Malmquist index. Then Oh (2010) applied it to the ML index 

and proposed the global Malmquist-Luenberger index.  

Two production technologies are defined: the contemporaneous and global 

production technologies. The contemporaneous production technology is defined as 

 ˅˄ ttttttC ZYproducecanXZYXT ,:),,(  where Tt ,,1 . This frontier represents 

the production technology described in equation (2) for a special t only. Then we 

define the global production technology as TG TTTT  21 . This frontier 

consists of a single technology constructed from observations spanning the whole 

period for all observations. The global production technology thus envelops all 

contemporaneous production technologies, and we assume that all DMUs are able to 

access this global technology through innovation activities. We can express the 

directional distance function based on these two production technologies.  

We define C as the contemporaneous production technology and the 

contemporaneous directional distance function based on the contemporaneous 

production technology is as follows, we replace  zyxC gggZYXND ,,;,, 000


 with 

 .


CND  to save space: 

   CzzCzyyCyxxCxCC TgzgygxND 


˅˄ ,0,0,0 ,,sup.               (6) 

And we define G  as the global production technology and the global directional 

distance function based on the global production technology is as follows: 

   GzzGzyyGyxxGxGG TgzgygxND 


˅˄ ,0,0,0 ,,sup.             (7) 

To calculate and decompose the non-radial global total-factor CO2 emission 

performance index (NGMCPI), we need to solve four different directional distance 
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functions: )(.tDN C


, )1(. tDN C


, )(.tDN G


and )1(. tDN G


. Based on equation (4), 

we can solve the contemporaneous directional distance functions )(.tDN C
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)1(. tDN G


 for each period. The global directional distance functions )(.tDN G


 

and )1(. tDN G


can be solved through the following DEA model (8) and (9): 
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The weight vectors and directional vectors are the same as in equation (4). 
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undesirable output j of DMU k at period t and t+1, respectively. ),( ,, tktk   and 

),( 1,1,  tktk   means   and   of DMU k at period t and t+1, respectively. Based 

on these values for different directional distance functions, we have the four 

corresponding TCPI values as follows: 
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Here we define the NGMCPI based on the global production technology as 

follows: 
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Similar to the GML index, the NGMCPI measures the CO2 emission 

performance dynamic changes from period t to 1t . We can decompose the 

NGMCPI into two components: a technical efficiency change (EC) index and a 

technological change (TC) index of CO2 emission performance. The decomposition 

process is as follows: 
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The EC term in equation (15) is a measure of the “catch-up” effect in terms of 

CO2 emission performance over the period between t and 1t . It reflects how 

close a DMU moves toward the contemporaneous production technology. If 1EC , 

it indicates the DMU obtains efficiency gain. The TC reflects change in the frontier 

shift between the contemporaneous technology and the global technology over the 

period between t  and 1t . If 1TC , it reflects that the contemporaneous 

technology frontier has shifted toward the global technology frontier, which can be 

considered as innovation effect. 
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2.2. The composite indicator for CO2 emission allocation 

Although historical cumulative CO2 emissions method can achieve a globally 

equitable carbon emission space (Pan et al,, 2014), it is not conducive to assume 

reduction responsibility initiatively, nor to achieve reduction targets in an effective 

way. According to Zhou and Wang (2016), distributing quotas in proportion to 

historical CO2 emissions reflects fairness and the emission intensity reflects efficiency. 

Therefore, we comprehensively propose a hybrid method to allocate emission quotas 

considering fairness and efficiency principle simultaneously. Firstly, based on Index 

DEA model, we take the proportion of historical cumulative CO2 emissions and the 

proportion of average CO2 emission performance as outputs to establish each DMU’s 

efficiency:        
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where *  means the efficiency, Ew  and Pw  are predetermined weights, here we set 

5/1Ew  and 5/4Pw . PY  means the proportion of historical cumulative CO2 

emissions to total sample cities’ historical cumulative CO2 emissions and EY  is the 

proportion of average CO2 emission performance index to total sample cities’ average 

CO2 emission performance index. There are n  DMUs.  
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where jC  represents the composite allocation indicator for city j . j  means the 

efficiency of reducing CO2 emissions and enhancing CO2 emission performance for 

city j , which can be calculated from model (16). C  is the CO2 emission quota 

obtained by sample cities in the given year.  

3. Empirical study 
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3.1. Data 

We now employ models described in section 2 to investigate the total-factor CO2 

emission performance and its dynamic change. We select Chinese 71 cities in 

2005-2012. In order to derive CO2 emission performance indicator, we first have to 

define the input and output variables explicitly. Combining the relevant indicators 

such as economic activity, energy consumption and CO2 emissions in DEA model for 

total-factor performance evaluation is a holistic point (Ramanathan, 2002). According 

to the basic economic theory of production, an economic entity uses capital, labor and 

energy as inputs to produce certain amount of products, representing desirable output, 

and CO2 emissions, an undesirable output (Zhang and Wei, 2015). The similar 

production framework has been widely adopted to CO2 emission performance 

evaluation (see Zhou et al., 2010; Zhang et al., 2013; Yao et al., 2015; Wang et al., 

2017). Therefore, in this paper, our inputs are labor, capital stock and energy 

consumption. Desirable output is urban gross domestic product and undesirable 

output is CO2 emissions. Data are taken from the China City Statistical Yearbook and 

each city’s Statistical Yearbook. 

As for inputs, employed labor force numbers for each city are used as the labor 

input data. Capital stock is selected to represent the capital input. As capital stock data 

are not directly available from official sources, conventional method is the perpetual 

inventory method. Ke (2009) proposed a method to calculate China’s urban capital 

stock. Firstly, he estimated urban industrial capital stock by calculating the net value 

of industrial current assets and fixed assets in the base period. Secondly, using the 

proportion of industrial added value to GDP, he calculated urban capital stock in the 

base period. Thirdly, he assessed the following period capital stock according to the 

actual total investment with perpetual inventory method: 1,11,, /)1(   tittiti dIKK   

where 
tiK ,
,   represents the capital stock and depreciation rate at time t , 

respectively. He assumed the depreciation rate was 5%. 1-tI  represents investment of 

fixed assets in period 1-t . We use this method to calculate urban capital stock. The 

monetary variables, including urban gross domestic product and capital stock, are 

converted into 2005 constant prices. As urban energy consumption data can not be 

directly acquired and industrial energy consumption accounts a large proportion of 

urban energy consumption, we use urban industrial energy consumption data to reflect 
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urban energy consumption. Energy input includes ten main primary fossil energy 

consumption, including coal, cleaned coal, coke, crude oil, gasoline, kerosene, diesel 

oil, fuel oil, liquefied petroleum gas and natural gas, transformed into standard coal 

equivalents.  

As for undesirable output, CO2 emissions are calculated based on the the energy 

consumption amount and IPCC carbon emissions factors for different fossil fuel 

types: 
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where 2CO  indicates the total 2CO emissions amount for a city. iE  represents the 

consumption amount of fuel i . iNCV  is the average caloric value of fuel i . iCEF  

is the carbon content per calorie of fuel i , which can be obtained from IPCC. Table 1 

presents descriptive statistics for the sample data. 

Table 1 Descriptive statistics of inputs and outputs, 2005-2012 

Variable Unit Mean St Dev Minimum Maximum 

Capital 108 Yuan 6061.07 6147.53 236.02 40761.50 

Labor 104 persons 164.19 169.25 5.58 1338.68 

Energy 104 Tons of standard coal equivalent  1225.23 874.54 95.49 4930.04 

GDP 108 Yuan 2183.45 2085.91 43.01 15365.90 

CO2 104 Tons 3336.07 2316.14 231.14 13198.26 

3.2. Static total-factor CO2 emission performance 

The Appendix Table A.1 shows the empirical results of static CO2 emission 

performance from 2005 to 2012 of 71 Chinese cities. The result indicates that Chinese 

urban have poor energy utilization efficiency and still have high CO2 emissions as the 

annual average CO2 emission performance index of total sample cities are lower than 

0.5. The pressure of energy conservation and emission reduction are great. It is mainly 

due to Chinese rough development path, which sacrifices the environment in 

exchange for economic growth. Economic growth increases energy consumption 

while local government ignores environment governance, which leads to poor CO2 

emission performance. In addition, CO2 emission performance of Chinese cities 

shows instability feature by the emergence of rising and falling. It suggests that, 

although Chinese government turn to environment governance and promote urban 
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CO2 emission performance in recent years, relevant policy formulation and 

implementation, green technology introduction and absorption are relatively weak. 

