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a  b  s  t  r a  c t

We present  a  detailed computational model of interacting  neuronal  populations  that  mimic the  hatch-

ling Xenopus  tadpole  nervous  system. The model  includes  four sensory  pathways,  integrators  of sensory

information,  and  a  central pattern  generator  (CPG)  network.  Sensory  pathways of different modalities

receive  inputs from  an “environment”;  these  inputs are  then  processed  and  integrated  to select  the  most

appropriate locomotor action. The CPG  populations  execute the  selected  action,  generating  output in

motor neuron  populations.  Thus, the  model describes a  detailed and biologically  plausible chain  of  infor-

mation  processing  from  external  signals to sensors,  sensory  pathways,  integration  and  decision-making,

action  selection  and  execution  and  finally,  generation  of appropriate  motor activity and  behaviour. We

show how the  model  produces appropriate  behaviours in response  to a selected scenario,  which  consists

of a sequence  of “environmental”  signals. These behaviours might  be  relatively  complex  due  to  noisy

sensory  pathways and  the  possibility of spontaneous  actions.

©  2017 The  Authors.  Published by  Elsevier Ireland  Ltd. This  is  an  open  access  article  under  the  CC  BY

license  (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The hatchling Xenopus tadpole provides a  good place to study

decision making and behaviour because at this stage of develop-

ment (approximately 2 days old, stage 37/38) the nervous system

is relatively small (several thousand neurons), the behaviour is

simple, and many biological details are known from experimental

work.

In this paper, we present a new computational model of the

tadpole nervous system that is informed by experimental data and

is  able to accurately reproduce tadpoles’ behaviour in response to

input from multiple sensory modalities. We  implement the integra-

tion of noisy sensory signals in a simple model of interconnected

neuronal populations. This model can describe the behavioural

switching observed in  hatchling Xenopus tadpoles (Roberts et al.,

2010). The aim of the model is  to  clarify the key universal neu-

robiological mechanisms and theoretical principles that underlie

∗ Corresponding author at: School of Computing, Electronics and Mathematics,

University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK.

E-mail address: rborisyuk@plymouth.ac.uk (R. Borisyuk).

the decision-making process, as well as provide new ideas and

hypotheses for experimental testing.

Many prevailing theories regarding decision making postulate

that evidence from different sensory modalities is integrated until a

threshold is reached and one of several actions is selected (Kristan,

2008; Gold and Shadlen, 2007; Marshall et al., 2012). This integra-

tion process is important due to  the noisy nature of sensory signals.

Our computational model describes the dynamics of behavioural

responses to input signals from the “environment”. The modelling

is based on multiple anatomical and neurophysiological findings

regarding initiation of locomotion by trunk skin (Roberts et al.,

2014)  and head skin (Buhl et al., 2015) stimulation, as well as

several other sensory inputs that are  known to control tadpole loco-

motion (Roberts et al., 2010). The model includes two  parts: (1)

four sensory pathways (touch trunk skin, touch head, light dim-

ming, and press head) and (2) the central pattern generator (CPG)

neurons for execution of locomotor actions.

All sensory pathways in the model are organised in a  similar

way. A neuronal population corresponding to  a  particular sensory

modality processes information from (non-modelled) sensory cells

and delivers the result of this processing to a central integrator

population. This integrator population is where decision-making

http://dx.doi.org/10.1016/j.biosystems.2017.07.004
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and action selection occurs. The CPG populations work under the

control of inputs from the integrated sensory signals to generate

neuronal activity corresponding to one action from a  reper-

toire including swimming, struggling, and accelerated swimming

(Roberts et al., 2010; Li et al., 2015). The output of the CPG is  motor

neuron spiking, with different patterns of spikes corresponding to

different actions.

Many experimental facts are  known about hatchling Xenopus

tadpoles regarding the different neuronal types that are present,

including their anatomy, electrophysiology and synaptic connec-

tions. However, the amount of experimental data available is still

not enough to produce a  detailed single neuron level model of

all sensory modalities and behaviours. Therefore, our approach is

based on a mean-field (mesoscopic) model of neuronal activity.

The model is formulated as a  system of 26 ordinary differen-

tial equations, which describe the average activity level in various

interacting neuronal populations. The model is symmetrical, with

13 populations on the left-hand side of the body and 13 populations

on the right-hand side. We  describe the dynamics of population

activity using the Wilson-Cowan model (Wilson and Cowan, 1972;

Borisyuk and Kirillov, 1992). For each population we  describe the

dynamics of the average neuronal activity in  the population of

neurons in response to  incoming synaptic inputs from the other

populations. We  use bifurcation analysis to determine the region

in parameter space that corresponds to physiological activity such

that the model produces the correct output. For  example, for a  pair

of coupled populations, a  region of parameter space where regular

oscillations exist can be determined (Borisyuk and Kirillov, 1992).

Bifurcation analysis also reveals how parameters can be  changed

to control the dynamics and switch from one dynamical mode to

another.

Simulations show a good agreement between modelling results

and experimental measures. For modelling swimming we  use a

bi-stable regime that exists in the system: a short-term input cor-

responding to stimulation of the trunk skin on one body side moves

the system from a  stable equilibrium to generating anti-phase oscil-

lations (alternating left and right activity). This swimming mode

exists for some time (if there are no perturbations from the sen-

sory pathway) before spontaneously stopping and returning the

system to the resting equilibrium. We  show that  the head touch

sensory pathway can initiate swimming in a similar way.

According to experimental data, struggling behaviour is  slower,

stronger series of rhythmic trunk flexions seen while a tadpole is

grasped by a predator (Roberts et al., 2010) and the correspond-

ing spiking activity is of bursting type. To model struggling we

use a dynamical regime of anti-phase envelope oscillations where

the slow frequency relates to  slow body movement and the fast

frequency reflects bursting spiking. We show that this struggling

mode in the model appears and exists during prolonged input from

the skin touch sensory pathway.

Tadpoles have a  pineal eye that is  able to sense light. When

the light sensed by this eye is dimmed, the swimming frequency

increases (Jamieson and Roberts, 2000)  which has the effect of

causing the tadpole to swim upwards. The model mimics these

experimental findings, increasing the activity rate of swimming

transiently in response to  input from the light dimming sensory

pathway.

