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Abstract

This interdisciplinary work proposes new hierarchical classification algorithms and

evaluates them on biological datasets, and specifically on ageing-related datasets.

Hierarchical classification is a type of classification task where the classes to be

predicted are organized into a hierarchical structure. The focus on ageing is jus-

tified by the increasing impact that ageing-related diseases have on the human

population and by the increasing amount of freely available ageing-related data.

The main contributions of this thesis are as follows. First, we improve the

running time of a previously proposed hierarchical classification algorithm based

on an extension of the well-known Naive Bayes classification algorithm. We show

that our modification greatly improves the runtime of the hierarchical classification

algorithm, maintaining its predictive performance.

We also propose four new hierarchical classification algorithms. The focus

on hierarchical classification algorithms and their evaluation on biological data is

justified as the class labels of biological data are commonly organized into class

hierarchies. Two of our four new hierarchical classification algorithms – the “Hier-

archical Dependence Network” (HDN) and the “Hierarchical Dependence Network

algorithm based on finding non-Hierarchically related Predictive Classes” (HDN-

nHPC) – are based on Dependence Networks, a relatively new type of probabilistic

graphical model that has not yet received a lot of attention from the classification

community. The other two hierarchical classification algorithms we proposed are

hybrid algorithms that use the hierarchical classification models produced by the

Predictive Clustering Tree (PCT) algorithm. One of the hybrids combines the

models produced by the PCT algorithm and a Local Hierarchical Classification

(LHC) algorithm (which basically induces a local model for each class in the hi-

erarchy). The other hybrid combines the models produced by the PCT and HDN

algorithms.

We have tested our four proposed algorithms and four other commonly used

hierarchical classification algorithms on 42 hierarchical classification datasets. 20
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of these datasets were created by us and are freely available for researchers. We

have concluded that, for one out of the three hierarchical predictive accuracy

measures used in our experiments, one of our four new algorithms (the HDN-

nHPC algorithm) outperforms all other seven algorithms in terms of average rank

across the 42 hierarchical classification datasets.

We have also proposed the first meta-learning approach for hierarchical clas-

sification problems. In meta-learning, each meta-instance represents a dataset,

meta-features represent dataset properties, and meta-classes represent the best

classification algorithm for the corresponding dataset (meta-instance). Hence,

meta-learning techniques for classification use the predictive performance of some

candidate classification algorithms in previously tested datasets, and dataset de-

scriptors (the meta-features), to infer the performance of those candidate classifi-

cation algorithms in new datasets, given the meta-features of those new datasets.

The predictions of our meta-learning system can be used as a guide to choose

which hierarchical classification algorithm (out of a set of candidate ones) to use

on a new dataset, without the need for time-consuming trial and error experiments

with those candidate algorithms. This is particularly important for hierarchical

classification problems, as the training time of hierarchical classification algorithms

tends to be much greater than the training time of ‘flat’ classification algorithms.

This increased training time is mainly due to the typically much greater number

of class labels that annotate the instances of hierarchical classification problems.

We have tested the predictive power of our meta-learning system and inter-

preted some generated meta-models. We have concluded that our meta-learning

system had good predictive performance when compared to other baseline meta-

learning approaches. We have also concluded that the meta-rules generated by our

meta-learning system were useful to identify dataset characteristics to assist the

choice of hierarchical classification algorithm.

Finally, we have reviewed the current practice of applying supervised machine

learning (classification and regression) algorithms to study the biology of ageing.

This review discusses the main findings of such algorithms, in the context of the

ageing biology literature. We have also interpreted some of the hierarchical clas-

sification models generated in our experiments. Both the above literature review

and the interpretation of some models were performed in collaboration with an

ageing expert, in order to extract relevant information for ageing research.
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Chapter 1

Introduction

This work involves inter-disciplinary research, at the intersection of the areas of

data mining (or machine learning), gene/protein function prediction and the biol-

ogy of ageing. In terms of data mining, we focus on the classification task, where

the algorithm has to predict the value of a class variable for a given instance,

based on values of predictor attributes (or features) describing that instance. More

precisely, we address a variation of the classification task called hierarchical clas-

sification, where the classes to be predicted are structured into a hierarchy of

classes (Silla Jr. and Freitas 2011a).

The focus on classification of protein functions is justified by the importance

of this type of biological compound in living organisms. Proteins are the building

blocks of life, being responsible for building the structure of cells, speeding up

essential chemical reactions, signaling messages between cells, building the internal

machinery of the cells, and other essential functions. All proteins are formed

by chains of amino acids, which fold into a specific spatial conformation. The

blueprints of these chains are in the genes of living organisms, and the process of

building proteins from genes involves a process of “gene expression” (Alberts et al.

2008).

Broadly speaking, the goals of this research are to develop new algorithms

for hierarchical classification and to apply them to the prediction of hierarchical

gene/protein functions, including the functions of ageing-related genes/proteins.

The focus on ageing, as an application domain, is motivated by the fact that

ageing research is emerging as a field that promises a significant impact on the life

of human beings. As the average age of humans has been steadily increasing over

the last decades, age-related diseases are more and more common (de Magalhães

1
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2011). The current ageing-related medical research paradigm focuses on specific

diseases instead of investigating the ageing process as a whole. An alternative and

increasingly popular approach is to research the genetic roots of human ageing,

and try to come up with treatments to the ageing process in general, postponing

the onset of several age-related diseases simultaneously.

This thesis’ focus on ageing is also motivated by the fact that some proteins

were shown to be directly involved in ageing (de Magalhães 2011), that is, it

was shown that the over-expression or under-expression of certain genes lead to

accelerated aging or a slow down of the ageing process. The discovery of ageing-

related proteins and their functions can be crucial to the development of treatments

for ageing. By targeting proteins that are involved in the ageing process, we could

manipulate and potentially even revert this apparently relentless process.

The study of ageing at the proteomic level involves the analysis of significant

amounts of data coming from different sources, therefore it is natural to use auto-

mated data mining algorithms to find unknown patterns present in this data. For

example, algorithms producing interpretable classification models, such as decision

tree algorithms, can be used to predict ageing-related classes and provide insights

on the biology of ageing, as will be seen later in this thesis.

1.1 The Ageing Problem

Due to technological advances in medicine and healthcare, human longevity has

been increasing significantly for decades (de Magalhães 2011). As a result, diseases

associated with the “greying population”; such as cancers, heart conditions, and

neurodegenerative illnesses; are affecting an increasingly large number of people.

Therefore, the pressure to understand, and maybe slow down or ultimately reverse,

the ageing process is building up among researches of several areas. Although a

lot of progress has been made in recent years to try to explain why do we age and

how to potentially slow down this process, our understanding of the biology of

ageing is in its infancy. If we succeed in this task, the potential economical benefit

of investing on this type of research is clear: it is projected that the economical

value of adding 2.2 extra healthy years to the human population is $7.1 trillion

dollars over 50 years in the United States alone (Goldman et al. 2013).

Ageing can be defined as an intrinsic, age-related process of loss of viability and

increase in vulnerability (Comfort 1964). Although the vast majority of animals

are impacted by the ageing process, there are some species that have no apparent
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senescence process, i.e. not only their mortality rate is constant during their adult

life, there is no evident age-related physiological functional decline in their organs

(Jones et al. 2014).

Interestingly, studies have found several ageing-related genes in model organ-

isms such as the mouse (M. musculus), the fruit fly (D. melanogaster), the worm

(C. elegans), and the yeast (S. cerevisiae), which when turned on or off, consid-

erably affect the lifespan of the organisms. For instance, Friedman and Johnson

(1988) showed that by knocking-out the gene age-1, associated with the produc-

tion of insulin/insulin-like growth factor 1 (IGF1), it was possible to make the

roundworm live twice as long. In mice, disruption of the gene Prop1, also related

to the production of IGF1, may increase their lifespan by 50% (Brown-Borg et al.

1996). These initial findings were products of laborious “wet-lab” experimentation

based on fortuitous biological observations.

Recently, the cost of extracting genomic and proteomic data from organisms

has decreased many-fold. Researchers now have access to vast public collections

of biological data. Many biological databases contain gene or protein sequence

information (e.g. the Universal Protein Resource (The Uniprot Consortium 2010))

and possibly a classification of the biological processes where a gene or protein is

involved in a curated hierarchical ontology (e.g. the Gene Ontology (GO) (Harris

et al. 2004)). The existence of these widely used hierarchical classes justifies the

use of hierarchical classification methods to analyse this data.

1.2 Bioinformatics

Bioinformatics is a relatively new discipline that emerged when computer scien-

tists, statisticians and biologists got together to answer biological questions by

analysing large quantities of biological data. In particular, the main study object

of bioinformatics in the last decades has been genomic data, i.e. the gene sequences

of organisms. To appreciate how the study of the genome helps us understand how

life works, we need to understand what genes are and what are their functions.

Genes are hereditary discrete units of genetic information discovered by Gregor

Mendel in 1859. The actual molecular structure of the DNA, that encodes the

genes in nucleotides, was discovered much later, in 1953, by James Watson and

Francis Crick (Watson and Crick 1953). Generally speaking, genes contain the

instructions necessary to create proteins, which in turn are used in many biological

tasks, ranging from structural composition to internal communication in the cell.
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Despite their sophistication, all proteins are composed by chains of only 20

types of amino acids. Amino acids are small molecules that serve as the building

blocks of proteins. Although proteins are encoded into a linear sequence of amino

acids, proteins usually have complex three-dimensional structures. The different

physiochemical properties of amino acids mold the final configuration of protein

molecules and, consequently, their functions.

Given the gene sequence of an organism, it is tempting to try to discover the

function of genes and their respective proteins. The “wet-lab” experimentation to

achieve this is usually laborious and often involves introducing mutations in organ-

isms that are probably harmful, which makes it an unfeasible study to be carried

out in humans. For these reasons, it is very common to apply sequence alignment

tools such as BLAST to find similar sequences that are already annotated and

assign those annotations to the unannotated sequence (Madden 2013).

This simple approach works well in some cases, however it has some problems

(Freitas and de Carvalho 2007). First, it assumes that similar sequences share sim-

ilar functions. This is not always true, given that few changes in the amino acid

sequence of a protein may result in a very different function for that protein. Sec-

ond, it ignores hierarchical relations among the classes annotated for the protein.

One of the goals of this work is to develop more sophisticated algorithms to anno-

tate unknown-function genes or proteins by considering a hierarchical taxonomy

of gene/protein functional classes.

1.3 Hierarchical Classification

This work focuses on the Hierarchical Multi-label Classification (HMC) problem,

a type of supervised learning task that naturally emerges in several real-world

problems. The HMC problem consists of learning a classification model given a

pre-defined class taxonomy and instances annotated with classes from that tax-

onomy. With the learnt model, we wish to predict which classes of the hierarchy

new instances (unseen in the learning phase) belong to. There are notorious suc-

cessful applications of this technique (Silla Jr. and Freitas 2011a), for instance: in

document classification, where it is intuitive to annotate instances in topics that

are organised hierarchically; in image classification, where instances are commonly

organised in trees; and in bioinformatics, the focus of this work, where functions

of genes and proteins are commonly organised in ontologies organised as Directed

Acyclic Graphs (DAGs) or as trees. An example of such ontology is the Gene
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Ontology (Harris et al. 2004).

In the hierarchical classification setting this thesis focuses on, the classes are

organised into an “IS-A” ontology. In such ontologies, the classes (the terms of

the ontology) are organised into a tree or DAG (Directed Acyclic Graph), where

each directed edge represents a specialisation/generalisation relationship between

two terms. For instance, in an ontology describing animals, there would be an

edge from bat to flying animal, as a bat IS-A flying animal. In other words, a bat

is a specialisation of a flying animal, or a flying animal is a generalisation of a

bat. Note that in such hierarchy, if an instance is annotated with the term bat it is

also implicitly annotated with the term flying animal, as every bat is also a flying

animal. However, the opposite is not true: if an instance is annotated with the

term flying animal, it is not necessarily a bat.

More formally, a class taxonomy is a set of relationships defined over a partially

ordered set (C,≺) where C enumerates all classes under consideration and ≺

represents the “IS-A” relationship. Intuitively, the relationship must be rooted,

asymmetric, anti-reflexive and transitive, formally defined as (Silla Jr. and Freitas

2011a):

• Rooted condition: ∃ root ∈ C | ∀ Ci ∈ C, (Ci 6= root) → (Ci ≺ root),

• Asymmetric condition: ∀ Ci, Ci′ ∈ C, (Ci ≺ Ci′)→ (Ci′ ⊀ Ci),

• Anti-reflexive condition: ∀ Ci ∈ C, (Ci ⊀ Ci),

• Transitive condition: ∀ Ci, Ci′ , Ci′′ ∈ C, (Ci ≺ Ci′), (Ci′ ≺ Ci′′) → (Ci ≺

Ci′′).

Although using traditional (flat) classifiers for hierarchical classification is pos-

sible, the literature in the area consistently shows that algorithms specifically

designed for HMC outperform the naive approach of treating the problem as a

flat multi-label classification problem (Silla Jr. and Freitas 2011a), justifying the

effort of developing new algorithms for hierarchical classification.
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1.4 Hierarchical Classification Algorithms Based

on Dependence Networks

Probabilistic Graphical Models (PGMs) are a useful way to represent real-world

probabilistic data. A PGM has two components: its structure and a set of Condi-

tional Probability Distributions (CPDs). The representation and meaning of the

structures of PGMs differ depending on the type of PGM used (Koller and Fried-

man 2009). In Bayesian Networks (BNs), for instance, the structure is a DAG,

whose edges represent potentially causal relationships between the nodes (the ran-

dom variables). The second component of PGMs, the set of CPDs, models the

probability distribution of each random variable present in the structure, given the

value of its parent random variables (the parents of a random variable C is the set

of random variables with an outgoing edge pointing to C).

A Dependence Network (DN) is a relatively new type of PGM that has the ad-

vantage of having a more flexible structural definition than other types of PGMs

such as BNs. DNs allow for cycles in the structural representation of the model,

and the edges in a DN do not model causal relationships between random vari-

ables. Instead, the set of parents of a random variable in a DN represent the

Markov blanket of a random variable. The Markov blanket of a random variable

C is the minimal set of other variables that make the estimation of the probability

distribution of C independent from the value of all other random variables (Heck-

erman et al. 2001).

Note that in BNs the parents of a random variable are not the variable’s Markov

blanket. That is, in BNs unconnected random variables can affect each other

directly. This can be confusing to untrained users of BNs. DNs avoid this possible

source of confusion by connecting the random variables that affect each other

directly.

We have developed, for the first time (Fabris and Freitas 2014b), hierarchical

classification algorithms based on DNs. The first version of our Hierarchical DN

algorithm (called simply “HDN”) uses expert knowledge present in the definition

of the class ontology to model the relationships between classes. We have also

developed a second version of the HDN algorithm called HDN based on finding

non-Hierarchically related Predictive Classes (HDN-nHPC). This version uses two

sources of information to build the structure of DN: expert knowledge (as the HDN

algorithm) and new relationships among classes (i.e. relationships not included in

the pre-defined class hierarchy) that are automatically detected by the algorithm
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in a data-driven way. Finally, we have also developed another hierarchical clas-

sification algorithm, which is a hybrid algorithm, combining our HDN algorithm

with the well-known Predictive Clustering Tree (PCT) algorithm for hierarchical

classification (Blockeel et al. 2002). A detailed description of all these new hier-

archical classification algorithms based on dependence networks will be given in

Chapter 5.

1.5 Meta-Learning

The ‘traditional’ way of applying classification algorithms to new datasets is to

use tacit knowledge of classification specialists to select a subset of promising

algorithms. This knowledge comes from the past experiences of the specialist

when dealing with similar problems. With this subset of promising algorithms, the

specialist runs exploratory experiments, which usually take a substantial amount

of time, to decide the most appropriated algorithms for a particular task.

Meta-learning is an advanced research area in the field of data mining (or

machine learning). There are different types of meta-learning problems (Brazdil

et al. 2008); but in this thesis we focus only on the problem of meta-learning for

algorithm recommendation (arguably the most well-known type of meta-learning),

hereafter denoted simply meta-learning, for short. More precisely, meta-learning

methods aim to automate the process of selecting the best classification algorithm

for a given input dataset. They do so by using a machine learning method to find

patterns relating the predictive performances of a set of candidate classification

algorithms on the current classification dataset (the testing meta-instance) with

past performance of that set of candidate classification algorithms on other clas-

sification datasets (the training meta-instances). The benefits of this approach

is that it is a more systematic (less “ad-hoc”) practice; if one uses meta-learners

producing interpretable meta-models, useful insights about why some types of clas-

sification algorithms are more suitable for some kinds of classification datasets can

be derived; and its application is not so dependent on the knowledge of experts,

which are often unavailable.

Note that meta-learning is part of what is currently referred to Automated Ma-

chine Learning (AutoML). AutoML aims to automate the whole machine learning

workflow, including data preprocessing, feature selection, classification algorithm

selection and parameter optimisation, model post-processing, and the analysis of

results. This goal is very broad, requiring several different techniques to achieve
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the final objective of automating the whole data mining process. In this thesis

we focus only on the task of classification algorithm selection, which has a much

smaller scope.

It should be noted that, in general, meta-learning research so far has focused on

recommending flat (non-hierarchical) classification algorithms. This thesis is the

first work to propose meta-learning for recommending hierarchical classification

algorithms, as will be discussed in Chapter 7.

1.6 Objectives and Original Contributions

This interdisciplinary thesis has the overall objectives of: 1) proposing new hier-

archical classification algorithms, evaluating their predictive performance across a

number of hierarchical classification datasets; 2) proposing a new meta-learning

approach for recommending the best hierarchical classification algorithm (out of

a set of candidate algorithms) for a given input hierarchical classification dataset;

3) interpreting some hierarchical classification models produced by applying hier-

archical classification algorithms to datasets of ageing-related genes/proteins.

While accomplishing these objectives, this thesis presents original contributions

to two areas, namely hierarchical classification, a type of data mining (or machine

learning) task, and the bioinformatics of ageing. More precisely, the thesis presents

the following contributions:

First, we have proposed a modified version of a hierarchical classification al-

gorithm based on an extension of Naive Bayes, and have shown, in experiments

with 18 hierarchical classification datasets, that in general the modified algorithm

has a runtime substantially shorter than the original algorithm, without sacrificing

predictive performance. This contribution is presented in Chapter 4.

Second, we have created 20 new hierarchical classification datasets of ageing-

related genes/proteins, varying the species to which the genes/proteins belong,

the types of gene/protein properties used as predictive features, and the types of

hierarchical classes. We also proposed a new type of predictive feature that can be

used for predicting gene/protein functions, based on quantifying the influence of a

gene/protein in a KEGG pathway (a well-known type of biological pathway), and

used this new feature type in some of our datasets. These created datasets, which

are described in Chapter 6, are freely available to other researchers at https:

//dx.doi.org/10.13140/RG.2.2.34027.23843.

Third, we have proposed four novel hierarchical classification algorithms. Two

https://dx.doi.org/10.13140/RG.2.2.34027.23843
https://dx.doi.org/10.13140/RG.2.2.34027.23843
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are based on dependence networks. One is a hybrid between one of our dependence

network algorithms and a well-known hierarchical classification algorithm based on

decision trees, the PCT algorithm (Blockeel et al. 2002). The fourth new algorithm

is a hybrid between PCT and a Local Hierarchical Classification (LHC) algorithm

– which essentially builds a local model for each class in the hierarchy. These

new algorithms are described in Chapter 5, and they are evaluated by comparing

them with several strong baseline algorithms across 42 datasets of ageing-related

genes/proteins in Chapter 6. This evaluation also included a statistical analysis

of the differences of predictive performances between the proposed algorithms and

the baseline ones.

Fourth, we have proposed a new meta-learning approach for selecting, among

a set of candidate hierarchical classification algorithms, the most recommended

one (i.e. the candidate algorithm which is predicted to have the highest predictive

performance) for a given input hierarchical classification dataset. This approach

was evaluated in experiments with four candidate hierarchical classification algo-

rithms and two types of classification algorithms (a decision tree and an SVM

algorithm) used as meta-learners, which were compared against two simpler base-

line meta-learners. In addition, some produced meta-classification models were

interpreted to detect patterns about which characteristics of hierarchical classifi-

cation datasets (described by meta-features) lead to the recommendation of one

type of hierarchical classification algorithm over another. This meta-learning ap-

proach – which is the first study on meta-learning for hierarchical classification

algorithm recommendation – is described and evaluated in Chapter 7.

Fifth, we have interpreted some hierarchical classification models produced by

applying hierarchical classification algorithms to our created datasets of ageing-

related genes, in the context of the literature on the biology of ageing. This

interpretation was performed in collaboration with an ageing biology expert, Dr.

Jennifer M.A. Tullet (School of Biosciences, University of Kent), and was reported

in Chapter 6. In addition, in order to get further insight on related work on

the results of applying data mining methods to ageing-related data, we have also

performed a detailed review of the literature on this topic, in collaboration with an-

other ageing biology expert, Dr. João Pedro de Magalhães (Institute of Integrative

Biology, University of Liverpool), as reported in Section 3.3.
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1.7 Structure of the Thesis

Chapter 2 presents background on data mining concepts and methods relevant

for the remainder of the thesis. More precisely, this chapter reviews concepts

and methods from the areas of conventional, flat (non-hierarchical) classification,

hierarchical classification (the data mining task which is the focus of this the-

sis), and probabilistic graphical models – including dependence networks, the type

of method used as the basis for three of our proposed hierarchical classification

algorithms (presented in Chapter 5). This chapter also includes a discussion of re-

lated work on exploring class label dependencies in hierarchical classification. We

also review the baseline hierarchical classification algorithms that we will compare

against our algorithms.

Chapter 3 presents background on ageing and bioinformatics concepts relevant

for the remainder of the thesis. More precisely, this chapter briefly reviews two

major hierarchical taxonomies of gene/protein functions (which are used as hier-

archical classes in our experiments) and the main theories of ageing. This chapter

also contains an extensive review of papers interpreting the models generated by

applying supervised machine learning (classification and regression) algorithms to

ageing-related data.

Chapter 4 first reviews the ELHNB algorithm, which is a version of the Naive

Bayes algorithm for hierarchical classification (Merschmann and Freitas 2013).

Then, we describe how we modified that algorithm to improve its runtime on a

specific type of hierarchical classification problem. We report the results of exper-

iments showing that, in general, the modified algorithm (called M-ELHNB) has

runtimes much smaller than the runtimes of the original ELHNB algorithm (par-

ticularly on the largest hierarchical classification datasets), whilst both algorithms

obtain in general statistically equivalent predictive performances.

Chapter 5 proposes three novel hierarchical classification algorithms based on

dependence networks, a type of probabilistic graphical model, as mentioned ear-

lier. Two of these algorithms are entirely based on dependence networks. The

other proposed hierarchical classification algorithm is a hybrid between one of the

proposed dependence network algorithms and a well-known hierarchical classifica-

tion algorithm based on decision trees, called the PCT algorithm (Blockeel et al.
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2002). This chapter also presents a novel hybrid between the PCT algorithm and

a local hierarchical classification algorithm.

Chapter 6 presents the results of the experimental evaluation of the hierarchi-

cal classification algorithms proposed in Chapter 5. More precisely, this chapter

presents the characteristics of the hierarchical classification datasets that we col-

lected and created; the statistical analysis of the predictive performance results;

the interpretation of some classification models with the objective of gaining new

biological insight about the ageing process; and finally a time complexity analysis

of the most successful (in terms of predictive performance) of the four proposed

hierarchical classification algorithms, namely the HDN-nHPC algorithm.

Chapter 7 presents our proposed meta-learning approach for recommending the

best hierarchical classification algorithm for a given input dataset, among some

candidate hierarchical classification algorithms. The set of candidate algorithms

included our proposed HDN-nHPC algorithm and three other algorithms, PCT,

PCTEN (PCT Ensemble), and LHC. These four algorithms were described in

Chapter 5. This chapter proposes new meta-features for meta-learning in hierar-

chical classification, and also proposes a new algorithm that divides existing hier-

archical classification datasets into a much larger number of hierarchical datasets,

in order to increase the number of meta-instances for meta-learning purposes –

which is necessary in order to produce more reliable meta-classification models.

This chapter also reports the predictive performance results of the meta-learning

methods and analyses some of the produced meta-models, in order to try to get

insight about which characteristics of hierarchical classification datasets (meta-

features) seem to favour the choice of one hierarchical classification algorithm over

another.

Chapter 8 presents the conclusions of the thesis. This chapter consists of two

parts, namely a summary of the thesis’ contributions and several lines for future

research.
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1.8 Publications Derived from this Research
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pp. 2988–2995, DOI: 10.1093/bioinformatics/btw363.

2. Fabris, F., Freitas, A. A. and Tullet, J. (2015). An Extensive Empirical Com-

parison of Probabilistic Hierarchical Classifiers in Datasets of Ageing-Related

Genes. IEEE/ACM Transactions on Computational Biology and Bioinfor-

matics, 13(6), pp. 1045–1058, DOI: 10.1109/TCBB.2015.2505288.

Papers Published in the Proceedings of International Con-

ferences

1. Fabris, F. and Freitas, A. A. (2015). A Novel Extended Hierarchical Depen-

dence Network Method Based on non-Hierarchical Predictive Classes and

Applications to Ageing-Related Data. In Proceedings of the 2015 IEEE 27th

International Conference on Tools with Artificial Intelligence (ICTAI’15),

IEEE, pp. 294–301.

2. Fabris, F. and Freitas, A. A. (2014a). An Efficient Algorithm for Hierarchical

Classification of Protein and Gene Functions. In Proceedings of the 2014

25th International Workshop on Database and Expert Systems Applications
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the 2014 IEEE International Conference on Computational Intelligence and

Data Mining, pp. 241–248.

Submitted Papers Awaiting Review

1. Fabris, F. and Freitas, A. A. (2017). Meta-learning for Hierarchical Classifi-

cation Applied to Bioinformatics. Submitted to ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining.
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2. Fabris, F., de Magalhães, J. P. and Freitas, A. A. (2017). A Review of

Supervised Machine Learning Applied in Ageing Research. Submitted to

Biogerontology.



Chapter 2

Background on Data Mining

2.1 Classification

Classification algorithms are a common way to use available data to build tools to

help automating complex decision-making processes. These algorithms learn, using

existing data, models that classify objects from the problem domain (instances)

into categories (class labels), given some attributes that describe those instances.

In this context, we call the data that the algorithm uses to learn the model the

training dataset. This dataset comprises instances, which in turn, are composed

of two parts: the first part is a fixed-sized vector that describes the instances, and

each element of this vector is called a feature or predictive attribute. Features are

usually encoded as numerical or nominal values, depending on the instance being

represented. The second part of an instance is a class variable taking a nomi-

nal value (in ‘standard’ single-label classification) or a vector containing nominal

values, representing a set of class labels that annotate the instance, in the case

of ‘non-standard’, multi-label classification problems. A class label represents the

membership information for a particular class.

More formally speaking, classification is the computational task of deriving a

function F : x→ C from a set of instances – called training instances – in the form

(xj, cj), where xj are the predictive attributes (or features) of the j-th instance and

cj is (are) the class(es) of the j-th instance. We call the derivation of F as the

“training phase”. After the training phase, we use F to predict the classes of a set

of previously unseen instances given only their predictive attributes (prediction

phase). Because there are many approaches to build different F functions and

none is better than all the others in every occasion, it is wise to estimate the

14
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predictive performance using some measure, such as the F-Measure (Kiritchenko,

Matwin and Famili 2005), to select the best classifier for a given classification task.

Classification problems can be divided in three broad types, namely, binary

classification problems, multi-class classification problems, and multi-label classifi-

cation problems. In binary classification problems each instance is annotated with

one out of two class labels. For example, a classification problem to decide if a

protein (given numerical values that describe it) is ageing-related or not ageing-

related.

In multi-class classification problems the instances are annotated with exactly

one class label out of a set of more than two possible class labels. For example, a

classification problem to decide which species an individual animal (the instance)

belongs to, given a set of pre-determined species and numerical morphological

features that describe the animal.

Finally, in multi-label classification problems, each instance can be annotated

with more than one (or even none) class labels. This is considered the most

challenging type of classification problem, since the classifier has to choose which

subset of labels to assign to a new instance, and the number of candidate label

subsets is 2N , where N is the number of labels. An example of a multi-label

classification problem is to decide the moods that should be assigned to a song,

using a set of pre-defined moods, given a numerical vector that defines the song.

Since a song may have multiple moods, this classification problem is a multi-label

classification problem.