We need to further increase the regulation intensity and improve supporting facilities 

to effectively achieve emission reduction targets.  

Specifically, from the area perspective, Chinese cities have different static CO2 

emission performance. We find that Guangzhou, Huizhou, Zhaoqing, Suzhou, Putian, 

Qingdao, Xianning and Jiayuguan have always been the benchmarks for lying on the 

frontier during the whole period, which have achieved the best CO2 emission 

performance. Except for Xianning and Jiayuguan, the rest six cities on the frontier are 

the eastern cities. Xianning is one of the low carbon economy pilot cities in Hubei 

province. Its CO2 emissions is around 6.7 million tons while its GDP is about 3.7 

billion yuan during the period. Thus, Xianning develops its economy with low CO2 

emissions. Jiayuguan has small economy scale with GDP around 0.7 billion yuan. Its 

environment pollution is not serious during the industrial development. On the 

contrary, the central and less developed western cities such as Zunyi, Lanzhou and 

Xianyang, their CO2 emission performance are below 0.2 during the whole sample 

years. These cities’ CO2 emission performances are poor and they have greater 

emissions reduction potential.  

We divide all 71 sample cities into eastern, central and western regions according 

to their geographical location. According to Fig.1, the annual average CO2 emission 

performance in the eastern region is the highest in every sample year, which is higher 

than the national average value. However, the average CO2 emission performance of 

both central and western regions are lower than the national average value, especially 

the western region has the lowest value. In general, the eastern region outperforms the 

central region and the western region performs worst, which is similar to the results 

by Yao et al.(2015). These results may be caused by unreasonable industrial structure 

of the central and western regions. We can adjust industrial structure and introduce 

advanced production technology to achieve a larger reduction space in the central and 

western regions. 
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Fig.1. Average TCPI in three regions, 2005-2012 

3.3. Dynamic change of total-factor CO2 emission performance 

The results of CO2 emission performance dynamic change (NGMCPI) from 2005 

to 2012 of 71 Chinese cities are showed in Appendix Table A.2. The NGMCPI 

increases by approximately 0.079 unit on average from 2005 to 2012. Based on Eq. 

(14), this indicates that, on average, the ratio of target carbon intensity to actual 

carbon intensity increases by 7.89% per year over the sample period. In the 

longitudinal aspect, the average NGMCPI increases in most years except 2005-2006. 

Chinese urban CO2 emission performance has a stable growth during the sample 

period, while it has been significantly improved since 2010. We can indicate that 

although the static CO2 emission performance is not well, Chinese urban CO2 

emission performance has been significantly improved. In Chinese “11th Five-Year” 

plan (2006-2010), energy conservation and emission reduction is treated as an 

important breakthrough in adjusting economic structure and accelerating 

transformation of economic development mode. During “11th Five-Year” period, 

Chinese government implements key projects of energy conservation and emission 

reduction, improves energy efficiency, and promotes low carbon technology (Price et 

al., 2011). Subsequently, in “12th Five-Year” plan (2011-2015), Chinese government 

indicated that, with the accelerated process of industrialization and urbanization, 

resource and environmental constraints will be increasingly strengthened in China, we 

still need to strengthen pollutants reduction and improve energy efficiency. All those 

policies improve Chinese urban CO2 emission performance. Due to a certain delay of 

policy implementation (Tang et al., 1997), CO2 emission performance has been 

improved greatly until 2010. 
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R2.2 Specifically, there exists a large difference of NGMCPI among cities. Among all 

71 cities, 11 cities show a downward trend in the NGMCPI. Jilin shows the largest 

growth in the average CO2 emission performance index during the sample period 

(0.36), while Jiayuguan shows the largest decrease in CO2 emission performance 

(-0.29). For specific city, we select eight cities to show their TCPI and NGMCPI 

trends, whose TCPI and NGMCPI have huge differences. From Fig.2(a), we find that 

Foshan, Guangzhou, Luoyang and Jilin, their average NGMCPI value increase by 

29.19%, 15.16%, 28.53% and 35.74%, respectively. On the contrary, from Fig.2(b), 

Jiayuguan, Xining, Xianning and Nanyang, their average NGMCPI value decreases 

by 29.19%, 6.55%, 13.86% and 13.20%, respectively. Due to imbalance development 

of regional economy, regional industrial layouts and industrial energy efficiency are 

quite different among cities. Therefore, urban initial CO2 emission performances are 

different, which leads to huge difference of urban dynamic CO2 emission performance. 

City like Jilin has low TCPI value, but its CO2 emission performance has been 

improved recently. On the contrary, although city like Jiayuguan has good TCPI value, 

its CO2 emission performance decreases heavily. It indicates that central government 

needs to consider common but differentiated emission reduction responsibility to 

allocate CO2 emission quotas when they are formulating energy conservation and 

emission reduction policies. Local government also need to make CO2 reduction 

policies according to their actual GDP, labor conditions, energy consumption structure 

and CO2 emission performance.  

In order to investigate the sources of CO2 emission performance change, we 

decompose the NGMCPI into two parts, namely, efficiency change (EC) and technical 

change (TC). Appendix Table A.3 shows the EC values of each city in 2005-2012. 

Decomposition results show that the average efficiency change (EC) index of CO2 

emission performance from 2005 to 2012 is 1.01, showing an average annual increase 

of 0.12%. In 2005-2006, 2009-2010 and 2010-2011, average efficiency change suffers 

a decline of 2.96%, 15.40%, 5.13%, respectively. It indicates that Chinese cities do 

not shift toward the contemporaneous technology frontier. It does not show obviously 

“catching up” effect in low carbon development. Efficiency change does not have a 

positive impact on Chinese urban CO2 emission performance change. In the process 

of low carbon city development, Chinese government needs to make appropriate 

institutional arrangement and strengthen the exchange and diffusion of technology 
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experience to improve the technological efficiency. All these efforts can realize 

“catching up” effect in the low carbon development and enhance urban CO2 emission 

performance. 

  (a) TCPI and NGMCPI for Foshan, Guangzhou, Luoyang and Jilin. 

 

(b) TCPI and NGMCPI for Jiayuguan, Xining, Xianning and Nanyang 

Fig.2. TCPI and NGMCPI Trend Comparison 

For individual cities, 48 cities show an increase in EC. It suggests that these cities 

move toward the contemporaneous technology frontier over the study period and 

catch up in attaining low-carbon development. However, EC decrease in 23 cities. 

Nanyang has the lowest average EC value of 0.86, while Foshan has the highest 

average EC value of 1.15. This indicates that the Foshan is working hard to catch up 

with the more well-performance cities, whereas Nanyang’s improvement in CO2 

emission performance have been delayed in comparison to other cities. It also 

illustrates that efficiency changes of Chinese cities are very different. Some cities’ 
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CO2 emission efficiency has been improved, technology diffusion and exchange 

system arrangement has been optimized. There are still some cities need to make 

more efforts to enhance efficiency improvement in order to reduce or even reverse the 

negative impact of efficiency change on CO2 emission performance change. As cities 

have different levels of economic development, there exists difference in policy 

formulation and implementation for local government. Some cities still pursuit 

unilateral economic growth at the expense of environment quality, resulting 

insignificant “catching up” effect of low carbon technology. 

Appendix Table A.4 shows the TC value of each city in 2005-2012, reflecting 

low carbon technology change of each city. We find that average technical change of 

CO2 emission performance change in the sample period is 1.12, which indicates a 

general technological progress by 12% toward low-carbon technology. Results show 

that the contemporaneous frontier approaches to the global frontier in general and 

technology are promoted in Chinese cities during the research period. During the 

sample period, technical progress is observed in all years except 2008-2009. The 

technical recession is observed in 2008-2009, it may be due to the subsequent 

influence of financial crisis in 2008 (Xie et al., 2014). After the financial crisis 

outbreaks, Chinese industrial structure has certain degradation, which leads to the 

technology degradation. Overall, Chinese urban have made great progress of low 

carbon technology. In “11th Five Year” plan, Chinese government propose that, 

during the construction process of “resource-conserving and environmental-friendly 

society”, we need to further optimize industrial structure, make substantial 

technological progress and change the growth mode. And in the “12th Five-Year 

Plan”, it is clearly proposed that we have to adjust and optimize industrial structure, 

popularize advanced technology, introduce and absorb abroad advanced technology. 

Then we can improve energy efficiency and reduce pollution emissions. Under the 

guiding and regulation of these policies, Chinese urban CO2 reduction technology has 

made significant improvement. 

It is found that most cities’ average annual TC values are above unity, which 

indicates a increase in technological change of CO2 emission performance change. 

