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Abstract: Reformulation local search (RLS) has been recently proposed as a new
approach for solving continuous location problems. The main idea, although not new,
is to exploit the relation between the continuous model and its discrete counterpart.
The RLS switches between the continuous model and a discrete relaxation in order to
expand the search. In each iteration new points obtained in the continuous phase are
added to the discrete formulation. Thus, the two formulations become equivalent in a
limiting sense. In this paper we introduce the idea of adding ’injection points’ in the
discrete phase of RLS in order to escape a current local solution. Preliminary results
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are obtained on benchmark data sets for the multi-source Weber problem that support
further investigation of the RLS framework.

Keywords: Continuous Location, Weber Oroblem, Formulation Space Search, Refor-

mulation Descent, Variable Neighbourhood Search.

MSC: 90B85, 90C26.

1. INTRODUCTION

Continuous location problems generally require finding the location of a given
number, say p, of new facility sites in R

N , or a sub-region of RN , in order to serve
a given set of existing facilities, also known as customers or demand (or fixed)
points. In most applications, the facilities and customers are located in the Eu-
clidean plane (N = 2). Extensions include modelling the entities as lines or areas
instead of points. In all cases a distance function, such as the Euclidean, rectan-
gular, or more generally the lp norm, is required to calculate the distance between
facilities and customers. For an overview of the continuous location literature, the
interested reader is referred to Love et al.[13]. For a relatively recent survey of the
multi-source Weber problem (also referred to as the continuous location-allocation
problem), see Brimberg et al. [4].

Finding an optimal solution in continuous location problems is often a difficult
proposition due to the existence of multiple local optima. For example, solving the
multi-source Weber problem is equivalent to enumerating the Voronoi partitions
of the customer set which is NP-hard [14]. Brimberg et al. [3] demonstrate its
complexity on the well-known 50-customer problem in Eilon et al. [10] by using
10,000 random restarts of Cooper’s algorithm for p = 5, 10, 15, to generate 272,
3008, and 3363, different local minima, respectively. The worst deviation from
the optimal solution was found to be, respectively, 47%, 66% and 70%, while the
optimal solution was obtained 690 times for p = 5, 34 times for p = 10, and only
once for p = 15. Such relatively small instances are useful in demonstrating the
tendency for the number of local minima to increase exponentially with problem
size as defined by n and p. They also substantiate the need to use heuristic
methods.

The classical procedure for solving the multi-source Weber problem, which is
known as Cooper’s algorithm, is based on a simple, yet clever, insight: if the loca-
tions of the new facilities are fixed, the allocation sub-problem is solved optimally
by assigning customers to their nearest facilities; once the allocations are fixed,
the location sub-problem is solved optimally as p independent single facility prob-
lems with convex objective functions, using for example the well-known Weiszfeld
procedure [20]. Thus, Cooper’s algorithm alternates between location and alloca-
tion steps until no further improvement is possible (a local optimum is reached).
The original method proposed by Cooper began with a heuristic partitioning of
the customer set. Various changes were later proposed including the use of ran-
dom initial locations of the facilities ([19]). Although other local searches were
devised, a multi-start version of Cooper’s algorithm remained the state-of-the-art
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for several years until metaheuristics were applied to the problem, e.g., see [5,6].
Cooper’s algorithm still maintains its usefulness as a local search within many of
the current metaheuristic-based methods.

The same continuous location problem may be formulated in discrete space
by restricting the potential new facility sites to a specified finite set of points in
the continuous space. A distance matrix containing distances between all facility-
customer pairs of points (vertices) in the associated graph is constructed using the
distance function given in the continuous model. If the candidate sites are chosen
well, the constructed graph becomes an accurate representation of the original
continuous problem. Thus, a good solution on the graph should also provide a
good solution to the original problem. To illustrate, if we restrict the candidate
facility sites to the given set of fixed points, the multi-source Weber problem
converts to the well-studied (discrete) p-median problem. For a review of the
latter problem, see e.g., Mladenović et al. [15].

Exploiting the relation between the discrete p-median model and the continu-
ous Weber problem has been suggested as early as in the original work of Cooper
([7,8]). More recently, Hansenet al. [12] tested a heuristic that first solves the
p-median problem exactly using a primal-dual algorithm by Erlenkotter [11], and
then completes one step of ”continuous-space adjustment” by solving the p contin-
uous single facility problems identified in the first phase. Brimberg et al. [5] test
this heuristic among others, and conclude that computation time becomes a lim-
iting factor on larger problem instances, due to the exact solution of the discrete
model. More recently, Brimberg et al. [2] extend the p-median based method of
Hansen et al. [12] as follows:

(i) A simple and fast vertex swap heuristic is used on the discrete problem instead
of solving it exactly;

(ii) A Cooper-style alternating locate-allocate heuristic is used to subsequently
descend from the discrete solution to a local minimum in continuous space
(instead of stopping after one step of continuous adjustment).