In this thesis we are particularly interested in a sub-type of multi-label clas-

sification problems called hierarchical classification problems, where the multiple

class labels are organised into a hierarchy in the form a tree or a DAG (Directed

Acyclic Graph). Hierarchical classification will be discussed in detail in Section 2.2.

Naturally, one of the main challenges of applying classification algorithms to

real-world problems is how to define the predictive attributes. Two very impor-

tant processes involved in defining the features are called feature extraction (Liu

and Motoda 1998), where new features are derived from raw data, and feature

selection (Liu and Motoda 1998), where a subset of features with high quality is

selected from existing ones.

These processes are necessary because most classification algorithms require

features with higher discriminative power than the original, raw, data. Further-

more, many classification algorithms do not deal well with uninformative features

and uninformative predictive classes, generating models with poor discriminative
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power.

The performance of classification algorithms are usually estimated using a test-

ing set, which was not used during the training phase. Another well-known way of

estimating performance is to use a k-fold cross-validation procedure (Witten and

Frank 2000), where first the available dataset is divided into k folds of approxi-

mately the same size. Next, each fold is temporarily removed from the dataset,

one at a time, then the dataset with k-1 folds is used for training, and the held-out

fold used for testing. When k is the size of the dataset, this procedure is called

leave-one-out validation. In each testing step, the prediction of the classification

model is compared with the actual class labels and some measure of predictive

performance is returned. There are several measures of predictive performance,

each one with different biases, and measures suitable for hierarchical classification

(the focus of this thesis) will be discussed later.

Among the large number of types of classification algorithms available in the

literature (Witten and Frank 2000), we present an overview of the three types of

algorithm most relevant for this thesis, namely: decision trees, SVMs and bagging

(a type of ensemble method).

2.1.1 Decision Tree Classification Algorithms

In this thesis we have used variations of decision tree classification algorithms.

These algorithms are simple and widely used in the data mining community. De-

cision tree classification algorithms build a decision tree, which is a hierarchical

structure composed of nodes and edges. There are three types of nodes: 1) a

root node, which is a special node without incoming edges (there is exactly one

root node per decision tree), 2) internal nodes, which have exactly one incoming

edge and two or more outgoing edges, and 3) leaf nodes, which have exactly one

incoming edge and no outgoing edges.

The non-leaf nodes of a decision tree represent attribute test conditions and

each outgoing edge represents a possible result of the test condition for the asso-

ciated non-leaf node. The set of outgoing edges of a node represent all possible

(mutually exclusive) results of the condition in the non-leaf node, that is, an in-

stance presented to the non-leaf node will always be associated to one, and exactly

one outgoing edge. Each edge in the set of outgoing edges of a non-leaf node leads

to either another non-leaf node (with another condition) or a leaf node, where a

prediction is made. Figure 2.1 shows these types of nodes graphically.
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Figure 2.1: Example of a possible decision tree structure. Each non-leaf node
(squares and circles) contains a test condition and two outgoing edges, each edge
with a possible test result. Note that the root node (the square) does not have
incoming edges. Leaf nodes (rectangles) contain the class labels that will be pre-
dicted when all test conditions leading to the leaf node are satisfied.

In the testing phase, an instance is presented to the root node of a decision tree,

where a condition using one or more (normally one) of the instance’s attributes

is tested. The outcoming edge associated with the result of the test is identified,

and the classification procedure analyses the node that that edges points to. If

this node is a non-leaf node, the classification procedure recurses in that node. If

the node is a leaf node, the class label associated with the leaf node is returned

as the prediction of the decision tree. We call the set of test conditions leading to

leaf node and that leaf node’s prediction a rule. This rule is of the form:

IF (test conditions are satisfied by a test instance)

THEN (assign the class predicted by the leaf node to the instance)

As we can see, it is easy to understand how a decision tree classifies an instance

and, more importantly, why a decision tree annotates an instance with a particular

class label: one just needs to retrieve the sequence of conditions that were (was)
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satisfied by the instance. Of course, the decision tree does not tell us the reasons

why that particular set of conditions is a good predictor for a class label, but it

offers the opportunity for experts to try to interpret the rule in a higher level-

domain.

For instance, if the decision tree algorithm finds that interactions with a set of

proteins is a good ageing predictor, a biologist expert could analyse these proteins

and investigate if they are present in some, yet unknown ageing-related pathway,

thus, reaching new biological conclusions.

The most challenging aspect of using a decision tree is the construction of the

decision tree itself. Since the number of all valid tree configurations is very large,

normally, it is not feasible to test all valid tree configurations to find the optimal

decision tree. Therefore, the traditional way of building decision tree algorithms

is to use a non-optimal greedy algorithm. A greedy algorithm is an optimisa-

tion heuristic that always makes local-optimum decisions, without backtracking to

previous decisions, until no (significant) improvement can be made.

Most decision tree building algorithms are broadly based on Hunt’s Algo-

rithm (Hunt, Marin and Stone 1966). This algorithm uses some strategy to find a

test condition that partitions the dataset in the current tree node into data sub-

sets, creating a new child node in the decision tree for each subset. Then, the

algorithm recurses in each of the child nodes if some measure of quality is not

satisfied. If the measure is satisfied, a leaf node is created and the majority class

in the subset of instances is used as the prediction of that leaf node.

Therefore, to use Hunt’s algorithm to build decision trees one needs to define

two procedures: 1) some way to find a good test condition to split the data (sub)set

under consideration. This includes some way to create test conditions and some

quality measure to evaluate the goodness of each candidate test condition. 2) a

criterion(a) for deciding when to stop recursing in the child node created by the

test conditions.

Broadly speaking, the data split that a test condition generates can be either

binary or multi-way. Multi-way splits can be applied to partition the data into

more than two subsets, but can have a much larger search space than binary splits,

which always partition the data in two subsets. The decision trees induced in this

work only contain binary splits, therefore we focus on this type of split in the next

paragraphs.
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For binary attributes, binary splits are mandatory, but for nominal and con-

tinuous attributes, some strategy has to be applied to create the binary test con-

ditions (Quinlan 1993; Rokach and Maimon 2005). Usually, for continuous at-

tributes, binary splits are created by sorting all unique numerical values in the

attribute’s domain and using the mean value of two consecutive values in the

sorted list as a candidate split condition using the “greater than” and “smaller

than” operators.

For non-ordinal nominal attributes, every possible binary grouping is tested.

Note that the total number of distinct binary divisions of k elements is 2k − 1.

For this reason, the number of distinct non-ordinal nominal attributes should be

constrained to a small number to keep the running time reasonable. If the nominal

attributes are ordinal, it is desirable to use the greater-or-equal-than and smaller-

than operators in a way analogous to continuous attributes, instead of ignoring

the element ordering and dividing the values into arbitrary groups. The approach

of considering element ordering is less computationally expensive and uses domain

knowledge in a more effective way.

The decision tree induction algorithm tests all possible binary splits for all

features and uses some measure of partition quality to choose the best split. The

basic idea of such quality measure is to reward data partitions where in each data

subset the large majority of (ideally all) instances belongs to a single class, and

different data subsets are associated with different classes. Commonly used quality

measures formalising this basic idea are the Entropy, Gini Index, and Classification

Error, for details refer to (Tan, Steinbach and Kumar 2006; Rokach and Maimon

2005).

In addition, commonly, the decision tree inducing algorithm has a user-specific

criterion(a) to decide if the algorithm should keep recursing on the subsets gen-

erated by the test conditions. That is, the user must inform the decision tree

induction algorithm when it should stopping trying to improve the quality of de-

cision tree.

This is necessary for two reasons: first to reduce the decision tree size, which

facilitates the tree’s interpretation by users, which can be very difficult if very deep

decision trees are induced. Second, and more importantly, to try to avoid model

over-fitting, that is, to avoid the creation of deep decision trees that classify the

training instances very well, but fail to predict training instances with reasonable

predictive accuracy.

Next, we discuss the SVM classification algorithm, which was also extensively



CHAPTER 2. BACKGROUND ON DATA MINING 20

used in this thesis.

2.1.2 Support Vector Machines (SVMs)

Another type of classification algorithm that has been extensively used in this the-

sis is Support Vector Machine (SVM) algorithms. Like decision tree algorithms,

SVM is a popular type of classification algorithm, but unlike decision tree al-

gorithms, it has a complex mathematical derivation and generates classification

models that are in general, too abstract and difficult to interpret. This increased

model complexity has the payoff of (commonly) increased predictive performance.

A linear SVM classification algorithm finds a hyperplane (a plane, where the

number of dimensions is the number of features) that best separates the data

into two classes. In other words, SVM finds decision boundaries with the largest

possible margin between the hyperplane and the closest instances (called ‘support’

instances). It has been shown that large margin models minimise the generalisation

error of the SVM classification algorithm (Chapelle et al. 2002).

The procedure to find this hyperplane involves solving a quadratic optimisation

problem, which has a complexity of O(n3), where n is the number of instances (Bor-

des et al. 2005). Note that unlike most decision tree algorithms, the SVM algorithm

finds the optimal separation boundary between classes. This difference is key to

explain why the SVM algorithms have, normally, better predictive performance

than decision tree algorithms and other classification algorithms.

Note that our discussion so far has only referred to linear SVMs, which are

normally not well suited to problems with non-linear relations between features

and classes, as is the case with most real-world classification problems.

To solve this, it has been proposed to explicitly map the original non-linearly

separable problem to another higher dimension space (Boser, Guyon and Vapnik

1992), where the problem has a linear separation, and use the SVM to find a linear

separation in the transformed space, which is actually a non-linear separation in

the original space.

However, performing this transformation explicitly is often very computation-

ally expensive and it is subjected to the phenomena know as “the curse of dimen-

sionality”, which basically states that the predictive performance of classification

algorithms decreases as the number of dimensions increases (Bengio, Delalleau and

Le Roux 2005).

Fortunately, a mathematical technique known as the “kernel trick” (Boser,
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Guyon and Vapnik 1992) has been devised to solve these problems. By using

this technique, it is not necessary to explicitly map the instances to the higher

dimensional space. An implicit mapping can be performed, which is both more

computational efficient and avoids the “curse of dimensionality”. The user of

the SVM algorithm needs only to define a kernel function, which is a function

that maps a pair of instances to a numerical value that represents the distance

between the instances in the transformed space. These kernel functions usually

have parameters that also need to be chosen by the user of the algorithm.

The most basic version of the SVM algorithm is very sensitive to outliers (in-

stances with very unusual feature values). Because the quadratic optimisation

algorithm always tries to find the optimal decision boundary that perfectly sep-

arates the instances, a single outlier may completely change the parameters that

define the separation hyperplane. For this reason, a slack variable was introduced

in the formulation of SVM algorithms (Cortes and Vapnik 1995). This user-defined

variable controls how tolerant the SVM algorithm should be to outliers, eventually

allowing for a few classification errors if a wider margin can be achieved.

In summary, the benefits of SVM algorithms are that: 1) it finds the optimal

solution of a well-defined optimisation problem, instead of using greedy local-search

heuristics, 2) it is capable of mapping the original classification problem to another

space, which may greatly improve the predictive performance of the algorithms.

Some disadvantages of SVM algorithms include: 1) the difficulty of interpreting

the generated model, 2) the definition of the slack parameter and the choice of the

best kernel function, which are difficult to be estimated by the user, 3) the original

derivation only deals with binary classification problems, although multi-class and

multi-label adaptations exist (Elisseeff and Weston 2001).

2.1.3 Ensemble Techniques

A common way to improve the predictive performance of classification algorithms

is through the use of ensemble techniques (Zhou 2012). These techniques induce

several base classification models (or classifiers) to predict the classes, and next,

the predictions are combined using some procedure. These classifiers must be

induced in such a way that they make to some extent different predictions, so that

each classifier is better suited to predict different parts of the feature space.

In fact, in order for ensemble techniques to work, two conditions must be sat-

isfied: 1) the base classifiers must be independent from each other and 2) the
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base classifiers must have better than random predictive performance. In practice,

it is difficult to have completely independent classifiers, as the datasets that are

used to induce them normally have some overlap, and the base classification algo-

rithms may have a similar classification bias. Also, it is not possible to guarantee

better than random performance on the testing set. For these reasons, ensemble

algorithms are not always better than their non-ensemble counterparts.

Broadly speaking, there are three independent ways to generate base classi-

fication algorithms for ensemble methods: 1) altering the set of instances in the

training sets given to the base algorithms; 2) altering the features of the datasets;

3) altering the parameters of the classification algorithm or even using different

classification algorithms.

One can wonder why ensemble techniques work at all. To understand this,

one can consider the bias-variance decomposition of classifier error: it is possi-

ble to decompose a classifier error into three sources: bias, variance, and dataset

errors (Friedman 1997). Bias is defined as a systematic error that the classifier

makes, either due to some broken assumption or because of some non-optimal

parameter configuration the algorithm has. This can be seen as the mean classifi-

cation error the algorithm has if several, independent, classification datasets were

sampled from the same distribution and classified by the model. Variance can be

seen as how different the predictions of the classifiers can be when several models

are induced using datasets samples from the same distribution. Finally, dataset

errors are errors impossible to avoid due to mislabeled testing instances.

Ensemble techniques reduce classification errors by attenuating the effect of

the variance on the final error. That is, by combining the results of several base

classifiers, random classification errors that would be made by a stand-alone clas-

sifier (without using an ensemble) can be avoided because they are unlikely to

occur, at the same time, in the majority of base classifiers - given the previously

mentioned assumptions that the classifiers are independent and have better than

random predictive performance.

One of the most common ensemble techniques is the bagging (or bootstrap

aggregation) technique (Breiman 1996), which is the approach of uniformly sam-

pling, with replacement, sub-datasets from the training set. Each sample has the

same size of the original dataset and it is used to induce a classifier. The clas-

sifiers induced using different samples are usually different because their training

datasets will be different: on average, each bootstrap sample will contain approx-

imately 63% of the original dataset. The final prediction is typically retrieved by
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getting the most voted prediction from the pool of classifiers. Like other ensemble

algorithms, bagging is known to improve classification performance of classifica-

tion algorithms by reducing the overall variance of the base classifier when several

decisions are combined.

There are other commonly used ensemble techniques such as Boosting, Ad-

aBoost, and Random Forests, which were not used in this work. Readers inter-

ested in different ensemble techniques can refer to (Tan, Steinbach and Kumar

2006; Zhou 2012).

There are many other aspects of the classification problems; however, the pre-

viously defined techniques cover most aspects of the classification problems studied

in this thesis. Readers interested in other aspects of data mining and classification

can refer to the books of Witten and Frank (2000); Tan, Steinbach and Kumar

(2006).

2.2 Hierarchical Classification

Among the several types of classification problems discussed earlier, this thesis

focuses on hierarchical classification problems.

Hierarchical classification, sometimes called structured classification, is a spe-

cial type of classification problem in which the classes of the instances have a pre-

established hierarchical taxonomy, generally specified as a DAG (Directed Acyclic

Graph) or a tree. We shall consider that this taxonomy defines an “Is-a” rela-

tionship between classes, that is, if an instance is classified as a class ca, it is also

implicitly classified as all the classes in the set Anc(ca), where Anc(c) is defined

as the set of all ancestors of class c.

Following the notation proposed in (Silla Jr. and Freitas 2011a), hierarchical

classification problems may be described by the tuple 〈Υ,Ψ,Φ〉, as follows. Υ ∈

{T,DAG} defines the type of structure of the class taxonomy (Tree or DAG,

respectively). Ψ ∈ {MPL, SPL} indicates, respectively, whether at least one

instance has Multiple Paths of Labels (MPL) or every instance has only a Single

Path of Labels (SPL) in the class taxonomy – where a “path of labels” means the

set of labels in a path from the root node to the leaf nodes of the class hierarchy.

This distinction is analogous to the distinction between single-label and multi-label

classification problems in “flat” classification. Φ ∈ {PD,FD} dictates if at least

one instance has Partial Depth (PD) labeling or every instance has Full Depth

(FD) labeling. FD labeling requires the most specific class of all instances to be a
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leaf node, while in PD labeling an instance may have a non-leaf node as its most

specific class.

Hierarchical classification algorithms usually use one out of two broad ap-

proaches: the local classification approach, and the global classification approach.

These approaches are described in detail in the next subsections.

2.2.1 Local Hierarchical Classification (LHC)

The local hierarchical classification approach first uses several traditional (flat)

classification models to predict the classes in different small parts of the class tax-

onomy. These local models are trained by transforming parts of the class taxonomy

into several flat classification problems by using some class relabeling strategy.

Then, in the prediction phase, some procedure is employed to retrieve a coherent,

hierarchical classification for an instance.

There are three approaches to train classification models using local classifiers.

The first, and most frequent one, is training a binary classifier per node, but the

root node, to predict if an instance belongs to each one of the classes in the hierar-

chy. This approach is exemplified in Figure 2.2. As an example of this approach,

Cesa-Bianchi, Gentile and Zaniboni (2006) propose a probabilistic framework to

model the instances of a 〈T,MPL, PD〉 problem and an exact approach to min-

imise a loss function for the model. They compare their approach to flat and

hierarchical variations of SVM classifiers. Their work did not achieve better pre-

dictive performance than the baseline techniques (that don’t try to optimise the

loss function directly), which shows that real-world problems instances are not

well behaved and closed-form approaches are not always the best choice to achieve

good classification performance.

The work of Valentini (2011), for 〈T,MPL, PD〉 problems, uses the binary

classifier per node approach to predict gene functions using the FunCat class-

taxonomy. Another work using this approach is the paper of Xiao et al. (2009)

(for 〈T, SPL, FD〉 problems), in which the authors use local, per-node classifiers to

predict emotions in human voice. The work of Barutcuoglu and DeCoro (2006) (for

〈T, SPL, FD〉 problems) is specially interesting, as the authors use k-NN as base

classifiers and a Bayesian network to output a consistent probabilistic classification,

by treating each k-NN classifier’s prediction as a node in the Bayesian network.

The authors even suggest (but did not implement) the use of Gibbs sampling as a

way to perform efficient inference, as we did in this work (presented later).
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Figure 2.2: Example of per-node local hierarchical classifiers. Circles represent
hierarchical class nodes, edges represent ‘IS-A’ relationships between classes, and
each square represents a binary classification model induced to predict membership
or non-membership of an instance in each class node (except the root node, since
all instances belong to the root node).

The second approach is to train a multi-class or multi-label classifier per parent

node (every node except the leaves) that predicts which child class(es) the instance

belongs to. A multi-class classifier is used if the problem is SPL, whilst a multi-

label classifier is used if the problem is MPL. This approach is exemplified in

Figure 2.3. This approach was used in the seminal work of Koller and Sahami

(1997), for 〈T, SPL, PD〉 problems. They used local hierarchical classifiers for

the first time, taking advantage of the class hierarchy to perform hierarchical

classification. After performing feature selection for each class node, the authors

trained several k-dependence Bayesian network models using the local classifier per

parent node approach. Another notable implementation of this approach is the

work of Alaydie, Reddy and Fotouhi (2012), for 〈T, SPL, PD〉 problems, in which

the authors propose the algorithm HiBLADE, which trains a classifier for each

non-leaf class node considering a feature vector, extended with the classes labels
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of its ancestors. During the testing phase, the authors use a bagging technique that

takes in consideration the class taxonomy, using classifiers trained in the children

of a node as candidate classifiers for the ensemble. In addition, Hernandez, Sucar

and Morales (2013) developed a local classifier per parent node approach for the

〈T, SPL, FD〉 problem, testing several ways to output a coherent classification.

A third, less common approach, illustrated in Figure 2.4, to train classification

models using local classifiers is to use one classifier per level of the hierarchy, as

done by Cerri, Barros and de Carvalho (2011). In that work the authors train one

Neural Network classifier per level of the hierarchy to solve a 〈DAG,MPL, PD〉

problem (although the algorithm is also suitable for 〈T,MPL, PD〉 problems).

root

C1 C2

C1.1 C1.2 C2.1 C2.2

C2.1.1 C2.1.2 C2.1.3

Figure 2.3: Example of per-parent-node local hierarchical classifiers. Circles repre-
sent hierarchical class nodes, edges represent ‘IS-A’ relationships between classes,
and each square represents a multi-class or multi-label classification model to pre-
dict membership of an instance in zero or more child class nodes.

2.2.2 Global Hierarchical Classification

The definition of global classifiers is more elusive, we consider it to be a non-

decomposable classification model that returns the hierarchical classification of an
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Figure 2.4: Example of per-level local hierarchical classifiers. Circles represent
hierarchical class nodes, edges represent ‘IS-A’ relationships between classes, and
each rectangle represents a multi-class classification model induced to predict mem-
bership of an instance in zero or more class nodes in a level of the hierarchy.

instance at once, instead of using some strategy to combine separate classifica-

tions like in the local classifier approach. The global approach for hierarchical

classification is represented in Figure 2.5.

The global classification approach has two advantages over the flat and local

ones: 1) reduced model complexity: a single classification model induced to predict

all hierarchical classes at once is, usually, much smaller than a collection of local

models induced to predict several classes independently; and 2) global models

naturally take into account relationships between classes that are not automatically

considered in the training phase when using local approaches.

Several global classification algorithms have been proposed to deal with hier-

archical classification problems. Wang, Zhou and He (2001) have proposed, in the

context of document classification, a global classifier based on association rules.

Clare and King (2003) have adapted the decision tree algorithm C4.5 to deal with

hierarchical classification problems. Otero, Freitas and Johnson (2010) proposed
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Figure 2.5: Example of a global hierarchical classifier. Circles represent hierarchi-
cal class nodes, the edges represent ‘IS-A’ relationships between terms. The global
classification model is represented by a large rectangle, this model is induced to
predict all hierarchical classes at once.

an Ant Colony Optimisation (ACO) algorithm to find rules to classify instances

in hierarchical classes. Silla Jr. and Freitas (2009) introduced a global version of

the Naive Bayes algorithm for 〈T, SPL, PD〉 hierarchical classification problems.

Their algorithm calculates the probabilities of all class nodes, altering it using a

usefulness factor that increases the probabilities of nodes near the leaf nodes, mo-

tivated by the fact that deeper classes tend to represent more useful knowledge for

users.

Another type of global classification algorithm is the adaptation of kernel func-

tions for hierarchical classification problems. After the kernel functions are defined,

traditional classification algorithms like SVMs can be used to induce the predic-

tive models (Rousu and Shawe-Taylor 2006; Cai and Hofmann 2007). In (Bi and

Kwok 2011), the authors use a kernel projection method to transform the hierar-

chical classification problem into a set of multi-label classification problems using

Principal Component Analysis. A standard algorithm can be used to solve the
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transformed problem, and next, the solution is re-mapped to the original hierar-

chical space. The authors concluded that the proposed method is superior to the

PCT algorithm, a strong baseline method, which is discussed next.

Overview of Predictive Clustering Tree (PCT) Algorithms

The state of the art in the hierarchical classification of gene and protein functions

(considering predictive performance) is the Predictive Clustering Tree Ensemble

(PCTEN) (Schietgat et al. 2010) algorithm, for 〈DAG,MPL, PD〉 problems. This

algorithm uses the bagging technique to construct an ensemble of PCT hierarchical

classifiers, based on a special type of decision trees (described below). The use of

bagging considerably increases the predictive performance of the base algorithm in

most cases (although not always, as will be shown in our experiments later). The

PCT algorithm was proposed by Blockeel et al. (2002) (for 〈T,MPL, PD〉 prob-

lems) and extended by Vens et al. (2008), to consider DAG-structured hierarchies.

Although the PCT algorithm has worse predictive performance than the PCTEN

algorithm in most cases, it has the advantages of being faster and generating a sin-

gle classification model, which is more easily interpretable than a large set of mod-

els in an ensemble of classification models like PCTEN. Vens et al. (2010) expanded

the comparison made by Vens et al. (2008) to include more baseline algorithms

(like the PCTEN) and datasets. Their conclusion is that the PCT/PCTEN meth-

ods outperform the previous state-of-the-art hierarchical classification algorithms

(Clare and King 2003; Barutcuoglu, Schapire and Troyanskaya 2006; Vens et al.

2008) with respect to several criteria (interpretability and model size; predictive

performance; and induction time).

We use both the PCT and PCTEN classifiers as baselines in the predictive

performance analysis of our proposed algorithm. For this reason, next we explain

in more detail the induction and classification procedures of both algorithms.

Description of the Predictive Clustering Tree (PCT) Algorithm

The PCT classification algorithm was originally developed to work with flat

multi-label classification problems (Blockeel, De Raedt and Ramon 1998), and later

extended to work with tree-structured hierarchical classification problems (Bloc-

keel et al. 2002) and DAG-structured hierarchical classification problems (Vens

et al. 2008). In this section we shall present the version of the PCT classifica-

tion algorithm that supports DAGs, which is the most generic and most popular



CHAPTER 2. BACKGROUND ON DATA MINING 30

version of the algorithm.

At a high level of abstraction, the PCT algorithm works like most decision

tree inducing algorithms (e.g. C4.5 (Quinlan 1993)): when processing continuous

attributes, it finds a condition involving an attribute and a constant (e.g. some

attribute greater than a constant value) that splits the data into two disjoint

groups (or clusters) maximising the dissimilarly of the class labels in each one of

the two clusters. If the chosen attribute is discrete (or nominal), the algorithm

uses all possible attribute values to split the dataset typically creating a new group

(or cluster) of instances for each of the values of the attribute. If the attribute is

continuous, the attribute values are ordered and every possible interval between

two consecutive values is tested. Next, the algorithm recurses into each one of

the clusters until a given stopping criterion is met. When every cluster is fully

explored, the classification algorithm returns the fully parameterised decision tree

model. The pseudo-code (based on the code presented in (Vens et al. 2008))

formalising this explanation is presented in Algorithm 2.1.

Algorithm 2.1 Pseudo-code of the PCT classification algorithm.

1: procedure PCT(D)
2: (t∗, P ∗) = BestTest(D)
3: if t∗ 6= none then
4: for each Dk ∈ P ∗ do
5: treek = PCT(Dk) /* Recursive call to PCT /*
6: end for
7: return node(t∗,

⋃

k{treek})
8: else
9: return Leaf(ClassProbVect(D))

10: end if
11: end procedure

This algorithm receives as a parameter the set D, that represents the training

instances, and returns a decision tree. This set comprises tuples on the form

(xj, Pj), where xj is the predictive feature vector of the j-th instance and Pj is

the binary class label vector of the j-th instance. This vector encodes the class-

membership of the instances for each one of the classes. This vector has the value 1

in the i-th position if the instance is annotated with the i-th class, and 0 otherwise.

At line 2 the BestTest function chooses the best split (partition) (P ∗) and the

corresponding test condition (t∗) that induces the partition P ∗, iterating over all

possible splits and using the following measure of dissimilarity between the clusters
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created by a split in order to choose the best split:

Dis(D) = V ar(D)−
∑

Dk∈P

|Dk|

|D|
V ar(Dk) (2.1)

Where D is the dataset in the current tree node and P is a set containing the

sub-datasets (clusters) defined by the split under consideration. The higher the

value of the measure Dis(D), the better the split. The variance of the training

instances Var(D) (and Var(Dk)) is defined in terms of the Euclidean distance

between each binary class label vector and the mean class label vector of the

partition. Refer to (Vens et al. 2008) for a detailed explanation on how this

measure is calculated, including the adaptation for DAG-structured hierarchies.

In addition to choosing the split with highest dissimilarity between the just

created clusters using Equation 2.1, the PCT algorithm also checks if the splits

are statistically significant. In order to do that, (Blockeel et al. 2002) suggest

using an F -test, and only accepting splits with an F statistic greater than s (a

user defined parameter). Note that the value of s implicitly regulates the size of

the decision tree: smaller values will generate decision trees with equal or greater

sizes than bigger values. The F -test statistic is calculated as follows:

F =
SS/(n− 1)

(SSL + SSR)/(n− 2)
(2.2)

Where SS is the sum of squared differences between the mean class label vector

and the class label vector of the instances in D, and SSL and SSR have the same

meaning, but for the two (left and right) clusters formed by the split t∗.

If the F -test fails, the value of t∗ is none, and line 9 is executed, returning the

class probability vector that represents the class labels in D. This class probability

vector will function as the prediction of the PCT model (a leaf node of the decision

tree). During the testing phase, if the testing instance satisfies all conditions

leading to this leaf, this class probability vector will work as the probabilistic

predictions of that instance. In practice, each element of the class probability

vector is calculated by averaging the binary class label vectors of the instances in

D.

If the F -test does not fail, t∗ will contain the best test that was found by the

BestTest function. Because t∗ is not equal to none, line 4 is executed, and the

algorithm iterates over the two partitions, recursing in each one at line 5. After

the for loop is executed, at line 7, a new decision tree node is returned, containing
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the subtree generated by the recursive call at line 5 and the associated test t∗.