Among these cities, Jilin, Yulin, Xianyang and Lanzhou have the largest technology 

progress. Only five cities have technology retrogression. Wenzhou, Putian, Xianning, 

Zhongshan and Jiayuguan, their average TC value decreases by 1.25%, 6.19%, 
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13.86%, 1.97% and 29.19%, respectively. It indicates that although Chinese 

government has made energy conservation and emission reduction deployment in 

general, there exists a big difference on low carbon technology improvement for 

Chinese cities, as economic development, industrial structure and initial technology of 

each city are different. For the initial technical level of central and western cities are 

low, they are much easier to enhance technical imitation and innovation ability in the 

process of low carbon technology improvement. 

We examine the trends in dynamic total-factor of CO2 emission performance as 

well as its decomposition. Fig.3 shows the average changes of NGMCPI and its 

decomposition parts (EC and TC) during 2005-2012. From Fig.3, we find that 

NGMCPI value is always above unity. It shows a stable increasing trend from 0.96 at 

the beginning to 1.14 in the final period. Therefore, urban CO2 emission performance 

has been effectively improved during the sample period. Only in 2008-2009 is there a 

noticeable downward trend. It may due to the subsequent impact of Chinese industrial 

structure degradation after the 2008 financial crisis. It leads to technical degradation, 

which has negative impact on CO2 emission performance change. 

The results of decomposition show that both EC and TC seem to be responsible 

for the change in urban CO2 emission performance change and they have adverse 

effect on the NGMCPI. The EC index fluctuates in the sample period, it increases 

between 2006 and 2008, then decreases significantly in 2009-2011. The TC index in 

2008-2009 decreases significantly lower than unity, which may be affected by 

financial crisis in 2008. In the rest years, the TC values are greater than unity, and 

technical progress effect of CO2 emission performance in Chinese cities is obvious. It 

means that urban technology innovation has been enhanced. It is similar to the results 

of Chen and Golley (2014), they indicate that China has developed cleaner production 

processes and green technology innovation since the beginning of the 90’s. Except for 

the period of 2011-2012, the changes of NGMCPI in the rest sample years coincide 

with TC change trends. This suggests that the increase in CO2 emission performance 

is mainly driven by technological innovation. Under the “11th Five-Year” plan 

(2006-2010) and “12th Five-Year” plan (2011-2015), the Chinese government 

proposed reduction targets for energy and carbon intensity. Therefore, cities were 

under considerable pressure to reduce its carbon emissions. Based on our results, CO2 

emission performance has been improved significantly driving by technical 
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innovation, it indicates obvious effect of the carbon policy on green technology and 

innovation.  

 

Fig.3. Changes of NGMCPI,EC,TC, 2005-2012 

Fig.4-6 show the trends in the NGMCPI and its decomposition for the three 

regions. The average NGMCPI of the eastern, central and western regions is 7.75%, 

9.58% and 6.89%, respectively. It shows almost identical NGMCPI trends in these 

three regions. In the initial stage of 2005-2006, annual average NGMCPI in these 

three regions are below unity, while the NGMCPI value of rest years for all regions 

have substantial growth, greater than unity. It indicates that the CO2 emission 

performances of whole regions are improved. The NGMCPI values of the central 

region increases significantly, especially during the period of 2006-2009. In “11th 

Five-Year” plan, government proposes to optimize industrial structure, develop 

circular economy and improve resource comprehensive utilization in order to realize 

the “rise of central China plan”. The strategy leads to better industrial structure and 

energy efficiency, which helps to improve CO2 emission performance. 

The improvement of western region is obvious. The NGMCPI values of the 

western region is always below eastern and central regions during 2005-2008, while 

in 2009-2011 it increases substantially, even exceed the eastern and central regions. It 

indicates that CO2 emission performance of the western region is significantly 

improved in recent years. The “11th Five-Year” plan for western development clearly 

put forward to improve development quality, optimize resources allocation, and 

strengthen resource conservation and comprehensive utilization. The implementation 

of these policies drives CO2 emission performance of the western region improved. 

As the infrastructure in the western region is weak, the implementation of these 



 22 

R2.2 

R2.2 

policies have certain delay, advanced technology also need time to play a role. 

Therefore, CO2 emission performance began to make significant improvements in the 

western region in recent years, even succeed the eastern and central regions. 

 

Fig.4. The changes of NGMCPI in eastern, central, western region 

In terms of its decomposition, from Fig.5 we find that the EC of three regions 

show a similar trend, with a large increase in 2008-2009, a decrease in 2009-2010 and 

then show different rate of growth. The EC values of all the regions are below unity in 

2009-2011. Efficiency change has a negative impact on CO2 emission performance 

change. The largest EC is observed during 2008-2009. The EC values of three regions 

have large growth in 2008-2009. In order to achieve the binding target of a 20% 

reduction of unit of GDP energy consumption proposed in the “11th Five-Year Plan”, 

National Development and Reform Commission propose “comprehensive program of 

energy conservation and emission reduction”. They clearly divide emission reduction 

responsibility and establish a strong coordination mechanism of energy conservation 

and emission reduction. Therefore, EC values of three regions increase greatly in 

2008-2009.  

Specifically, EC value of the western region is not better than the rest two regions 

in the whole period except 2007-2009. The western region is obviously lagged behind 

in efficiency of low carbon management. The EC of the western region fluctuates 

more than that of the other regions. This may be due to the management system and 

regional coordination of the eastern and central regions are better than the western 

region, which leads to energy conservation and emission reduction efficiency better. 

As Zhang and Wei (2015) proposed, the western region is well known for its rich 

natural resources but has lagged behind the other regions because lack of 

infrastructure and economic growth speed. It leads to low efficiency in low carbon 
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development.  

 

Fig.5. The changes of EC in eastern, central, western region 

Except that TC of three regions in 2008-2009 are less than unity, TC are above 

unity in the rest years among three regions. It implies that low carbon technological 

innovation continues in all three regions throughout the period except during 

2008-2009, cities vigorously develop low carbon production technology. TC value 

falls sharply in 2008-2009. It may be due to the impacts of financial crisis in 2008. 

Due to industrial structure degradation and economic downturn caused by the 

financial crisis in 2008, it results technical innovation investment and concern of 

environmental issues degraded in the following year, which leads to technical 

degradation. 

TC of the central region is enhanced substantially, even exceed the eastern region. 

Meanwhile, western region’s technology has been enhanced, it has greater progress 

than the eastern and central regions in 2009-2012. The western region is leading in the 

innovation of low carbon technology in 2009-2012. It indicates that, although the 

central and western regions have poor technology basis, low carbon technology 

innovation of the central and western regions are strengthened in recent years. It may 

be related to the backward technology basis, and there is a big gap compared with the 

eastern region. The technology progress is proposed as a guide in the “rise of the 

central China plan”. Since the western region was aimed to build key economic 

regions and key ecological areas in the western “12th Five-Year” plan, it focused on 

enhancing the capability of independent innovation, taking into account of ecological 

environment improvement. All those policies enhanced technology innovation 

capabilities of the eastern and western regions.  
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Compared Fig.4-Fig.6, We find that the change trends of NGMCPI in the eastern 

and western regions coincide with its EC change trends in 2005-2006, whereas it 

coincide with TC change trends in 2007-2012. EC and TC in the eastern and western 

regions are similar, but due to different change degree, there is a difference in the CO2 

emission performance change of the eastern and western regions. It implies that CO2 

emission performance change is mainly driven by efficiency change and technology 

innovation in eastern and western regions. It is suggested that the role of government 

and innovation are quite important for sustainable development in these regions. 

NGMCPI of the central region coincide with its TC change trends in the whole period. 

It implies that total-factor CO2 emission performance change of central region is 

mainly affected by the technology innovation. The government needs to do more 

work to promote technology that can increase the overall CO2 emission performance 

for this region. 

 

Fig.6. The changes of TC in eastern, central, western region 

For comparative purposes, we also compute the TCPI, NGMCPI and its 

decomposition based on the Shephard technology which uses single abatement factor. 

As shown in Fig.7, the results for TCPI under the Shephard technology show a 

relatively high CO2 emission performance during the whole sample year. This 

difference may be due to the use of different production technology. Without 

considering different DMU’s pollution treatment capacity, Shephard technology using 

a single abatement factor might lead to the overestimation of CO2 emission 

performance in this case. 