Excellent computational results are obtained from a random multi-start version of
this simple method.

Brimberg et al. [2] also propose a new framework for exploiting the relation
between a continuous location problem and its discrete counterpart which they
term reformulation local search (RLS for short). The basic procedure is reviewed
in the next section. Section 3 then introduces the idea of adding “injection points”
in the discrete phase to extend the search whenever the basic procedure terminates.
This new procedure is referred to as “augmented” RLS (ARLS). Various strategies
for adding injection points are also discussed. Preliminary computational results
are presented in section 4 where ARLS is used in the improvement step of an
available Variable Neighborhood Search (VNS) heuristic. These results suggest
that further development of ARLS is warranted. Conclusions and areas of future
research are highlighted in section 5.
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2. A REVIEW of REFORMULATION LOCAL SEARCH

We consider an unconstrained location problem of the general form

min f(X1, X2, . . . , Xp) (GLP )

where Xi = (xi, yi) ∈ R
2 gives the unknown location of new facility i, i = 1, . . . , p,

and the objective function f(.) represents some performance measure. To illus-
trate, consider the standard multi-source Weber problem, which is formulated as
follows:

min f(X1, X2, . . . , Xp) =

n∑

j=1

wjmini=1,...,p{l2(Xi −Aj)}. (MWP )

Here Aj denotes the known coordinates of customer j, wj > 0, the demand at Aj ,
and l2(Xi − Aj) the Euclidean distance between the pair of points Xi and Aj ,
i = 1, . . . , p, j = 1, . . . , n. Thus, the objective function gives a sum of weighted
distances from the demand points to their nearest facilities. In a practical setting
this sum would be used to estimate the total cost of servicing the demand points.
Another important illustration of (GLP) is given by the continuous weighted p-
center problem:

min g(X1, X2, . . . , Xp) = max
j=1,...,n

{vjmini=1,...,p{l2(Xi −Aj)}}, (WCP )

where weights vj > 0 are, for example, proportional to the populations of the
fixed centres. The objective function g(.) gives the maximum (weighted) distance
between the demand points and their nearest facilities, and thus, represents a
measure of the quality of service of the current solution. Most applications of the
p-center problem consider the unweighted version ( vj = 1, ∀j) where all customers
are treated equally and the goal is to give the best possible service to the farthest
customer.

Now let S denote a finite set of identified potential sites for the new facilities,
and X a subset of p of these sites. For example, S = {A1, ..., An}, where typically
n >> p, has been recommended in earlier works as noted above. The discrete
approximation of (GLP) is then given by:

minX⊂Sf(X). (GLP )′

We also select local searches LC and LD to use to solve (GLP) and (GLP)’,
respectively. These search engines stop at a current solution if, and only if, a
better solution cannot be found in the specified neighborhood of this point.

The RLS method given in Brimberg et al. [2] solves alternately (GLP) with
LC and (GLP)’ with LD using the obtained solution in the current phase (con-
tinuous/discrete) as the starting solution of the next phase (discrete/continuous).
Thus, the RLS moves through a sequence of improving solutions until the current
solution is locally optimal in both the continuous and discrete spaces. A novel
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aspect of RLS is that the set of candidate sites in (GLP)’ grows each time as new
solutions found in the preceding continuous phase are added to it. The steps are
outlined below.

Algorithm 1: Basic Reformulation Local Search (RLS)

Step 1: Select an initial solutionX0 = {X0

1
, . . . , X0

p}, and initial set S for (GLP )′.

Step 2 (solving the continuous problem): LC(X
0)→ XC (where XC 6= X0, only

if f(XC) < f(X0)).

Step 3 (augmenting S): S ← S ∪XC .

Step 4 (solving the discrete problem): LD(XC)→ XD (where XD 6= XC , only if
f(XD) < f(XC)).

Step 5: If XD = XC , stop (final solution = XD ); else X0 ← XD and return to
step 2.

3. ADDING INJECTION POINTS in REFORMULATION LOCAL

SEARCH

A possible weakness of basic RLS, observed in testing of this procedure on
(MWP), is that it may converge to a local optimum after only a few switches
between continuous and discrete spaces. To try to improve solution quality, we
suggest the addition of ”injection points” to the discrete model (GLP)’. The con-
cept of adding injecting points to the current problem is also employed in genetic
algorithms where new chromosomes are injected to the population from time to
time either regularly or intelligently, see Salhi and Gamal [17] for solving a class
of continuous location problems and Salhi and Petch [18] for dealing with multi-
trip routing problems. Injection points may be added each time augmentation of
set S occurs (step 3 in Algorithm 1), or we may start the process once the basic
RLS procedure terminates. Denote these points by Yj , j = 1, ...,K, where K (a
new parameter) limits the number of injection points that will be added. These
additional points may be generated in a number of different ways. Some possible
strategies are discussed below.