A fully parameterised decision tree will be returned by the first call to PCT. To

use the model, the user presents an instance to the decision tree, which will return

the class probability vector (the mean binary class label vector) associated with the

training instances of the cluster where the testing instances falls. The predictive

class probability vector associated with the testing instance is the probability that

the instance belongs to each one of the hierarchical classes. Because of the way

the clusters are constructed, this probability vector is guaranteed to be consistent,

that is, the predicted class probability of a parent class will be always greater or

equal than the probability of its children.

One of the main advantages of using the PCT classification algorithm is that

the generated model allows for a direct interpretation of the learnt associations

between the predicted class labels and the predictive features. This is particularly

useful in domains such as bioinformatics, where sometimes new, potentially useful,

knowledge may be extracted from the classification model.

Description of the PCTEN Algorithm

The PCTEN algorithm induces several PCT decision trees using the bagging

ensemble technique (Breiman 1996). This technique works by creating several

bootstrap replicates of the training dataset, sampling, with replacement, instances

from the original training dataset.

In the testing phase, the predictions of each decision tree are retrieved and the

mean class probability vector across the predictions is returned.

The PCTEN has been shown to be in general clearly superior to the PCT

algorithm in terms of predictive performance (Schietgat et al. 2010); which is ex-

pected, since ensemble methods are known to improve the predictive performance

of several classification algorithms (Opitz and Maclin 1999; Hamza and Larocque

2005). The improvement in performance, however, arguably comes with the price

of reduced interpretability (Freitas 2013). In other words, the PCT classifier is

easier to interpret than its ensemble version, which justifies testing both PCT and

PCTEN classifiers.
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2.3 Probabilistic Graphical Models (PGM) for

Classification

In many domains it is useful, if not required, to interpret the induced classification

models. Because PGM classification algorithms are capable, at least in principle,

of generating interpretable models (rather than “black-box models”), they have

been extensively used in classification tasks with interpretability requirements.

In the next sections we shall focus specifically on two types of PGMs for classi-

fication: the commonly used Bayesian Network (BN) classifiers and their variants;

and the less used Dependence Networks (DN) classifiers, which are the focus of

this thesis.

2.3.1 An Overview of Bayesian Network Classifiers

Bayesian Networks (BNs) were one of the first PGMs widely used for automated

inference. The book of Pearl (1988) if often cited as the first comprehensive review

of the several techniques necessary to build and query BNs. BNs are defined by

two types of components: 1) their structure and 2) the Conditional Probabilities

Distributions (CPDs) of each node.

Structurally, BNs are defined using Directed Acyclic Graphs (DAGs), where

each node represents a random variable and each edge represents a (potentially)

causal relationship between two random variables. That is, if there is an edge

pointing from one random variable to another, knowing the value of the former

variable affects our belief about the value of the latter. Each node (random vari-

able) of a BN has a CPD that models the probability distribution of that node

given the values of its parent nodes (random variables that point to the node).

An example of a BN is shown in Figure 2.6. This figure shows, for instance,

that the student grade is directly influenced by the test difficulty and his or her

intelligence. Note that, although the student grade cannot influence the test diffi-

culty, the former variable can still be useful for predicting the latter. However, this

predictive relationship cannot be represented in a Bayesian network by an edge

pointing from the student grade to the test difficulty, because this would create

a cycle in the network. In addition, to predict the test difficulty, one also needs

to know the student intelligence, and this important relationship is not explicitly

shown in the BN.

BNs may be directly applied to classification; however, it is often reported that
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Figure 2.6: A hypothetical Bayesian Network (BN) modeling the random variables
that affect the grade of a student in a test and the probability of getting a good
recommendation letter. This figure is adapted from an example in (Koller and
Friedman 2009).

modeling relationships among predictive variables that do not directly affect the

prediction of the class often results in over-fitted classification models (Cheng and

Greiner 2001).

For this reason, variants of BNs tailored for the classification task, called BN

classifiers, have reported better predictive performance. The idea behind these

models is to adopt some simplifying assumption to reduce the complexity of the

models, thus minimising over-fitting. The Naive Bayes (NB) algorithm was prob-

ably the first algorithm used for this end (Duda and Hart 1973). Other widespread

alternatives include the Bayesian Augmented Naive Bayes (BAN) (Friedman, Geiger

and Goldszmidt 1997) and Tree Augmented Naive Bayes (TAN) (Friedman, Geiger

and Goldszmidt 1997) algorithms.

The main differences between NB, TAN and BAN are as follows. The NB clas-

sification algorithm is the simplest one, making the strongest assumptions among

the three. The models generated by the NB classification algorithm assume that

the features are independent from each other given the class, that is, it assumes

that there are no dependencies between the random variables that represent the

features. This is a very strong assumption that greatly reduces the number of pos-

sible models that the NB classification algorithm can generate, which often leads to
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worse predictive performance compared to more flexible models. However, the NB

has the advantage of low computational complexity and implementation simplicity.

The formula used to calculate the unnormalised class probability values of an

instance given its features values is:

P (Ci|X) ∝ P (Ci)
n
∏

j=1

P (Xj|Ci) (2.3)

Where X is the predictive feature vector of the testing instance, Ci is the

i-th class label, P (Ci) is the prior probability of class label Ci, and P (Xj|Ci)

the probability of the j-th feature taking the value Xj given that the instance is

annotated with the class label Ci. This probability is normally estimated using

simple counting after discretisation (if the feature values are continuous).

The standard TAN classification algorithm considers that, unlike the NB classi-

fication algorithm, there are dependencies between the features of the classification

problem. Specifically, the TAN model will consider that the connections among

feature (nodes) form a tree involving all features. The connections of this tree

can be found using a greedy algorithm that connects the two nodes (using an

undirected edge) with largest mutual information score given the class, as long

as this new connection does not induce a cycle among the feature nodes. After

this step, a node is selected at random to be the root of the feature tree, defining

the direction of the previously undirected edges connecting the features. Models

generated by the TAN classification algorithm have, generally, better predictive

performance than models generated using the NB classification algorithm. How-

ever, this improved predictive performance comes with a higher computational

cost. Also, it has been argued that forcing the connection of every predictive fea-

ture may give rise to unnecessary connections in the graphical model, which can

harm performance (Keogh and Pazzani 1999).

The formula used to calculate the unnormalised class membership probability

for TAN, similar to the one used for NB, is as follows:

P (Ci|X) ∝ P (Ci)
n
∏

j=1

P (Xj|Pa(Xj), Ci) (2.4)

Where Pa(Xj) represents the set of feature values for the parents of the j-

th feature, and the other terms are as defined for Equation 2.3. Again, these

probabilities are estimated by simple counting.

Finally, in models generated by the BAN classification algorithm (as the models
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generated by NB and TAN) there is an edge from the node representing the class

variable to every node that represents a feature. But unlike the models generated

by the TAN algorithm, the BAN classification algorithm does not restrict the

connections of the features to form a tree, allowing for the formation of DAGs.

This increases the search space of the BAN algorithm in relation to the TAN,

but has the potential for finding models that fit the data better. Normally, BAN

algorithms have a parameter (k) that controls the maximum number of parents a

feature can have, to avoid over-fitting.

The formula used to calculate the unnormalised class membership probability

of BANs is the same as for TANs, shown in Equation 2.4.

Figure 2.7 shows one example for each of the three variations of BN-inspired

classification algorithm that were previously explained (NB, TAN and BAN). Note

that that the model generated by the NB algorithm does not contain edges among

the predictive features, while the edges among predictive features in the classifi-

cation model induced using the TAN algorithm induce a tree. Finally, the edges

among the predictive features in the model induced by the BAN algorithm form

a DAG.

Regarding hierarchical classification, Silla Jr. and Freitas (2009) have intro-

duced the global hierarchical version of the NB classifier and tested their approach

in several datasets for 〈T, SPL, FD〉 problems, reporting a better performance

than using local Naive Bayes classifiers. Barutcuoglu and DeCoro (2006) have

used BNs to integrate the decision of several local classifiers, correcting possibly

inconsistent classifications; this approach works for 〈DAG,MPL, PD〉 problems.

In Barutcuoglu, Schapire and Troyanskaya (2006), the authors used the same tech-

nique to predict the function of genes using a GO taxonomy. Campos, Fern and

Huete (2006) use BNs to predict the categories of web documents considering a

DAG-structured class hierarchy.

2.3.2 Dependence Networks

Dependence Networks (DN) are a relatively new type of PGM first described by

Heckerman et al. (2001). Like BNs, each node of a DN must encode a proba-

bility distribution conditioned on the values of is parents. However, DNs are a

more generic alternative than BNs since they allow for cycles in their graphical

representation.

Like a BN, a DN comprises two parts: 1) the structure of the DN and 2) the
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Figure 2.7: Examples of classification models generated using the NB, TAN, and
BAN classification algorithms, from top to bottom. The node C represents the
class variable, and the nodes from X1 to X5 five predictive features. Edges repre-
sent dependencies between variables. Note that in the model generated by the NB
classifier there are no links between the nodes of the predictive features, while the
links in the nodes of the predictive features in the models generated by the TAN
and BAN form a tree and a DAG, respectively.
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Conditional Probability Distribution (CPD) of each random variable. In DNs the

graphical structure is not restricted to DAGs like in BNs, so it can contain cycles.

Also, the meaning of the edges is different: in BNs the edges represent potentially

causal relationships among variables, while in DNs they represent dependencies

among variables. Such dependencies are useful for prediction purposes, but there

is no intention of trying to represent causality. Like in BNs, the CPDs can be

modelled using probability distribution tables or other types of function.

An example of a DN is shown in Figure 2.8, to be contrasted with its coun-

terpart in Figure 2.6 (for BNs). Note that in the DN there is an explicit edge

between the test difficulty and the student intelligence random variables. In ad-

dition, the relationship between test difficulty and student grade is bi-directional

(and therefore cyclic), i.e., each of them can be used to predict the other. This

is the case because to determine the test difficulty, ones needs to know both the

student grade and the student intelligence, since knowing only either information

is not enough to determine the test difficulty. This additional flexibility, including

the ability to represent cyclic relationships, helps users of DNs understand the

underlying correlations among random variables more easily.

Test
Difficulty

Student
Intelligence

Student
Grade

High
School
Results

Good
Recommendation

Letter

Figure 2.8: A hypothetical Dependence Network (DN) modeling the same random
variables in the BN presented in Figure 2.6.

The main difference between DNs and BNs is that in DNs the neighbours

of a random variable encode the Markov blanket of a node (Koller and Friedman

2009), or in other words, the set of random variables that make the random variable
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represented by that node independent from all other random variables. A BN can

be transformed into a DN by switching every directed edge to a non-directed edge

and, for each node, including non-directed edges from that node to the parents of

the children of that node.

In fact, consistent DNs are equivalent to another type of PGM, namely, Markov

Networks (Koller and Friedman 2009), sharing the same prohibitive time complex-

ity for inference and parametrisation (inference and parametrisation in consistent

DNs is a NP-hard problem).

Parametrisation of DNs involves two steps: structure learning and conditional

probability estimation of the random variables. Like the case of BNs and Markov

networks, learning the optimal structure of DNs is a very computationally expen-

sive problem. The number of possible network structures increases exponentially

with the number of random variables whose probability distribution ones wishes to

estimate. In fact, as previously stated, learning the optimal structures of the three

aforementioned types of PGMs is NP-hard (Koller and Friedman 2009). Therefore,

for moderately large problems, learning the structure optimally is not feasible. To

overcome this computational limitation, Heckerman et al. (2001) proposes the use

of general Dependence Networks (which we call simply DNs from now on), which

are bounded approximations for consistent DNs that have efficient parametrisation

and inference phases.

One possible strategy to avoid prohibitive running times is to use specialist

(domain-specific) knowledge to model the correlations between random variables.

This was the approach employed in the first version of our Hierarchical Dependence

Network (HDN) algorithm, to be presented in detail in Chapter 5. Using special-

ist knowledge has the advantage of avoiding computationally expensive structure

learning algorithms but has the vulnerability of relying on potentially incorrect

and/or incomplete specialist knowledge.

Another strategy is to use heuristics to find reasonably good structures using

a data-driven approach. As an example of a heuristic approach, in Heckerman

et al. (2001) the authors propose using feature selection algorithms to find the

structure of the DN. For each class Ci they build a classifier to predict Ci using

both the features and other classes, which are called predictive classes. Hence,

they extend the feature vector of the instances with all predictive classes and

apply a feature selection algorithm to get the predictive features and predictive

classes that influence prediction of class Ci (the Markov blanket of Ci). The

final structure of the DN will have an edge pointing from each class variable in
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the Markov blanket of Ci to Ci, for every class Ci. Approaches that use feature

selection have the advantage of relying on well-studied and easily available feature

selection algorithms. However, the most computationally efficient feature selection

algorithms tend to consider only bivariate tests of independence, measuring the

association between the class variable and just one feature at a time, which fails

to detect more complex relationships among random variables.

In (Neville and Jensen 2007; Tian et al. 2006) the authors use classification

algorithms that have some type of implicit (or embedded) feature selection (like

decision trees) to model each class and use the implicit feature selection process to

determine the structure of the DN. That is, when inducing a classification model

to predict class Ci, the predictive feature vector is extended to contain the other

classes, used as predictive classes. There will be an edge from some other class

Cj (in the extended feature vector of Ci) to Ci if the model uses Cj to predict

Ci. Relying on classification algorithms to detect the relations between random

variables has the advantage of not depending on a feature selection algorithm used

in a pre-processing phase, which may select a feature set that has lower predictive

performance. On the other hand, one should be careful to avoid classifier over-

fitting when relying on a classification algorithm to select the predictive features,

specially when the number of classes is large.

Another approach, presented in (Gámez et al. 2008; Gámez, Mateo and Puerta

2006) is to use tests of statistical independence, such as the G2 test or χ2, to di-

rectly find the Markov blankets of the classes and thus, determine the structure of

the DN. Note that these tests of independence are normally bivariate, only check-

ing if pairs of random variables are independent, not considering if one random

variable is independent of another given a third random variable, as considering

such dependencies would be too computationally expensive. On the other hand,

statistical tests have the advantage of a solid mathematical basis.

The work of (Guo and Gu 2011) ignores the problem of finding the structure

of a DN and uses a fully connected DN, delegating the task of dependence esti-

mation to the set of classifiers, each of which predicts the value of a different class

variable. Note that this approach is more sensitive to classifier over-fitting, as it

requires a classification algorithm that is able to “ignore” uninformative features

and uniformative predictive classes. On the other hand, this approach avoids the

potentially computationally expensive step of finding the structure of DN directly.

Once the structure of a DN is defined, we need to estimate the conditional

probabilities of the classes. The usual way to achieve this is to use a classification
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model to estimate the conditional probabilities. For instance, in (Heckerman et al.

2001; Gámez, Mateo and Puerta 2008) the authors use decision trees to estimate

the conditional probabilities; in (Gámez, Mateo and Puerta 2006) the authors use

the Naive Bayes classifier; and in (Guo and Gu 2011) the authors use a logistic

regression classification algorithm.

DNs have been used in several non-traditional classification problems: Toutanova

and Klein (2003) used DNs for Part-of-Speech tagging. The authors claimed that

the ability of the DN for representing cyclic relationships among variables in the

hierarchy contributed to the good performance of their algorithm in relation to

the state of the art. The work of Tian et al. (2006) explores DNs in the field of

link-based classification of documents, which can be defined as the classification

of linked objects under the assumption that the classes of linked documents affect

each other. This work reported that the use of DNs increased predictive perfor-

mance compared to baseline approaches. Neville and Jensen (2007) have used

DNs in the task of collective classification, which may be defined as the collective

prediction of correlated instances into a set of classes.

Regarding more traditional classification problems, Gámez, Mateo and Puerta

(2006) have used a DN in the task of multi-class classification. In this work the

authors use a DN with a Naive Bayes classifier to learn the conditional class

probabilities associated with each node and a χ2 statistical test to estimate the

Markov blanket of each node. Later on, the authors enhanced their approach

by using a specialised DN to predict each class, additionally they proposed a

mechanism to improve the time complexity and confidence of the determination

of the Markov blanket of each class label (Gámez et al. 2008). The authors also

reported that the flexibility of DNs was responsible for improving the performance

of their algorithm in relation to baseline approaches.

More recently, Guo and Gu (2011) proposed a method for multi-label classi-

fication using DNs. In their case Gibbs sampling (briefly described below) was

necessary to model relations between classes. The authors reported superior per-

formance compared to several baseline multi-label classifiers.

Gibbs sampling is a Metropolis-Hastings style algorithm that is used to make

inference in DNs and other PGMs. Gibbs sampling works as follows. First, it

randomly assigns values to the unknown random variables present in the network.

Next, in the main loop, the algorithm proceeds to execute two phases: the burn-

in phase and the sampling phase. In the burn-in phase, in each iteration, the

algorithm considers all random variables, one at a time, and it re-draws the value
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of each variable using the current state of the Markov blanket of that random

variable as the ground-truth. In other words, the burn-in phase consists of running

the main loop of the Gibbs algorithm for a pre-defined number of iterations without

considering the values of the variables for the inference of the DN. This is necessary

for the probability estimates to converge to a stationary distribution.

After the burn-in phase, the sampling phase starts. In this phase the states of

the random variables are sampled. After a given number of sampling iterations,

the algorithm averages over the sampled random variable values and returns this

average as the network’s probabilistic inference (Heckerman et al. 2001).

It is important to note that although Gamez et al. use DNs for classification,

(Gámez, Mateo and Puerta 2006) do not use Gibbs sampling for inference. This is

not necessary since they are in the multi-class scenario and do not need to consider

relations between multiple classes occurring at the same time.

As far as we know there is no work exploring Dependence Networks in the

Hierarchical classification setting, as proposed in Chapter 5 of this thesis.

2.4 Related Work Exploring Class Label Depen-

dencies in Hierarchical Classification

There are several works dealing with hierarchical classification that explore de-

pendencies among class labels. In the next sub-sections we deal with two types

of approach that use class dependencies: prediction consistence maintenance ap-

proaches and prediction propagation approaches.

Prediction consistence maintenance approaches employ some strategy to “fix”

inconsistent predictions (usually made by local classifiers) across class nodes. The

meaning of ‘inconsistent predictions’ varies depending on whether the hierarchical

classification model predicts the class label membership probabilities of the in-

stances or it predicts the actual class label that the instances are annotated with

(a ‘crisp’ classification).

For probabilistic classification outputs, the predictions are inconsistent if the

class-label probability of a given class in the hierarchy is greater than the probabil-

ity of any of its ancestors. The predictions are inconsistent for crisp classification

if the classifier annotates an instance with some class label in the hierarchy, but

does not annotate that instance with all the ancestors of that class label.

Prediction propagation approaches, on the other hand, employ some strategy
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to use the predictions of some class nodes during the prediction of other nodes,

normally using the class predictions as extended features.

The main difference between these two approaches is that prediction consis-

tence maintenance algorithms usually adjust the predictions of the hierarchical

classification algorithm after the classifications are made using the implicit class

relationships defined by the class hierarchy. So, although there is some informa-

tion flowing between class labels, this information is not taken in consideration

during the prediction phase of the base classifiers. Techniques based on the pre-

diction propagation approach on the other hand, use the predictions of other base

classifiers during their prediction phase. We apply both techniques in our DNs

proposed in Chapter 5.

2.4.1 Exploring Class Label Dependencies for Prediction

Consistence Maintenance

In (Barutcuoglu and DeCoro 2006) the authors use the Bayesian network frame-

work to fix the inconsistent predictions made by k-NN classification algorithms

induced to predict each class label separately. Each class prediction (as output

by k-NN) is represented as a node in the Bayesian network, and the network’s

edges represent dependencies among the predictions of the base k-NN classifiers.

The proposed method outputs the most probable consistent predictions according

to the Bayesian network. They conclude that their approach always improves the

classification performance of their base k-NN classification algorithms.

In (Bi and Kwok 2011) the authors model the prediction consistence mainte-

nance problem as an optimisation problem that can be solved optimally and effi-

ciently using the algorithm “Condensing Sort and Select”. The authors shown that

their approach achieves better predictive performance when compared to the PCT

hierarchical classification algorithm, which will be described in detail in Chapter 5.

In (Cesa-Bianchi, Gentile and Zaniboni 2006) the authors propose a proba-

bilistic framework to model hierarchical classification problems and propose an

approach to minimise a loss function for the model, given the predictions of local

classifiers. Their approach also fixes inconsistent predictions. They compare their

approach to flat SVMs and hierarchical SVMs. Their work did not achieve better

predictive performance than the baseline techniques (which don’t try to optimise

the loss function directly).

The works of (Valentini 2009; Valentini and Cesa-Bianchi 2008; Valentini and
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Re 2009) propose variations of a simple algorithm to ‘fix’ inconsistent predictions.

Their algorithm scans the class hierarchy from the root node to a leaf node and

uses a simple heuristic to adjust the predictions when necessary. They conclude

that their approach consistently outperforms an algorithm with non-adjusted pre-

dictions.

In (Obozinski, Lanckriet and Grant 2008) the authors test 11 prediction con-

sistence maintenance methods for hierarchical classification. The main conclusions

are that, as expected, prediction consistence maintenance tends to improve pre-

dictive performance, but not always. In addition, in general, Bayesian approaches

do not perform so well, compared to other approaches, including simple heuristics.

2.4.2 Exploring Class Label Dependencies for Prediction

Propagation

In (Merschmann and Freitas 2013) the authors propose an Extended Local Hierar-

chical Naive Bayes (ELHNB) classifier to predict protein and gene functions. Their

approach considers relationships between child/parent classes when constructing

the classification model. Their work, however, is limited to 〈T, SPL, FD〉 prob-

lems. This method will be further discussed and extended to DAG problems in

Chapter 4, and then used in the experiments reported in Chapter 5.

In (Ramı́rez-Corona, Sucar and Morales 2016), the authors propose the Chained

Path Evaluation method for hierarchical classification, which uses the prediction

of the parent classes as features, a pruning mechanism to perform non-mandatory

leaf node predictions and an algorithm to retrieve the most probable path from

the root to a node in the class hierarchy. The authors tested the algorithm in

several hierarchical classification datasets and it was statistically equivalent to the

baseline algorithms in most tests.

In (Mayne and Perry 2009) the authors use a Naive Bayes algorithm, following

the local hierarchical classification approach, to predict hierarchically organised

document classes and use the probabilities of the parent classes as features for

predicting the child classes.

In (Cerri et al. 2016; Cerri, Barros and de Carvalho 2014), the authors develop

a hierarchical Neural Network algorithm, using one neural network per class level

and using the output of one level as the input of the next. They report that their

algorithm is better than several strong baselines and the previous version of their

own algorithm.
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2.5 Summary

This chapter first provided a broad overview on the data mining background re-

quired to grasp the contents of the rest of this thesis. This chapter started by

first reviewing basic concepts of the classification task at Section 2.1, defining the

mathematical notation that will be used in the remainder of this thesis; the most

common types of classification problems (binary, multi-class and multi-label); and

other basic data mining concepts such as feature extraction/selection and the pre-

dictive performance evaluation of classification algorithms.

After these concepts are properly defined, we went about explaining how tradi-

tional decision tree classification algorithms work in Section 2.1.1. This is essential

to the rest of this thesis because we have used several variations of hierarchical

decision tree classification algorithms in our experimental study. We explained the

basic idea behind the decision tree induction process and how the model can be

interpreted by the users.

In Section 2.1.2 we explored basic concepts of ‘flat’ Support Vector Machines

(SVMs), including the intuition behind the training and testing phases and their

overall runtime complexities. SVMs are extensively used throughout this thesis to

model probabilistic class distributions in our hierarchical classifiers.

To conclude the presentation of traditional data mining techniques used in

this thesis, we presented in Section 2.1.3 the concept of classifier ensemble. This

is a common technique to improve predictive performance that reduces the vari-

ance of single classification models by using several diverse models and combining

their predictions. These models are generated varying some aspect of the training

procedure. These techniques will be explored later in the context of hierarchical

classification.

After these basic ‘flat’ classification concepts were laid out, we started explor-

ing, in Section 2.2, more advanced aspects of data mining, starting with ‘hierar-

chical classification’, defining several aspects of this type of classification problem.

We have listed the most traditional approaches to deal with hierarchical classi-

fication, categorising the hierarchical classification algorithms and problems in a

systematic way. Next we explained the workings of two state-of-the-art hierarchi-

cal classification algorithms (PCT and PCTEN) that will be extensively used as

strong baselines in this thesis.

In Section 2.3 we explored concepts related to Probabilistic Graphical Models

(PGMs) for ‘flat’ classification, focusing on Bayesian Network models and the (less
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used) Dependency Network models. This section explained how these models are

constructed (how the structure and the parameters of the models are determined)

and what are the limitations and strengths of these two types of PGMs.

Lastly, in Section 2.4 we reviewed some works that are related to exploring

class label dependencies to improve the performance of both ‘flat’ and hierarchical

classification algorithms. We separate these works into two broad types: works

exploring dependencies for maintaining the consistency of predictions across hier-

archical classes and works using dependencies to use the predictions made in one

class to improve the predictions of some other class. The later type of dependency

exploration will be used in some hierarchical classification algorithms proposed by

us later on.



Chapter 3

Background on Bioinformatics

and Ageing

3.1 Bioinformatics

The term bioinformatics was coined by Paulien Hogeweg in the early 1970’s, mean-

ing “the study of informatics processes in biotic systems” (Hogeweg 2011). In the

context of genetics, this definition evolved after the “data deluge” of genomic in-

formation that started in the late 1980’s to mean “the development and use of

computational methods for data management and data analysis of sequence data,

protein structure determination, homology-based function prediction, and phy-

logeny”(Hogeweg 2011). In a broader sense, “bioinformatics” took the meaning of

the “research, development, or application of computational tools and approaches

for expanding the use of biological, medical, behavioral or health data, including

those to acquire, store, organize, archive, analyze, or visualize such data (Huerta

et al. 2000).”

In this literature review we shall focus on the techniques to annotate genes

/proteins and the most used open databases of genomic information used for

this end. The early techniques to annotate unknown-function genes/proteins con-

sisted in using homology-based transfer sequence-alignment algorithms such as

BLAST (Altschul et al. 1997). The idea was, given an unannotated gene/protein

sequence, to find the most similar annotated sequence and transfer its annotations

to the unannotated sequence. One of the problems with this approach is that sim-

ilar sequences may have very different functions and the same functions may be

performed by genes/proteins with different sequences (Friedberg 2006; Cai 2003).

47
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Although still popular, these techniques are being relatively less used at present,

given space to more sophisticated algorithms that use other features rather than

only the sequence information (Friedberg 2006) and rely on more complex tech-

niques to use machine learning to classify large-scale biological data (Bacardit and

Llorà 2013; Swan et al. 2013). This fact is evident when analysing the results of the

latest Critical Assessment of Functional Annotation (CAFA) competition1 (Jiang

et al. 2016), in which the standard sequence alignment algorithm was consistently

outperformed by more sophisticated machine learning techniques that use several

sources of information.

For instance, one common approach is to use the existence of certain motifs in

the protein sequence to infer the function of the protein (Friedberg 2006). Motifs

are patterns that appear in different proteins and are somehow related to their

function. There are many public motifs databases, for instance Pfam (Finn et al.

2008), Prosite (Sigrist et al. 2013), PRINTS (Attwood et al. 2003) and Inter-

pro (Hunter et al. 2012). Motifs are normally represented as (flexible) patterns

(where one implicitly defines a set of amino acid sequences that match the motif)

or as Hidden Markov Models (or profiles) (where one defines a model that returns

the probability that a given amino acid sequence matches the motif).

One important recent development in the field of bioinformatics is the devel-

opment of controlled vocabularies and a structured, well-defined, organisation of

terms defining gene/protein functions. The Gene Ontology (GO) (Harris et al.

2004) and the MIPS Functional Category (FunCat) (Ruepp et al. 2004) are so-

lutions to this problem. They define standardised class hierarchies and terms so

that functions of genes and proteins may be annotated with reasonable precision.

3.1.1 The Gene Ontology

The Gene Ontology (GO) project (The Uniprot Consortium 2007) aims to provide

a comprehensive and freely available resource to annotate the functions of genes

and its products. The GO comprises a structured and controlled vocabulary to

classify several aspects of gene functions. The ontology is continuously updated

and curated to reflect the current knowledge of biologists about the genes of several

organisms.