R2.2/2.3 
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Fig.7. Comparison of TCPI under different production technology 

As shown in Fig.8, we find that NGMCPI under the Shephard technology show 

similar results compared with the results in this paper . It shows an average annual 

increase of 8.16%, which is higher than that in this study (average annual 

growth=7.89%). The decomposition also show similar trends under the two 

production technologies. Both the EC and TC under the Shephard technology are 

higher than the results in our study. As discussed earlier, the Shephard technology 

uses single abatement factor and it might lead to overestimation. The comparison 

results confirm the necessary and significant of our method. Meanwhile, the similar 

trend of NGMCPI and its decomposition under the Shephard technology ensure the 

robustness of previous results in our study.    

 

(a) 

R2.2/2.3 
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(b) 

 

(c) 

Fig.8. Comparison of NGMCPI and its decomposition under different production technology 

3.4. CO2 emission allocation  

On the eve of the Copenhagen climate conference in 2009, Chinese government 

made a mandatory goal of a 40-45% decrease in carbon intensity by 2020 compared 

to the 2005 level. A Chinese CO2 emission was 5401.14 million tons in 2005, and the 

GDP was 18457.58 billion Yuan. The carbon intensity was 2.93 t CO2/104 Yuan. We 

assume that by 2020 Chinese carbon intensity will be decreased by 45% compared to 

the 2005 level. Therefore, the carbon intensity will fall to 1.61 t CO2/104 Yuan in 2020. 

Meanwhile, we assume that from 2005 to 2020, the GDP has an annual growth rate of 

8%, then in 2020 the GDP is about 585505.7 billion Yuan. The total amount of CO2 

emissions in 2020 will be 9426.7 million tons.  

According to the historical cumulative CO2 emissions of 71 sample cities in 
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2005-2012 and the national historical cumulative CO2 emissions in 2005-2012, we 

need to allocate 3700.6 million tons CO2 quotas for 71 sample cities in 2020. We 

obtain the allocation indicator under the composite indicator principle based on 

formula (16)-(17). According to Zhou and Wang (2016), the historical cumulative 

emissions indicator reflects fairness principle while the emission intensity reflects 

efficiency principle. In order to find the differences among different allocation 

principle, we also calculate the emission quotas under the historical cumulative 

emissions indicator and the CO2 emission performance indicator, respectively. The 

results are shown in Table 2. In this table, we also illustrate each city’s historical 

cumulative CO2 emissions and their average CO2 emission performance index during 

2005-2012.  

The method of historical cumulative CO2 emission is in accordance with the 

grandfathering criterion, which implies that more historical CO2 emission follows 

more emission quotas (Zhou and Wang, 2016). The results show that, under historical 

cumulative CO2 emissions method, cities with more quotas are mainly concentrated in 

the eastern region as the eastern cities like Beijing, Tianjin and Guangzhou have high 

CO2 emissions. Under this principle, there is a great gap of CO2 emission quotas 

between cities. Tianjin has the highest CO2 emission quota with 151.55 million tons, 

while Huizhou has the minimum quota with only 3.98 million tons. Based on the 

allocation method of cumulative historical CO2 emissions, it only considers historical 

energy consumption and emissions, cities with high CO2 emissions can obtain more 

CO2 emission quota. Such allocation method does not consider the CO2 reduction 

potential among different cities. This allocation principle may encourage cities 

increasing emissions in order to get more emission quotas. Cities which have large 

mitigation potential would not be positive to make carbon emission reduction. It is not 

conducive to promote large emitters to reduce their energy consumption and CO2 

emissions.  

We find that cities with high emission performance can obtain more emission 

quotas under the efficiency principle. Cities like Suzhou, Qingdao and Wenzhou can 

obtain more than one million ton emission quotas, whereas their emission quotas 

under the cumulative historical emissions method are relatively low. As cities with 

high CO2 emission performance have good energy utilization efficiency, their 

mitigation potential are relatively small and they can undertake less reduction targets. 

Cities with low CO2 emission performance have huge mitigation potential, more 



 28 

R2.2/2.3 

R2.2/2.3 

R2.2/2.3 

reduction responsibility allocated to them can enhance the reduction efficiency. 

However, Chinese regional development are fairly imbalanced in terms of economic 

level, geographical factors, natural resources and industry structure (Yu et al., 2012; 

Zhang et al., 2014). Such allocation method ignores different energy structure and 

energy consumption among cities, which may lead to unfair quota distribution.            

In this paper, we consider historical CO2 emissions and CO2 emission 

performance as the outputs, then use Index DEA model to calculate composite index 

for emission quotas allocation. The results indicate that the CO2 emission quotas 

locate between those under the historical CO2 emission method and the emission 

performance method. Below we explain the rationality of our allocation results.  

As shown in Table 2, cities with low historical CO2 emissions and good CO2 

emission performance get more emission quotas, whereas cities with high CO2 

emissions and poor CO2 emission performance obtain less emission quotas. For 

example, the average CO2 emission performance in Zhaoqing and Huizhou are both 

unity, their historical cumulative CO2 emissions are 29.04 million tons and 19.73 

million tons, respectively. The average CO2 emission performance in Baotou and Jilin 

are both 0.15, their historical cumulative CO2 emissions are 457.68 million tons and  

425.91 million tons, respectively. Under our composite index method, Zhaoqing and 

Huizhou obtain 89.30 milliton tons and 80.73 million tons quotas, respectively. 

However, Baotou and Jilin get 16.89 million tons and 17.46 million tons emission 

quotas, respectively. We allocate high emission quotas to cities with low historical 

CO2 emissions and good CO2 emission performance. These cities are able to sell their 

extra emission quotas and obtain revenue after they meet the requirements of normal 

production activities. On the contrary, we allocate low emission quotas to cities with 

high historical CO2 emissions and poor CO2 emission performance. These cities need 

to buy emission quotas in order to satisfy the emission regulation as well as meet the 

requirements of normal production activities. Thus, our allocation method stimulates 

the establishment of carbon trading market, which encourages cities to reduce 

emissions and enhance emission performance through the market mechanism. 

Meanwhile, as Chinese government is promoting carbon trading policy and 

establishing national carbon trading market recently, our allocation method is in line 

with the current policy trend. 

In addition, cities with high historical CO2 emissions can obtain more emission 

quotas if  they have good CO2 emission performance, while they will get less emission 
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quotas if  they have poor CO2 emission performance. For example, historical 

cumulative CO2 emissions in Beijing, Shanghai and Guangzhou are 628.88 million 

tons, 693.15 million tons and 631.97 million tons, respectively. Average CO2 emission 

performance in Shanghai and Guangzhou are both unity, whereas average CO2 

emission performance in Beijing is only 0.58. Under our composite index method, 

Beijing obtains almost half emission quotas in Shanghai and Guangzhou. Cities with 

good CO2 emission performance have less improvement room for technology and less 

reduction potential, they can get more emission quotas. However, cities with poor 

CO2 emission performance are able to improve their technology heavily and have 

huge reduction potential. Thus, our allocation method is rational as it can motivate 

cities with high historical emissions to reduce their emissions by improving 

technology when they have poor CO2 emission performance. 

Table 2 The CO2 emission allocation of cities in 2020 (unit: million tons) 

 

CO2 emission quota in 2020 
Cumulative 

CO2 

Emissions 

Average 

value of 

TCPI 

Cumulative 

emission indicator 

CO2 emission 

performance 

indicator  

Composite 

index  

Beijing 126.83  66.34  66.80  628.88 0.58  

Tianjin 156.50  42.81  94.74  776.00 0.38  

Shijiazhuang 31.95  105.83  102.33  158.40 0.93  

Tangshan 41.79  105.25  102.93  207.19 0.93  

Handan 21.24  55.58  54.28  105.34 0.49  

Zhangjiakou 9.49  47.18  44.57  47.06 0.42  

Taiyuan 38.32  23.35  23.48  189.99 0.21  

Jincheng 40.94  9.49  9.60  202.98 0.08  

Shuozhou 34.95  8.54  8.63  173.27 0.08  

Yuncheng 24.69  4.37  4.42  122.41 0.04  

Hohhot 51.53  19.85  20.03  255.49 0.17  

Baotou 92.31  16.69  16.89  457.68 0.15  

Shenyang 65.00  71.16  71.06  322.31 0.63  

Dalian 36.77  94.82  92.65  182.32 0.84  

Changchun 47.84  63.99  63.66  237.22 0.56  

Jilin 85.90  17.26  17.46  425.91 0.15  

Siping 32.30  18.50  18.62  160.14 0.16  

Harbin 66.22  43.86  44.08  328.33 0.39  

Shanghai 139.80  113.50  113.80  693.15 1.00  

Nanjing 46.90  66.70  66.28  232.57 0.59  

Wuxi 98.71  62.54  62.87  489.44 0.55  

Changzhou 46.66  37.25  37.35  231.35 0.33  

Suzhou 64.67  113.50  112.23  320.67 1.00  
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Nantong 42.66  52.01  51.84  211.53 0.46  