Experiments with the cement gland sensory pathway reveal that

swimming stops when the cement gland is  pressed or its mucus

pulled (Roberts et al., 2010). A tadpole also stops swimming when

it bumps into solid objects like vegetation or the side of a dish.

Model simulations show that inhibitory input from the “head press”

(cement gland) sensory pathway on one body side stops swimming

and returns the system to the resting equilibrium.

We  demonstrate that for a  selected sequence of events (touch

skin, dimming light, predator attack, head bump) reflecting a “nat-

ural” scenario (Li et al., 2014), the model correctly reproduces

real CPG activity. These neuronal activities correspond to  the tad-

pole’s behaviour. Thus, the model can generate proper behaviour

in response to external events through the integration of  sensory

inputs and decision-making.

1.1. Repertoire of tadpole behaviours

In this section, we provide a short introduction to the set of

possible tadpole behaviours (Li et al., 2014),  which are  reflected in

our modelling.

In the resting state a  tadpole is usually attached to some object

(water surface, wall or bottom of a  dish, etc). After about 20 s in

this state the tadpole will drift to  the bottom of the water and stay

there for some time (about 60–90 s), and after that spontaneously

start to  swim (Jamieson and Roberts, 2000). Swimming consists of

alternating left-right motor neuron activity at 10–25 Hz. If  a  tadpole

is not moving (steady state) then swimming can start by one of the

following ways: (1) on trunk skin touch; (2) on head skin touch; (3)

on light dimming; (4) spontaneously. Swimming can stop: (1) on

press head or  (2) spontaneously.

Struggling behaviour is  slower, stronger series of rhythmic trunk

flexions seen while a  predator grasps a  tadpole. During struggling,

active neurons fire bursts of spikes (Li et al., 2007).  Each burst

is  about 100–200 ms long and the intra-burst spiking frequency

is up  to  245 Hz. Struggling can start (Soffe, 1991) in  response to

prolonged stimulation of trunk/head skin on both  sides simultane-

ously, either when the tadpole is  at rest or swimming. Struggling

lasts during the stimulation period only and after that the tadpole

switches to  swimming.

When a  tadpole is  swimming, dimming the light causes the

frequency of swimming to increase, which causes the animal to

swim upwards (Jamieson and Roberts, 2000). This swimming with

increased frequency lasts for the duration of sensory input caused

by the light dimming; if the light level returns to normal then swim-

ming switches back to its normal frequency.

2. Model formulation

This sections begins with an explanation of the neurobiological

details of sensory pathways and CPG neuron populations and their

functional mechanisms in the Xenopus tadpole. Using these  facts

we formulate a model of interactive neuronal populations. Each

population that has been included to the model corresponds to a  set

of neurons of some particular type in the real tadpole. The coupling

between populations relates to experimentally measured neuronal

connectivity.

The dynamics of the average level of activity in  each population

is  described by the Wilson-Cowan equation (Wilson and Cowan,

1972). This equation is  a simplification of real neurophysiologi-

cal processes; however, this model reflects the most important

details of dynamics at the population level. We  derive equations

for both sensory pathway and CPG  networks and describe how the

sensory pathway delivers information from external inputs to  CPG

populations to produce proper motor neuron activity.

2.1. Biological motivation for the model

In  this section, we  specify some neurobiological details of  the

tadpole nervous system which are important for the model formu-

lation (Li et al., 2014). We consider two parts of the nervous system:

sensory pathways (SP) and the central pattern generator (CPG).

2.1.1. Sensory pathways

We  consider the following four sensory pathways (Fig.  1):
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Fig. 1. Schematic representation of the sensory pathways. Arrows represent excitatory synaptic connections, circles represent inhibitory connections.

(1) Touch trunk skin (TS). This pathway includes Rohon-Beard

(RB) cells, which are distributed along the rostro-caudal body

dimension (about 100 neurons per side). In response to touch-

ing the trunk skin, several nearby RB neurons will each generate

a single spike (Roberts et al., 2014). These spikes are propa-

gated by the sensory pathway: dorso-lateral commissural and

ascending neurons (dlc and dla, respectively). We assume that

there is a population of interneurons (xINs) which receives sig-

nals from both dlc and dla neurons and tINs (see below). The

population of xINs integrates incoming signals and delivers the

excitation to  dIN and dINr populations in the CPG.

(2) Touch head (TH). This pathway includes about 70 trigeminal

sensory touch receptors (tSt) on each body side, which generate

a single spike on touch. These sensor excite the neurons of the

trigeminal nucleus (trigeminal inter-neurons; tINs) (Buhl et al.,

2015). We  assume that the tIN population excites the same inte-

grating xIN populations as the trunk skin pathway (Fig. 1). The

output from xIN populations builds up activity in the descend-

ing interneurons (dINs) of the CPG, potentially resulting in a

decision to start swimming.

(3) Light dimming (LD). This pathway includes the photoreceptors

of the pineal eye, which innervate pineal ganglion cells (pgc),

and diencephalic/mesencephalic descending (D/Md) neurons

on both body sides (Jamieson and Roberts, 1999). We assume

that the output of the LD pathways converges onto dINs directly,

bypassing the xIN populations. In response to light dimming,

a tadpole starts swimming or, if already swimming, acceler-

ates during the period of light dimming (Jamieson and Roberts,

2000).

Press head (PH) inhibitory pathway. Cement gland receptors

(tSp) produce spikes on when pressure is  applied to the head

and innervate the inhibitory population of mid-hindbrain reticu-

lospinal (MHR) neurons on both body sides (Perrins et al., 2002;

Li et al., 2014). This inhibition converges to dINs and other CPG

neurons (including motor neurons) to stop their activity.

Fig. 1  summarises the connections between populations in the

sensory pathways. This connectivity is based on experimental evi-

dence on cell level connectivity. Detailed reports of analysing this

data as well as  the computational modelling of inter-cellular con-

nectivity are provided by  publications: (Li et al., 2007; Borisyuk

et al., 2011; Borisyuk et al., 2014; Roberts et al., 2014).