The GO hierarchy is organised as a Direct Acyclic Graph (DAG), with edges

representing “Is-A” and “Part-Of” relationships between terms. The nature of

1http://biofunctionprediction.org/cafa/

http://biofunctionprediction.org/cafa/
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these relationships implies that if a gene is annotated with a term, by definition,

all ancestors of that term are implicitly assigned to the gene as well. This is

known as the “true path rule” and is one of the factors that hinder the use of

independent classifiers for hierarchical classification: it is not trivial to transform

several classifications that violate the “true path rule” into a consistent one.

Figure 3.1 shows a small part of the GO containing all ancestors of the GO term

GO:0006139 (nucleobase-containing compound), with edges representing ‘IS-A’

relationships between terms. Note that, traditionally, the edges of DAGs represent

super-type relationships, that is, there is an edge from one node to another node if

the first node is a general category of the second node. However, because the GO

considers ’IS-A’ relationships, the directions of the edges are inverted, pointing

from child node to parent node, that is, there is an edge from one node to another

node if the first node is a sub-category of the second node.

Generally speaking, the GO has 3 independent types of annotations: 1) Molec-

ular Function (about 10,000 terms) – annotations that describe activities of the

products of a gene at the molecular level, 2) Biological Process (about 25,000

terms) – annotations that describe biological goals accomplished by the gene, and

3) Cellular Component (about 3,000 terms) – annotations that describe the loca-

tions where gene products are active at the cellular level.

The use of GO terms to annotate gene and protein functions has become a

standard in the field of protein function prediction, being broadly used in many

works in the area of hierarchical function prediction of genes and proteins.

3.1.2 The FunCat Class Hierarchy

The FunCat (MIPS Functional Catalogue) (Ruepp et al. 2004) may be described

as an organism-independent hierarchical classification scheme for the description

of gene and protein functions. Unlike the GO, the FunCat hierarchy is organised

as a tree, not a DAG. Trees are arguably easier to manage and, therefore, are

the representation of choice in some domains. The FunCat hierarchy provides a

coarser level of information than the GO annotation, therefore, being easier to

maintain and interpret.

The main categories of the FunCat catalogue are: metabolism, information

pathways, transport, perception and response to stimuli, developmental processes,

localisation, and experimentally uncharacterised proteins. The depth of the Fun-

Cat hierarchy is much shallower than GO: the largest path from the root to a leaf
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Figure 3.1: Example of a Gene Ontology (GO) sub-hierarchy showing all ancestors
of the GO term GO:0006139 (nucleobase-containing compound). This figure was
generated using the QuickGO web tool (http://www.ebi.ac.uk/QuickGO/).

http://www.ebi.ac.uk/QuickGO/


CHAPTER 3. BACKGROUND ON BIOINFORMATICS AND AGEING 51

is 6 levels deep in the FunCat, while in the GO the deepest node is dozens of levels

deep.

Figure 3.2 shows a part of the FunCat hierarchy. Note that this hierarchy is

structured as a tree, with each node having no or one parent.

Protein fate

Protein folding and stabilisation

Protein targeting, sorting and translocation

Assembly of protein complexes

Protein/peptide degradation

cytoplasmic and nuclear protein degradation

lysosomal and vacuolar protein degradation

Protein modification

modification with fatty acids

modification with sugar residues

modification by de-, auto- and phosphorylation

modification by acetylation, deacetylation

modification by ubiquitination, deubiquitination

modification by ubiquitin-related proteins

posttranslational modification of amino acids

protein processing

Figure 3.2: Example of a part of the FunCat hierarchy showing all descendants of
the term ‘protein fate’ up to the third level.

3.2 An Overview of Theories of Ageing

Arguably, one of the first steps necessary to investigate the mechanisms of the age-

ing process is to understand why ageing happens at all (Kirkwood 2002). Among

the many existing theories that try to explain the ageing process - Medvedev (1990)

catalogued more than 300 - we cite the ones that are the most prominent.

We begin by presenting four popular theories that try to explain the ageing

process in the light of evolution.

1. The disposable soma theory ; first put forward by August Weismann at the
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end of the 19th century, and revised by Kirkwood (1977); states that, be-

cause of evolutionary pressures, organisms segregate resources between germ,

reproductive cells, and soma, all other cells. As organisms age, they sacrifice

the investment in somatic cells to maintain their reproductive capabilities,

culminating in the ageing of the organism.

2. The mutation accumulation theory (Kirkwood and Austad 2000) puts forth

that because the greatest contribution to create the next generation of in-

dividuals comes from the young, evolutionary pressure fades as individuals

grow older. For this reason, deleterious mutations expressed later in life are

not strongly negatively selected.

3. The antagonistic pleiotropy theory (Williams 1957) states that there might

be advantageous mutations early in life that are harmful later on, and be-

cause the selective pressure fades with the ageing of individuals, the negative

traits expressed later in life are maintained in the population so that younger

individuals can have some evolutionary advantage.

4. The r- and K-selection theory is based on the idea that animals in hazardous

environments, with high mortality, are selected for rapid development and

faster ageing; whilst animals in non-hazardous environments tend to favour

delayed development and slower ageing (Austad 1997).

Besides the evolutionary-theories, there are damage-based theories of ageing.

These theories state that ageing is the result of accumulative damage in the cellular

components of the organism. The free radical theory states that cell metabolism

generates harmful molecules (reactive oxygen species) that damage cellular com-

ponents (Harman 1956). However, there is controversy whether this form of ageing

is relevant or not. Experiments have been carried out with strains of model or-

ganisms with over-expressed genes responsible for combating these molecules and

no significant difference in the ageing of individual animals was observed (de Ma-

galhães, Costa and Church 2007). However, oxidation levels in related short-lived

and long-lived species were shown to be statistically different (Wieser et al. 2011).

Similarly, the DNA damage theory (Szilard 1959) states that the build-up of

damage in the DNA could result in ageing, i.e., the damaged DNA may lead to the

gradual decline of biological function that we call ageing. This theory has been

recently reviewed in (Freitas, Vasieva and de Magalhães 2011).
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Although there is controversy whether there are specific genes whose function

is to control the ageing process, the idea that single genes influence the ageing

process is now broadly accepted by the research community. Several experiments

have been carried out to demonstrate the effects of these genes in the ageing

process of model organisms. For instance, the knockout of the age-1 gene in

worms results in individuals living twice as long (Friedman and Johnson 1988). In

mice, knockout of the prop-1 gene results in individuals living 50% more (Brown-

Borg et al. 1996). One of the most interesting aspects of these experiments is that

these genes are involved in the same pathway in the two organisms, which may

point to a single genetic mechanism that influences the ageing process in these two

completely different species. This motivates the field of bioinformatics and data

mining to develop methods for the identification of genes involved in the ageing

process.

3.3 A Review of Supervised Machine Learning

Applied in Ageing Research

Understanding the ageing process is a very challenging problem in the fields of

biology and bioinformatics. Nowadays, with an ever-increasing amount of bio-

logical data coming from different high-throughput experiments, it is essential to

study this data using machine learning methods that can potentially discover new

patterns (or knowledge) in the data, reaching meaningful biological conclusions.

One of the ways machine learning tools can be used to assist biologists un-

derstanding the ageing process is through the use of supervised machine learning

algorithms, which perform classification or regression tasks, as explained in Chap-

ter 2. These algorithms use pre-annotated data, for instance, proteins with known

functions, to infer the annotations of new, uncharacterised proteins.

Besides being useful for inference, supervised machined learning algorithms

may have the additional purpose of discovering interpretable knowledge. For in-

stance, experts can interpret the results of such algorithms to find patterns to

classify a protein as ageing-related, or to investigate the relative importance of

features used to predict the chronological age of individuals.

Machine learning experiments are relatively fast; and they can make predictions

that help to suggest promising “wet-lab” biological experiments to be done. This

approach is cost effective, since wet-lab experiments are in general much slower
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and expensive than computational experiments.

In this section we review works that use supervised machine learning to study

ageing-related proteins and, at the same time, interpret some part of the supervised

machine learning results in order to gain biological insights to help understanding

the very complex ageing process. This review was done in collaboration with Dr.

João Pedro de Magalhães, a biogerontologist at the University of Liverpool, and

has been submitted for potential publication (Fabris, Freitas and Magalhães 2017).

3.3.1 A Categorisation of Works on the Biology of Ageing

Based on Supervised Learning Tasks

In this section we present a categorisation of papers studying the biology of age-

ing according to the different types of supervised learning tasks addressed in the

papers we reviewed – namely binary classification, hierarchical classification and

regression.

The inclusion criteria we adopted were the following: First, the paper must have

used a supervised machine learning algorithm during the process of studying the

biology of ageing. The work might use the supervised machine learning algorithm

as the main source of biological insight (e.g. (Fabris, Freitas and Tullet 2015))

or as an essential part of a larger workflow studying the biology of ageing (e.g.

(Huang et al. 2012)). Second, the paper must have discussed at least some part of

the predictive model built by the algorithm in the context of the ageing literature.

Papers that just report a predictive performance measure for the built model(s),

without interpreting it (them), are not the focus of this review.

Ageing is a complex biological phenomenon: it is the result of multiple inter-

acting genetic and environmental factors. Due to this complexity, ageing has been

studied at several levels of abstraction using supervised machine learning algo-

rithms, both in the definition of the types of predictor attributes (features) and in

the definition of the target variable.

To define predictor attributes, some works use low-level features derived from

“raw” amino acid sequences of ageing-related proteins (e.g.: (Fabris and Fre-

itas 2016)). Other works use biomarkers of higher-level biological systems like

metabolic and renal systems (e.g.: (Putin et al. 2016)). Some authors even use

non-traditional hierarchical features to represent instances, exploring the hierar-

chical relationships among gene functions available in curated ontologies, such as

the Gene Ontology (GO) (e.g.: (Wan and Freitas 2013)).
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Supervised
Machine
Learning

Classification Binary

(Freitas, Vasieva and de Mag-
alhães 2011; Jiang and Ching
2011; Fang et al. 2013; Wan and
Freitas 2013; Wan, Freitas and de
Magalhães 2015; Fabris and Fre-
itas 2016; Song et al. 2012; Feng
et al. 2012; Li, Zhang and Guo
2010)

Hierarchical (Fabris, Freitas and Tullet 2015)

Regression
(Fortney, Kotlyar and Jurisica
2010; Putin et al. 2016; Naka-
mura and Miyao 2007)

Figure 3.3: Categorisation of works using supervised machine learning applied to
the biology of ageing.

In this work we focus more on the types of target variables used in ageing re-

search, since the type of target variable determines the type of supervised learning

task being addressed. Although the use of interpretable predictor attributes is

essential for reaching biological conclusions, this topic has been explored in other

works about machine learning applied to general biological research (Pandey, Ku-

mar and Steinbach 2006), which could be used as a reference for a biologist using

machine learning for studying the ageing problem. On the other hand, a categori-

sation of the type of target variables to study ageing has never been proposed, as

far as we know.

Figure 3.3 shows the full characterisation of the works we considered in the

three types of supervised machine learning task (binary classification, hierarchical

classification and regression) we are studying. Table 3.1 (in page 67) contains the

full list of works that were considered in this thesis with supplementary information

about each work. Next, we go into detail on each type of target variable present

in the works we reviewed.
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Binary Classification in Ageing Research

The majority of works we reviewed uses a binary classification algorithm. Ar-

guably, using binary target variables facilitates interpretation, as the user does

not have to deal with the complexities of a larger number of class labels when

interpreting the model. It can be argued, however, that some information is lost

when not using a larger number of class labels or hierarchical classes (see Sec-

tion 3.3.1).

When using binary classification, the first task is to define the classes you

wish to predict/distinguish between. Next, we list how authors have defined these

classes in the works we reviewed.

Ageing-related DNA repair - Some works (Freitas, Vasieva and de Ma-

galhães 2011; Jiang and Ching 2011) have built classification models to allow

the discrimination of ageing-related and non-ageing-related DNA repair genes. In

these works, the positive class is defined as DNA repair genes that are also re-

lated to ageing, while the negative class comprises DNA repair genes that are not

related to ageing. This differentiation is important because understanding why

some DNA repair genes are ageing-related, while others are not, can help biolo-

gists pinpoint the molecular causes or mechanisms of ageing and some progeroid

syndromes (accelerated ageing).

In (Fang et al. 2013) authors propose a different but related discrimination,

classifying known ageing genes into DNA repair or non-DNA repair related. In

other words, the negative class is “ageing-related non-DNA repair”, instead of

“non-ageing related DNA repair”; while the positive class is the same as in (Freitas,

Vasieva and de Magalhães 2011; Jiang and Ching 2011).

Pro-longevity proteins - Other works (Wan and Freitas 2013; Wan, Freitas

and de Magalhães 2015) consider pro-longevity vs. anti-longevity class labels when

constructing the binary-class datasets. Pro-longevity genes are defined as the

genes whose over-expression extends lifespan, or whose decreased activity reduces

lifespan. Anti-longevity genes have the opposite effects (Tacutu et al. 2013). This

definition of positive and negative instances is interesting to uncover properties

that define proteins as pro-longevity or anti-longevity. However, a predictive model

built for this binary classification naturally has the weakness that it is not suitable

for classifying all proteins of an organism: as the majority of proteins are not

pro- nor anti-longevity, models trained without these proteins would likely return

incorrect predictions for many proteins with unknown longevity effect.
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To address this problem, in (Huang et al. 2012) the authors introduce an ad-

ditional classifier prior to passing instances to the pro-/anti- longevity classifier.

This layer differentiates between lifespan change and no lifespan change. This ex-

tra layer complicates model interpretation but enables the use of the classification

model in datasets with a larger and more diverse set of proteins.

Another type of target variable definition we have encountered (Li, Dong and

Guo 2010) considers as positive “pro-longevity” proteins and as negative proteins

that are not “pro-longevity”, regardless of whether or not they have an “anti-

longevity” effect.

Ageing-related proteins - In (Fabris and Freitas 2016) the authors consider

as positive instances proteins that are involved in increased mortality and ageing,

and as negative instances proteins that are involved in mortality and not involved

in ageing. It is interesting to study what differentiates these two classes, since

some mutations reduce the lifespan of organisms (e.g., they increase the incidence

or lethality of some diseases) but are believed not to be related to ageing.

Hierarchical Classification in Ageing Research

Typical classification problems involve a flat set of class labels, i.e., there are no

hierarchical relationships among the class labels to be predicted. By contrast, in hi-

erarchical classification problems, as discussed in Section 2.2, the set of class labels

is organised into a hierarchy, usually a tree or a DAG (Directed Acyclic Graph),

where each node represents a class label and the edges represent generalisation-

specialisation relationships among classes. Dealing with hierarchical classes is

common when studying the ageing process, since the main ontology used to anno-

tate proteins related to ageing is the Gene Ontology (GO), which is organised as a

DAG where, broadly speaking, nodes represent functions or processes performed

by genes or proteins, and edges represent specialisation-generalisation relations

between those functions or processes.

Usually authors tend to ignore the hierarchical organisation of the GO and

deal only with flat classes, which are easier to interpret and to work with, as

traditional classification algorithms can be used. However, hierarchical classifi-

cation algorithms that exploit hierarchical class relationships can achieve higher

predictive performances than “flat” classification algorithms (Silla Jr. and Freitas

2011a).

Recall that hierarchical classification algorithms may be divided into two broad
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types (Silla Jr. and Freitas 2011a): global or local. Local Hierarchical Classifi-

cation (LHC) algorithms first build a set of local classification models (base clas-

sifiers) by training a traditional (flat) classification algorithm for each (typically

small) part of the class hierarchy in the training phase. Then they combine all

the local predictions during the testing phase, when predicting the class of a new

instance. By contrast, global hierarchical classification algorithms build a single

global classification model predicting classes in the whole class hierarchy.

Global hierarchical classification algorithms have the advantage of producing

a single coherent global classification model, which tends to be more easily in-

terpreted than a large number of different local classification models. For more

details about the differences between local and global approaches for hierarchical

classification, please refer to Section 2.2.

The work of Fabris, Freitas and Tullet (2015), the only one to deal with hier-

archical classification of ageing-related genes/proteins and interpreting the corre-

sponding classification model, uses a global hierarchical decision tree model to clas-

sify ageing-related proteins in hierarchical classes. The classes are ageing-related

because they are the over-expressed hierarchical classes present in the ageing-

related proteins from the GenAge database (de Magalhães et al. 2009).

Regression in Ageing Research

Some works use regression techniques to study the ageing problem. Recall that

in regression the target variable is continuous (real-valued) whilst in classification

problems the target variable is categorical (nominal or discrete).

In ageing research, regression techniques have been used to predict chronologi-

cal age given a set of biomarkers (Fortney, Kotlyar and Jurisica 2010; Putin et al.

2016) and to build an index of the rate of ageing given a set of biomarkers (Naka-

mura and Miyao 2007).

It is important to identify which biomarkers are most related to ageing pheno-

types, thus enabling, for instance, the use of biomarkers to measure the results of

interventions in ageing-research.
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3.3.2 Biological Insights Derived from the Supervised Ma-

chine Learning Algorithms

Supervised Machine Learning Findings Support the Link Between Age-

ing/Longevity and Specific Types of DNA Repair

The link between DNA repair and ageing/longevity is well established in the bio-

logical literature: it has been shown that some ageing-related diseases in humans

are directly linked to malfunctioning pathways related to DNA maintenance – e.g.

some progeroid (accelerated ageing) syndromes are caused by mutations in DNA

repair (Lombard et al. 2005; Freitas and de Magalhães 2011). Moreover, it has

been shown that over-expression of DNA-repair-related genes increase lifespan in

some animal species and that DNA-repair efficiency is positively correlated with

increased longevity in several species (Shaposhnikov et al. 2015).

In (Freitas, Vasieva and de Magalhães 2011), the authors noted, after analysing

the model generated by the decision tree algorithm J48 (induced to differentiate be-

tween ageing-related DNA repair genes and non-ageing-related DNA repair genes

in humans), that if a DNA repair gene’s protein product interacts with XRCC5

(Ku80), that gene is likely ageing-related.

Interestingly, links between Ku proteins and longevity have been found by

other supervised machine learning works studying connections between DNA repair

genes and ageing in humans. In (Jiang and Ching 2011), the authors use an SVM

algorithm to distinguish between human ageing-related DNA repair genes and hu-

man non-ageing-related DNA repair genes. By analysing the instances (proteins)

furthest from the SVM’s hyperplane, the authors identified that XRCC6 (Ku70)

and MLH1 are strongly predicted as ageing-related. Ku70, Ku80 (from (Freitas,

Vasieva and de Magalhães 2011)) and MLH1 are involved in non-homologous end

joining (Bannister, Waldman and Waldman 2004; Fattah et al. 2010). Interest-

ingly, the Ku protein family is highly conserved among eukaryote species and is

a well-conserved longevity regulator across species, being a key target of ageing

research (Dynan and Yoo 1998). The authors also point out that PARP1, PCNA

and APEX1 are essential to base excision repair, a pathway that is known to be

affected by deficient WRN proteins, which are directly linked to Werner syndrome,

a disease characterised in humans by accelerated ageing.

Not surprisingly, a homolog of WRN (WRN1) has been identified as longevity-

related in the worm while classifying worm genes into longevity-related and non-

longevity-related in (Li, Dong and Guo 2010). Interestingly, however, defects in
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the WRN protein in mice do not cause, by themselves, Werner-like phenotypes.

However, in conjunction with defects in P53 they do cause the typical Werner

syndrome phenotypes (Lombard et al. 2000). This stresses the already known

fact that even in relatively closely related species (like mouse and human) ageing-

related genes in one species may not directly lead to the same ageing phenotype

in another (de Magalhães 2014).

Still regarding WRN and P53, in (Fabris, Freitas and Tullet 2015) the authors

noted (by interpreting a classification model) that interaction with P53 is a good

predictor of ageing-related GO terms in humans and mouse. In both human and

mouse, P53 is closely related to WRN, and both proteins participate in DNA

repair, reinforcing the importance of WRN to predict ageing-related GO terms in

humans.

In (Wan, Freitas and de Magalhães 2015) one of the features selected to classify

proteins as ageing-related in yeast was the GO term “double-strand break repair”,

directly related to DNA-repair.

In (Huang et al. 2012), “mitochondria genome maintenance”, also related to

DNA maintenance, was one of the features selected to predict the effect of a gene

deletion as a “change” or “no change” of lifespan in yeast.

In (Fang et al. 2013), the authors used the Gini index calculated by the Ran-

dom Forest algorithm to select the 18 most relevant Protein-Protein-Interaction

(PPI) features. Out of these 18 features, the authors highlighted interactions with

proteins BLM, ERCC2, FANCG, MSH2, ATM, MRE11A and ATR, which play a

role in check-point control and DNA damage check; and interactions with proteins

BLM, WRN, MRE11A and Mre11, which are associated with the maintenance of

telomeres (Fang et al. 2013).

In summary, it appears that the results of supervised machine learning algo-

rithms have corroborated the fact that DNA repair is strongly linked to ageing/-

longevity. DNA repair-related features are commonly chosen as good predictors

of ageing/longevity by classification algorithms. Furthermore, proteins related to

DNA-repair and maintenance are commonly predicted as ageing-related. To some

extent, the machine learning algorithms are reflecting a bias stemming from the

biological knowledge already encoded in the data. However, the algorithms can

also find proteins highly related with DNA repair that are not annotated as ageing-

related (like the ones studied in (Li, Dong and Guo 2010)). In fact, in (Li, Dong

and Guo 2010), the authors proceeded to carry out wet-lab experimentation of

proteins predicted to be longevity-related in worms, identifying two proteins that
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increase lifespan in the animal, namely: VPS-34 and PHI-38. In addition, the

analysis of the classification models built by the algorithms suggests that, out of

the different types of DNA repairs, non-homologous end joining seems to be the

one most relevant for the ageing process.

Ageing-Related Proteins Tend to be Highly Connected and Are En-

riched for Certain Functions

Other important type of biological conclusion derived by supervised machine learn-

ing algorithms is how ageing-related proteins are connected both between them-

selves and with non-ageing related proteins.

In (Li, Dong and Guo 2010), the authors conclude (with statistical support)

that several proteins’ properties derived from interaction graphs (topological fea-

tures) and sequence analysis have different distributions, depending on whether or

not they are longevity-related. Next, we summarise the main biological conclusions

the authors have drawn for longevity-related proteins or genes in worms:

1) Longevity-related proteins (LRPs) have, on average, more interaction part-

ners than non-LRPs. 2) LRPs have more LRPs in their neighborhood than non-

LRPs. 3) LRPs tend to be closer between themselves than to other proteins. 4)

LRPs tend to occupy a more central location in the PPI graph. 5) LRPs tend

to be expressed together. 6) LRPs tend to have longer amino acid sequences. 7)

Longevity-related genes tend to be more conserved. 8) Longevity-related genes

are enriched for certain functions (e.g. Negative regulation of cell proliferation,

Positive regulation of non-apoptotic programmed cell death, Cilium biogenesis

and regulation). 9) Longevity-related genes tend to show certain RNAi pheno-

types (e.g. abnormal DAF dauer formation, abnormal transgene expression, and

variable embryonic terminal arrest).

Similarly to (Li, Dong and Guo 2010), in (Song et al. 2012; Feng et al. 2012;

Li, Zhang and Guo 2010) the authors use topological network features to study

the ageing process. The latter works, however, predict ageing-related genes vs.

non-ageing-related genes, not longevity vs. non-longevity genes. The difference

between non-ageing-related genes and longevity-related genes is subtle but impor-

tant: an increase in longevity may not be a result of changes in the ageing process.

For instance, longevity may be increased by mutations that improve resistance

against some disease, not altering the overall ageing process (de Magalhães et al.

2009). Also, the works in (Song et al. 2012; Feng et al. 2012; Li, Zhang and Guo
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2010), study fruit flies, mice and humans, while (Li, Dong and Guo 2010) studies

worms. Next, we summarise the biological conclusions drawn in (Song et al. 2012;

Feng et al. 2012; Li, Zhang and Guo 2010); all with statistical support.

1) For fly, mouse, and human; ageing-related proteins (ARPs) have, on average,

more interaction partners than non-ageing-related proteins. 2) For fly and mouse;

ARPs tend to be in more tightly connected protein clusters than non-ARPs. 3)

For fly, mouse, and humans; ARPs have more ARPs in their neighborhood than

non-ARPs. 4) For fly; ARPs tend to be closer between themselves than to other

proteins. 5) For fly and human; ARPs tend to occupy a more central location in the

PPI graph. 6) For fly and mouse; ARPs behave more like hubs than non-ageing

related proteins. 7) For human; ARPs tend to be expressed together. Hence,

despite the differences in species and data, the conclusions in (Song et al. 2012;

Feng et al. 2012; Li, Zhang and Guo 2010) are broadly similar to the conclusions

in (Li, Dong and Guo 2010).

In (Fortney, Kotlyar and Jurisica 2010), the authors show that their technique

of creating modular subnetworks of longevity genes creates modules with statisti-

cally significantly more longevity genes. Also, they claim, with statistical support,

that modular subnetworks participate in many different age-related biological pro-

cesses.

In (Huang et al. 2012), the authors indicate that the edge density and edge

weight density of the deletion network and the local centrality of a deletion gene

can be used to predict ageing-related effects of gene deletion.

In summary, all these works point to the fact that ageing-related proteins tend

to be more connected than other proteins and also appear to be closer to each

other in protein-protein interaction networks than other proteins.

Autophagy and Apoptosis Mechanisms Are Associated with Ageing and

Longevity

The mechanisms of autophagy and apoptosis control the turnover of organelles and

programmed cell death, respectively. Several works have identified that autophagy/apoptosis-

related proteins are related to ageing (Kurz, Terman and Brunk 2007). Next, we

review the main biological conclusions regarding these processes drawn from su-

pervised machine learning works.

In (Li, Zhang and Guo 2010), authors classify human proteins as ageing-related
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or non-ageing-related using SVMs. They highlight that protein “VPS-34”, in-

volved in autophagy (Jaber and Zong 2013), was predicted as ageing-related with

a probability of 0.93.

In (Feng et al. 2012), where authors classify mouse proteins as ageing-related or

non-ageing-related using SVMs, they mention that the gene Akt1 was predicted as

ageing-related with high probability, and this gene is strongly involved in apoptosis

(Xu, Liu and Songyang 2002).

In (Wan and Freitas 2013), among the top ranking terms selected to predict the

pro-longevity effect of a gene in worms were “autophagy”, and “apoptotic process”,

once again reinforcing the link between ageing and autophagy/ apoptosis. In

(Wan, Freitas and de Magalhães 2015), the authors identified “apoptotic signaling

pathway” as a good anti-longevity predictor for worms.

In (Fang et al. 2013), interactions with a number of proteins, including BLM,

ATM, RPA1, PCNA and HSPA4, which are linked to the apoptosis of tumor cell

lines, were found to be good predictors of DNA-repair ageing-related proteins.

In (Fabris and Freitas 2016), for mouse, it was found that if a protein has any

influence on CDK1 (associated with apoptosis), then that protein is more likely

to be ageing-related. CDK1 is putatively associated to ageing in mice (Xiao et al.

1999).

In summary, several works have identified that proteins related to apoptosis

and autophagy are good predictors of ageing-relatedness. This is in agreement

with the literature, as these mechanisms are essential to tumor suppression and

regulation of oxidative stress (Filomeni, De Zio and Cecconi 2015), which in turn,

are linked to the ageing process.

Interactions with Nutrient Receptor Genes are Good Predictors of Ageing-

Relatedness

The link between nutrient sensing and ageing is well established in several organ-

isms: mutations in genes responsible for nutrient signalling and food recognition

promote longevity across species (López-Ot́ın et al. 2016). The following works

identified protein features (functional annotations) related to nutrient signalling

that are good predictors of a role in the ageing process.

In (Fabris, Freitas and Tullet 2015), the authors identify that in fruit flies some

over-represented GO terms are involved in food recognition. The work in (Wan,

Freitas and de Magalhães 2015) shows that in fruit flies, “sensory perception”,
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which is essential to food recognition, was among the top selected features using

their feature selection algorithm.

The work in (Wan and Freitas 2013), studying worms, shows that one of the

top features selected by their feature selection algorithm is “response to nutrient

level”.

In summary, not surprisingly, proteins involved in nutrient sensing have been

found to be good predictors of ageing-relatedness, since the connection between

nutrient sensing and ageing is well-known in fruit flies and worms (Kapahi et al.

2010).

3.3.3 Other Conclusions Reported in the Literature

Copper and Iron Ion Transport

It has been shown that deficiencies in iron and copper levels are linked with ageing-

related diseases like Atherosclerosis and Alzheimer’s disease (Brewer 2007). It is

interesting that two papers using supervised machine learning algorithms have

found that interactions with proteins involved in copper and iron ion transport

are good predictors of ageing/longevity, as follows.