Yancheng 23.26  50.40  49.54  115.31 0.44  

Zhenjiang 52.13  25.76  25.95  258.46 0.23  

Hangzhou 60.84  68.54  68.41  301.68 0.60  

Ningbo 53.77  61.87  61.73  266.59 0.55  

Wenzhou 26.54  109.62  104.77  131.58 0.97  

Jiaxing 51.35  31.43  31.61  254.59 0.28  

Huzhou 32.45  27.31  27.38  160.88 0.24  

Shaoxing 45.06  43.82  43.83  223.40 0.39  

Jinhua 32.08  43.46  43.22  159.04 0.38  

Taizhou 34.47  91.16  88.99  170.93 0.80  

Hefei 37.63  39.22  39.19  186.56 0.35  

Fuzhou 74.29  39.62  39.89  368.33 0.35  

Putian 6.71  113.50  91.93  33.28 1.00  

Nanchang 24.27  39.79  39.42  120.32 0.35  

Jinan 34.77  85.62  83.80  172.42 0.75  

Qingdao 33.32  112.74  108.90  165.20 0.99  

Jining 40.24  59.86  59.43  199.54 0.53  

Weihai 36.40  107.98  104.92  180.48 0.95  

Linyi 91.97  24.60  24.87  456.03 0.22  

Heze 44.50  13.22  13.36  220.65 0.12  

Zhengzhou 86.57  29.96  30.25  429.25 0.26  

Luoyang 116.73  15.42  15.62  578.77 0.14  

Nanyang 35.41  53.61  53.20  175.57 0.47  

Wuhan 42.11  79.24  78.21  208.81 0.70  

Yichang 25.44  34.32  34.14  126.13 0.30  

Xianning 10.82  113.50  99.56  53.64 1.00  

Changsha 19.69  76.96  73.79  97.63 0.68  

Guangzhou 127.46  113.50  113.67  631.97 1.00  

Zhuhai 27.81  24.87  24.90  137.88 0.22  

Foshan 55.98  86.54  85.84  277.58 0.76  

Zhaoqing 5.86  113.50  89.30  29.04 1.00  

Huizhou 3.98  113.50  80.73  19.73 1.00  

Zhongshan 15.03  34.55  33.90  74.54 0.30  

Nanning 10.32  39.97  38.34  51.19 0.35  

Liuzhou 43.05  13.93  14.06  213.45 0.12  

Chongqing 160.75  35.77  113.80  797.06 0.32  

Guiyang 31.29  23.12  23.20  155.13 0.20  

Zunyi 37.22  13.86  13.99  184.54 0.12  

Kunming 58.86  26.80  27.01  291.87 0.24  

Xi’an 32.47  38.79  38.68  161.00 0.34  

Xianyang 45.39  12.41  12.55  225.06 0.11  

Yulin 101.35  4.36  4.42  502.51 0.04  

Lanzhou 92.01  8.94  9.06  456.23 0.08  
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Jiayuguan 40.77  113.50  110.58  202.14 1.00  

Xining 26.32  15.42  15.51  130.49 0.14  

Yinchuan 68.86  6.03  6.12  341.45 0.05  

Urumqi 99.07  8.32  8.43  491.25 0.07  

4. Conclusions 

As pollution control ability and marginal abatement costs in different production 

units are different, this paper considers multiple abatement factors and proposes 

total-factor CO2 emission performance index and dynamic change index to calculate 

71 cities’ CO2 emission performance and its dynamic change from 2005 to 2012. We 

also compare our results with the Shephard production technology to confirm the 

necessary and significance of our model. Then, we allocate urban carbon emission 

quotas in 2020 based on hybrid method, which considers reducing CO2 emissions as 

well as enhancing CO2 emission performance. We also compare our results with the 

results under the fairness principle and efficiency principle. Some main conclusions 

are obtained as follows. 

First, Chinese cities have poor energy utilization efficiency and still have high 

CO2 emissions. We need to implement “common but differentiated responsibility” as 

cities have different CO2 emission performance. Although the static CO2 emission 

performance is not well, the dynamic CO2 emission performance has been 

significantly improved. It is driven mainly by technological advances, not the 

catch-up effect. It indicates obvious effect of the carbon policy on green technology 

and innovation. After the financial crisis in 2008, the subsequent influence of 

industrial structure degradation leads to technology degradation. The CO2 emission 

performance is also influenced by external events. The comparison results illustrate 

that without considering different DMU’s pollution treatment capacity, Shephard 

technology using a single abatement factor might lead to the overestimation of CO2 

emission performance in this case. 

Second, considering regional differences, the eastern region outperforms the 

central region and the western region performs worst, whereas the dynamic 

total-factor CO2 emission performance of the central region has the largest increase. It 

is followed by the eastern and western regions. The decomposition results show CO2 

emission performance change is mainly driven by efficiency change and technology 

innovation in eastern and western regions. It is suggested that the role of government 
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and innovation are quite important for sustainable development in these regions. CO2 

emission performance change of central region is mainly affected by the technology 

innovation. The government need to do more work to promote technology that can 

increase the overall CO2 emission performance for this region.  

Finally, the carbon quota allocation results show that our allocation method is 

rational. Cities with low historical CO2 emissions and good CO2 emission 

performance get more emission quotas. Meanwhile, we distribute higher emission 

quotas to cities with high historical CO2 emissions when they have better CO2 

emission performance. One the one hand, our allocation method stimulates the 

establishment of carbon trading market, which encourages cities to reduce emissions 

and enhance emission performance through market mechanism. Our allocation 

method is in line with the current policy trend. On the other hand, our allocation 

method can motivate cities with high historical emissions to reduce their emissions by 

improving technology when they have poor CO2 emission performance.  

Based on the above discussions and conclusions, we can provide some 

suggestions for policy makers about urban CO2 reduction and quota allocation in 

China. The Chinese government should promote energy efficiency and overcome the 

regulations and external events that restrict carbon policy’s implementation. The 

Chinese government should promote energy efficiency and overcome the regulations 

and external events that restrict carbon policy’s implementation. Chinese government 

should encourage enterprises to develop low carbon technology. Clean investments 

and financial support need to be provided in production process. Meanwhile, the 

eastern and western cities should facilitate leadership effect and enhance learning 

capacity as their CO2 emission performance can be affected by catch-up effect. In 

addition, in urban CO2 emission allocation we need to consider the allocation method 

from comprehensively perspective as most cities have adjustable room to improve 

their CO2 emissions and performance. The government should be clear that the city 

with poor CO2 emission performance and high historical emissions should be given a 

low emission quota. Such allocation plan can motivate the establishment of carbon 

trading market. The government should also provide them with certain support to 

promote the improvement of green technology.  
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Appendix A  
Table A.1 

TCPI of 71 cities, 2005-2012 

Cities 2005 2006 2007 2008 2009 2010 2011 2012 

Beijing 0.57 0.57 0.56 0.58 0.60 0.59 0.62 0.59 

Tianjin 0.40 0.40 0.38 0.38 0.38 0.37 0.35 0.36 

Shijiazhuang 0.84 0.75 1.00 0.98 1.00 0.89 1.00 1.00 

Tangshan 1.00 1.00 1.00 1.00 0.86 0.72 1.00 0.84 

Handan 0.39 0.45 0.49 0.48 0.65 0.52 0.51 0.44 

Zhangjiakou 0.42 0.43 0.41 0.40 0.63 0.36 0.35 0.33 

Taiyuan 0.16 0.22 0.23 0.21 0.21 0.21 0.20 0.21 

Jincheng 0.12 0.07 0.09 0.08 0.14 0.06 0.05 0.05 

Shuozhou 0.10 0.10 0.09 0.07 0.12 0.04 0.04 0.04 

Yuncheng 0.08 0.03 0.03 0.03 0.04 0.04 0.02 0.02 

Hohhot 0.13 0.14 0.15 0.15 0.25 0.24 0.17 0.17 

Baotou 0.10 0.10 0.11 0.12 0.23 0.22 0.15 0.15 

Shenyang 0.41 0.48 0.56 0.73 0.75 0.70 0.54 0.84 

Dalian 0.73 0.80 0.79 0.82 0.85 0.89 0.90 0.91 

Changchun 0.42 0.50 0.52 0.55 0.66 0.65 0.57 0.63 

Jilin 0.10 0.11 0.11 0.14 0.28 0.23 0.11 0.14 

Siping 0.18 0.17 0.22 0.15 0.27 0.10 0.11 0.11 

Harbin 0.39 0.40 0.41 0.42 0.39 0.37 0.35 0.35 

Shanghai 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Nanjing 0.58 0.61 0.61 0.61 0.58 0.58 0.58 0.56 