2.1.2. Locomotor central pattern generator (CPG)

Here we consider the neural populations that generate locomo-

tor  behaviour. Fig.  2 shows the diagram of connections between

CPG populations. We consider seven interacting populations on

each body side. The upper rectangle (light blue dotted bor-

ders) contains the neuronal populations relevant to  swimming

(Roberts et al., 2014):  excitatory descending interneurons (dINs),

inhibitory ascending interneurons (aINs) and inhibitory com-

Fig. 2. Schematic representation of CPG populations. The upper rectangular area

(light blue dashed border) shows populations which are mostly active during swim-

ming.  The lower rectangular area (red dashed border) shows populations which are

mostly active during struggling. Motor neurons are shown by  green circles attached

to  both rectangular areas because the motor neurons receive connections from both

swimming and struggling populations. (For interpretation of the references to colour

in this figure legend, the reader is referred to the web version of this article.)

missural interneurons (cINs). The lower rectangle (red dotted

borders) contains the populations related to struggling activity (Li

et al., 2007): excitatory descending repetitive interneurons (dINrs),

inhibitory ascending repetitive interneurons (aINrs) and excitatory

commissural interneurons (eCINs). In addition, we  consider a  pop-

ulation of motor neurons, which receive multiple inputs from other

CPG populations and are considered the output of the CPG.
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Note that experiments suggest that there is one aIN popula-

tion, containing some neurons that are more reliably spiking during

swimming and some that are more active during struggling. To sim-

plify the model we split the aINs into two populations: aINs in  the

swimming circuit and aINrs in the struggling circuit.

The populations of dIN and dINr neurons can be considered

as decision-making populations: they integrate input from the

sensory pathways and select a  corresponding action from the reper-

toire. Swimming is characterised by the regular rhythmic activities

of swimming populations with anti-phase oscillations between the

equivalent populations on opposite body sides. The frequency of

swimming is in the range 10–25 (Hz).

2.2. Model formulation: sensory pathways

1.  We  assume that the touch skin (TS) population includes sensory

RB, dla and dlc neurons. We  combine these populations into one

model population per body side. The average activity in these

combined populations on the left and right sides is denoted by

X1(t)  and X2(t) respectively.

2. Similarly, we assume that the TH population includes sensory

tSt neurons and tINs, which are also combined together into one

population per side. The average activity of this combined pop-

ulation on the left and right body sides is denoted by  X3(t) and

X4(t) respectively.

3. To model the light dimming (LD) pathway we combine photore-

ceptors, pgc and D/Md neurons into one population per side. The

average activity of this combined population on the left and right

side is denoted by X5(t) and X6(t)  respectively.

4. We  model the press head (PH) pathway as an inhibitory pop-

ulation, which includes the cement gland receptors and MHR

neurons. The average activity of this combined population on

the left and right side  is denoted by X7(t)  and X8(t)  respectively.

5. To model the integration of sensory pathway activity we con-

sider a population of xINs. The average activity of this population

on the left and right body sides is denoted by  X9(t) and X10(t)

respectively.

To describe activity dynamics of ten neural populations cor-

responding to the four sensory pathways and one integrating

population (per side), we use a mean field approach based on the

Wilson-Cowan equations. The system of ordinary differential equa-

tions (ODEs) describing the sensory pathway activities is:

dXj

dt
= −Xj + (kr − Xj)Sr(aj Xj + Pj + �j), r ∈ {e, i}, j = 1, ..., 8,

dX9

dt
= −X9 + (ke −  X9)Se(a9 X9 + �1X1 + �2X3 + P9 +  �9)

dX10

dt
= −X10 + (ke − X10)Se(a10 X10 +  �3X2 + �4X4 + P10 + �10) (1)

Here, Sr (.) is the sigmoid function for either excitatory popu-

lations or inhibitory populations (indexed by  e or i respectively),

normalization parameters of excitatory and inhibitory populations

kr = Sr(+ ∞),  r ∈ {e, i}. The formulas and parameter values for these

functions as well as parameter values are given at Appendix A.  All

populations in (1) are excitatory except X7(t) and X8(t). Parame-

ters Pk , (k = 1, ...,  10)  denote an external input to the corresponding

population. Random Gaussian variables �k ∈ N(0, �) , (k =  1, ..., 10)

with mean zero and standard deviation �, describe the noisy com-

ponent of each sensory pathway. All  other parameters (a1, ...,  a10,

�1, ..., �4) specify the connection strength either inside or between

populations. All parameter values are given in  Appendix A.

2.3. Model formulation: CPG

Fig.  2 shows a  schematic representation of the CPG populations

and their connections. The swimming and struggling networks are

shown by rectangles with dotted blue and red borders respectively.

Each black arrow shows a directed connection from one population

to another, where a sharp arrow end denotes an excitatory con-

nection and a  round end denotes an inhibitory one. Commissural

connections travel through the vertical dashed line to the oppo-

site body side. The violet arrows to  the dIN and dINr populations

indicate multiple inputs (either excitatory or inhibitory) from the

sensory pathways on each body side that deliver signals to control

action selection. The output from the CPG network is  a pair of motor

neuron populations on the left and right body side, which receive

connections from all CPG  populations on the same side. The activ-

ity in  the motor neuron populations is considered to  represent the

tadpole’s behaviour.

Thus, the CPG part of the model comprises three neuronal pop-

ulations that are mostly active during swimming (dIN, aIN, cIN) on

each side of the body. Their average activities we denoted by Y1(t),

Y2(t), Y3(t) for the left side and Y4(t), Y5(t), Y6(t) for the right side. The

other three CPG populations (dINr, aINr, ecIN) on each side  of the

body are mostly active during struggling. We  denote their average

activities by Z1(t), Z2(t),  Z3(t) for the left side  and Z4(t), Z5(t),  Z6(t)

for the right side. Motor neuron populations on the left and right

body sides are denoted by U1(t), U2(t), respectively. These motor

neurons receive inputs from other CPG populations and represent

outputs of the CPG.