In (Song et al. 2012), atp7 was predicted as ageing-related in fruit flies. This

gene is involved in copper ion transport in fruit flies (Norgate et al. 2006).

The gene ftn-1 (related to iron ion transport) was predicted (with a probability

of 0.95) as a longevity gene in (Li, Dong and Guo 2010). It has been shown that

the lack of ftn-1 caused a reduced lifespan when worms are under iron stress (Kim

et al. 2004).

Comparing Findings from Machine Learning and Functional Enrich-

ment Analysis

One recent study investigated pathways overrepresented in pro- and anti-longevity

genes using both traditional functional enrichment analysis and a machine-learning-

based feature selection method (Fernandes et al. 2017). Although the two methods

work in different ways, some overlap between their results was observed. For ex-

ample, both methods found terms related to insulin signaling or growth to be

significantly associated with anti-longevity genes in mice; and terms related to

autophagy were found to be significantly associated with pro-longevity genes in

C. elegans by both methods. Therefore, it seems that both functional enrichment
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and machine learning algorithms identified the major, most significant pathways

associated with longevity genes. However, there were also many pathways that

were only identified by each of the methods (Fernandes et al. 2017). Hence, both

methods provide partially complementary information.

Biomarkers

Besides the ageing/longevity-related studies at the genomic/proteomic level, we

have identified works that use physiological markers to study the ageing process.

Next, we discuss two works following such approach.

In (Putin et al. 2016), the authors claim that the analysis of relative feature

importance within deep neural networks trained to predict chronological age on

humans helped deduce the most important features that may shed light on the con-

tribution of individual biological systems to the ageing process. The systems were

ranked in the following order of decreasing importance, according to the selected

features: metabolic, liver, renal system and respiratory function. The ranking was

created by counting the number of biomarkers coming from the different systems.

In (Nakamura and Miyao 2007), the authors investigate good predictors of

chronological age of humans to develop an expression to calculate the biological

age score of individuals. The authors used a population of 86 men, which were

evaluated annually during six years. Their chronological age (the target variable)

and the result of physiological exams (the predictive variables) were recorded and

used in this study. Using Principal Components Analysis (PCA) and logistic re-

gression, the authors identified the following five candidate biomarkers of ageing

for constructing the score of biological age: systolic blood pressure, forced ex-

piratory volume in 1 second divided by height squared, hematocrit blood level,

albumin blood level, and blood urea nitrogen level.

3.3.4 Summary of Data Mining Findings About Ageing

Biology

We can conclude, based on our analysis of the literature using supervised machine

learning applied to ageing research, that several already known biological facts

were corroborated by supervised machine learning algorithms. Namely, it was

found that interactions with DNA repair genes and proteins are good predictors of

ageing-relatedness, in special DNA repair proteins closely related to the Ku protein

family (Freitas, Vasieva and de Magalhães 2011; Jiang and Ching 2011), the WRN
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protein (Jiang and Ching 2011; Li, Dong and Guo 2010; Fang et al. 2013) and the

P53 protein (Fabris, Freitas and Tullet 2015).

We have also observed that several works (Li, Dong and Guo 2010; Song et al.

2012; Feng et al. 2012; Li, Zhang and Guo 2010) concluded that ageing-related

proteins tend to be highly connected and seem to play a central role in molecular

pathways. Additionally, works link ageing/longevity with autophagy and apopto-

sis (Li, Zhang and Guo 2010; Feng et al. 2012; Wan and Freitas 2013; Wan, Freitas

and de Magalhães 2015; Fang et al. 2013; Fabris and Freitas 2016); nutrient recep-

tor genes (Fabris, Freitas and Tullet 2015; Wan, Freitas and de Magalhães 2015;

Wan and Freitas 2013); and copper and iron ion transport (Song et al. 2012; Li,

Dong and Guo 2010).

From a higher-level perspective, several biomarkers were found to be ageing

related. In (Putin et al. 2016), biomarkers in the following systems were identified:

metabolic, liver, renal system and respiratory function. In (Nakamura and Miyao

2007), the authors highlighted systolic blood pressure, forced expiratory volume in

1 second divided by height squared, hematocrit blood level, albumin blood level,

and blood urea nitrogen level.

Unfortunately, predictions of classification algorithms were only experimentally

confirmed in one paper (Li, Dong and Guo 2010). We believe that a stronger

integration between machine learning and wet-lab experimentation would improve

the application of interpretable machine learning algorithm in ageing research.

Experimental confirmation of in silico predictions is important to validate the

conclusions of machine learning algorithms, from a biological perspective.
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Table 3.1: Main data analysis characteristics of papers that focus on applying some supervised machine
learning algorithm to tackle a biological ageing problem and then interpret the results to get some type
of biological insight about the ageing process. Columns 1 and 4 to 6 inform us, respectively, the type of
classification problem that was considered in the paper, the supervised learning algorithm whose results
were interpreted, the feature type used by the algorithm and the species that were considered in the
interpretation. Note that a paper may contain other machine learning algorithms, feature types and
species whose results were not interpreted and therefore are not listed in the table.

Type of Supervised

Machine Learning

Problem

Ref. Paper’s Title Supervised Learn-

ing Algorithm

Feature Type Species

Binary classification

problem (involving

DNA repair and

ageing-related

proteins)

Freitas, Vasieva and de Magalhães (2011) A data mining approach for

classifying DNA repair genes

into ageing-related or non-

ageing-related

Decision Tree (J48) Protein-protein inter-

actions (PPI), Gene

Expression, Gene On-

tology terms, type of

DNA Repair, Dn/Ds

ratio

Human

Jiang and Ching (2011) Classifying DNA repair genes

by kernel-based support vector

machines

SVM (Support

Vector Machine)

Gene expression levels Human

Fang et al. (2013) Classifying Aging Genes into

DNA Repair or Non-DNA

Repair-Related Categories

Feature Selection

Based on Random

Forests

Protein-protein inter-

actions

Human



C
H
A
P
T
E
R

3
.

B
A
C
K
G
R
O
U
N
D

O
N

B
IO

IN
F
O
R
M
A
T
IC

S
A
N
D

A
G
E
IN

G
68

Binary classification

using hierarchical

features (pro-longevity

vs. anti-longevity

proteins)

Wan and Freitas (2013) Prediction of the pro-longevity

or anti-longevity effect of

Caenorhabditis Elegans genes

based on Bayesian classifica-

tion methods

Hierarchical Fea-

ture Selection used

in the first phase

of a naive Bayes

algorithm

Gene Ontology terms Worm

Wan, Freitas and de Magalhães (2015) Predicting the pro-longevity or

anti-longevity effect of model

organism genes with new hier-

archical feature selection meth-

ods

Hierarchical Fea-

ture Selection used

in the first phase

of a naive Bayes

algorithm

Gene Ontology terms Worm,

fly,

mouse,

yeast

Hierarchical classifica-

tion (using proteins as

instances and ageing-

related GO terms as

classes)

Fabris, Freitas and Tullet (2015) An Extensive Empirical Com-

parison of Probabilistic Hierar-

chical Classifiers in Datasets of

Ageing-Related Genes

Decision Tree for

hierarchical classi-

fication

Protein-protein inter-

actions

Worm,

fly,

mouse,

human,

yeast

Binary classification

(ageing-related vs.

non-ageing-related

mortality-related

proteins)

Fabris and Freitas (2016) New KEGG pathway-based in-

terpretable features for clas-

sifying ageing-related mouse

proteins

Decision Table KEGG pathway fea-

tures

Mouse
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Binary classification

(ageing-related vs.

non-ageing-related

genes)2

Song et al. (2012) Discovering aging-genes

by topological features in

Drosophila melanogaster

protein-protein interaction

network

SVM PPI Network features Fruit

fly

Feng et al. (2012) Topological analysis and pre-

diction of aging genes in Mus

musculus

SVM PPI Network features Mouse

Li, Zhang and Guo (2010) Computational prediction of

aging genes in human

SVM, k-NN, Deci-

sion Tree

PPI Network features Human

Binary classifica-

tion (Longevity vs.

non-longevity genes)

Li, Dong and Guo (2010) Systematic analysis and pre-

diction of longevity genes in

Caenorhabditis elegans

SVM, k-NN, Deci-

sion Tree

Functional interaction

network features, con-

servation score

Worm

Two-layer binary clas-

sification (life span

change and then in-

crease or decrease the

life span of genes)

Huang et al. (2012) Deciphering the effects of gene

deletion on yeast longevity

using network and machine

learning approaches

Selected features

using k-NN with

Incremental fea-

ture selection

PPI Network, bio-

chemical, physico-

chemical, functional,

and deletion features

Yeast

Regression (prediction

of chronological age)

Fortney, Kotlyar and Jurisica (2010) Inferring the functions of

longevity genes with modular

subnetwork biomarkers of

Caenorhabditis elegans aging

SVR (support vec-

tor regression)

Modular features from

gene interaction net-

works

Worm

Regression (prediction

of rate of ageing)

Nakamura and Miyao (2007) A method for identifying

biomarkers of aging and con-

structing an index of biological

age in humans

Logistic Regression Various biomarkers Human

2These works also include analysis of individual features



Chapter 4

A More Efficient Local

Hierarchical Classification

Algorithm

This chapter presents a modified version of the Extended Local Hierarchical Naive

Bayes algorithm, which exploits the requirements of the original algorithm (single-

path, mandatory-leaf-prediction hierarchical classification problems in tree-structured

class hierarchies) to greatly improve classification run-time. We show that, consid-

ering 18 hierarchical classification datasets, the modified algorithm yields equiv-

alent predictive performance and significantly improves run-time in the training

and prediction phases, by comparison with the original algorithm.

The modified algorithm proposed in this chapter was first introduced in (Fabris

and Freitas 2014a).

4.1 Introduction

This chapter focuses on the Extended Local Hierarchical Naive Bayes (ELHNB)

classification algorithm, recently proposed in (Merschmann and Freitas 2013). In

that work, a Naive Bayes (NB) local classifier was trained for each class label con-

sidering the class labels of the neighbouring nodes (parent and children) in the class

hierarchy as extended features. In the prediction phase, the algorithm marginalises

out the extended features by summing up the probabilities of all possible combi-

nations of neighbouring classes. This algorithm is classified as “extended local”

because although they use local NB classifiers, the class hierarchy is taken into

70
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consideration by using the extended features.

The objective of using classification algorithms in this chapter is to infer protein

functions using only attributes (or features) describing the protein and gene se-

quence information. That is, to build a function F that maps the gene and protein

sequences to class labels, namely, their functional classes, their cellular location,

molecular function, and the biological processes that they are involved in. The

inferred class labels may be used as a starting point to select the most promising

wet-lab experiments to be performed, which are much more time-consuming and

expensive than their computational counterparts.

However, unlike the “flat” class labels of standard classification problems, on-

tologies that define the classification of genes and proteins are normally organised

as trees or Directed Acyclic Graphs (DAGs). This complicates the use of out-of-

shelf classification algorithm and justifies the development of specialised algorithms

for hierarchical classification (Silla Jr. and Freitas 2011a).

Additionally, due to the exponentially like ever-increasing size of biological

datasets (Stein 2003; The UniProt Consortium 2014), it is important to develop

efficient algorithms that scale up well both in the training and prediction phases.

This factor has been neglected in the literature, where works containing complex-

ity and/or run-time analysis of hierarchical classification algorithm are uncommon.

To help fill this niche, this work proposes a modified version of the Extended Lo-

cal Hierarchical Naive Bayes (ELHNB) originally proposed by Merschmann and

Freitas (2013). The modification (M-ELHNB) speeds up the training and pre-

diction phases of the algorithm, maintaining a statistically equivalent predictive

performance in general.

4.2 Extended Local Hierarchical Naive Bayes

Applying traditional (‘flat’) classifiers in hierarchical classification problems is not

straightforward. Although the literature has multiple works on the subject of

applying traditional algorithms in the hierarchical classification setting (Silla Jr.

and Freitas 2011a), algorithms that explicitly take the class hierarchy into account

have the potential of improving the classification performance, reducing model

size, and improving the interpretability of the classifier (Blockeel et al. 2006).

For these reasons, one of the successful efforts towards creating specific classi-

fication algorithms for hierarchical classification is the work of Merschmann and
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Freitas (2013), which is an algorithm specially tailored for hierarchical classifica-

tion that takes into account the class hierarchy explicitly. This algorithm, however,

has a specially lengthy prediction phase due to the necessity of various probabil-

ity calculations. We propose a modification of the algorithm that significantly

improves its run time, specially in the prediction phase.

4.2.1 The Original Algorithm

The ELHNB algorithm was designed specifically for 〈T, SPL, FD〉 hierarchical

classification problems, i.e., classification problems with Tree-organised (T) class

label taxonomies, with every instance having a Single Path of Labels (SPL), with

Full Depth (FD) class labels.

This algorithm estimates the probability of an instance belonging to each class

label Ci given its features x using eq. (4.1) (readers interested in the derivation may

refer to the original paper.) Eq. (4.1) is used for each class label Ci, 1 ≤ i ≤ N ,

where N is the number of class labels in the hierarchy.

P (Ci = ci|x) =
1

P (x)
×

∑

yi∈{0,1}k(i)

(

P (x|Ci = ci,yi)P (Ci = ci|yi)P (x|yi)P (yi)
∑

c′∈{ci,c̃i}
P (x|Ci = c′,yi)P (Ci = c′|yi)

)

(4.1)

In Eq. (4.1) k(i) represents the number of neighbours of the i-th class label

(the set containing the children and parent of the i-th class node, given by the

hierarchy), yi is a binary vector that iterates over all possible classifications of

the neighbourhood of the i-th class label, Ci is a random variable that may take

the values ci and c̃i, Ci = ci is the event of the current instance being classified

as belonging to the i-th class label and Ci = c̃i the event of the current instance

being classified as not belonging to the i-th class.

To estimate P (x|Ci,yi) and P (x|yi), the authors use the Naive Bayes as-

sumption that the predictive attributes are independent given the class, reduc-

ing the estimation expressions to P (x|Ci,yi) =
∏n

k=1 P (xk|Ci,yi) and P (x|yi) =
∏n

k=1 P (xk|yi), where n is the number of predictive features. The probabilities

P (Ci|yi) and P (yi) may be estimated by simple counting and P (x) is computed

by using the fact that P (Ci = ci|x) + P (Ci = c̃i|x) = 1.
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The probabilities calculated by the algorithm are not guaranteed to be consis-

tent, that is, the probability of an instance x belonging to class label i, P (Ci =

ci|x), may be higher than the probability of the instance belonging to the parent

of i, which is inconsistent to the fact that if an instance belongs to class label

i it implicitly belongs to the parent of i. Therefore, to tackle this problem, the

authors calculate the geometric average of the probabilities of all class labels in

each of the possible paths from the root to the leaves and choose the path with

greatest average class label probability as the final classification, bypassing the

inconsistency problem.

The overall time complexity of the algorithm’s training phase considering the

number of probability values that need to be estimated is O(Smean × N), where

Smean is the mean size of the neighborhood of all class nodes and N is the number

of class nodes. Naturally, the complexity of the prediction phase considering the

number of evaluations of probability values is also O(Smean ×N).

4.2.2 The Modified Algorithm

We shall demonstrate that for problems classified as 〈T, SPL, FD〉, the training

phase of the Modified Extended Local Hierarchical Naive Bayes (M-ELHNB) al-

gorithm may be executed faster by reducing the number of probability values that

must be estimated. Likewise, we shall demonstrate that the prediction phase (the

estimation of P (Ci = ci|x)) for a given class label may be executed in constant time

complexity regarding the number of its child nodes in the class hierarchy. Since Ci

is a binary variable, it is enough to compute either P (Ci = ci|x) or P (Ci = c̃i|x).

Next we show how to compute P (Ci = c̃i|x) since it allows for more simplifications

in Equation (4.1).

Theorem 4.1. Estimating P (x)P (Ci = c̃i|x) requires constant time complexity

(that is, the estimation of time complexity is independent of the number of neigh-

bours of class label Ci in the class hierarchy).

First, let us consider non-leaf nodes, we may decompose Eq. 4.1 as follows:

P (Ci = c̃i|x) =
1

P (x)
×

[

∑

yi∈S1

(

P (x|Ci = c̃i,yi)P (Ci = c̃i|yi)P (x|yi)P (yi)
∑

c′∈{ci,c̃i}
P (x|Ci = c′,yi)P (Ci = c′|yi)

)

+ (4.2)
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Ci

(a) Case 1 - Ci’s parent
is active and exactly one
child node of Ci is active.
In this case, the number
of possible configurations
of labels for the set yi of
neighbours of Ci is equal
to the number of children
of Ci.

Ci

(b) Case 2 - Ci’s parent
is active, Ci’s children
are not active. This case
contains only one possible
configuration of labels for
the set yi of neighbours of
Ci.

Ci

(c) Case 3 - None of the
neighbours of Ci is active.
This case contains only
one possible configuration
of labels for the set yi of
neighbours of Ci.

Figure 4.1: Simplified examples of the three possible types of label configura-
tions for the neighbourhood of a class node. Shaded nodes represent the active
neighbourhood of the node Ci, i.e., neighbours whose class label is present in an
instance.

∑

yi∈S2

(

P (x|Ci = c̃i,yi)P (Ci = c̃i|yi)P (x|yi)P (yi)
∑

Ci∈{ci,c̃i}
P (x|Ci = c′,yi)P (Ci = c′|yi)

)

+ (4.3)

∑

yi∈S3

(

P (x|Ci = c̃i,yi)P (Ci = c̃i|yi)P (x|yi)P (yi)
∑

Ci∈{ci,c̃i}
P (x|Ci = c′,yi)P (Ci = c′|yi)

)]

. (4.4)

Class label sets S1, S2 and S3 – in expressions (4.2), (4.3) and (4.4), respec-

tively – are the only three possible types of label configuration for the neighbourhood

of the i-th class node: 1) one parent and one child node, 2) one parent and no

children and, 3) no parents and no children. Notice that these are the only possi-

bilities because we are dealing with single-path predictions in a class-tree setting.

Figure 4.1 displays a graphical representation of the three possibilities.

We may eliminate expression (4.2) from the summation since, when yi ∈ S1,

P (Ci = c̃i|yi) equals to 0 because there is no case where c̃i happens and both its

parent and some child node are active (have a positive class label). This is because,

due to the “Is-a” hierarchy, if a child of Ci is active, Ci must be active too. Sim-

ilarly we may simplify expressions (4.3) and (4.4) considering that P (Ci = ci|yi)
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is equal to 0 when yi ∈ S2 or yi ∈ S3. Equation (4.7) presents the simplifications.

P (Ci = c̃i|x) =
1

P (x)
× (4.5)

[

∑

yi∈S2
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(4.6)

P (x)P (Ci = c̃i|x) =
∑

yi∈S2

P (x|yi)P (yi) +
∑

yi∈S3

P (x|yi)P (yi). (4.7)

Therefore, because sets S2 and S3 are of unitary cardinality, containing only

one possible configuration of labels for the neighbour (parent or child) classes of

Ci, calculating P (x)P (Ci = c̃i|x) requires constant time complexity with respect to

the number of neighbours of Ci in the class hierarchy.

To calculate the probability P (x)P (Ci = c̃i|x) for leaf nodes we may follow the

same steps considering that the set S1 is empty (the leaf nodes have no children),

the set S2 contains only one element (the parent node of the leaf) and the set S3

is empty, meaning that the time complexity for the probability estimation for leaf

nodes is also independent of the number of neighbours. �

To estimate the normalising constant P (x) we would need the value of P (Ci =

ci|x), which is the original probability estimated by Merschmann and Freitas

(2013), the very value that we would like to avoid calculating because of the time

complexity dependence on the number of neighbours of the class node.

Thus, we use a heuristic to get rid of the normalising constant P (x): we cal-

culate all non-normalised probabilities and assume that the largest one, Zpseudo =

maxCi
(P (x)P (Ci = c̃i|x)), is the pseudo-normalisation constant. Additionally, we

do not use the geometric average approach proposed by Merschmann and Freitas

(2013) to find the most probable path in the class hierarchy; instead, we use a top-

down strategy: first find the most probable class label that is a child of the root

node, then, recursively find the most probable child of this node, and so on, until

a leaf node is reached. This approach produced better results than the original

strategy of using the geometric average in our initial experiments.
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The overall time complexity of the training phase of the modified algorithm,

considering the number of probability values that need to be estimated, is O(N),

where N is the number of class nodes in the hierarchy. The time complexity of

the prediction phase, considering the number of evaluations of probability values is

also O(N). In other words, the runtime complexity of our modified algorithm does

not depend on the topology of the class hierarchy (how the classes are connected),

just on the number of classes.

Both time complexities are independent of the number of neighbours of the class

nodes and are strictly smaller than O(Smean×N), where Smean is the mean number

of neighbours across all class nodes. Smean must be larger than one, since the size

of the neighbourhood set S is at least 1 for all nodes if the graph is connected.

That is, the complexity of the original version of the ELHNB algorithm depends

on both the topology of the class hierarchy (class hierarchies with a higher mean

number of neighbours having higher complexity) and the number of classes.

4.3 Experiments

In this section we present the effects of the modification made in the original EL-

HNB algorithm with respect to predictive performance, training time, and predic-

tion time. To test the algorithm, we use 18 bioinformatics datasets, eight encoding

protein functions and ten encoding gene functions.

4.3.1 Datasets

We conducted our experiments in the same 18 datasets made available by Mer-

schmann and Freitas (2013) 1. These datasets are commonly used in works about

hierarchical classification. For the sake of organisation, these datasets are divided

in two groups: Group A contains eight protein function datasets, four related to

G Protein-Coupled Receptors (GPCRs) and four related to enzymes. GPCRs are

transmembrane proteins that are common targets of many medical drugs. En-

zymes are large molecules that speed up certain biochemical reactions. The names

of the datasets related to enzymes start with EC (Enzyme Commission) and the

names of the datasets related to GPCR proteins start with GPCR. The class hier-

archies for these datasets are specific to these two types of proteins (GPCRs and

Enzymes). The predictor attributes of datasets in Group A include many binary

1http://www.decom.ufop.br/luiz/resources/

http://www.decom.ufop.br/luiz/resources/
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attributes that represent the existence (or not) of a particular protein signature

(motif) in a protein amino acid sequence, and two continuous attributes: the amino

acid sequence length and the molecular weight. The second part of the dataset

name represents the type of motif that was used to create the dataset (Interpro,

FigerPrints, Prosite and Pfam). The creation of these datasets is described in

(Holden and Freitas 2008).

Group B contains different types of datasets related to the Yeast genome,

namely attributes representing: secondary structure, phenotype, homology, se-

quence statistics, and gene expression. The class labels to be predicted were ex-

tracted from the FunCat taxonomy of protein functions. The creation of these

datasets is described in (Clare and King 2003). Table 4.1 presents the main char-

acteristics of the datasets used in this work, where “#” means “number of”. In the

last column of this table, the values separated by “/” are the numbers of classes

for the first, second, third, and fourth class levels, respectively.

Figures 4.2, 4.3, and 4.4, display part of the used class hierarchies.
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Transf. alkyl or aryl groups,
other than methyl groups

Transf. molybdenum- or
tungsten-containing groups

Transf. selenium-containing groups
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Carbon-nitrogen lyases

Carbon-oxygen lyases
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...

Figure 4.2: The Enzyme Commission (EC) hierarchy displaying part of the first
and second class levels. The root node, parent of classes Transferases, Lyases,
Isomerases, Ligases, Hydrolases and Oxidoreductases, is suppressed for simplicity.
Ellipses represent suppressed terms of larger sub-hierarchies (to save space).
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Figure 4.3: Complete first and second class levels of the GPCR hierarchy (the root
node, parent of Classes A-E, is suppressed for simplicity).
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...

Figure 4.4: The Functional Category (FunCat) hierarchy displaying some of the
first level classes and their children. The root node, parent of classes Metabolism,
Energy, Storage protein, Cell cycle and DNA processing, Transcription, Protein
synthesis and Protein fate, is suppressed for simplicity. Ellipses represent sup-
pressed first and second level terms (to save space).
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4.3.2 Predictive Performance

In this section we measure the impact of the proposed modification to the ELHNB

algorithm in regards to predictive performance. We use the well-known hierarchical

F-Measure to measure predictive performance. The hierarchical F-Measure (hF)

is defined as (Kiritchenko, Matwin and Famili 2005)

hF ≡
2 ∗ hP ∗ hR

hP + hR
,

where hP is the hierarchical precision and hR is the hierarchical recall, defined

as

hP ≡

∑

j |Pj ∩ Tj|
∑

j |Pj|
and hR ≡

∑

j |Pj ∩ Tj|
∑

j |Tj|
,

where Pj is the set of predicted class labels of the j-th instance and Tj is the set

of true class labels of the j-th instance.

Table 4.2 presents the hierarchical F-Measure of the modified and original al-

gorithm in the 18 datasets. As observed in this table, the proposed M-ELHNB

obtained a higher hF value than the original in 11 out of the 18 datasets, whilst

ELHNB obtained a higher hF value in the other 7 datasets. By analysing the

results we concluded that in general, for Group A, the M-ELHNB algorithm per-

formed better than the ELHNB in the EC datasets, where the overall size of the

datasets is larger. The EC datasets have more features and more class labels to

be predicted (more leaf class labels); also they have, on average, more attributes

(234.25 vs. 722.75). We conclude that the size of the dataset may negatively affect

the original algorithm more than our modified version.

When analysing the results for Group B, we observed that the number of at-

tributes of the datasets is closely related to the performance of the algorithms: the

M-ELHNB algorithm performed better when the number of attributes is smaller.

More precisely, M-ELHNB outperformed ELHNB in all 7 datasets where the num-

ber of attributes in smaller than or equal to 80; whilst ELHNB outperformed

M-ELHNB in the other 3 datasets, which have many more attributes (173, 478,

and 551 attributes). This may be due to the fact that approximating more Z val-

ues using Zpseudo (when there are more attributes to model) negatively affects the

predictive performance of M-ELHNB more than approximating relatively fewer Z

values (when there are fewer attributes to model).
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Table 4.1: Main characteristics of the datasets

Group Datasets # Attributes # Instances # Classes per level Level

A

GPCR-Interpro 450 6935 12/54/82/50
GPCR-Pfam 75 6524 12/52/79/49
GPCR-Prints 283 4880 8/46/76/49
GPCR-Prosite 129 5728 9/50/79/49
EC-Interpro 1216 11101 6/41/96/187
EC-Pfam 708 11057 6/41/96/190
EC-Prosite 585 11328 6/42/89/187
EC-Prints 382 11048 6/45/92/208

B

CellCycle 77 2486 16/47/69/32/8
Church 27 2499 16/49/67/34/6
Derisi 63 2497 16/48/70/31/7
Eisen 79 1641 16/43/55/23/2
Expr 551 2554 16/49/68/28/5
Gasch1 173 2595 16/48/71/32/7
Gasch2 52 2631 17/49/68/34/6

Phenotype 69 1023 15/43/40/15/1
Sequence 478 2689 17/48/65/29/5
SPO 80 2463 16/48/68/31/8

Note that the Group B’s datasets have relatively small variations in the number

of instances and the number of classes per level by comparison with the Group

A’s datasets. This reinforces the conclusion that, out of the dataset characteristics

reported in Table 4.1, the number of attributes is the main characteristic associated

with the performance difference between M-ELHNB and ELHNB across Group B’s

datasets.

Note that the results of the ELHNB and M-ELHNB algorithms seem to be

somewhat contradictory between dataset groups A and B. In group A, the ELHNB

algorithm seems to outperform algorithm M-ELHNB in smaller datasets, while in

group B the opposite behaviour can be observed. This behaviour is intriguing and,

unfortunately, we could not find a convincing explanation for this, and further

investigations are left for future work.

To test whether the hF values of the modified algorithm (M-ELHNB) are

statistically equivalent to the hF values of the standard ELHNB, considering the

combined results of all datasets, we used the two-sided Wilcoxon Signed Rank test

(Demsar 2006). According to this statistical test, it is not possible to reject the

null hypothesis that the algorithms are equivalent (p-value of 0.673 for α = 0.05).
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Table 4.2: Comparison between the Standard (ELHNB) and the Modified Algo-
rithm (M-ELHNB) in regards to the hierarchical F-Measure using 10-fold cross
validation. Numbers in brackets are the standard errors. Numbers in bold face
indicate the best performing algorithm for each dataset.