Wuxi 1.00 0.44 1.00 0.40 0.41 0.41 0.35 0.40 

Changzhou 0.35 0.35 0.36 0.33 0.33 0.30 0.31 0.30 

Suzhou 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Nantong 0.44 0.44 0.46 0.45 0.55 0.46 0.38 0.49 

Yancheng 0.52 0.44 0.41 0.48 0.48 0.35 0.47 0.39 

Zhenjiang 0.19 0.20 0.21 0.21 0.36 0.22 0.21 0.22 

Hangzhou 0.59 0.61 0.60 0.59 0.60 0.62 0.61 0.61 

Ningbo 0.61 0.62 0.60 0.55 0.51 0.52 0.49 0.47 

Wenzhou 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.73 

Jiaxing 0.29 0.27 0.28 0.29 0.31 0.29 0.23 0.26 

Huzhou 0.31 0.21 0.21 0.22 0.29 0.24 0.20 0.24 

Shaoxing 0.40 0.40 0.42 0.43 0.39 0.35 0.35 0.35 

Jinhua 0.36 0.28 0.40 0.40 0.40 0.40 0.40 0.43 

Taizhou 1.00 1.00 1.00 1.00 0.83 0.56 0.52 0.50 

Hefei 0.21 0.34 0.37 0.35 0.37 0.38 0.36 0.39 

Fuzhou 0.36 0.35 0.37 0.35 0.39 0.35 0.27 0.35 

Putian 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Nanchang 0.37 0.24 0.28 0.42 0.54 0.41 0.28 0.27 

Jinan 0.75 0.75 0.76 0.79 0.81 0.74 0.71 0.72 

Qingdao 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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Jining 0.41 0.43 0.51 0.61 0.77 0.49 0.48 0.51 

Weihai 1.00 1.00 1.00 1.00 1.00 0.61 1.00 1.00 

Linyi 0.18 0.19 0.23 0.22 0.30 0.27 0.17 0.18 

Heze 0.15 0.11 0.12 0.11 0.20 0.09 0.07 0.08 

Zhengzhou 0.25 0.25 0.25 0.26 0.24 0.29 0.28 0.29 

Luoyang 0.10 0.10 0.10 0.11 0.21 0.18 0.18 0.11 

Nanyang 1.00 1.00 0.38 0.32 0.33 0.28 0.23 0.24 

Wuhan 0.70 0.71 0.69 0.71 0.74 0.70 0.63 0.71 

Yichang 0.35 0.35 0.31 0.26 0.38 0.24 0.29 0.25 

Xianning 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Changsha 0.62 0.66 0.68 0.65 0.74 0.68 0.67 0.73 

Guangzhou 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Zhuhai 0.15 0.26 0.26 0.25 0.27 0.19 0.19 0.18 

Foshan 0.41 0.50 0.56 0.63 1.00 1.00 1.00 1.00 

Zhaoqing 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Huizhou 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Zhongshan 0.22 0.25 0.28 0.27 0.37 0.29 0.38 0.38 

Nanning 0.31 0.38 0.45 0.35 0.30 0.31 0.30 0.42 

Liuzhou 0.10 0.10 0.10 0.10 0.18 0.15 0.12 0.13 

Chongqing 0.37 0.36 0.35 0.29 0.30 0.30 0.28 0.28 

Guiyang 0.19 0.17 0.19 0.20 0.23 0.21 0.18 0.26 

Zunyi 0.14 0.13 0.13 0.12 0.17 0.09 0.10 0.10 

Kunming 0.22 0.22 0.23 0.23 0.19 0.26 0.26 0.27 

Xi’an 0.35 0.35 0.32 0.35 0.34 0.34 0.34 0.34 

Xianyang 0.15 0.09 0.08 0.08 0.19 0.12 0.09 0.08 

Yulin 0.07 0.03 0.02 0.05 0.07 0.04 0.02 0.02 

Lanzhou 0.09 0.08 0.07 0.07 0.11 0.07 0.07 0.06 

Jiayuguan 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Xining 0.17 0.15 0.18 0.19 0.18 0.07 0.08 0.07 

Yinchuan 0.10 0.07 0.08 0.04 0.06 0.03 0.03 0.02 

Urumqi 0.11 0.08 0.07 0.06 0.12 0.05 0.04 0.05 

 

Table A.2  

NGMCPI of 71 cities, 2005-2012 

Cities 2005-2006 2006-2007 2007-2008 2008-2009 2009-2010 2010-2011 2011-2012 Mean 

Beijing 1.16  1.08  1.15  1.09  1.01  1.23  1.09  1.11  

Tianjin 1.10  1.10  1.13  1.08  1.07  1.05  1.10  1.09  

Shijiazhuang 0.91  0.98  1.05  1.27  1.34  1.27  1.21  1.15  

Tangshan 1.05  0.99  0.91  0.69  1.35  1.30  1.01  1.04  

Handan 1.08  0.98  1.06  1.15  1.21  0.96  1.20  1.09  

Zhangjiakou 0.86  1.10  1.09  1.10  0.97  1.00  1.02  1.02  

Taiyuan 0.97  1.07  1.07  1.25  1.21  1.14  1.23  1.13  

Jincheng 0.66  0.93  0.87  0.82  1.08  1.19  1.32  0.98  

Shuozhou 0.86  0.75  0.90  1.49  0.88  0.72  1.11  0.96  
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Yuncheng 0.80  1.06  1.48  0.69  0.77  1.19  1.05  1.01  