1. Select a pair of demand points (or facilities, or a combination of the two) at
random and choose the next injection point, Yj = αAj1 + (1− α)Aj2 where
α is a uniform random variable in the interval (0,1). Alternatively, choose
α = 1/2 to get the mid-point, or a value that maximizes the distance from
the new injection point to its nearest facility. We may extend this approach
to three or more vertices in the current set S. For example,

Yj = α1Aj1 + α2Aj2 + α3Aj3 ,

where
∑

αi = 1 and αi ≥ 0, ∀i. To choose the centroid, set αi = 1/m, ∀i,
where m is the number of vertices selected.
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2. Run a local search for the continuous problem (which can be different from
Lc) from some starting solution, and add some facility sites not currently
in S. Various strategies such as greedy or random may be used for adding
these points to S. Different strategies may also be devised and tested for
selecting a starting solution for the local search. For example, we could select
p facility sites randomly, or by a combination of greedy and random (e.g.,
see Drezner et al.[9]).

In general, g (another parameter) injection points may be inserted at a time.
In the procedure below, we set g = 1 and begin the injection process after basic
RLS (Algorithm 1) reaches a local minimum.

Algorithm 2: Augmented Reformulation Local Search (ARLS)

Step 1: Select an initial solution X0 = {X0

1
, . . . , X0

p}, an initial set S for (GLP )′,
and a value for parameter K; set j = 0.

Step 2 (solving the continuous problem): LC(X
0)→ XC (where XC 6= X0, only

if f(XC) < f(X0)).

Step 3 (augmenting S): S ← S ∪XC .

Step 4 (solving the discrete problem): LD(XC)→ XD (where XD 6= XC , only if
f(XD) < f(XC)).

Step 5: If XD 6= XC , X0 ← XD and return to step 2;

elseif j < K obtain the next injection point Yj ,

set S ← S ∪ {Yj}, j ← j + 1, and return to step 4;

else stop.

Brimberg et al. [2] give a small example to illustrate that the addition of Weber
points to set S in the discrete formulation of (MWP) can improve the solution
quality by filling ‘holes’ where no fixed points occur in the continuous space. We
may use the same example and the same logic to motivate the process of adding
injection points. If the initial solution in step 1 of basic RLS is restricted to a
random selection of fixed points, algorithm 1 will always fail to find the optimal
solution for this particular example. However, the addition of injection points will
easily overcome this deficiency.

4. COMPUTATIONAL EXPERIMENTS

The objective of the computational tests is to validate the use of injection
points within the RLS framework. Thus, only preliminary experimental results
are reported here on four data sets commonly used to test new heuristics for
the multi-source Weber problem (see Brimberg et al.[5]). These include the 50-
customer problem in Eilon et al. [10], the 287-customer ambulance problem from
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deviation (%) Running time
Best VNS + ARLS VNS VNS + ARLS

p known VNS g = 10 g = 3 g = 2 g = 10 g = 3 g = 2
10 115339.03 0.00 0.00 0.00 0.00 5.42 1.81 1.91 1.80
20 63389.02 0.00 0.00 0.00 0.00 27.08 14.38 11.66 14.25
30 44705.19 0.01 0.01 0.01 0.01 24.70 39.55 26.33 39.73
40 35704.41 0.02 0.06 0.01 0.06 39.55 19.98 25.89 20.27
50 29338.01 0.00 0.00 0.11 0.00 27.19 27.48 15.14 33.42
60 24504.39 0.12 0.00 0.00 0.03 3.86 22.59 25.19 44.83
70 21465.44 0.04 0.03 0.03 0.04 34.05 16.22 22.69 11.39
80 19193.86 0.19 0.35 1.02 0.54 33.98 12.67 26.05 9.66
90 17514.42 0.52 0.66 0.48 0.69 42.84 17.89 49.23 9.25
100 16083.54 0.03 0.11 0.11 0.27 47.37 39.91 14.94 48.86

Table 1: ARLS results for n = 654 with α = 1/2

Bongartz et al. [1], and the 654- and the 1060-customer problems listed in the
TSP library (see [16]).

To study the impact of injection points, two versions of VNS are compared.
The first version is a basic VNS heuristic which uses relocation of facilities in the
shaking operation, and basic RLS for the local search. The second version replaces
the standard RLS with the new ARLS. Injection points are generated here using
the first strategy only with two vertices randomly selected from S:

Yj = αAj1 + (1− α)Aj2 .