The equations for the swimming related populations on the left

and right body sides are:

�1
dY1

dt
= −Y1 + (ke − Y1)Se(w1Y1 −  w2Y2 − ˛1Y6

+�1X9 + �2X5 − �3X7 +  Q1)

�2
dY2

dt
= −Y2 + (ki − Y2)Si(w3Y1 − w4Y2 − ˛2Y6 + Q2)

�3
dY3

dt
= −Y3 + (ki − Y3)Si(w5Y1 − w6Y2 − ˛3Y6 + Q3)

�4
dY4

dt
= −Y4 + (ke − Y4)Se(w1Y4 −  w2Y5 − ˛1Y3

+�1X10 + �2X6 −  �3X8 + Q4)

�5
dY5

dt
= −Y5 + (ki − Y5)Si(w3Y4 − w4Y5 − ˛2Y3 + Q5)

�6
dY6

dt
= −Y6 + (ki − Y6)Si(w5Y4 − w6Y5 − ˛3Y3 + Q6) (2a)

The equations for the struggling related populations on the left

and right body sides are:

�1
dZ1

dt
=  −Z1 + (ke −  Z1)Se(c1Z1 − c2Z2 + ˇ1Z6

+ı1sign (X9 −  �)sign (X10 − �)  + R1)

�2
dZ2

dt
=  −Z2 + (ki − Z2)Si(c3Z1 −  c4Z2 + ˇ2Z6 − ı2sign (X9

−�)sign (X10 − �) +  R2)

�3
dZ3

dt
=  −Z3 + (ke −  Z3)Se(c5Z1 − c6Z2 + ˇ3Y6 + R3)
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Fig. 3. Superposition of 3 two-parametric bifurcation diagrams under variation of a third parameter (�).  The horizontal and vertical axes  show parameter values of P  and a  (Eq.

(3)). The rightmost curve shows the bifurcation diagram when � = 5. Blue lines limiting the area filled by the horizontal line pattern correspond to saddle-node bifurcations

(intersection of the line  means that the saddle and the node fixed points merge and disappear). There are 3 fixed points in the patterned area (one saddle and two stable

nodes) and outside of this area there is  one stable node only. A similar explanation applies to the middle curve (this bifurcation diagram relates to � =  4  and to  the leftmost

curve  (� = 3). Parameter b =  1.3 is  fixed for all  bifurcation diagrams. (For  interpretation of the references to  colour in this figure legend, the reader is  referred to the web  version

of  this article.)

�4
dZ4

dt
= −Z4 + (ke − Z4)Se(c1Z4 − c2Z5 + ˇ1Z3 +  ı1sign (X9

−�)sign (X10 − �)  + R4)

�5
dZ5

dt
= −Z5 + (ki − Z5)Si(c3Z4 −  c4Z5 + ˇ2Z3 −  ı2sign (X9

−�)sign (X10 − �)  + R5)

�6
dZ6

dt
= −Z6 + (ke − Z6)Se(c5Z4 − c6Z5 + ˇ3Y3 + R6) (2b)

Finally, the equations for the motor neuron populations are:

�1
dU1

dt
= −U1 + (ke − U1)Se(1Y1 −  2Y2 − 3Y6

+4Z1 −  5Z2 + 6Z6 + 7U1 + M1)

�2
dU2

dt
= −U2 +  (ke − U2)Se(1Y4 −  2Y5 − 3Y3

+4Z4 −  5Z5 + 6Z3 + 7U2 + M1)

Here, Se(.), Si(.)  are the sigmoid functions for excitatory and

inhibitory populations, respectively and their formulas and param-

eter values as well as parameter values of ke and ki are given at

Appendix A. Parameters w1,  ..., w6, �1, ..., �3, v1,  ...,  v3,  c1, ..., c6,

ˇ1,  ..., ˇ3, ı1, ı2,  1, ..., 7 specify the connection strengths either

inside or between populations. Parameters �1, ..., �6, �1, �2 define

the characteristic time  constants of population dynamics. To take

into account the signal from LD pathway we assume that  char-

acteristic times �1, ...,  �3 depend on the LD sensory signal X5 and

parameters �4, ..., �6 depend on the LD sensory signal X6.  Param-

eters Q1, ..., Q6, R1,  ..., R6,  M1,  M2 define the external input to each

population. Parameter � is the decision-making threshold of the

integrating aINr and dINr populations. All  parameter values are

given in Appendix A.

Note that we  do not take into account the spatial distribution

of neurons along the body but instead consider a  set of localised

populations of neurons. In the model formulation, we  use a  minimal

set  of populations with a  minimal number of connections between

them representing the strongest synaptic pathways.

3. Dynamics of the sensory pathway model

In  this section, we analyse the dynamics of the populations that

process sensory input. Processing of input for a  particular modal-

ity occurs in a  single population, and the equation governing this

population’s activity has the same form across all modalities. The

same equation is  also used to  model the xIN populations, where

input from the two  touch pathways is integrated. The equation for

a given population has the following form (extracted from Eq. (1)):

dX

dt
= −X +  (kr − X)Sr(a X +  P + �) (3)

Here, X(t) is the average activity of the sensory population at

time t,  Sr(.) is  the sigmoid function for either an excitatory popu-

lation or inhibitory population (indexed by e or  i respectively). The

sigmoid function is characterised by two parameters: the thresh-

old �r and the slope br. Parameter a is  the strength of  self-coupling

within the population, and parameter P is the amount of external

input to the population. Normalization parameters kr were defined

above with formulas (1).  The random Gaussian variable �  ∈ N(0,

�), with mean zero and standard deviation �,  describes the noise

component in each sensory pathway.

Thus, the 1D non-linear Eq. (3) includes four parameters.

Depending on the parameter values, there are  three possible

dynamical regimes: (1) a stable state with constant low activity;

(2) a stable state with constant high activity; (3) bi-stability, where

stable low and high activities coexist for the same parameter val-

ues. In  the bi-stable regime, the system demonstrates hysteresis

under parameter variation, and a short-term external input moves

the system form one stable state to  another. We use this bi-stable

regime to model the dynamics of sensory pathways and decision-

making populations of integrating xINs.

To find parameter values corresponding to the bi-stable regime

we plot 2D bifurcation diagrams under variation of parameters: a,  P

keeping the other two  parameters fixed. The bifurcation diagrams

are shown in Fig. 3.

Fig. 3 shows three bifurcation diagrams of co-dimension 2 cor-

responding to different values of �. Each diagram has a  cusp point

(CP) where two  saddle-node (SN) bifurcation lines merge. The area

between these blue lines (shown by the horizontal line pattern in

the rightmost bifurcation diagram) corresponds to a  regime with

three fixed points (two stable and one unstable). As the parameter
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Fig. 4. Noisy activity of sensory population vs time. There are multiple activity transitions between a low level (near zero) and a high level (near 0.5) Parameter values: a =  6,

P  = 1.2, � = 0.2, b = 2, � = 3.