Group Dataset ELHNB hF M-ELHNB hF

A

GPCR-Pfam 0.6087 (0.0042) 0.5926 (0.0037)
GPCR-Prosite 0.5893 (0.0068) 0.5597 (0.0070)
GPCR-Prints 0.7689 (0.0048) 0.7567 (0.0054)
GPCR-Interpro 0.7693 (0.0021) 0.7573 (0.0042)

EC-Prints 0.9360 (0.0022) 0.9451 (0.0016)
EC-Prosite 0.9490 (0.0022) 0.9686 (0.0010)
EC-Pfam 0.9604 (0.0016) 0.9748 (0.0012)

EC-Interpro 0.9605 (0.0021) 0.9772 (0.0013)

B

CellCyle 0.0898 (0.0084) 0.1382 (0.0064)
Church 0.0881 (0.0049) 0.0961 (0.0045)
Derisi 0.0751 (0.0045) 0.0825 (0.0033)
Eisen 0.0489 (0.0023) 0.1482 (0.0038)
Expr 0.0536 (0.0053) 0.0347 (0.0025)
Gasch1 0.0674 (0.0059) 0.0178 (0.0027)
Gash2 0.1153 (0.0061) 0.1307 (0.0056)

Phenotype 0.0761 (0.0062) 0.0809 (0.0072)
Sequence 0.0434 (0.0025) 0.0274 (0.0021)
SPO 0.0741 (0.0043) 0.1091 (0.0060)
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4.3.3 Running time

To test the running time of the two algorithms we measured the total running times

of the training and prediction phases of all 10 steps of the 10-fold cross-validation.

All algorithms were executed in a cluster computer with 12 Xeon E5520 processors

(4 cores each) with 12 GB of RAM memory, running Ubuntu 12.04. We used the

Oracle Grid Engine to distribute the jobs. Both algorithms were implemented by

the author of this thesis in the Python programming language. Note that our

pure Python code is probably not the most efficient implementation of our algo-

rithms, since Python implementations are notoriously slower than implementations

in other, lower-level, programming languages.

Figures 4.5 to 4.7 present the running times of the algorithms in the 18 datasets.

We divided the datasets into three groups, according to their overall running time.

Group I contains the smallest running times and Group III the largest. It is clear

from the figures that the modified algorithm has a better running time in both

the training and in the prediction phases, as expected. The difference in running

times is specially significant in Group III: e.g., in the dataset “EC-Pfam” the

ELHNB algorithm took 88.2 hours to run its training and prediction phases, while

the modified algorithm took only 37.2 hours. A difference of more than 2 days,

and a reduction of about 58% in the time taken by ELHNB. In the dataset “EC-

Interpro”, the training running time of the ELHNB algorithm was 58.1 hours, 26.9

hours more than the training running time of the M-ELHNB algorithm, a reduction

of 31.7%. The differences in testing running time are even greater: in the dataset

“EC-Interpro”, the ELHNB algorithm took 91.1 hours, while the M-ELHNB 33.9

hours, a reduction of 62.8%.

4.4 Conclusions

In this chapter we presented a modified version of the ELHNB algorithm specialised

for hierarchical classification problems where each instance is assigned a single

path from the root node to a leaf node in the class hierarchy – called single path,

mandatory leaf class prediction problems. In experiments with 18 datasets from

the area of bioinformatics, involving the prediction of gene or protein functions,

we showed that our modified algorithm is statistically equivalent to the standard

one in terms of predictive performance, but significantly faster.
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Figure 4.5: Running time of the classifications algorithms, Group I
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Figure 4.6: Running time of the classifications algorithms, Group II
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Figure 4.7: Running time of the classifications algorithms, Group III



Chapter 5

New Algorithms for Hierarchical

Classification

This chapter presents the new hierarchical classification algorithms we have pro-

posed. Sections 5.2 and 5.3 define our first and second (respectively) Hierarchi-

cal Dependence Network algorithms, namely “Hierarchical Dependence Network

(HDN)” and the “hybrid between the HDN and Predictive Clustering Tree (HDN-

PCT) algorithms”, both of them first proposed in (Fabris and Freitas 2014b).

Section 5.4 presents our third hierarchical classifier, named “HDN based on find-

ing non-Hierarchically related Predictive Classes (HDN-nHPC)”, first presented

in (Fabris and Freitas 2015). Section 5.5 defines the hybrid “Predictive Cluster-

ing Tree/Local Hierarchical Classification” (PCT-LHC) algorithm, proposed by us

in (Fabris and Freitas 2014b).

5.1 Introduction

Dependence Networks (DNs) are a type of Probabilistic Graphical Model (PGM)

that has not received as much attention in the data mining field as other types of

PGMs such as Bayesian Networks, and its variants, and Markov networks. Some

works explore the use of DNs in binary and flat multi-label classification (Gámez

et al. 2008; Guo and Gu 2011); however, as far as we know, besides our work, there

are no attempts of using DNs in hierarchical classification.

Like in Bayesian Networks (BNs), variables in DNs are represented as nodes in a

graph. However, DNs differ from BNs by the fact that, in a DN, edges exist between

nodes if and only if they are in each other’s Markov blankets, and the graph may

87
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contain cycles (Heckerman et al. 2001). The Markov blanket of a random variable

r is the smallest set containing the variables that make r independent from all

other variables. In other words, given a node in a DN, if we know the actual

values of the nodes in its Markov blanket, our beliefs about that node will not

change if we know the value of some other node outside the Markov blanket.

In BNs, the Markov blanket of a node is the set containing its children, parents

and parents of the children, that is, the Markov blanket of a node is not explicitly

represented by the graphical structure (Heckerman et al. 2001). Instead, edges

represent (potentially) causal relationships between variables. For this reason,

some relationships are not explicitly represented in the graph structure of BNs;

therefore people must be trained to interpret the graphical representation correctly

(Heckerman et al. 2001).

Figure 5.1 exemplifies the representation of the same relationships in a BN (at

the top of the figure) and in a DN (at the bottom of the figure). Recall that in

DNs, the neighbours of a node represent the Markov blanket of that node. That is,

the minimal set of nodes that makes the variable independent of all other variables.

For instance, in Figure 5.1, if we know the condition of the tires and the maximum

speed of the car, knowing the tire brand would not change our beliefs about the

car weight. The intuition behind this is that the influence that the tire brand has

on the car weight is indirect, through the condition of the tires (heavier cars tend

to have worse tires), and once we know the actual condition of the tires, knowing

the tires’ brand adds no extra information to our beliefs.

Note that an untrained person would look at the BN at the top and wonder why

there is no edge from “Car Weight” to “Tire Condition”, since knowing the car

weight clearly affects our beliefs about the condition of the tires. This confusion

is avoided in DNs by explicitly representing the relationships between nodes that

are directly correlated, as shown at the bottom of Figure 5.1.

DNs for classification can be thought of as a collection of probability functions

specialised in predicting whether or not an instance belongs to a class given its

predictive attributes and the predictions of the classes in its Markov blanket. More

formally, given:

• the set of binary random variables C = {C1, . . . , CN} representing the

classes,

• their possible values ci and c̃i, where Ci = ci is the event that the i-th class

is assigned to the instance and Ci = c̃i the event that the i-th class not is
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Figure 5.1: Representing the same probabilistic relations with Bayesian Networks
(top) and Dependence Networks (bottom).

assigned to the instance,

• the vector x ∈ RM representing the predictive features of the instance, where

M is the number of features,

• a directed graph G = (V,E), where V is the set of vertices (nodes) and E is

the set of edges,

• the set of parents of node vi (vi ∈ V ), denoted pai, representing the Markov

blanket of Ci;

a DN is a graph, with a probability distribution P (Ci = ci|pai,x) associated with

each node vi ∈ V , where E is the set of directed edges representing dependencies

between variables. From now on, for simplicity, we shorthand the probabilities in

the form P (Ci = ci|·) and P (·|Ci = ci, ·) to P (Ci|·) and P (·|Ci, ·), respectively.

In the hierarchical classification task, each node in a DN encodes probability

functions in the form P (Ci|x,C−i), where C−i is the vector of predictions of the

classes in the Markov blanket of Ci.

There are two main challenges when using DNs; the first is creating the DN

itself. This involves: 1) determining the structure of the network, or in other

words, estimating the Markov blanket of each random variable; and 2) modeling

the distribution of each random variable given its Markov blanket and the fea-

ture vector (the probability function P (Ci|x,C−i)). Recall that, as discussed in
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Chapter 2, one can either make strong simplifications about the data distribution

or use some methodology to empirically find the correlations and distributions of

the random variables being modeled. The second challenge is, once the network

is fully parameterised, how to query the network to make predictions, since exact

inference in DNs is an NP-Hard problem (Guo and Gu 2011).

Specifically for hierarchical classification, to solve the first problem, we can use

traditional flat classifiers that can be trained independently to determine both the

structure of the network (e.g. by using feature selection in a pre-processing step or

a classifier that selects a subset of features) and the estimation of P (Ci|x,C−i) for

each class Ci. We call those flat classifiers “base classifiers”. In other words, we

rely on a feature selection method to find random variables (features and classes)

that are correlated and, thus, should be in each other’s Markov blankets.

To solve the second problem, if we relax the requirements for exact inference,

there is a simple, yet effective, algorithm, viz. Gibbs sampling, that is capable

of producing approximate inference in reasonable running times. This is particu-

larly important for hierarchical classification because of the large number (often

thousands) of classes in real-world problems, such as gene function prediction.

In the next sections we describe the three variations of Hierarchical Dependence

Network algorithms that we have proposed.

5.2 Hierarchical Dependence Network Using Hi-

erarchically Related Predictive Classes

For this variation of Hierarchical Dependence Network (HDN) for hierarchical

classification, we assume that the set of class variables containing the siblings and

the parents of the children of the class Ci in the class hierarchy is a good candidate

for the C−i part of the Markov blanket of Ci, because they encode important

relationships about the classes that are not deterministic. Initial experimentation

also included the set of class variables consisting of the parents and the children

of the class Ci as part of the Markov blanket of Ci; however, it was observed that

the classifiers did not cope well with such deterministic parent-child relationships,

defined by the “Is-A” class hierarchy. That is, if an instance is labeled with any

of the child classes of Ci, by definition of the “Is-A” hierarchy, the instance must

be labeled with class Ci as well. Similarly, if the instance is not labeled with any

of the parent classes of Ci, by definition, it cannot have the class label Ci. It



CHAPTER 5. NEW ALGORITHMS FOR HIERAR. CLASSIFICATION 91

turned out that these deterministic features misled the HDN algorithm, biasing

them to produce over-simplified class models that underfit their predictions to

these deterministic features.

This kind of underfitting occurred because, although deterministic parent-child

relationships are very useful for achieving a good classification accuracy in the

training set (where both the parent class(es) and the child class(es) of a given

current class Ci are known); such parent-child relationships are less useful in the

test set, where the parent class(es) and child class(es) of Ci are unknown and have

to be estimated by Gibbs sampling (described later).

The use of the siblings and parents of the children of class Ci as extended fea-

tures exploits background knowledge (the structure of the class hierarchy) defined

by expert biologists in the case of the datasets used in this work, and avoids the

computationally expensive search for the C−i part of the Markov blanket of each

node. Note that the conditional probability P (Ci|x,C−i) assumes that every class

in C−i and every predictive feature in x is in the Markov blanket of Ci. However,

there may be noisy predictive features or classes in C−i that are not good predictors

for Ci. This may misguide a classifier for Ci and clutter the DN. For this reason,

we reduce the size of the Markov blanket of Ci by applying a feature selection filter

on x and C−i (treating them as a single, extended predictive vector), generating

a new filtered predictive feature vector x+. This is detailed next.

Training Phase

The training phase of our HDN for hierarchical classification is similar to the train-

ing phase of DN for binary classification, with the exception that we extend the

predictive feature vector x of each instance to contain the class labels of the current

class node’s candidate Markov blanket. That is, for each class label Ci, we first

use a simple feature selection method to produce the filtered extended predictive

feature vector x+, as mentioned earlier. We use the statistical F -test (Lomax and

Hahs-Vaughn 2013) to select relevant features for each class Ci.

More precisely, the univariate F -test for feature selection is a method that

ranks the features, for each class label i, according to their F -value, defined as:

Fi,k =
SSBETWi,k

SSWITHi,k

, (5.1)

where SSBETWi,k is the between-group sum of mean squares and SSWITHi,k

is the within-group sum of mean squares for feature k, according to the groups
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defined by the i-th binary class label. SSBETWi,k and SSWITHi,k are defined

as:

SSBETWi,k =
∑

c′∈{ci,c̃i}

Nc′(Avgc′,k − Avgk)
2, and (5.2)

SSWITHi,k =
∑

c′∈{ci,c̃i}

(Nc′ − 1)s2c′,k
J − 1

. (5.3)

Where Nc′ is the number of training instances annotated with class value c′,

J is the total number of training instances, Avgc′,k is the mean value of the k-th

feature considering only training instances with class value c′, Avgk is the mean

value of the k-th feature across all training instances, and s2c′,k is the variance of

the k-th feature considering only training instances with class value c′.

The higher the F -value is, the greater is the difference in feature k’s values

between the groups. In our case, when dealing with local binary classifiers, we

always have two groups, defined by the class label of the instances. Hence, the

larger the F -value, the more relevant feature k is for class discrimination.

We have chosen to use the F -test in our algorithm due to its statistical sound-

ness and its computational efficiency, which is important when dealing with thou-

sands of classes and features, like the classes and features of the datasets used in

our experiments. Note, however, that there are other univariate feature selection

methods that are also computationally efficient (Bramer 2013), and other methods

could be used in future work. In preliminary experiments we have also tested the

multivariate Correlation Feature Selection (CFS) algorithm (Hall 1999), however,

because of its higher time complexity in comparison with the F -test, its application

in our datasets was too time consuming.

We select the top n feats features in the ranking of features produced by the

F -test for each class label i, where n feats is a parameter of the F -test feature

selection method. Next, we train a binary classifier Fi with the filtered feature

vector x+, which contains both the selected features and the selected actual class

labels of the nodes in the Markov blanket of class Ci, considering the given class

taxonomy. We expect that the classifiers use the extended information to learn

dependencies between class labels and predictive features.

In this work we have experimented with classification models capable of out-

putting probabilistic classification for all class labels of the instances, namely,

Gaussian Naive Bayes (GNB), Naive Bayes (NB), SVM (with RBF kernel) and

C4.5 decision tree. We have tried both NB and GNB classifiers because the NB
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classifier requires a discretisation of the data set (as many datasets have continuous

features) that may affect its predictive performance, and GNB avoids the need for

such discretisation. On the other hand, GNB assumes that the continuous features

are normally distributed, which may not be true for many features. Hence, it is

worth trying both these versions of Naive Bayes. The popular SVM classification

algorithm is regarded as a very powerful classifier, with high predictive accuracy.

The C4.5 decision tree algorithm also has its advantages: it has a built-in feature

selection procedure, and it generates interpretable models. We consider that these

four algorithm (NB, GNB, SVM, and C4.5) are diverse, having different assump-

tions and principles, and are in general popular and powerful, having being tested

in several data mining tasks with success.

After testing these four algorithms in our preliminary experiments, we have

concluded that the SVM is in general the best for our purposes, having higher

predictive performance. In addition, like the other classification algorithm used in

our preliminary experiments, SVM also has an efficient prediction phase (Claesen

et al. 2014). It is particularly important in this work that the base classification

algorithms have an efficient prediction phase, as they will be queried several times

during the Gibbs sampling process (explained in the next section). For these

reasons, from now on, we use the aforementioned SVM algorithm to build the

functions Fi.

For all versions of HDN algorithms that we propose, when training the algo-

rithm for each class node Ci, we use as positive classes all instances that have the

class label Ci in any of their classification paths (all paths in the class taxonomy

graph from the root node to the most specific classes of the instances) and as

negative classes all the other instances. Furthermore, we only train a classification

algorithm for a particular class node if there are at least min inst instances in the

least represented class (i.e., positive or negative class), in order to mitigate the

problem of overfitting – where min inst is a parameter of the HDN algorithm. If

a classifier is not trained for a class node, the classification model outputs the a

priori class probability distribution for that class node, regardless of the filtered

extended predictive feature vector x+. The a priori distribution is given by the

relative frequency of each class label in the training set for that class node.
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Gibbs Sampling for Approximate Inference

Once we have trained our binary classifiers to estimate the probabilities P (Ci|x,C−i)

– which are estimated by using the filtered extended feature vector x+, i.e. com-

puting P (Ci|x
+) – we already have a fully parameterised HDN where each class

node has edges connecting it to the selected features and the selected predictive

classes. The next step is to use our HDN algorithm to predict a class vector C

for a new instance given the predictive features x+. In other words, we wish to

calculate the maximum a posteriori (MAP) probability for our predictive feature

vector: C∗ = argmaxC P (C|x+).

Because solving this problem exactly is NP-hard (Guo and Gu 2011), we use

the Gibbs sampling algorithm adapted to our hierarchical classification problem

(presented in Algorithm 5.1) to do inference in our DN. The Gibbs sampling algo-

rithm (Geman and Geman 1984) is a Metropolis-Hastings algorithm that is very

suitable for inference in DNs, due to its low run-time complexity compared to

the exact algorithm, and has a simple and efficient implementation (Guo and Gu

2011). After a certain number of burn-in iterations (a user-defined parameter),

this algorithm tends to converge to a stationary distribution that approximates

the underlying probability distribution.

The algorithm begins by randomly initialising Cpred, the class vector of the

instance whose classes will be predicted, using the a priori class probabilities

computed from the training set (line 2). Next, the algorithm visits the nodes of

the graph representing the class hierarchy using some node ordering (line 4). We

have explored three ordering possibilities: bottom-up (start by visiting the leaves

of the hierarchy, recursing to its parents, in a breadth-first manner), top-down

(start by visiting the root node and recursing to its children in a breadth-first

manner) and random order. The random ordering produced results with better

predictive accuracy in our preliminary experiments (using a single dataset), so we

will use this ordering from now on.

In line 5, the function ExtendedFeatures(Ci) returns the class labels that are

candidate to be in the Markov blanket of Ci (i.e., the siblings of Ci and the

parents of the children of Ci in the class hierarchy). In line 6, the function

ApplyFeatSeli(x,C−i) filters the predictive features and candidate class labels us-

ing the previously mentioned statistical F -test for the i-th class, returning the

filtered extended vector x+. Next, the algorithm retrieves the probabilistic classi-

fication of the current node Ci given the current class labels of its Markov blanket
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Algorithm 5.1 Hierarchical classification with Gibbs sampling algorithm.

1: procedure Modified Gibbs sampling

Inputs: Instance x, total number of iterations it, number of burn-in
iterations burn.

2: Probabilistically initialise the predicted class label vector of x (Cpred),
using uniform distributions (parametrised by the a priori empirical class
distributions).

3: for k ∈ {1..it} do
4: for all Ci ∈ the Class Taxonomy do
5: C−i ← ExtendedFeatures(Ci)
6: x+ ← ApplyFeatSeli(x,C−i)
7: P (Ci|C−i,x)← Fi(x

+)
8: u← Random value drawn from a uniform distribution in [0, 1].
9: if u < P (Ci|C−i,x) then Cpred,i ← ci else Cpred,i ← c̃i end if

10: if k > burn then
11: P (Ci|x)←

P (Ci|x)×(k − burn − 1) + P (Ci|C−i,x)

k − burn

12: end if
13: end for
14: end for
15: return the marginal probabilities P (Ci|x)
16: end procedure

and its predictive feature vector (line 7). Finally, the algorithm employs a stochas-

tic rule to update the current classification of the input instance (line 9). There

are several ways to estimate the MAP of the predictive classes; we have used the

typical way of computing the marginal probability for each class variable and use

them for making the final prediction (Guo and Gu 2011).

Our Gibbs sampling algorithm was slightly modified to return the mean prob-

ability associated with each class (line 11). The more common approach would

be to return the most common label for each class (Sen et al. 2008) (in our case

the positive or negative label). We employ an iterative approach to calculate the

mean class probabilities over the iterations after the burn-in phase, so there is no

need to store all class-wise probability estimations.

As we will compare our methods to other probabilistic classifiers, we modified

the Gibbs sampling algorithm in order to obtain a probabilistic decision for each

class at the end of the sampling procedure.

We call the previously described training procedure and inference algorithm as

the Hierarchical Dependence Network (HDN) algorithm.
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5.3 The Hybrid HDN-PCT Algorithm

Besides investigating the HDN algorithm by itself, we also exploit the power of

the PCT (Predictive Clustering Tree) framework. An algorithm in this framework

builds a decision tree by finding a predictive feature that splits the set of instances

in two clusters, maximising the class distribution similarity within each cluster and

the dissimilarity of the class distributions across the two clusters. In order for the

split to be accepted, the class distribution of the instances across the two clusters

must be statistically different according to the F -test. The algorithm recurses in

each cluster that it forms and eventually stops if it finds no statistically significant

split or the size of a cluster falls bellow a pre-established threshold.

In the prediction phase, to classify an instance x, a PCT algorithm first iden-

tifies the cluster associated with that instance and then assigns, to instance x,

classes whose value in the mean probability vector of that cluster is greater than a

probability threshold. The threshold is varied when computing a Precision-Recall

curve, as explained later.

We shall use the most well-known implementation of PCTs for hierarchical

classification, the Clus-HMC algorithm (Vens et al. 2008). Clus-HMC obtained

good predictive performance in relation to other PCT algorithms.

We apply our HDN algorithm in each cluster given by a leaf node in the decision

tree produced by the Clus-HMC algorithm (that we shall call simply PCT from now

on), and we name the combination of both algorithms as the HDN-PCT algorithm.

This combination introduces another parameter, min inst HDN , the minimum

number of instances required in each cluster to train our dependence network. If

the number of instances in a cluster is below that minimum, the classification of

instances associated with that cluster is performed by the PCT algorithm.

Note that, in principle, a HDN model can be trained to substitute the predic-

tions of the internal nodes of the PCT, not just the leaf nodes. This can be done

by inducing a HDN model using the training instances reaching an arbitrary node

(Nd), and comparing the predictive performance of the sub-tree spanning from Nd

and the HDN model, using this information to decide whether to use the sub-tree

or the HDN model during testing. This procedure can even be applied in a greedy

fashion (recursively applying this procedure from root to leaves, stopping the re-

cursive process at the first HDN model with better performance than the PCT)

or in a exhaustive way (testing all possible sub-tree–HDN-model substitutions).

These variations are left for future work.
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We adopt the following strategy when using our HDN-PCT algorithm: after

the training phase we analyse which HDN classifiers had better overall classifica-

tion accuracy on the validation set (whose instances have no overlapping with the

instances in the test set used to evaluate the classifier’s predictive performance)

in comparison with clusters formed by the baseline PCT algorithm. If the classi-

fication accuracy of the HDN for a PCT cluster is higher than the classification

accuracy of PCT for that cluster, we analyse each class Ci in that cluster and

calculate the mean loss Li, defined as:

Li ≡

∑

j ((1i,j)− pi,j)
2

ni

, (5.4)

where 1i,j is an indicator function defined as:

1i,j ≡







1 if instance j has Ci as a true class,

0 otherwise.
(5.5)

pi,j is the estimated probability of the j-th instance belonging to the i-th class and

ni is the number of instances of the i-th class.

Considering this loss function, the predictions of the HDN-PCT algorithm and

the PCT algorithm on the validation set are compared to the real classifications.

Then, for each class, we discard the HDN classifier with greater loss than the loss

achieved by the stand-alone PCT algorithm for that class and use the output of

the PCT classifier instead for predicting that class.

Notice that it is not possible to calculate ranking-based quality measures for the

individual classifiers (for instance AUROC or AUPRC) in a given cluster formed

by the PCT algorithm, because the class probabilities assigned to all instances are

always the same, which yields an arbitrary instance ranking with respect to the

probability of an instance belonging to a given class. This justifies the use of the

loss function defined by Equation (5.4).
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5.4 Hierarchical Dependence Network Based on

finding non-Hierarchically Related Predictive

Classes

In this section we present our Hierarchical Dependence Network algorithm based

on finding non-Hierarchically related Predictive Classes (HDN-nHPC), our last

proposed HDN algorithm variation.

5.4.1 Estimating the Class Blanket of each Class Variable

The HDN-nHPC algorithm relies on the hypothesis that among the vast number

of classes (usually hundreds or thousands) in typical hierarchical classification

problems, there are class labels that, when present in an instance, change how the

feature vector affects the prediction of some other class label. The idea behind the

HDN-nHPC algorithm is to find and exploit such dependencies in a data-driven

way, using the class hierarchy to guide this search. Then, for each class variable

Ci, the predictions of the class variables related with Ci are used to inform the

prediction of Ci using the Gibbs sampling algorithm. Next we describe in more

detail how the set of related features are identified.

Let (Ci ↼ Ci′) be an ordered pair of class variables such that Ci is related to

Ci′ . We call the set containing all such pairs of classes as the set C†.

To build the set C† and the Markov blanket of each class variable Ci ∈ C†, we

created a method to find pairs of classes (Ci ↼ Ci′). These pairs of classes have

the property that information about class Ci′ affects the probability distribution

of class Ci. That is, knowing whether or not an instance is annotated with class

Ci′ affects our predictions about Ci (i.e. P (Ci|x, Ci′) 6= P (Ci|x)).

To achieve this, first we create a candidate set of predictive class relationships,

Ccand, containing every pair of classes (Ci ↼ Ci′) that are not descendants (or

ancestors) of each other. This condition is necessary since if classes are descendants

(or ancestors) of each other, we would have deterministic relationships between Ci

and Ci′ , that is, if Ci is an ancestor of Ci′ , Ci = c̃i ⇒ Ci′ = c̃i and Ci′ = ci ⇒ Ci =

ci. Recall that Ci = c̃i means that a particular class label Ci′ is not present in a

instance, and Ci = ci otherwise.

As mentioned earlier, for the HDN algorithm these deterministic relationships
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have been observed, in our preliminary experiments, to produce underfit classifi-

cation models, i.e., models that rely too much on the values of classes that are

descendants or ancestors of the current class being predicted during training, re-

sulting in over-simplified models. Another condition that must be satisfied for

a pair of classes to be in Ccand is that both classes, Ci and Ci′ , take the value

ci (rather than c̃i) in at least min inst Cand instances. We specify this condi-

tion to avoid considering classes with too few instances, thus inducing unreliable

classifiers.

The next step is to induce two SVM models to classify Ci, two models for each

pair (Ci ↼ Ci′) ∈ Ccand. The first model, M c̃i
(i,i′), is trained using dataset Dc̃i

(i,i′)

and the second, M ci
(i,i′), using dataset Dci

(i,i′), where Dc̃i
(i,i′) ∪ Dci

(i,i′) ≡ Dlearn, and

Dlearn is a random partition of 70% of the training set. Instances are assigned to

Dc̃i
(i,i′) if they have Ci′ = c̃i′ ; and conversely, assigned to dataset Dci

(i,i′) if Ci′ = ci′ .

Again, we use SVM because of its good predictive performance on preliminary

experiments.

After training the two SVM models using the values of the class variable Ci′ , we

need to test if the resulting pair of models (i.e., using M c̃i
(i,i′) and M ci

(i,i′) together)

has better predictive performance than a single SVM classifier (M(i,i′)), induced

using dataset Dlearn, without splitting the data based on Ci′ values.

To do so, we use the training instances in Dvalid, the complement of Dlearn

in the training set, as validation instances. Note that the classifiers did not have

access to these instances earlier. To classify a new instance using the two classifiers,

which we shall call a classifier pair from now on, we use the actual value of Ci′ to

decide which classifier to use: if Ci′ = c̃i we use M c̃i
(i,i′), if Ci′ = ci, we use M ci

(i,i′).

Intuitively, we would expect that if two given class variables are unrelated,

i.e., the presence or absence of one class label does not change the distribution of

another class label given the features (P (Ci|x, Ci′) = P (Ci|x)), the classifier pair

would have similar predictive performance to a single classifier that uses the whole

“learning set” Dlearn. In fact, due to the reduced individual sizes of datasets Dc̃i
(i,i′)

and Dci
(i,i′), it is likely that the classifier pair (M c̃i

(i,i′), M
ci
(i,i′)) would perform worse

on average than the single classifier (M(i,i′)) trained using the whole learning set

Dlearn. On the other hand, if the presence or absence of one class label affects

the distribution of another class label given the predictive features, our approach

would yield better classifiers than the single-classifier baseline if the classification

models in the pair of classifiers can exploit such differences. Using this rationale,

we select the pairs (Ci ↼ Ci′) whose classifiers achieved better predictive accuracy
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than the single classifier M(i,i′) on the validation set Dvalid to construct the set of

pairs of predictive classes C†, which is a subset of Ccand.