Also, we initially set α = 1/2 for simplicity. Results for n = 50 and n = 287 were
very similar with both heuristics, so we start with n = 654 customers. Both meth-
ods use tmax = 50 secs as a stopping criterion and kmax = 10 for the maximum
neighborhood size (shake) in Table 1.

Summary results are presented in Table 1 for n = 654, and p =10, 20, ...,100.
Each heuristic is run only once on each problem instance, and results are compared
to the best known objective function values given in Brimberg et al. [5], which
were obtained after considerable testing with several state-of-the-art heuristics.
It is interesting to observe that VNS+ARLS reaches the best known solutions in
half the time or less of VNS for small values of p (=10, 20) and certainly well
within the time limit of 50 secs. However, for large values of p, the addition of
injection points besides increasing the size of the discrete subproblem may have
a negative effect on the solution quality (see p = 80, 100). This can be expected
since for large p, some of the facilities will coincide with customer locations in the
optimal solution [12]. However, our injection points are generated not to coincide
with customer locations as the latter are already included in the set of potential
sites. This observation does not necessarily nullify the advantage of using injection
points as some facilities will not coincide with customer sites for most values of
p < n, in general.
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We also tested the variant of ARLS where α is randomly taken from the interval
(0,1). It appears that there is no difference in solution quality on average for
random α and α = 1/2. In Table 2 we give results of VNS and this variant of
ARLS which we refer to as VNS+ for n = 1060. Here the tested version with
random α uses g = 4 while the values of p vary from 10 to 150 with an increment
of 10. Observe as in Table 1 that solution quality with ARLS is very good without
finetuning of the parameters.

Objective function deviation (%) Running time
p Best Known VNS VNS+ VNS VNS+ VNS VNS+
10 1249564.75 1249564.75 1249564.75 0.00 0.00 8.22 12.14
20 828685.63 828689.44 828690.06 0.00 0.00 134.44 241.95
30 638212.31 638231.63 638219.44 0.00 0.00 112.77 79.80
40 529660.12 529715.81 529788.31 0.01 0.00 187.23 68.50
50 453109.56 453191.91 453350.63 0.02 0.02 299.22 206.77
60 397674.53 397779.16 397737.81 0.03 0.02 290.23 96.66
70 357335.13 357373.56 357611.78 0.01 0.02 270.84 293.41
80 325971.25 326076.66 326067.00 0.03 0.03 104.94 34.17
90 302479.03 302889.69 302843.66 0.14 0.12 277.88 216.52
100 282536.44 283103.06 283022.50 0.20 0.17 109.63 96.41
110 264959.97 265483.13 265520.13 0.20 0.21 280.12 208.61
120 249050.48 249619.31 249707.58 0.23 0.26 67.72 297.34
130 235203.39 236059.08 235490.44 0.36 0.12 290.78 133.44
140 223062.63 223518.33 224032.66 0.20 0.43 213.63 297.44
150 212236.27 212705.41 212663.59 0.22 0.20 297.20 71.05

Table 2: ARLS results for n = 1060, random α ∈ (0, 1) and g = 4

The same basic observation from Table 1 appears to hold for Table 2, namely
the injection points tend to increase the convergence speed for small values of p
(say p up to 10% of n). Since relatively small values of p appear often in practical
problems, we conclude that research in the direction of finding good strategies for
injection points is useful.

5. CONCLUSIONS and SUGGESTIONS

In this study we extend the framework for reformulation local search (RLS) by
examining the addition of injection points in the discrete phase. We refer to this
new approach as Augmented reformulation local search (ARLS). Our preliminary
empirical testing on existing data sets for the multi-source Weber problem proves
to be interesting though the results are not overwhelmingly superior to the basic
RLS. This is expected as the basic RLS already performs well, and the main
objective is to put forward such new ideas that will hopefully be revisited in the
aim to reach a more polished and finished product.

In this study we opted for a simple local search in both continuous and discrete
phases, but more powerful local search operators from which we may select LC
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and/ or LD can be used instead. For instance, the recently proposed local search
operators by Drezner et al. [9] are worth examining. Clearly, the decision for
LC will affect the quality of the points (the Xi’s) used to augment S in step 3 of
RLS. By choosing a better operator LC , we may expect the quality of the Xi’s
to improve, and as a consequence, better quality solutions will be obtained in the
discrete phase. The choice of LD will also affect the quality of these solutions as
well as the number of iterations until the algorithm terminates.

Finally we note that the reformulation framework need not be restricted to
local searches. Thus, the search operators LC and/or LD may be selected as
more powerful searches using metaheuristics instead of local search. Design issues
such as first or best improvement need to be considered in this more general
“Reformulation Search” package.

From a practical perspective, although a specific model is used here for illus-
tration purposes, the procedures are readily applied to other continuous location
problems where the general objective is to locate p facilities in order to service a
given set of n demand points in some ‘optimal’ way.
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