Fig. 5. Swimming. Activities of dIN, aIN and cIN populations (from bottom to top)

vs  time during swimming. The lower three traces are from the left  and upper three

are  from the right.

values move towards the lines, the unstable (saddle) fixed point

moves closer to one of the stable ones, and on the line the unsta-

ble and stable fixed points merge and disappear. Therefore, in the

region outside of the lines there is a single stable fixed point, corre-

sponding to either low or high constant activity depending on the

parameter values.

To calculate the curve of saddle-node bifurcation on the co-

dimension 2  bifurcation diagram, we  used the software MATCONT

(Dhooge et al., 2003)  which is based on the idea of numerical con-

tinuation by parameters. In this particular case the saddle-node

curve is described by  two equations: Eq.  (3) and another equation

where the derivative of the right-hand side of Eq. (1) by the variable

X equals to zero.

Generally the spiking activity of sensory neurons is noisy; we

therefore include noise in  the model of sensory populations (see

formulas (1) and (3)): the external input is P +  �. Here P is  the con-

stant part of input and � is  a  random Gaussian variable with zero

mean and variance �2. The value of the variance regulates the noise

level; for example, the noise for pineal ganglion cells is substantially

higher than the value of noise for other sensory pathways.

If we consider parameter values inside the region with three

fixed points then if the variance of noise is small, e.g. �  =  0.1, the sys-

tem stays at either the low or high level fixed point. If the variance is

higher, e.g. � >  0.12 then the system will jump randomly between

low and high levels of activity. To demonstrate this jumping we

divide the interval of integration into a number of subintervals and

on each subinterval with duration of 1 time unit, we randomly

select a new value for the random Gaussian noise �. Fig. 4  the

shows the resulting dynamics of population activity. This trajectory

is  typical for our model of sensory pathway activity.

If a sensory population receives external input (i.e. has a large

value of P̄) then the population spends most of the time in the high

(active) state. The population returns back to the mostly low (rest)

state when the input decreases. Both touch skin (TS) and touch head

(TH) populations can initiate swimming or  struggling, and their

activities are integrated by the xIN population. If at least one of  HS

or TH populations is active then the xIN population becomes active

and sends excitation to the CPG populations to initiate locomotor

behaviour.

The LD populations receive a  sensory signal from the pineal eye.

We assume that both populations receive a  similar excitation and

might become temporally active. The activity of LD populations on

both sides converges onto the CPG populations and, if tadpole is not

moving, this short-term signal can initiate swimming. If the tadpole

is already swimming then the signal from LD populations leads to

swimming acceleration, i.e. the period of regular oscillations in the

swimming network becomes smaller. The detailed neurobiological

mechanism of swimming acceleration is  not  yet known. To model

this phenomenon we assume that  the characteristic times (�1, . . .,
�6) of the swimming populations are modulated by the LD activity

level.

The PC population receives an input signal from the press head

and cement gland sensors and becomes active for the duration of

the sensory signal. The activity of the PC population inhibits dINs

and stops swimming activity.

It is  known from experimental study of tadpole behaviour that

swimming can start spontaneously, apparently without any sen-

sory stimulation (Jamieson and Roberts, 2000). To model this we
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Fig. 6. Swimming. Activity of motor neurons on the left (red) and right (blues) sides vs time. Red and blue short bars correspond to times of external input application to the

left  and right sides respectively. (For  interpretation of the references to colour in this figure legend, the reader is referred to  the web version of this article.)

Fig. 7. Swimming. Lower curve: Projection of the swimming limit cycle to the phase

plane showing left  and right cIN population activities. Upper curve: Projection of the

limit cycle to the phase plane showing left and right dIN population activities. The

shape of these curves is typical for anti-phase oscillations.

modify the equations governing the xIN populations. We  consider

the external input to xIN populations as a function of time, which

slowly increases when the animal is  in  the resting state. The slope of

this increase is  randomly and uniformly selected from a  range, such

that the resulting delays to spontaneous swimming start match bio-

logical evidence. When the activity in the xIN populations reaches

a threshold then swimming starts, even without input from the TS

or TH pathways. After swimming starts, the activity of the xIN pop-

ulations returns to  a low level and stays constant during swimming

or struggling.

The neurobiological mechanism by  which swimming can spon-

taneously stop is unknown (some hypotheses see at Dale and

Gilday, 1996; Zhang et al., 2015). To implement this behaviour we

prescribe a maximum swimming duration. This duration is  chosen

randomly and uniformly from a  suitable range. If the swimming is

not disturbed by struggling then the swimming mode lasts until

the end of the selected time interval.

4. Dynamics of CPG model

The CPG model can generate two main activity patterns: swim-

ming and struggling. In a localised model the swimming pattern

simply means the regular anti-phase oscillations of motor neurons

(and other neuron types) on the left and right sides.

It is  known from experiments that to initiate swimming a short

touch of the skin on the trunk or  head should be  applied. This

short touch provides a  transient input (via the sensory pathway)

to the dIN and dINr neurons on both sides of the body. Follow-

ing the removal of sensory input, the CPG starts swimming and

continues to  work autonomously without additional signals from

the sensory pathway. To model these dynamics we use a  bi-stable

regime, where a stable steady state (corresponding to  low popula-

tion activity/rest) coexists with a stable limit cycle (corresponding

to  anti-phase swimming oscillations) for the same parameter val-

ues. In this bi-stable regime, a  short deviation of the system from

the steady state leads to stable oscillatory activity.

To find appropriate parameter values for modelling swimming

behaviour we used the results of bifurcation analysis of  a  Wilson-

Cowan neural oscillator comprising two interacting populations

(Borisyuk and Kirillov, 1992). A bi-stable region in parameter space

has been found where a  stable steady state and limit cycles (oscil-

lations) co-exist, and we use parameter values from within this

region.