With the set C†, we can finally estimate the Markov blanket of each class label

Ci, which is divided in two parts: The first part, CFB
i , is the “Feature Blanket of

Ci”, a subset of x, the minimal set of predictive features that affect the estimation

of Ci. This set is estimated using the feature selection method F -test. The second

part, CCB
i , is the “Class Blanket of Ci”. This is specified by inducing a directed

graph G using the set C†. For each pair (Ci ↼ Ci′) ∈ C† we create a directed

edge from Ci′ to Ci, representing the fact that the value of Ci′ affects the value of

Ci. Thus, the vertices that point to Ci comprise the set CCB
i .

The procedures discussed thus far are presented in Algorithm 5.2 using the

additional notation: M ci
(i,i′)(x), M

c̃i
(i,i′)(x) and M(i,i′)(x) denote the prediction of the

corresponding models given the feature vector x. The functionAUPRC(predictions)

calculates the Area Under the Precision and Recall Curve for a single class, a mea-

sure of the predictive quality of the predictions, on the validation set Dvalid.

5.4.2 Estimating Class-Label Probabilities

Once we have graph G, which represents the dependence network among class

labels, we train the classifier pairs for the classes in C† using the whole training

set, D, one classifier pair for each class in CCB
i , for all class variables Ci. The

next step is to develop a way to query the classifiers of each class variable Ci and

get a single prediction to estimate P (Ci|C
FB
i ,CCB

i ). As each class variable Ci

may have several classifier pairs, one pair for each class in CCB
i , to return a unified

prediction, we return the average class probability over the probabilities computed

by the classifier pairs. That is, we average over a set of the class probabilities

computed by the selected classifier in the classifier pair of each class variable Ci

(one prediction for each element of CCB
i ) using the predicted values (ci or c̃i) of

the class variables in CCB
i to choose which models in the classifier pairs to use.

This procedure is presented in Algorithm 5.3.

Recall that during the iterations of the Gibbs sampling algorithm, the values of

the class variables in the Markov blanket of class variable Ci (C
CB
i ) are always well-

defined (although changing across iterations). So, we can use the current value of

each class variable Ci′ in the Markov blanket of Ci to select which classifier on the

classifier pair to use: If Ci′ = ci′ , we use the classifier on the classifier pair that was

trained to predict Ci only using instances inD with Ci′ = ci′ , conversely, if Ci′ = c̃i′
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Algorithm 5.2 Building the set of predictive class relationships.

1: procedure Find the set of predictive class relationships C† and

the graph induced by C†.

Inputs: The candidate set of predictive class pairs Ccand, the training dataset
D.

2: C† ← ∅
3: Randomly partition D into Dlearn and Dvalid.
4: for Each (Ci ↼ Ci′) ∈ Ccand do
5: predsPair ← ∅
6: predsSingle← ∅
7: Generate Dc̃i

(i,i′) and Dci
(i,i′) from Dlearn using Ci′ to split the data and the F -test

algorithm to select the most relevant features.
8: Induce M c̃i

(i,i′) using the features selected from Dc̃i
(i,i′).

9: Induce M ci
(i,i′) using the features selected from Dci

(i,i′).
10: Induce M(i,i′) using the features selected from Dlearn.
11: for Each instance (x′, C ′) ∈ Dvalid do
12: if C ′

i′ = ci then
13: predsPair ← predsPair ∪M ci

(i,i′)(x
′)

14: else
15: predsPair ← predsPair ∪M c̃i

(i,i′)(x
′)

16: end if
17: predsSingle← predsSingle ∪M(i,i′)(x

′)
18: end for
19: if AUPRC(predsPair) > AUPRC(predsSingle) then
20: C† ← C† ∪ (Ci ↼ Ci′)
21: end if
22: end for
23: Induce graph G, treating the pairs (Ci ↼ Ci′) ∈ C†, as directed edges from

Ci′ to Ci.
24: return G and C†.
25: end procedure
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we use the classifier that was trained to predict Ci only using instances in D with

Ci′ = c̃i′ . This procedure is repeated for every classifier pair, one pair for each class

variable inCCB
i , giving us several estimations for P (Ci|C

FB
i , Ci′), one for each class

variable Ci′ in CCB
i . To return the unified estimation of P (Ci|C

FB
i ,CCB

i ) that the

Gibbs sampling algorithm requires, we average the estimations of P (Ci|C
FB
i , Ci′)

given by each one of the classifiers corresponding to the variables on the Markov

blanket of Ci, that is, the average over the class probabilities in the set predictions

in Algorithm 5.3.

Algorithm 5.3 Estimating P (Ci|x,C
CB
i ).

1: procedure Estimation of P (Ci|x,C
CB
i )

Inputs: the instance’s feature vector x, the class variable to be predicted Ci,
the Dependence Network G, the current predictions of classes other than Ci

for the instance C†.
2: CCB

i ← The class variables that point to Ci in G.
3: predictions← ∅
4: for Each class variable Ci′ ∈ CCB

i do
5: if Ci′ = ci′ then
6: CFB

i′ ← the features selected by the F -test from x when Ci′ = ci′ .
7: predictions← predictions ∪M

c
i′

(i,i′)(C
FB
i′ )

8: else
9: CFB

i′ ← the features selected by F -test from x when Ci′ = c̃i′ .

10: predictions← predictions ∪M
c̃
i′

(i,i′)(C
FB
i′ )

11: end if
12: end for
13: return the average class probability of the individual probabilities in

predictions
14: end procedure

The HDN-nHPC variation of the HDN algorithm uses the predictive class vari-

ables in very a different way than the previous versions. The HDN and HDN-PCT

algorithms treat the class variable values in the Markov blanket of the class nodes

as common features (see Algorithm 5.1), while the HDN-nHPC treats the values

of the class variables as special features that guide the decision of which classifier

in the classifier pairs to use. The simpler approach of using the class variables as

features could, in principle, be used in the HDN-nHPC algorithm as well, but note

that that Algorithm 5.2, used to find the set of predictive class relationships, works

by finding classifier pairs with better predictive accuracy than a single classifier.

Therefore, in the HDN-nHPC algorithm, it arguably makes more sense to use the

classifiers in the pair, which are known to be good predictors of Ci, than using the
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predictive class variables as common features. The superiority of using classifier

pairs in relation to using predictive classes as features (like in the HDN algorithm)

in our HDN-nHPC algorithm was confirmed in preliminary experiments.

To query our Dependence Network we use a second version of the modified

Gibbs sampling, presented in Algorithm 5.4. The main difference between this

algorithm and Algorithm 5.1 is on how to use the predictions in the Markov blanket

of the class variables - the class blanket predictions. While Algorithm 5.1 appends

these predictions to the feature vector of the instances, using these class predictions

as new features (lines 5 to 7), Algorithm 5.4 passes the value of the predictions as

a parameter to Algorithm 5.3 (line 10), which in turn calculates the probability

P (Ci|x,C
CB
i ) using the classifier pairs, as previously described.

If the set CCB
i is empty for some class variable (either because there is no

edge in G from some other variable to Ci, or because Ci is not in G), we use a

standard SVM classifier model (denoted as Mi(C
FB
i )) to estimate P (Ci|C

FB
i). In

this case, there is no need to run the Gibbs sampling procedure for this particular

class variable, as its class probability distribution does not depend on the presence

of any other class variable.

After all posterior probabilities are calculated, we traverse the class hierar-

chy in a bottom up-fashion, checking if each class probability is greater than or

equal to the class probability of its descendants. If this is not the case, we set

the class probability of the offending class to be the maximum probability of its

descendants (Obozinski, Lanckriet and Grant 2008).

We call the conjunction of Algorithms 5.2, 5.3 and the modified Gibbs sam-

pling algorithm (Algorithm 5.4): HDN based on finding non-Hierarchically related

Predictive Classes (HDN-nHPC).

Now that we have precisely defined the HDN-nHPC algorithm, we can clarify

the characteristics of this algorithm that distinguish it from the one proposed in

Section 5.2 (HDN):

1. The data-driven approach to find predictive class relationships is performed

in Algorithm 5.2 by building the graph G. This graph represents impor-

tant predictive class relationships among classes that are non-hierarchically

related (i.e., classes that are not ancestors or descendants of each other).

By contrast, the HDN algorithm simply uses the siblings and parents of the

children of the current class as predictive features, ignoring the vast majority

of the class hierarchy when predicting the current class.
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Algorithm 5.4 Hierarchical classification with Modified Gibbs sampling algo-
rithm.

1: procedure Modified Gibbs sampling

Inputs: Instance feature vector x, total number of iterations it, number of
burn-in iterations burn.

2: Probabilistically initialise the predicted class label vector of x (Cpred),
using uniform distributions (parametrised by the a priori empirical class
distributions).

3: for k ∈ {1..it} do
4: for all Ci ∈ the Class Taxonomy do
5: CCB

i ← Get classifications of the Markov blanket of Ci from Cpred.
6: if CCB

i = ∅ (No class affects the prediction of Ci) then
7: P (Ci|x)←Mi(C

FB
i ) (Use a flat classifier to estimate P (Ci|x).)

8: Skip the rest of the “for all” loop for the current Ci.
9: end if

10: p← P (Ci|x,C
CB
i ) /* Call Algorithm 5.3*/

11: u← Random value drawn from a uniform distribution in [0, 1].
12: if u < p then Cpred,i ← ci else Cpred,i ← c̃i end if
13: if k > burn then
14: P (Ci|x)←

P (Ci|x)×(k − burn − 1) + p

k − burn

15: end if
16: end for
17: end for
18: return the marginal probabilities P (Ci|x).
19: end procedure
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2. The dataset split approach to induce classifiers is performed in Algo. 5.2 by

the creation of different classification models (M c̃i
(i,i′) and M ci

(i,i′)) using differ-

ent subsets of the training set (Dc̃i
(i,i′) and Dci

(i,i′)), by splitting the training

set based on the two values of a predictive class variable. By contrast, the

HDN algorithm uses the values of the class variables in the Markov blanket

of each node as a common predictive attribute to induce the base classifiers.

3. The use of several classification models to estimate the probability of a class

is done in Algorithm 5.3 by averaging the predictions of the classifiers in

the Markov blanket of each class label. By contrast, the HDN algorithm

estimates the probability of a class by using a single classification model

using the class variables in the Markov blanket as extended features.

5.5 The Hybrid Predictive Clustering Tree/Lo-

cal Hierarchical Classification (PCT-LHC) Al-

gorithm

This hybrid hierarchical classification algorithm can be seen as an extension of

the PCT algorithm, which builds a global model where each leaf node is assigned

a class probability vector. The PCT model simply assigns, to a new instance

reaching a given leaf node, the classes whose probabilities are greater than a certain

threshold. Our new hybrid algorithm first uses the standard PCT algorithm to

build the model (decision tree) in the training phase. Next, for each leaf node

having more than min inst LHC (a parameter) instances, the hybrid algorithm

builds a local classification model for predicting each class, by running a standard

flat classification algorithm from the instances in that leaf node. The idea is

that leaves with a relatively large number of instances may be further explored

by another classification algorithm, in this case the LHC algorithm, hopefully

improving predictive performance. Again, we used a SVM as the local (base)

classification algorithm in the training phase.

In the testing phase, when an instance is presented to the PCT classification

model the leaf node associated with that instance is identified. If flat classifiers

were trained in the leaf node, they are used to predict the class labels of the

instance. If the flat classifiers were not trained in the leaf node, the class probability

vector of the PCT is returned, as usual.
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The combination of decision trees with other classification algorithms has been

recently proposed for (flat) multi-label classification with success (Gjorgjevkikj,

Madjarov and Dzeroski 2013); however, as far as we know, it was first proposed

for hierarchical classification by us in (Fabris, Freitas and Tullet 2015).

5.6 Conclusions

In this chapter we have proposed four new hierarchical classification algorithms.

The first one, the HDN (defined in Section 5.2), uses the structure of the class

hierarchy to define the edges of a DN (the Markov blanket of each node) and a

single local ‘flat’ classifier to estimate the probability of each class in the hierarchy,

using the state of the Markov blanket of that class as extended predictive features.

This algorithm uses the Gibbs sampling approach to get the final prediction of the

HDN model.

The second hierarchical classification algorithm we have proposed is the hybrid

HDN-PCT algorithm (defined in Section 5.3), which induces a HDN classifier in

each cluster formed by the PCT algorithm.

The third hierarchical classification algorithm we have proposed is the HDN-

nHPC algorithm (defined in Section 5.4). This algorithm has a different approach

to build the DN. Instead of using the given hierarchical structure, this algorithm

uses a data-driven approach to find relationships among classes that are not en-

coded directly by the class hierarchy and (potentially) induces more than one ‘flat’

classifier to predict each class in the hierarchy. This classifier uses a modified Gibbs

sampling algorithm to combine the predictions of each ‘flat’ classification model

induced to predict each class label.

The fourth algorithm we have proposed is a hybrid between the PCT classi-

fication algorithm and the LHC classification algorithm (defined in Section 5.5),

two popular algorithms for hierarchical classification. This hybrid is similar to the

HDN-PCT, the difference is that a LHC classifier is induced in each cluster formed

by the PCT algorithm, instead of a HDN classifier.



Chapter 6

Results for the Hierarchical

Classification Algorithms

6.1 Hierarchical Classification Datasets Used in

this Work

In this section we present the three groups of datasets we used for our hierar-

chical classification experiments. Subsection 6.1.1 presents details of the hierar-

chical datasets made publicly available in https://dtai.cs.kuleuven.be/clus/

hmcdatasets/ by Celine Vens (Vens et al. 2008), which use FunCat (Ruepp et al.

2004) and Gene Ontology (Harris et al. 2004) hierarchical terms as predictive

classes. Subsection 6.1.2 describes how we created ageing datasets for several

model organisms using terms of the Gene Ontology hierarchy as predictive classes.

Subsection 6.1.3 describes how we created ageing datasets for the mouse model

organism using Mammalian Phenotype Ontology (Eppig et al. 2015) hierarchical

terms as predictive classes. In Subsection 6.1.4 we present general characteristics

of all datasets we have considered.

6.1.1 Vens’ Datasets

The first set of datasets we used are 22 of the 24 datasets made available in

https://dtai.cs.kuleuven.be/clus/hmcdatasets/. We discarded the datasets

pheno GO and pheno FUN, since they contain many (more than 50%) missing

values, and adding them would require a non-trivial adaptation of the hierarchical

classifiers we used. The datasets are pre-divided by their creators into training,
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validation and testing sets; we maintain the same division in our work. We did not

employ the more traditional cross-validation procedure because of the relatively

large number of instances and because the use of the same dataset division as

in (Vens et al. 2008) makes our results more fairly comparable with other works

in the literature.

These datasets contain features extracted from the genes of the widely used

model organism Saccharomyces cerevisiae (yeast). There are two types of predic-

tive features: 1) statistics extracted from the amino acid sequences (seq features)

and 2) several types of microarray expression data (all the other features). (Clare

and King 2003) explains the creation of the features in detail.

There are also two types of class hierarchies: “FUN” (the tree-structured hier-

archy in the FunCat scheme (Ruepp et al. 2004)) and “GO” (the DAG-structured

Gene Ontology (Harris et al. 2004)).

The characteristics of these datasets will be presented later on, in Table 6.3.

6.1.2 Ageing-Related Gene Ontology (GO) Datasets

To study the biological aspects of ageing/longevity using our hierarchical classifi-

cation algorithms, we have built 15 datasets containing features extracted from the

proteins encoded by the genes in the Ageing Gene Database (GenAge) (Tacutu

et al. 2013). GenAge is a catalog of ageing-related genes coming from several

species, including human and model organisms such as S. cerevisiae (baker’s yeast)

and M. musculus (the house mouse).

Salama and Freitas (2013) have already compiled an ageing-related dataset

for the hierarchical classification of ageing-related proteins. We build upon their

work by updating and expanding the dataset to contain more species and the

features used in (Silla Jr. and Freitas 2011b), which focused on the hierarchical

classification of generic (not specifically ageing-related) proteins functions. In our

datasets, each instance represents an ageing-related gene, and the hierarchical

classes to be predicted are Gene Ontology (GO) terms.

All genes were collected from the GenAge database, build 17 (from December

18, 2013). This version contains 298 human ageing-related genes and 1,825 genes

from model organisms, related to both ageing and longevity.

The human gene dataset contains a comprehensive list of genes potentially

associated with human ageing. This list contains genes supported by different de-

grees of confidence, varying from direct evidence linking the gene to human ageing



CHAPTER 6. HIERARCHICAL CLASSIFICATION RESULTS 109

Table 6.1: Number of genes and proteins for each species present in the GenAge
database.

Species Number of
genes

Number of
proteins

Saccharomyces cerevisiae (baker’s yeast) 825 762
Caenorhabditis elegans (a type of worm) 741 263
Homo sapiens (human) 298 301
Drosophila melanogaster (fruit fly) 140 79
Mus musculus (house mouse) 112 107
Podospora anserina (a type of filamentous fungus) 3 -
Schizosaccharomyces pombe (Fission yeast) 2 -
Danio rerio (Zebra fish) 1 -
Mesocricetus auratus (Golden hamster) 1 -

to inconclusive evidence that the gene is related to ageing. The model organism

datasets contain genes associated with ageing in non-human organisms. These

genes have, in general, a more reliable classification due to easiness of experiment-

ing with these species. Table 6.1 lists in the second column the number of genes

for each organism in GenAge.

Because of the low representativity, we discard the species P. anserina, S.

pombe, D. rerio and M. auratus. This leaves us with five species. For each species

we derive three datasets containing three broad types of features, namely numeric

alignment independent features, protein motif features and protein-protein inter-

action features, leaving us with 15 ageing-related datasets.

The GenAge database contains the “Entrez Gene Id” as an external gene iden-

tifier; we use it to retrieve the “UniprotKB AC ID” (UniProt Knowledge Database

Accession Identifier) protein identifier using the UniProt ID Mapping Tool.

Because more than one protein may be associated with a single gene, 2,855

UniProt identifiers were retrieved from the 2,123 genes. However, from the 2,855

proteins, we discard 1,243 whose functions were not manually reviewed by experts

or whose species is one of the four that were discarded. After this step, we end up

with 1,612 proteins (instances), distributed among organisms as presented in the

last column of Table 6.1.

Finally, we downloaded the amino acid sequence of each protein from the

UniProt-SwissProt database, using build 2014 02 of 19 February 20141. We de-

scribe below how we created the features for our datasets.

1ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/

ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/
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The hierarchical classes were created for each model organism by first retrieving

the GO terms associated with each protein sequence using the UniProt-SwissProt

database. Next, we used the DAVID tool2 (version 6.7 of January of 2010) to

retrieve the over-expressed GO terms of each model organism, considering only

these GO terms in our final dataset. We call these over-expressed GO terms

ageing-related GO terms, as they occur significantly more often than statistically

expected in our datasets of ageing-related proteins.

Note that there is currently a new version of the DAVID tool (version 6.8

of October of 2016) which updated the data used by DAVID in several ways,

including the definition of the ontology used to calculated the over-expressed GO

terms. The task of updating the data mining dataset used in this work is left as

future work. Researchers interested in using the datasets compiled for this work

should be careful, since this data is now somewhat obsolete.

The characteristics of these datasets will be presented later on, in the first part

of Table 6.4.

Numeric Alignment-Independent Features

We extracted the following numeric features described in (Salama and Freitas

2013; Silla Jr. and Freitas 2011a): “Amino Acid Composition” (21 features),

“Composition” (3 features), “Transition” (3 features), “Distribution” (15 features),

and “Z-Values” (15 features). Furthermore, all datasets (with all types of features)

have two features: “Sequence Length” (the amino acid sequence length), and

“Molecular Weight” (the molecular weight of the protein). These features are

called alignment-independent, as they do not require any alignment procedure

such as “BLAST” or“PSI-BLAST” to be performed on the sequences prior to

their calculation.

The ‘BLAST‘ algorithm works by finding similar sequences to the query se-

quence by counting the number of ‘operations’ (deletions, substitutions and inser-

tions) necessary to transform one sequence into the other. The BLAST algorithm

uses a pre-computed cost matrix to measure the ‘cost’ of each operation, for each

amino acid pair. The ‘PSI-BLAST’ algorithm, on the other hand, runs several

‘BLAST’ queries, updating the cost matrix according to the current set of retrieved

‘similar’ sequences, thus changing the cost matrix dynamically (Bhagwat and Ar-

avind 2007). The idea behind this is to update the substitution costs empirically,

2http://david.abcc.ncifcrf.gov
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taking into account conserved and non-conserved changes in the protein sequences

(changes in conserved sites are probably more relevant, as they are more likely to

change protein function). Note that this dynamically computed cost matrix can

be analysed to gain insights of important regions of the protein.

It is desirable to avoid such alignment algorithms as they usually require pa-

rameter setting, usually rely on the assumption that similar sequences share similar

functions (which is not always the case), and may be very computationally inten-

sive.

Each “Amino Acid Composition” feature is the ratio of the frequency of a

distinct amino acid in the sequence over the total number of amino acids in the

sequence. Each “Composition” feature is the frequency of each type of amino

acid (polar, apolar or neutral) in the amino acid sequence. “Transition” features

measure how common are the transitions among amino acid types (polar↔ apolar,

polar ↔ neutral, and apolar ↔ neutral) by calculating their relative frequency.

“Distribution” features measure the relative location in the amino acid sequence

of the first, the first 25%, the first 50%, the first 75% and all amino acids of a given

functional group (polar, apolar or neutral). “Z-Values” are features derived from

the 5 principal components (produced by principal component analysis) of several

physiochemical properties of each amino acid (Sandberg et al. 1998). Following

the suggestion of (Secker et al. 2007), the five Z-values of each amino acid in the

sequence are averaged across the whole sequence, across the first 100 amino acids,

and across the last 100 amino acids, creating a total of 15 “Z-value” features.

We have used the z-values presented in Table 6.2, extracted from Sandberg et al.

(1998).

In (Secker et al. 2007) several ways to combine the z-values of the amino acid se-

quence were tested. Authors concluded that the z-values should be averaged across

the whole amino acid sequence. In their work, which had the goal of classifying

GPCR (G-Protein Coupled Receptor) proteins, the C-terminus and N-terminus of

the proteins (the extremities of the molecule) are of great importance; therefore,

besides using five z-values averaged over the whole sequence, the authors recom-

mend using two sets of five z-values averaged over the first 150 and last 150 amino

acids of the protein sequence as well. Although we are not classifying the same

type of protein, we decided to test the effectiveness of these extra 10 z-values as

attributes too.

In addition, following (Freitas, Vasieva and de Magalhães 2011), we extend

each of the human ageing datasets with the Dn/Ds ratio, which measures the
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Table 6.2: Z-values extracted from Sandberg et al. (1998)

Amino Acid z1 z2 z3 z4 z5

A 0.24 -2.32 0.60 -0.14 1.30
C 0.84 -1.67 3.71 0.18 -2.65
D 3.98 0.93 1.93 -2.46 0.75
E 3.11 0.26 -0.11 -3.04 -0.25
F -4.22 1.94 1.06 0.54 -0.62
G 2.05 -4.06 0.36 -0.82 -0.38
H 2.47 1.95 0.26 3.90 0.09
I -3.89 -1.73 -1.71 -0.84 0.26
K 2.29 0.89 -2.49 1.49 0.31
L -4.28 -1.30 -1.49 -0.72 0.84
M -2.85 -0.22 0.47 1.94 -0.98
N 3.05 1.62 1.04 -1.15 1.61
P -1.66 0.27 1.84 0.70 2.00
Q 1.75 0.50 -1.44 -1.34 0.66
R 3.52 2.50 -3.50 1.99 -0.17
S 2.39 -1.07 1.15 -1.39 0.67
T 0.75 -2.18 -1.12 -1.46 -0.40
V -2.59 -2.64 -1.54 -0.85 -0.02
Y -2.54 2.44 0.43 0.04 -1.47
W -4.36 3.94 0.59 3.44 -1.59
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degree of conservation between two gene sequences (Yang and Bielawski 2000).

Dn is the ratio of non-silent mutations between two sequences (gene mutations

that alter the amino acid sequence of the protein associated with that gene), Ds

is the ratio of silent mutations (changes in the gene sequence that do not alter the

corresponding protein). We compare the Dn/Ds ratio of homolog ageing-related

genes in humans and rhesus macaque (Macaca mulatta). Larger ratios indicate

a recent evolutionary change in that gene, suggesting a stronger relation with

ageing than genes with smaller values. Using the Dn/Ds ratios from the BioMart

tool3 we extracted 288 Dn/Ds ratios from the human/rhesus genes. 8 genes had

no homologs in the Homologene dataset and have missing values for this Dn/Ds

feature in the datasets.

Protein-Protein Interaction (PPI) Features

This type of binary feature indicates whether or not an ageing-related protein

interacts with each of a set of other proteins (which may or may not be ageing-

related proteins). Interacting partners of one protein often give away hints of its

function (Sharan, Ulitsky and Shamir 2007). This type of feature was recently

used in ageing-related datasets (Freitas, Vasieva and de Magalhães 2011). We

have used the BioGrid4 database to extract PPIs and have only considered fea-

tures representing interacting partners occurring in three or more instances in the

dataset, to avoid classifier over-fitting due to the rare interactions with a given

protein.

Protein Motif Features

The binary motif features represent the presence or absence of a given motif in

the amino acid sequence of a protein. A motif is a template describing simi-

lar sequences of amino acids that occur recurrently in proteins. Motifs serve as

a high-level representation of a protein and it is expected that proteins sharing

some specific motifs share similar functions. We have used the same four types

of motifs investigated in (Silla Jr. and Freitas 2011a): Interpro (Hunter et al.

2012), Pfam (Finn et al. 2008), Prosite (Sigrist et al. 2013), PRINTS (Attwood

et al. 2003). We have only considered motifs occurring in at least three proteins

(instances) in the dataset, to avoid overfiting as mentioned earlier.

3http://www.ensembl.org/biomart/
4http://thebiogrid.org

http://www.ensembl.org/biomart/
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6.1.3 Ageing Mammalian Phenotype Ontology (MPO) Datasets

To explore different predictive features and predictive classes, we have built 5

datasets containing features extracted from the proteins encoded by the genes

in the Phenotypes and Mutant Alleles section of the Mouse Genome Informatics

(MGI) database. The MGI provides the two primary sources of data for our

datasets: (1) the definition of the Mammalian Phenotype Ontology (MPO), the

source of class labels to be predicted, and (2) a list of genotypes annotated with

the phenotypes present in the MPO, the source of the features (predictors).

The MPO is organised as a DAG (Directed Acyclic Graph), where each node

represents a phenotype (an ontology term) and each edge an “IS-A” relation be-

tween phenotypes.

The MPO contains 10,907 terms in total, and 113 terms under the term

MP:0010768 (ageing/mortality) part of the hierarchy, our research focus. We con-

sider only the 113 ageing-related terms as class labels for our study, and discard

the others. Considering all 10,907 terms would generate classification models more

focused on predicting non-ageing-related terms, generating models with less inter-

est for the biology of ageing. After further discarding MPO terms with less than

10 instances, we end up with 81 MPO terms, the hierarchical class labels to be

predicted.

With the class hierarchy defined, we must create our instances. In the MGI

database, 11,532 genotypes are annotated with at least one of the 113 mortality/ageing-

related ontology terms. Each genotype is formed by a list of allele mutations. Each

allele mutation contains (among other information) one or more protein-encoding

genes, which in turn are associated with particular mutations. Therefore, using the

MPO hierarchy we can associate a protein (instance) with one or more phenotypes

(hierarchical classes). Figure 6.1 shows these relations graphically.
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Gene

Mutation

Protein (our

instances)

annotates formed by

contains

associated with
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Figure 6.1: Relationships among MPO elements and the instances in our datasets.
Filled edges represent relationships present in the MGI database. The dashed edge
represents the indirect relation that we use for our datasets. Note that we ignore
mutation information.

Note that our instances are proteins encoded by standard genes, not gene

mutations, because, as discussed later, information about proteins is much richer

and precise than information about gene mutations.

However, choosing to use proteins as instances (instead of gene mutations)

has the disadvantage of risking annotating the same protein with contradictory

MPO terms. This may happen because two different mutations on the same gene

may have contradictory effects. E.g., one mutation may over-express the protein

encoded by a gene, while some other mutation on the same gene may under-

express that protein, possibly leading to opposite MPO terms being associated

with the same gene with different mutations. Since this mutation information

is not available for the classifier, these apparent contradictions (opposite MPO

terms annotating the same instance) may reduce classification performance and

interpretability. However, we consider this compromise acceptable since the lack

of information about particular gene mutations makes the use of classification

algorithms considering gene mutations as instances inviable.

Following this approach, we merged the annotations associated with the same

gene, keeping all MPO terms that were associated with the different mutations of

that gene. After this step, the 11,532 gene-mutations were reduced to 5,045 genes

(without mutation information) keeping all annotations associated with different

gene mutations.