Hohhot 0.90  0.96  0.97  1.05  1.19  1.25  1.23  1.08  

Baotou 0.96  1.06  1.96  1.55  1.28  1.32  0.79  1.27  

Shenyang 1.27  1.30  0.97  1.28  1.34  0.89  1.51  1.22  

Dalian 1.02  0.97  1.28  1.17  1.25  1.21  1.15  1.15  

Changchun 1.12  1.17  1.24  1.02  1.23  1.33  1.08  1.17  

Jilin 0.93  2.23  1.24  1.46  1.25  1.14  1.25  1.36  

Siping 0.71  0.97  0.87  0.97  0.96  1.01  1.04  0.93  

Harbin 1.17  1.10  1.11  1.00  1.11  0.96  1.08  1.08  

Shanghai 1.14  1.15  1.11  1.11  1.28  0.89  1.13  1.12  

Nanjing 0.96  1.19  1.16  1.14  0.99  1.18  1.16  1.11  

Wuxi 0.40  1.21  1.12  1.09  1.16  1.13  1.11  1.03  

Changzhou 1.17  1.32  1.23  1.18  1.20  0.90  1.06  1.15  

Suzhou 1.07  1.14  1.12  1.02  1.13  1.11  1.00  1.08  

Nantong 0.95  1.34  1.18  1.27  1.00  1.11  1.47  1.19  

Yancheng 0.50  0.96  1.03  1.14  0.72  1.52  1.28  1.02  

Zhenjiang 0.94  1.04  1.03  1.09  1.31  1.18  1.19  1.11  

Hangzhou 1.16  1.07  1.14  1.01  1.19  1.17  1.12  1.12  

Ningbo 1.21  1.02  1.06  0.88  1.33  1.11  1.03  1.09  

Wenzhou 0.98  1.02  1.00  0.93  1.08  0.89  0.74  0.95  

Jiaxing 0.86  1.29  1.32  1.21  1.24  0.94  1.10  1.14  

Huzhou 0.96  0.98  1.04  1.02  1.14  1.26  1.27  1.10  

Shaoxing 1.24  1.20  1.22  1.17  1.15  1.01  1.12  1.16  

Jinhua 0.91  1.01  1.17  1.17  1.29  1.18  1.11  1.12  

Taizhou 1.00  0.64  0.74  0.85  1.21  1.02  1.01  0.92  

Hefei 0.96  1.40  1.41  1.04  1.04  1.14  1.20  1.17  

Fuzhou 0.94  1.04  0.98  0.95  1.09  1.13  1.18  1.04  

Putian 1.00  0.94  1.06  0.55  1.31  0.69  1.02  0.94  

Nanchang 0.64  0.92  1.05  1.16  1.16  0.69  1.34  1.00  

Jinan 1.02  1.18  1.12  1.03  1.05  1.04  1.01  1.06  

Qingdao 1.14  1.22  1.10  1.00  1.09  1.16  1.04  1.11  

Jining 1.05  1.50  1.25  1.08  1.00  1.09  1.31  1.19  

Weihai 0.35  0.86  1.26  1.34  1.29  0.93  1.24  1.04  

Linyi 1.04  1.25  1.06  0.87  1.41  1.24  0.63  1.07  

Heze 0.71  0.88  1.00  0.82  0.89  1.07  1.04  0.92  

Zhengzhou 0.97  0.85  1.31  1.24  1.17  1.16  1.15  1.12  

Luoyang 0.94  0.97  1.90  1.48  1.30  1.23  1.16  1.29  

Nanyang 0.55  0.60  0.51  0.94  1.19  1.15  1.15  0.87  

Wuhan 0.91  1.08  1.29  1.21  1.13  1.10  1.27  1.14  

Yichang 1.07  1.14  1.17  1.24  1.19  1.03  0.98  1.12  

Xianning 0.83  0.85  0.72  0.62  1.12  0.69  1.21  0.86  

Changsha 0.95  0.99  0.84  1.38  1.31  1.25  1.30  1.15  

Guangzhou 1.20  1.26  1.28  1.16  1.16  1.00  1.00  1.15  

Zhuhai 1.04  1.02  0.99  0.99  1.04  1.03  1.03  1.02  
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Foshan 1.52  1.45  1.33  1.42  1.41  0.91  1.01  1.29  

Zhaoqing 1.00  1.00  1.00  0.75  1.33  1.00  1.00  1.01  

Huizhou 1.00  1.00  1.00  0.93  1.07  1.00  1.00  1.00  

Zhongshan 0.89  1.15  1.07  1.00  1.08  1.10  0.99  1.04  

Nanning 1.02  1.15  1.02  1.01  0.72  1.00  1.56  1.07  

Liuzhou 0.94  0.97  0.97  0.92  0.95  1.20  1.32  1.04  

Chongqing 1.09  1.11  0.93  1.13  1.13  1.02  1.10  1.07  

Guiyang 0.98  1.04  1.02  1.01  1.21  1.33  1.45  1.15  

Zunyi 0.90  0.93  0.94  0.97  0.96  1.49  1.20  1.06  

Kunming 0.98  1.08  1.30  1.28  1.27  1.21  1.18  1.19  

Xi’an 0.83  0.83  1.66  1.36  0.79  1.42  1.23  1.16  

Xianyang 0.90  0.84  0.92  0.91  1.33  1.65  1.25  1.11  

Yulin 0.98  1.01  1.05  0.63  1.14  1.23  1.19  1.03  

Lanzhou 1.00  1.00  0.99  0.99  1.10  1.67  1.48  1.18  

Jiayuguan 1.00  0.89  1.12  0.58  0.59  0.44  0.34  0.71  

Xining 0.99  0.80  0.90  0.93  0.85  1.20  0.88  0.93  

Yinchuan 0.92  1.46  0.45  0.76  0.89  1.14  1.52  1.02  

Urumqi 0.57  0.97  0.94  1.03  0.93  1.10  1.70  1.03  

Mean 0.96  1.07  1.10  1.06  1.12  1.11  1.14  1.08  

 

Table A.3  

EC of 71 cities, 2005-2012 

Cities 2005-2006 2006-2007 2007-2008 2008-2009 2009-2010 2010-2011 2011-2012 Mean 

Beijing 1.00  0.98  1.03  1.04  0.98  1.06  0.95  1.01  

Tianjin 1.00  0.97  1.00  0.98  0.99  0.95  1.01  0.99  

Shijiazhuang 0.90  1.34  0.98  1.02  0.89  1.12  1.00  1.03  

Tangshan 1.00  1.00  1.00  0.86  0.84  1.38  0.84  0.99  

Handan 1.15  1.09  0.99  1.35  0.81  0.97  0.87  1.03  

Zhangjiakou 1.01  0.97  0.96  1.57  0.58  0.96  0.94  1.00  

Taiyuan 1.33  1.04  0.94  0.99  1.01  0.93  1.04  1.04  

Jincheng 0.60  1.17  0.91  1.71  0.44  0.89  1.01  0.96  

Shuozhou 1.00  0.86  0.79  1.83  0.34  1.00  0.99  0.97  

Yuncheng 0.41  0.97  0.99  1.33  0.87  0.58  0.99  0.88  

Hohhot 1.11  1.09  1.01  1.63  0.94  0.71  1.01  1.07  

Baotou 0.97  1.11  1.11  1.91  0.95  0.66  1.01  1.10  

Shenyang 1.16  1.17  1.30  1.02  0.93  0.77  1.56  1.13  

Dalian 1.09  0.99  1.04  1.04  1.05  1.00  1.02  1.03  

Changchun 1.18  1.05  1.04  1.21  0.98  0.89  1.09  1.06  

Jilin 1.03  1.02  1.32  1.99  0.80  0.48  1.25  1.13  

Siping 0.91  1.31  0.68  1.81  0.39  1.01  1.08  1.03  

Harbin 1.02  1.04  1.01  0.93  0.95  0.95  1.01  0.99  

Shanghai 1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  

Nanjing 1.06  1.00  1.00  0.96  0.99  1.00  0.97  1.00  

Wuxi 0.44  2.26  0.40  1.04  0.98  0.85  1.16  1.02  
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Changzhou 1.00  1.02  0.92  1.00  0.92  1.03  0.95  0.98  

Suzhou 1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  

Nantong 0.99  1.04  0.97  1.23  0.85  0.81  1.31  1.03  

Yancheng 0.85  0.93  1.17  0.99  0.74  1.35  0.83  0.98  

Zhenjiang 1.02  1.08  0.97  1.76  0.61  0.96  1.01  1.06  

Hangzhou 1.02  0.99  0.99  1.02  1.02  0.98  1.00  1.00  

Ningbo 1.02  0.96  0.92  0.93  1.03  0.95  0.95  0.96  

Wenzhou 1.00  1.00  1.00  1.00  1.00  1.00  0.73  0.96  

Jiaxing 0.93  1.05  1.04  1.05  0.96  0.78  1.11  0.99  

Huzhou 0.67  0.97  1.08  1.33  0.81  0.86  1.17  0.98  

Shaoxing 0.99  1.06  1.02  0.90  0.91  0.99  1.00  0.98  

Jinhua 0.77  1.46  0.99  1.00  1.00  0.99  1.09  1.04  

Taizhou 1.00  1.00  1.00  0.83  0.68  0.93  0.96  0.91  

Hefei 1.59  1.09  0.95  1.05  1.04  0.95  1.07  1.11  

Fuzhou 0.96  1.06  0.93  1.13  0.88  0.78  1.31  1.01  

Putian 1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  

Nanchang 0.66  1.14  1.50  1.29  0.77  0.67  0.99  1.00  

Jinan 1.00  1.02  1.04  1.02  0.92  0.96  1.02  1.00  

Qingdao 1.06  1.00  1.00  1.00  1.00  1.00  1.00  1.01  

Jining 1.07  1.18  1.20  1.26  0.63  0.99  1.05  1.05  

Weihai 1.00  1.00  1.00  1.00  0.61  1.64  1.00  1.04  

Linyi 1.04  1.20  0.96  1.40  0.89  0.64  1.03  1.02  

Heze 0.73  1.04  0.98  1.79  0.43  0.83  1.03  0.98  

Zhengzhou 0.98  0.99  1.07  0.90  1.22  0.98  1.02  1.02  

Luoyang 1.02  1.05  1.05  1.90  0.87  0.96  0.64  1.07  

Nanyang 1.00  0.38  0.85  1.04  0.84  0.81  1.09  0.86  

Wuhan 1.01  0.97  1.04  1.04  0.94  0.91  1.12  1.00  

Yichang 0.99  0.90  0.84  1.46  0.62  1.23  0.85  0.99  

Xianning 1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  

Changsha 1.07  1.03  0.96  1.13  0.92  0.98  1.09  1.03  

Guangzhou 1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  

Zhuhai 1.70  1.00  0.95  1.09  0.72  0.98  0.97  1.06  

Foshan 1.24  1.11  1.13  1.58  1.00  1.00  1.00  1.15  

Zhaoqing 1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  

Huizhou 1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  

Zhongshan 1.13  1.15  0.94  1.40  0.78  1.31  1.00  1.10  

Nanning 1.21  1.19  0.79  0.83  1.05  0.96  1.42  1.07  

Liuzhou 0.97  0.97  1.02  1.81  0.81  0.82  1.07  1.07  

Chongqing 0.97  0.98  0.82  1.05  1.00  0.92  1.02  0.96  

Guiyang 0.88  1.10  1.05  1.16  0.90  0.88  1.44  1.06  

Zunyi 0.90  0.99  0.96  1.37  0.55  1.03  1.05  0.98  

Kunming 1.01  1.02  1.03  0.80  1.38  1.02  1.04  1.04  

Xi’an 1.01  0.90  1.12  0.96  1.00  1.01  0.99  1.00  

Xianyang 0.58  0.86  1.02  2.41  0.61  0.77  0.92  1.02  
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Yulin 0.39  0.73  2.33  1.51  0.55  0.56  1.02  1.01  