In a  localised model, struggling is  characterised by  anti-phase

bursting activity: the bursts arise in anti-phase on the left and right

sides of the body and exist for the duration of the input signal. We

model struggling behaviour as a  regime of envelope oscillations,

corresponding to a torus in  the multidimensional phase space of the

dynamical system. This dynamical regime is  characterised by two

frequencies of oscillations: a  high frequency of intra-burst spiking

activity and a low frequency burst “envelope”. Motivation for using

this type of dynamics comes from considering a population of more

or less synchronously bursting neurons. The averaging of  potentials

of these bursting neurons will produce envelope oscillations with

high and low frequencies. Example of such activity were considered

in (Borisyuk, 2002,  Fig. 2).

To find appropriate parameter values for modelling struggling

behaviour we used the results of bifurcation analysis of two cou-

pled Wilson-Cowan oscillators (Borisyuk et al., 1995). A regime of

envelope oscillations was  been found in  this system and we  use the

corresponding parameter values for the model of struggling.

Now we report results of CPG model simulations with the

selected parameter values. We assume that without external influ-

ences the CPG model is  in  the rest state and the activity of  all
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Fig. 8. Swimming activities of dIN and aIN  populations on the left side. A.  Projection of the limit cycle to  dIN (horizontal) and aIN (vertical) axes. B.  Oscillatory activity of aIN

(red) and dIN (blue) populations vs  time. (For  interpretation of the references to colour in this figure legend, the reader is referred to  the web version of this article.)

Fig. 9. Struggling regime: Initiation of struggling from the rest position. Stimulation of dINr on both sides from 1000 to 2000 ms  (1030–2000 for the right side). Motor neuron

activity  on the left (red) and right (blue) sides are shown vs time (blue  curve was  shifted up by 0.02 to  avoid an overlap of graphs). (For interpretation of the references to

colour in this figure legend, the reader is  referred to the web  version of this  article.)

populations is near zero. To initiate swimming in the CPG model

we apply a short external input to the dIN population on one side,

e.g. on the left side. This approach is  rather artificial; a more natu-

ral way of initiating swimming is via a relevant sensory pathway.

However, it is common in neurobiology to activate a neural activity

by direct stimulation and in  our computer experiments we adopt

this approach.

Experimental and modelling studies of swimming initiation

following trunk skin stimulation provide detailed neuronal mech-

anisms of this process (Roberts et al., 2014). The coarse-grained

population model provides a simplified description of swimming

initiation. We assume that stimulation of the dIN population on one

side combined with a delayed stimulation of the dIN population on

the opposite body side will initiate swimming. Fig. 5 shows simu-

lation results where swimming is initiated by a short stimulus on

one side. An external input Q1 = 1.37 is applied to  the dIN popu-

lation on the left side  from t =  100 until t =  250 ms  (red horizontal

bar in Fig. 5). To follow the experimental observations on appear-

ance of activity on the opposite side, we  apply an external input

Q4 = 1.3 to the dIN population on the right side with delay of 30 ms,

i.e. from t = 130 ms  to t  = 250 ms (blue horizontal bar in Fig. 5). To

Table 1

summarises description of four sensory pathways. For each pathway the names

of populations in that pathway are  given, along with the names of corresponding

dynamic variables in the model. These variables describe the dynamics of pathway

populations.

Pathway Combined population Model activity variable

on left and right body

side respectively

Touch skin (TS) Sensory Rohon-Beard (RB)

cells; dorso-lateral

commissural (dlc) and

ascending (dla) neurons

X1(t)  and X2(t)

Touch head (TH) trigeminal sensory touch

receptors (tSt); trigeminal

nucleus inter-neurons (tIN)

X3(t) and X4(t)

Light dimming (LD) Photo receptors, pineal

ganglion cells (pgc),

Diencephalic/Mesencephalic

descending (D/Md) neurons

X5(t) and X6(t)

Press head (PH) Cement gland receptors (tSp);

inhibitory mid-hindbrain

reticulospinal neurons (MHR)

X7(t) and X8(t)
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Fig. 10. Struggling: Activities of dINr populations on  left (red) and right (blue) body side vs time. Oscillations are shown with a  vertical shift to avoid overlap. This figure

demonstrates anti-phase oscillations at  low  frequency. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.)

Fig. 11. Struggling behaviour initiated from swimming. Stimulation was  applied from 1000 to  2000 ms  to excite dIN populations (red and blue bars) and dINr populations

(green bar). Motor neuron population activity on the left and right sides is  shown by  red and blue lines, respectively. After the end of stimulation the CPG network returns

to  swimming. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

break symmetry, we  use slightly different stimulation durations

and amplitudes on the two sides. After the stimulation period (i.e.

after 250 ms)  the external input to  both dIN populations returns

back to the initial value Q1 = Q4 = 0.8. This constant non-zero value

of external input corresponds to the depolarization of dIN neurons

due to their relatively high background NMDA activation (Roberts

et al., 2014).

Fig. 5 shows activity in the swimming populations (dINs, aINs,

cINs) on the left (bottom traces) and right (top traces) in  simula-

tions with a short stimulus applied. Swimming activity starts on

the side that is stimulated first, with the later stimulated side start-

ing afterwards. The red and blue lines in  Fig. 6 show activity in the

motor neuron populations on the left and right sides respectively

during the same simulation. It  is clear that after a  short transitional

period with duration about 150 ms the system generates regular

anti-phase oscillations with period T  ≈ 50 ms.  Fig. 7 shows projec-

tions of two limit cycles to a  2D plane with like-wise populations

on opposite sides. The larger limit cycle corresponds to  antiphase

oscillations in  dIN populations on  the left and right sides, while

the smaller one shows anti-phase activity in cIN populations on

the opposite sides. Fig. 8 shows the activities of dIN and aIN pop-

ulations on the same side. Fig. 8A shows a projection of the limit

cycle to the 2D plane of dIN (horizontal) and aIN (vertical) axes.

The shape of the limit cycle is typical for in-phase oscillations with

a small temporal shift. Fig. 8B shows oscillations of aINs (red) and

dINs (blue). These two populations oscillate with a  small phase shift

of 10% of the period.

A simulation of struggling activity is shown in Fig. 9. Here,

as before, we do  not consider the sensory pathways but instead

directly stimulate the dIN and dINr populations. To initiate

struggling we apply a  long-term stimulation for 1000 < t <  2000.

Specifically, we stimulate the dIN population on the left side (red)

for 1000 < t <  2000 and the dIN population on the right (blue) for

1030 < t <  2000 (see stimulation bars in Fig. 9). In addition, we  stim-

ulate the dINr populations on  both sides for 1150 < t <  2000 (green

stimulation bar). Because of this stimulation, modulated oscilla-
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Fig. 12. Activity of motor neuron populations on the left (red) and right (blue) body sides. These activities show a sequence of behaviours arising according the scenario

events.  (For interpretation of the  references to colour in this figure legend, the reader is  referred to the web  version of this article.)

tions in the struggling network appear. The delay of 150 ms  in

stimulation of the dINr populations in comparison with the dIN

populations distinguishes swimming and struggling regimes, since

struggling starts only in  response to  prolonged stimulation of both

body sides. Without such delay every swimming initiation will also

initiate activity in the dINr populations. Therefore, if stimulation

of dINs is less than 150 ms  long then dINr neurons are not stimu-

lated and the swimming regime will be generated. In case the dIN

stimulation is longer than 150 ms,  dINr stimulation is applied and

struggling behaviour is produced.

Fig. 9 shows the activity in the motor neuron populations on the

left (red) and right (blue) sides. Here the blue curve is shifted up  by

0.07 units to avoid an overlap of graphs. The period of fast oscilla-

tions is about 5  ms  and the period of the slow (envelope) oscillations

is  about 130 ms.  These times are  in  line with experimental findings

on struggling activity.

Fig. 10 shows activities of dINr populations on the left (red)

and right (blue) sides during the same struggling simulation. The

blue graph is shifted up to  avoid overlap. These graphs show enve-

lope oscillations with slow anti-phase oscillations between the two

body sides. Populations of aINrs and eCINs have similar dynam-

ics during struggling (not shown). When stimulation is stopped (at

time  2000 ms)  the system returns to  generating swimming activity.

Fig. 11 demonstrates that struggling activity can also appear

during swimming. To initiate struggling we first initiate swimming

(as described above) and then we  apply a long-term stimulation

to dINs and dINrs for time 1000 <  t <  2000, also as described above.

Fig. 11 shows slow anti-phase envelope oscillations of the motor

neurons on the left (red) and right (blue) sides. As  before, strug-

gling only persists during stimulation, with activity returning to

swimming after the stimulation ends. The end of struggling there-

fore always leads to swimming, regardless of the state before the

stimulation (rest or swimming).

5. Modelling of tadpole behaviour

In  this section, we present simulation of the complete model

with sensory pathways and CPG populations. Before running the

simulation, we prepare a  scenario that describes a  sequence of

external influences to the model’s sensory inputs.

Here we describe one example scenario, which is  summarized

in  Table 2.  The scenario lasts from t = 0 to t =  7000 ms.  We assume

that the tadpole is initially in  the steady state (at rest); there-

fore, at t = 0 all external inputs are  initialized to zero. Event #1 is

described as touching the skin on the left trunk during the time

interval (200, 350) ms.  Event #2 is light dimming in the time inter-

val (1200, 1500) ms,  etc.  For each event in the scenario a relevant

external input signal is  generated. For example, for event #2, the

input to TS sensory pathway changes for the duration of  the event:

the input to the TS population on the left side becomes 0.5 for

200 <  t <  350 and the input to the right-side TS population becomes

0.1  for230 < t <  350. Event #2 causes swimming to start. Event #3

corresponds to light dimming, causing the input to the left and

right LD populations to become non-zero for duration of  event;

as a  result of this, swimming will be accelerated. However, it is

possible that the swimming which was  initiated by event #2 will

stop spontaneously before the starting time of event #3. In  this

case the light dimming event will initiate swimming instead of

accelerating it. Event #4 imitates a  “predator attack”, which is rep-

resented as a  prolonged stimulation to  both body sides. As a result

of event #4, struggling behaviour occurs. Event #5 means a signal

to cement gland pressure receptors, meaning the HP sensory path-
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Table 2

Scenario.

# Initial time Final time Event

1 0 200 No events, tadpole is in the

steady state

2 200 350 Short touch on the left side

3  1200 1500 Light dimming

4 2000 3000 Predator attack (struggling

behaviour)

5  6500 6600 Pressure to  head (stop signal)

way becomes active, causing inhibition of swimming behaviour and

return to the steady state.

Fig. 12 shows activity in the motor neuron populations vs time

on the left (red) and right (blue) sides corresponding to the events in

Table 1.  Events are shown by  vertical arrows. The duration of each

event is shown by  the horizontal bar under the time axis. These

events represent a  sequence of environmental signals to the tad-

pole’s sensors, which modulate the dynamics of the corresponding

sensory pathways. As a  result of these influences from the sensory

pathways, the CPG populations generate the relevant population

dynamics. Motor neuron populations represent the output of the

CPG and their activities demonstrate how the tadpole behaviour

reflects the incoming environmental signals (events) which are

specified in the scenario. The model dynamics are modulated by

these signals to make decisions on appropriate locomotor actions

and behaviour in response to environmental signals.

6. Discussion

In this paper, we  have presented a  computational model that

is able to produce a  set of behaviours mimicking the locomotor

activities in a young tadpole (Roberts et al., 2010). These model

behaviours arise in response to incoming signals from the “environ-

ment” according to a scenario consisting of a sequence of events.

Thus, a complete meso-scale model of the tadpole nervous system

has been developed. This model is able to process multiple sensory

inputs and integrate them to  make decisions about what locomotor

response should be generated. The model is deeply rooted to data

from many neurobiological experiments. For example, the mech-

anism of swimming initiation in response to skin  touch has been

studied and modelled at the level of spiking activity, and the neu-

ronal populations participating in this process have been identified

(Roberts et al., 2014; Buhl et al., 2015).

The model contains four sensory pathways as well as integra-

tor and CPG populations. Although many experimental facts about

the neurons in the sensory pathways and their electrophysiolog-

ical properties are available, there are still many open questions

and uncertainties, which require further investigation. Therefore,

although we cannot derive a  detailed model of spiking neurons

for  sensory pathways nevertheless, we use another approach that

is based on a population model of Wilson-Cowan type. For consis-

tency, the same approach has been used for modelling CPG activity.