Lanzhou 0.84  0.96  1.00  1.48  0.66  1.02  0.87  0.98  

Jiayuguan 1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  

Xining 0.87  1.27  1.02  0.97  0.37  1.12  0.94  0.94  

Yinchuan 0.65  1.19  0.52  1.42  0.45  0.95  0.99  0.88  

Urumqi 0.72  0.88  0.89  1.87  0.43  0.87  1.06  0.96  

Mean 0.97  1.05  1.01  1.23  0.85  0.95  1.03  1.01  

 

Table A.4  

TC of 71 cities, 2005-2012 

Cities 2005-2006 2006-2007 2007-2008 2008-2009 2009-2010 2010-2011 2011-2012 Mean 

Beijing 1.16  1.10  1.11  1.05  1.03  1.16  1.14  1.11  

Tianjin 1.10  1.13  1.12  1.11  1.09  1.11  1.09  1.11  

Shijiazhuang 1.02  0.73  1.06  1.25  1.51  1.13  1.21  1.13  

Tangshan 1.05  0.99  0.91  0.81  1.61  0.94  1.21  1.07  

Handan 0.94  0.90  1.07  0.86  1.49  0.99  1.39  1.09  

Zhangjiakou 0.85  1.14  1.13  0.70  1.67  1.05  1.08  1.09  

Taiyuan 0.73  1.03  1.13  1.26  1.19  1.22  1.19  1.11  

Jincheng 1.09  0.80  0.96  0.48  2.44  1.33  1.30  1.20  

Shuozhou 0.86  0.87  1.14  0.82  2.59  0.72  1.12  1.16  

Yuncheng 1.94  1.09  1.49  0.52  0.89  2.04  1.07  1.29  

Hohhot 0.81  0.88  0.96  0.64  1.27  1.75  1.21  1.08  

Baotou 0.98  0.96  1.77  0.81  1.35  2.00  0.78  1.24  

Shenyang 1.09  1.12  0.75  1.25  1.43  1.16  0.97  1.11  

Dalian 0.94  0.98  1.24  1.13  1.19  1.21  1.13  1.12  

Changchun 0.96  1.11  1.19  0.84  1.26  1.50  0.99  1.12  

Jilin 0.90  2.18  0.93  0.73  1.56  2.39  1.00  1.39  

Siping 0.79  0.74  1.28  0.53  2.45  1.00  0.96  1.11  

Harbin 1.15  1.06  1.10  1.09  1.17  1.01  1.07  1.09  

Shanghai 1.14  1.15  1.11  1.11  1.28  0.89  1.13  1.12  

Nanjing 0.90  1.19  1.16  1.19  1.00  1.18  1.19  1.12  

Wuxi 0.90  0.53  2.81  1.05  1.18  1.32  0.95  1.25  

Changzhou 1.17  1.29  1.33  1.18  1.31  0.87  1.12  1.18  

Suzhou 1.07  1.14  1.12  1.02  1.13  1.11  1.00  1.08  

Nantong 0.95  1.29  1.22  1.04  1.17  1.37  1.12  1.17  

Yancheng 0.59  1.03  0.88  1.15  0.98  1.13  1.54  1.04  

Zhenjiang 0.92  0.96  1.05  0.62  2.14  1.23  1.18  1.16  

Hangzhou 1.13  1.08  1.15  0.99  1.16  1.19  1.12  1.12  

Ningbo 1.18  1.06  1.16  0.95  1.30  1.17  1.09  1.13  

Wenzhou 0.98  1.02  1.00  0.93  1.08  0.89  1.02  0.99  

Jiaxing 0.92  1.24  1.26  1.15  1.30  1.21  0.99  1.15  

Huzhou 1.42  1.01  0.97  0.77  1.41  1.47  1.09  1.16  

Shaoxing 1.25  1.13  1.20  1.30  1.27  1.02  1.12  1.18  

Jinhua 1.19  0.69  1.18  1.17  1.30  1.19  1.01  1.10  
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Taizhou 1.00  0.64  0.74  1.02  1.78  1.10  1.05  1.05  

Hefei 0.60  1.29  1.48  1.00  1.01  1.20  1.12  1.10  

Fuzhou 0.97  0.98  1.06  0.84  1.23  1.45  0.90  1.06  

Putian 1.00  0.94  1.06  0.55  1.31  0.69  1.02  0.94  

Nanchang 0.97  0.81  0.70  0.90  1.52  1.03  1.36  1.04  

Jinan 1.02  1.16  1.08  1.01  1.14  1.09  0.99  1.07  

Qingdao 1.08  1.22  1.10  1.00  1.09  1.16  1.04  1.10  

Jining 0.99  1.28  1.04  0.86  1.58  1.11  1.25  1.16  

Weihai 0.35  0.86  1.26  1.34  2.12  0.57  1.24  1.10  

Linyi 1.00  1.04  1.10  0.62  1.60  1.93  0.61  1.13  

Heze 0.96  0.85  1.02  0.46  2.05  1.29  1.01  1.09  

Zhengzhou 0.99  0.86  1.23  1.38  0.96  1.18  1.12  1.10  

Luoyang 0.92  0.92  1.81  0.78  1.49  1.28  1.82  1.29  

Nanyang 0.55  1.60  0.60  0.90  1.41  1.42  1.06  1.08  

Wuhan 0.91  1.12  1.25  1.16  1.19  1.21  1.13  1.14  

Yichang 1.08  1.27  1.40  0.85  1.90  0.84  1.14  1.21  

Xianning 0.83  0.85  0.72  0.62  1.12  0.69  1.21  0.86  

Changsha 0.89  0.95  0.88  1.22  1.42  1.28  1.19  1.12  

Guangzhou 1.20  1.26  1.28  1.16  1.16  1.00  1.00  1.15  

Zhuhai 0.61  1.03  1.05  0.90  1.45  1.05  1.06  1.02  

Foshan 1.22  1.31  1.17  0.90  1.41  0.91  1.01  1.13  

Zhaoqing 1.00  1.00  1.00  0.75  1.33  1.00  1.00  1.01  

Huizhou 1.00  1.00  1.00  0.93  1.07  1.00  1.00  1.00  

Zhongshan 0.79  1.00  1.14  0.71  1.39  0.84  0.99  0.98  

Nanning 0.85  0.97  1.28  1.21  0.68  1.04  1.09  1.02  

Liuzhou 0.97  1.00  0.95  0.51  1.17  1.45  1.24  1.04  

Chongqing 1.13  1.12  1.14  1.07  1.14  1.11  1.09  1.11  

Guiyang 1.12  0.95  0.97  0.87  1.34  1.51  1.01  1.11  

Zunyi 1.00  0.95  0.98  0.71  1.74  1.45  1.14  1.14  

Kunming 0.97  1.06  1.27  1.60  0.92  1.18  1.14  1.16  

Xi’an 0.82  0.92  1.49  1.41  0.79  1.41  1.25  1.16  

Xianyang 1.55  0.98  0.90  0.38  2.18  2.14  1.36  1.36  

Yulin 2.50  1.37  0.45  0.42  2.09  2.22  1.17  1.46  

Lanzhou 1.18  1.04  0.99  0.67  1.66  1.64  1.71  1.27  

Jiayuguan 1.00  0.89  1.12  0.58  0.59  0.44  0.34  0.71  

Xining 1.14  0.63  0.88  0.95  2.29  1.07  0.93  1.13  

Yinchuan 1.41  1.23  0.85  0.54  2.00  1.20  1.53  1.25  

Urumqi 0.80  1.10  1.06  0.55  2.16  1.26  1.60  1.22  

Mean 1.02  1.04  1.12  0.91  1.42  1.22  1.12  1.12  

 