Population level (mesoscopic-scale) models (also known as

neural-mass models) are widely used in  computational neuro-

science. Several different approaches have been developed, but all

consider neuronal activity in  entire neuronal populations (Wilson

and Cowan, 1972; Jansen and Rit, 1995; Marten et al., 2009; Liley

et al., 2010). In this approach, interacting populations influence

each other by  excitatory or inhibitory connections, which is  usu-

ally represented by  a sigmoid function (Marreiros et al., 2008).

If the distribution of population’s activity in  space is considered

then a generalization of neural-mass model known as a neural-

field (mean-field) approach is applicable (Wilson and Cowan, 1973;

Deco et al., 2008; Bressloff, 2012; Hlinka and Coombes, 2012). A

natural extension to  our  model would be to  consider spatial infor-

mation, to attempt to reproduce the head-to-tail propagation of

swimming activity that is seen in  experiments, for example.

Decision making in our  model is  based on a  slow increase of

population activity toward a  threshold. The activity of  sensory pop-

ulations is noisy and there is therefore variability in  time of  first

threshold passage in  the integrating population (Wang, 2002). This

approach is in  line with theoretical ideas on decision making in

neuronal circuits (Kristan, 2008; Gold and Shalden, 2007; Larsen

and Bogacz, 2010; Marshall et al., 2012; Onslow et al., 2014).

Swimming in the model is  based on a bi-stable regime. A short

excitatory influence moves the system from a stable steady state to

stable oscillations. Similarly, a  short inhibition moves the system

back to the resting steady state. Struggling modelling is charac-

terised by bursting activities of participating neurons, therefore, it

is appropriate to describe population activity during struggling by

envelope oscillations with fast and slow frequencies.

Simulation of the model shows complex behaviour even in

the case of a pre-defined scenario of input events. The reason

is that the model includes spontaneous starting and stopping of

swimming as well as random noise in the sensory populations.

Therefore, repeated model simulations with the same parameter

values according to  the same scenario lead to  different dynamics

and behaviours. This makes the model behaviour less predictable

and more similar to real tadpole movements in natural environ-

ments. Let us assume two  robotic tadpoles each controlled by the

population model. Even if both robots are initiated at almost the

same time and receive the same inputs, their behaviours might

become significantly different after a short period of  time. This fact

means that the system is characterised by a complex and unpre-

dictable behaviour, like a  real tadpole.

The population level model demonstrates a  good correspon-

dence between input events and behaviour. A  further model devel-

opment will include much more biologically realistic modelling of

spiking neurons and reflect recent experimental findings regard-

ing the functioning of sensory pathways and integrators (Buhl et al.,

2015; Koutsikou et al., 2016). In addition, we would like to mention

a  possible implementation of the population model as a swim-

ming robotic tadpole. An  advantage of the population model over a

detailed spiking neuron model is that the population model is much

more suitable for robotic implementation since it requires much

less computational power, making real-time simulation possible.
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Appendix A.

Sigmoid functions of excitatory and inhibitory populations

(indexed by e or i  respectively) are: Sr(x) = 1

1+e−br (x−�r )
− 1

1+ebr �r
,

r  ∈ {e,  i}. The normalization parameters of excitatory and inhibitory

populations (indexed by e or i respectively) are: kr = Sr(+ ∞),  r ∈ {e,

i}.

Random Gaussian variables �k ∈ N(0, �) , (k =  1, ..., 10) with the

mean equal zero and the standard deviation �  = 1 describe the noise

components of sensory pathways.

All other parameters and their value are given in  Table A1. To

break symmetries we randomise all parameters by adding white

noise with variance equal to 0.01.
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Table  A1

Model parameters and their values.

P Val P Val P Val P Val Par Val P  Val P  Val P Val

a1 6 P1 0.8  �1 1.8  Q1 0.8 �2 0 R1 0.8 �1 1  �5 1

a2 6 P2 0.8  �2 1.8  Q2 0 �3 2 R2 0.8 �2 1  �6 1

a3 6 P3 0.8  �3 1.8  Q3 0 c1 16 R3 0.8 a4 1  �1 3

a4 6 P4 0.8  �4 1.8  Q4 0.8 c2 12 R4 0.8 a4 1  �2 3

a5 6 P5 0.9  w1 16 Q5 0 c3 15 R5 0.8 �5 1  M1 0.1

a6 6 P6 0.8  w2 12 Q6 0 c4 3 R6 0.8 �6 1  M2 0.1

a7 6 P7 0.9  w3 10.9 ˛1 0.1 c5 16 ı1 1 �1 1 be 1.3

a8 6 P8 0.8  w4 3  ˛2 0.2 c6 3 ı2 1 �2 1 bi 2

a9 6 P9 0.8  w5 11 ˛3 0.1 ˇ1 0.9 � 5 �3 1 �e 4

a10 6 P10 0.8  w6 2  �1 0 ˇ2 0 v3 2 �4 1 �i 3.7

1 10 2 0.5  3 0.5 4 3 ˇ3 0.1 5 2 6 1  7 0.1

Parameter value choice is an important part of model develop-

ment. We use three main approaches to this. (1) Parameter value

is motivated by  experimental measurements. This approach has

been mostly used for parameter values of equations describing the

activity dynamics of sensory pathways and references to exper-

imental papers are given in Section 2.1. (2) Parameter value is

selected according to theoretical (bifurcation theory) studies. We

mostly use this approach to  select parameter values for the swim-

ming and struggling networks. Modelling of swimming is  based

on a bistable regime where a stable fixed point co-exists with a

stable limit cycle. In (Borisyuk and Kirillov, 1993) we found this

regime in a system describing a Wilson-Cowan oscillator (inter-

acting excitatory and inhibitory populations) and starting from

these basic parameter values we  select values in the swimming

network to provide the bistable regime. In a  similar way, for mod-

elling the struggling behaviour we  use envelope oscillations with a

high frequency related to spiking inside bursts (synchronous burst-

ing on one body side) and a  low frequency corresponding to the

slow escaping movement. Of course, high frequency oscillations

should be antiphase between the two body sides. In (Borisyuk et al.,

2003) we found this regime of envelope oscillations in a system of

two coupled Wilson-Cowan oscillators and we modify these basic

parameter values to get anti-phase envelope oscillations in the

struggling network. (3) Parameter value is selected as a  result of

multiple computational model simulations. This approach has been

used in a few cases where neither inspiration from experiments nor

from theory were available.
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