The next step is to retrieve the Entrez Id (unique gene identifier) for each one of
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the 5,045 genes associated with the mortality/ageing phenotypes. Genes without

an Entrez Id were discarded, further reducing the number of instances to 4,575.

Finally, we retrieved the UniProt Id associated with each Entrez Id., using the

UniProt ID Mapping Tool. This gives us information about the protein product

associated with each gene. Genes having the same UniProt Id were discarded,

leaving us with the final number of 3,886 proteins (instances), each instance linked

with one protein and a list of mortality/ageing phenotypes (MPO terms used as

class labels).

For the list of 3,886 proteins, we derive five datasets, each with a different

feature type: numeric features, protein motifs features, Protein-Protein Interaction

(PPI) features (explained in Subsection 6.1.2), and two types of KEGG pathway

features, described next.

KEGG Pertinence (KEGGP) pathway features - KEGG pathways are

directed-graph representations of interactions between several types of biological

products (e.g., genes or proteins) (Kanehisa et al. 2016). To build our KEGG

pathway features we have parsed the KGML representations of the mouse KEGG

pathways under the condition that at least 1% of our instances must be present in

the pathway in order for the pathway to be considered. This generated a total of

221 KEGGP features. Pertinence features based on KEGG pathways have already

been explored in other works involving ‘flat’ data mining, e.g., (Jungjit et al. 2014;

Keerthikumar et al. 2009), but not in hierarchical classification yet.

KEGG Influence (KEGGI) pathway features - This feature type, pro-

posed in (Fabris and Freitas 2016), quantifies the influence that an instance (ref-

erence protein) has on the downstream proteins of a KEGG pathway, the idea

being that proteins that have a common influence on a set of downstream protein

share similar function. Consider that one ageing-related protein affects a set of

downstream proteins in a given way. If another protein affects the downstream

proteins in a similar way, then it is likely that that protein is also ageing-related.

The use of complex KEGG-based pathway features for data mining has been

proposed in other works, as follows: (Zhang and Wiemann 2009) proposed a soft-

ware tool to construct a graph-based model of KEGG pathways. (Xia and Wishart

2010) used graph-based KEGG features for metabolomics analysis. (Chen et al.

2010) used characteristics extracted from the KEGG pathway graph to classify
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the pathways into “biologically meaningful” or not. (Breitkreutz et al. 2012) cor-

related the complexity of cancer-related KEGG pathways to patient survivability.

Despite being previously used for different goals, as far as we know, we are the

first to propose complex KEGG-based features for the classification of protein

functions.

The influence score for a given protein p has the minimum value of 0.0 when the

reference protein (Pref ) does not influence p at all, because p is not “downstream”

of (i.e., cannot be reached from) Pref .

Figure 6.2 shows an example of the calculation of the proposed “influence” score

for a hypothetical instance (reference protein) and a set of downstream proteins.

Proteins P1, P2 and P6 in that figure have a score of 0.0, since they are not

downstream of Pref .

The score of a given protein p that is downstream of Pref has the maximum

value of 1.0 if, when Pref is removed from the pathway, the downstream protein p

becomes unreachable from the proteins that are not downstream proteins of Pref .

The biological meaning that we want to capture is that a knockout on Pref would

nullify the standard behaviour of the downstream protein p. Proteins P3 and P7,

in Figure 6.2, have a score of 1.0 since if Pref is removed from the pathway, proteins

P3 and P7 will be disconnected from the KEGG pathway graph defined by the set

of proteins that are not downstream proteins.

If the score of a given protein p that is downstream of Pref has a value of 0.5, it

means that Pref accounts for half of the influence that the downstream protein p

receives. Removal of Pref would not completely nullify the standard behaviour of

the downstream protein p, because there would be one more protein (which is not

downstream in relation to Pref ) that also affects p, therefore the influence of Pref

on p is 50%. Protein P5, in Figure 6.2, has a score of 0.5 because if one removes

protein Pref from the graph, protein P5 would still be reachable from protein P2,

which is not a downstream protein.

In practice, to calculate the value of the features for each instance, we need

to build two sets of proteins: the first, the downstream proteins, comprises the

proteins that are downstream of the current instance, Pref . The second set, the

non-downstream parent proteins, contains the proteins that are not downstream

of Pref but are the parents of a protein that is downstream of Pref - e.g., proteins

P2 and P6 in Figure 6.2. Finally, for each downstream protein, the influence score

is equal to 1/(1 + peffect), where peffect is the number of non-downstream parent

proteins that have an effect (direct or indirect) on the downstream protein. We
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P1 Pref P2

P3 P4 P5 P6

P8P7

s = 1.0 s = 0.5 s = 0.5

s = 0.3s = 1.0

Figure 6.2: Example of score values (s) for five downstream proteins
(P3, P4, P5, P7, P8) in relation to a reference protein Pref . Diamond-shaped nodes
represent proteins that are parent of some downstream protein but are not down-
stream protein themselves.

consider that a non-downstream protein has an effect on the downstream protein

if the non-downstream proteins can reach the downstream protein.

To illustrate these concepts in detail lets us consider protein P8 (see Figure 6.2),

which is in the set of downstream proteins of Pref . Because both non-downstream

parent proteins affect P8 (both P2 and P6 can reach P8), the value of the influence

score for P8 is 1/(1 + 2) = 0.3.

This gives us a set of downstream protein scores for the instance. We repeat

this procedure for every available KEGG pathway. If the same downstream protein

occurs more once in the same pathway, we keep the highest score. We discard the

features (downstream proteins) with value > 0.0 in less than 1% of the instances,

totalling 618 features. We call the KEGG pathway influence features KEGGI from

now on.

6.1.4 Hierarchical Dataset Statistics

Tables 6.3 and 6.4 contain information about the datasets we are using to test our

algorithms. In particular, we can see in Table 6.3 that the Vens’ datasets have

a relatively high mean number of instances (3672.5) and GO predictive classes

(3649.5).

The mean number of FunCat classes is much smaller (473.3), this is natural, as

the FunCat hierarchy has much fewer terms than the GO; therefore, it is expected

that a smaller number of terms annotate each instance.
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Table 6.3: Number of instances, predictive features and classes in the Vens’
datasets used in this work. Note that although the table has 11 entries, the total
number of hierarchical datasets is 22, 11 for each type of class hierarchy (GO and
FunCat).

Predictive Features Number of
FunCat
Classes

Number of
GO classes

Number of
Instances

Number of
Features

seq 476 3704 3932 478
cellcycle 476 3695 3766 77
church 476 3696 3764 27
derisi 476 3691 3733 63
eisen 447 3176 2425 79
gasch1 476 3698 3773 173
gasch2 476 3698 3788 52
spo 476 3691 3711 80
expr 476 3698 3788 551
struc 476 3703 3851 19628
hom 476 3695 3867 47034

The number of features is the dataset characteristic with the highest variance

in Table 6.3. This is due to the different representations that were used to create

the datasets, specially those coming from microarray expression data, which can

vary greatly in size.

Table 6.4 presents the characteristics for the datasets we created. We can see

that the number of instances for these datasets varies considerably more, due to

the fact that they come from different animal species and dataset sources.

The number of distinct hierarchical classes in these datasets also varies more

than for the datasets in Table 6.3. This is due, first, to the varying number of

instances, and second to the different animal species, which are annotated with

varying degrees of detail.

The number of features also varies significantly in Table 6.4, since datasets with

more instances tend to naturally have more features (there is more chance for more

non-zero attributes being present) and different species have varying numbers of

Motif and PPI annotations.
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Table 6.4: Number of hierarchical class labels, instances, and predictive features
in the datasets we created and used in this work.

Hier. Feature Type Number of
Hier. Classes

Number
of Instances

Number
of Features

Ageing GO

worm Numeric
350 263

59
PPI 162

Motifs 112

fly Numeric
385 79

59
PPI 105

Motifs 55

human Numeric
1713 301

60
PPI 2425

Motifs 284

mouse Numeric
683 107

59
PPI 29

Motifs 40

yeast Numeric
583 762

59
PPI 4397

Motifs 296

Ageing MPO

KEGG

84 3886

221
KEGGI 618
Motifs 372
Numeric 59
PPI 123

6.2 Predictive Performance Measures

As the algorithms we are testing output the probabilities of an instance belonging

to each class, instead of a crisp classification, to estimate their predictive per-

formance, we could transform the class probabilities into crisp classifications by

predicting classes whose probability is greater than a certain threshold - that is,

a given class is assigned to the current test instance if and only if the output

probability for that class is greater than the used threshold.

In order to avoid the subjective choice of a threshold, in binary classification, it

is common to calculate the Area Under the Precision Recall Curve (AUPRC). In

the case of highly skewed class distributions (as is typically the case of hierarchical

classification problems), the AUPRC is more appropriate than the more popular

Area Under the Receiver Operating Characteristic Curve (AUROC) because the
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AUROC measure over-rewards classifying negative instances as negative (Davis

and Goadrich 2006), not recognising that correctly classifying a rare positive in-

stance in the highly negatively-skewed scenario should be more important than

correctly classifying the more common negative instances.

Precision (P) and Recall (R) are common measures used in binary classification

problems, defined as:

P ≡
TP

TP + FP
, and R ≡

TP

TP + FN
. (6.1)

Where TP (True Positives) is the number of correctly positively classified in-

stances, FP (False Positives) is the number of instances classified as positive that

are not positive, FN (False Negatives) is the number of positive instances that

were not classified as positive and “≡” means “equal by definition”.

These two measures represent conflicting optimising goals. E.g., one can obtain

a high precision (but a low recall) by classifying as positive only instances that have

a high probability of belonging to the positive class; conversely, one can obtain a

high recall (and a low precision) by classifying all instances as positive.

Given a binary classifier with probabilistic outputs, it is possible to construct a

PR curve (a plot of the classifier’s precision as a function of its recall) by threshold-

ing the output (class probability) of the classifier using values in the interval [0, 1].

Each threshold is associated with a value of precision and recall, corresponding

to a point in the PR space. Note that to obtain a single performance measure

from the curve, we calculate its area using a trapezoidal approximation (Boyd,

Eng and Page 2013). A classifier that perfectly ranks all negative instances before

the positive ones – where the ranking is by increasing order of probability of being

positive – would have a AUPRC of 1.0.

There is no obvious way to adapt this measure to the hierarchical classification

scenario, therefore we follow the suggestions of (Vens et al. 2008) and use three

alternatives: the Area Under the average Precision-Recall Curve (AU(PRC)),

the average Area Under the Precision Recall Curve (AUPRC) and the weighted

average Area Under the Precision Recall Curve (AUPRCw).

To calculate the AU(PRC), we use the hierarchical versions of precision and

recall for a fixed threshold, defined as:

hP ≡

∑

j |Pj ∩ Tj|
∑

j |Pj|
and (6.2)
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hR ≡

∑

j |Pj ∩ Tj|
∑

j |Tj|
. (6.3)

Where Pj is the set of predicted classes of the j-th instance and Tj is the set

of true classes of the j-th instance.

To calculate the AUPRC measure we simply average all the class-wise AUPRC

values. Similarly, to calculate the AUPRCw, we calculate the AUPRC of each

class independently and combine the individual values by calculating an average

over all classes weighted by the number of instances that belongs to each class,

that is,

AUPRCw ≡

∑

i AUPRCi × Si
∑

i Si

; (6.4)

where Si is the number of instances in the i-th class.

6.3 Predictive Performance Results

In this section we show the predictive performance results for the algorithms we

tested (the baseline algorithms PCT, PCTEN, LHC, ELHNB; our three Depen-

dence Network (DN)-based algorithms HDN, HDN-PCT, and HDN-nHPC, and

our hybrid PCT-LHC algorithm) across the 42 hierarchical datasets we have cre-

ated or collected. Tables 6.5, 6.6 and 6.7 show the predictive performance results

for each one of the measures we used: AU(PRC) , AUPRCw and AUPRC re-

spectively.

Next, for convenience, we briefly describe the hierarchical classification algo-

rithms that we are evaluating:

1. The Predictive Clustering Tree (PCT) algorithm builds a decision tree by

recursively splitting the dataset into clusters, using the value of the features

(for more details see Section 2.2.2).

2. The PCT Ensemble (PCTEN) algorithm builds an ensemble of PCTs clas-

sifiers induced using bagging (for more details see Section 2.2.2).

3. The Hierarchical Dependence Network (HDN) algorithm is the first version

of our DN algorithm for hierarchical classification (for more details see Sec-

tion 5.2).
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4. The hybrid HDN-PCT algorithm is the second version of our DN algorithm

for hierarchical classification, in which the HDN algorithm is run in PCT’s

clusters (leaf nodes) with more instances than a pre-established value (for

more details see Section 5.3).

5. The HDN based on finding non-Hierarchically related Predictive Classes al-

gorithm (HDN-nHPC) is the third version of our DN algorithm, using a

different approach to build and use the Markov blanket of the class nodes

(for details see Section 5.4).

6. The LHC algorithm consists in inducing a local, standard (‘flat’) classifica-

tion model to predict each one of the hierarchical classes and then combining

the local model’s predictions (for more details see Section 2.2.1).

7. The hybrid PCT-LHC algorithm is similar to the HDN-PCT algorithm, using

the Local Hierarchical Classification (LHC) algorithm instead of HDN in the

PCT’s clusters (leaf nodes) with more instances than a pre-defined value (for

details, see Section 5.5).

8. Finally, the Extended Local Hierarchical Naive Bayes algorithm (ELHNB) is

a version of the Naive Bayes algorithm designed to work in the hierarchical

classification setting, explained in Section 4.2.

We have applied the non-parametric Friedman test to our results. The Fried-

man test is designed to detect differences in classifiers’ performances when they are

applied to multiple datasets. This test, however, does not tell us which classifiers

are statistically significantly different from other classifiers and which classifiers are

statistically equivalent, only that there are differences in classifiers’ performances

(Demsar 2006).

To get that more specific information, we use the Nemenyi test, which is a post-

hoc non-parametric statistical test that considers all possible pairs of classifiers

and informs us which pairs of classifiers have significantly different performance, if

the Friedman test has detected significant differences in classification performance

(Demsar 2006).

The Friedman test has detected statistically significant differences when con-

sidering all three measures (AU(PRC), AUPRCw and AUPRC); therefore, we

have applied the Nemenyi test to detect significant differences among pairs of clas-

sifiers. Figures 6.3, 6.4, and 6.5 show the results of the Nemenyi tests (α = 0.05)
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graphically using critical diagrams (Demsar 2006). These diagrams show, on the

horizontal axis, the mean rank of each algorithm, and above the horizontal axis

the critical distance (CD), i.e., the minimal distance that two ranks must have

in order for the respective algorithms to be considered statistically significantly

different.

In the lower part of each figure we show which algorithms are statistically sig-

nificantly different from the others by connecting with a horizontal line algorithms

that have statistically equivalent predictive performance. Algorithms that are not

connected by a horizontal line have statistically significantly different predictive

performances, and the ones with lowest ranks have superior performance.

Table 6.5 shows the predictive performance of the hierarchical classification

algorithms considering the AU(PRC) measure. This table shows that one of our

algorithms, HDN-nHPC, had the best (smallest) overall average rank (2.5) across

all datasets compared to the other hierarchical classification algorithms.

Note, however, that the performance of the HDN-nHPC hierarchical classifi-

cation algorithm was not statistically significantly different than the other three

(“PCTEN”,“LHC”,“PCT-LHC”) of the top four hierarchical classification algo-

rithms we have tested, according to the Nemenyi statistical test, as shown in

Figure 6.3.

It is interesting to note that, for the AU(PRC) measure and the datasets we

have considered, the LHC algorithm was statistically significantly better than the

well-known PCT algorithm. It is surprising that a collection of local classifiers

had better performance than the PCT algorithm, which is specially tailored to

classifying hierarchical data.

By analysing Table 6.5 in more detail we can see that the HDN-nHPC, PCTEN,

and LHC were always among the top three algorithms in terms of average rank

in each one of the four major dataset types we have considered (Vens’ GO, Vens’

FunCat, Ageing GO, and Ageing MPO). It is interesting to note that although

the HDN-nHPC algorithm was not the best algorithm in any of the four major

dataset types, it had the best overall algorithm rank. It appears that the PCTEN

algorithm did not perform so well on the Venn’s datasets, specially when using the

FunCat hierarchy. On the other hand, the LHC algorithm did not perform so well

on the Ageing datasets.

Other interesting results include the fact that the PCTEN algorithm clearly

outperformed the PCT algorithm in all four major dataset types, and that the

hybrid HDN-PCT always had at least the same (and often better) average rank
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in comparison with the HDN algorithm in all four major dataset types. In addi-

tion, the hybrid HDN-PCT and the stand-alone HDN obtained overall ranks of

5.3 and 6.5, respectively. These results show that the hybridisation indeed im-

proved the predictive performance of the HDN algorithm when considering the

AU(PRC) measure. However, the hybrid HDN-PCT was overall worse than the

PCT algorithm (with overall rank of 4.7).

Similarly, the PCT-LHC hybrid (with overall ranking of 4.1) performed bet-

ter than PCT algorithm (with overall ranking of 4.7), indicating that the hybrid

improved in relation with the PCT algorithm; however, the hybrid did not im-

prove with relation to the LHC algorithm (with overall rank of 3.0). Actually, the

same behaviour happened across the other two predictive measures (AUPRCw and

AUPRC), the hybrids PCT-LHC and HDN-PCT always outperformed the overall

worst classifier of the pair (HDN for HDN-PCT and PCT for PCT-LHC) but did

not outperform the best classifier (PCT for HDN-PCT and LHC for PCT-LHC).

Therefore, we can conclude that the hybrids were not successful overall across the

datasets we have used, as one of the two classifiers composing the hybrid classifier

always had at least equivalent performance in relation to the hybrid classifier.

Comparing the rank results in Table 6.5 and Figure 6.3 (for the AU(PRC) mea-

sure) with the ones in Table 6.6 and Figure 6.4 (for the AUPRCw measure), we

can see that the ordering of the algorithms in terms of their ranks is very similar

for the measures AU(PRC) and AUPRCw, with the exception of the HDN-nHPC

and PCTEN algorithms (the top two algorithms, overall), which have an inverted

overall average rank order in Tables 6.5 and 6.6, as well as in the corresponding

Figures 6.3 and 6.4.

Interestingly, although the overall rank order for the algorithms in Tables 6.5

and 6.6 were very similar, the ranks across the four major dataset types were

significantly different. In fact, in Table 6.6, the HDN-nHPC algorithm had the

best predictive performance on both Venn’s major datasets types but was among

the three worst algorithms when considering the other two major datasets types.

The opposite behaviour can be observed when analysing the ELHNB classifier: it

performed very badly on the Venn’s major dataset types but had good performance

on the other two datasets types.

These performance differences come from the different biases that each predic-

tive performance measure has: generally speaking, the AU(PRC) measure favours

more conservative classification models (models with lower complexity that focus

more on classifying more generic classes), while the AUPRC measure favours
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more risk-prone models (predicting more specific classes), and the AUPRCw mea-

sure falls in the middle of the risk proneness, favouring moderately risk-prone

models. A clear evidence of this is that the PCT models induced to maximise

the AU(PRC) measure are always as shallow or shallower than the PCT models

induced to maximize the AUPRC measure, and the depth of the PCT models in-

duced to maximise the AUPRCw measure tend to have intermediary depth (Vens

et al. 2008).

For this reason, it is expected that the models induced to maximise the mea-

sures AUPRCw and AUPRC will have higher variance, since these models predict

more specific classes (at deeper class levels) more often than the models induced to

maximise the AU(PRC) predictive performance measure; and these predictions,

which are based on fewer positive instances, have naturally higher predictive per-

formance variance.

For the results based on the AUPRC measure presented in Table 6.7 and

Figure 6.5, we can see that the algorithm’s ranks were considerably different from

the ones for the measures AU(PRC) and AUPRCw. In particular, contrary to the

other two measures, for the AUPRC measure, the PCTEN algorithm had worse

predictive performance results than the PCT algorithm. Also, our HDN-nHPC

algorithm, which had very good predictive performance results when using the

other two measures, performed poorly (being the last in terms of overall average

ranking).

Note that the very low accuracy values in Table 6.7 is due to the fact that the

AUPRC measure averages the AUPRC results of several classes, without adjusting

for the number of instances in each class. Because the majority of classes tend to

annotate very few instances, the AUPRC measure for those classes tend to be low

due to the increased difficulty of inducing a classification model with few positive

instances. This kind of result can also be observed in other works dealing with

hierarchical classification that used some of the datasets we have used for testing

our algorithms (Vens et al. 2008; Cerri et al. 2016; Pugelj and Dzeroski 2011).

Another algorithm that we proposed, the PCT-LHC algorithm, was tied with

the LHC classifier as the best performing algorithm in Table 6.7, but these two

algorithms were the fourth and third best ones, respectively, in Tables 6.5 and 6.6.

We attribute these differences of performance for these two algorithms to the fact

that the AUPRC measure does not assume that classification errors close to the

root of the hierarchy should be considered more serious than errors further away

from the root of the hierarchy. Therefore, note that algorithms that focus more on
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improving the performance on specific classes (like the LHC algorithm), tend to

perform better when considering the AUPRC measure. In other words, the good

performance of both LHC-PCT and LHC regarding this measure can be explained

by the fact that both these algorithms cope better with deeper classes than PCT,

because they both apply LHC to leaf nodes, and LHC focuses on predicting each

class separately. By contrast, PCT always tries to find good splitting conditions

for several classes at the same time, which is hardly effective for deeper classes

with low numbers of instances.

Note that, although the hybrid PCT-LHC and the stand-alone LHC were tied

in terms of average rank, the hybrid PCT-LHC has an advantage in terms of

model interpretability, since it builds a hierarchical classification model that is

partly global. That is, part of its model consists of the decision tree built by the

PCT algorithm, and that decision tree can be interpreted as a global model, which

is easier to interpret than large set of local models built the LHC algorithm.

After analysing Table 6.7 (for the AUPRC measure) in more detail, we can see

that the ranking results for datasets types Ageing GO, Ageing MPO and Venn’s

FunCat were broadly similar to the ranking results for the AUPRCw measure

(Table 6.6). The main differences concentrated in the Venn’s GO datasets types,

this is due to the fact that these datasets have more and deeper GO terms than

the other datasets. For this reason, deeper classes with relatively fewer positive

annotations influence more the results than in other datasets. Because these classes

naturally have higher performance variance, it is natural that the results for the

AUPRC measure in the Venn’s GO datasets are more different than the results

for the AUPRCw and AUPRC measures in the other datasets.
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Table 6.5: Predictive performance (%) results for the AU(PRC) measure

Class Hier. Feat. Type PCT PCTEN HDN-PCT HDN PCT-LHC LHC HDN-nHPC ELHNB

Vens’ GO
Datasets

seq 47.6 49.9 47.8 45.2 48.0 49.6 49.9 43.3
cellcycle 44.4 46.4 44.4 42.4 44.6 47.2 47.3 43.2
church 44.3 44.9 44.3 41.1 44.4 44.6 44.6 43.3
derisi 44.9 45.2 44.8 41.3 44.9 45.1 45.2 43.2
eisen 46.1 49.3 46.0 45.4 46.3 49.9 50.0 44.5
gasch1 45.4 48.2 45.5 43.9 45.6 49.0 49.2 43.3
gasch2 45.1 46.8 45.0 42.8 45.4 47.8 47.8 43.3
spo 45.0 45.2 44.9 41.3 45.1 45.5 45.5 43.2
expr 45.0 48.5 45.0 44.0 45.1 48.6 48.5 43.3
struc 45.3 43.8 46.3 41.0 45.2 45.2 43.2 43.3
hom 48.7 43.4 48.7 43.4 48.6 47.3 43.7 43.3

Avg. Rank 4.7 3.0 4.8 7.5 3.9 2.4 2.4 7.4

Vens’
FunCat
Datasets

seq 21.5 24.4 23.1 25.6 22.5 25.9 25.7 14.9
cellcycle 17.4 20.5 18.1 21.4 18.3 21.9 21.8 15.5
church 17.3 17.7 17.1 16.9 17.3 17.4 17.4 15.5
derisi 18.0 18.7 18.6 18.2 18.9 18.9 18.9 15.6
eisen 20.1 24.9 20.9 25.1 20.7 25.4 25.4 15.8
gasch1 20.6 24.2 22.7 23.7 22.8 24.1 24.1 15.5
gasch2 19.3 21.4 19.6 22.1 19.6 22.9 22.7 15.4
spo 19.0 19.7 19.7 19.0 20.0 19.3 19.3 15.6
expr 20.9 24.9 22.5 23.6 22.3 24.0 24.0 15.4
struc 18.4 15.3 19.4 18.0 19.0 17.9 14.8 15.2
hom 25.8 15.0 25.9 20.7 25.9 20.8 15.9 15.0

Avg. Rank 6.0 3.5 4.4 4.4 4.0 2.5 3.2 7.9

Ageing
GO

worm Numeric 41.1 47.4 39.1 39.2 41.7 41.8 43.1 41.1
PPI 41.3 43.2 39.5 38.4 40.6 41.1 42.0 31.5

Motifs 48.5 48.1 47.7 40.6 48.8 43.3 44.5 38.9

fly Numeric 42.1 48.1 41.7 43.6 41.8 43.7 44.1 53.2
PPI 49.2 53.8 49.2 43.9 49.2 44.2 44.1 44.5

Motifs 45.8 49.3 45.8 43.8 45.8 44.0 44.1 39.1

human Numeric 45.5 45.5 41.3 41.0 45.7 46.5 46.9 44.5
PPI 47.3 50.9 43.7 44.0 45.1 46.2 50.7 30.2

Motifs 47.2 48.7 43.1 42.3 46.9 48.6 49.6 40.5

mouse Numeric 46.6 46.6 44.5 44.5 46.3 46.4 47.1 43.8
PPI 45.6 47.3 44.9 45.2 46.0 46.6 47.4 41.4

Motifs 46.6 47.1 44.8 44.7 45.9 46.5 46.9 40.7

yeast Numeric 42.6 46.1 38.4 34.7 43.6 46.0 46.3 38.2
PPI 44.9 52.7 41.6 43.3 45.0 47.7 47.4 37.6

Motifs 42.4 43.9 38.5 32.1 43.1 44.3 45.3 38.2

Avg. Rank 4.0 1.9 6.0 6.9 4.1 3.7 2.5 6.9

Ageing
MPO

KEGG 71.5 72.2 70.0 67.9 71.6 71.6 71.7 67.9
KEGGI 70.6 71.3 67.1 66.5 70.6 70.9 71.0 68.3
Motifs 71.0 71.4 69.1 67.9 70.9 71.0 71.1 66.2
Numeric 71.1 71.5 69.5 68.2 71.5 71.8 71.8 64.5
PPI 70.9 70.9 67.4 67.3 70.8 70.9 71.0 69.2

Avg. Rank 4.4 1.6 6.4 7.5 4.1 3.1 1.8 7.1

Overall Avg. Rank 4.7 2.6 5.3 6.5 4.1 3.0 2.5 7.3

CD
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HDN-nHPC

2

PCTEN
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LHC

4

PCT-LHC
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Figure 6.3: Comparison of all classifiers against each other using the Nemenyi test
considering the AU(PRC) measure
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Table 6.6: Predictive performance (%) results for the AUPRCw measure

Class Hier. Feat. Type PCT PCTEN HDN-PCT HDN PCT-LHC LHC HDN-nHPC ELHNB

Vens’ GO
Datasets

seq 35.6 38.8 35.5 36.3 35.5 38.2 38.9 28.7
cellcycle 32.0 35.4 32.1 33.2 32.2 35.5 35.9 28.7
church 30.9 31.7 31.0 30.0 31.0 31.1 31.1 28.7
derisi 31.5 32.3 31.4 30.5 31.5 32.2 32.3 28.6
eisen 34.6 38.2 34.6 36.1 34.6 38.3 38.5 29.6
gasch1 33.8 37.3 34.2 34.8 34.4 37.8 38.2 28.7
gasch2 33.0 35.1 33.0 33.8 33.1 36.3 36.7 28.7
spo 31.8 31.9 31.9 31.3 31.8 32.9 33.1 28.6
expr 33.7 37.8 34.0 34.8 34.2 37.3 37.7 28.7
struc 32.1 29.9 32.1 30.8 32.1 31.4 29.8 28.8
hom 36.7 29.8 36.6 33.6 36.6 34.4 30.3 28.7

Avg. Rank 5.2 3.1 5.0 5.0 4.7 2.7 2.3 8.0

Vens’
FunCat
Datasets

seq 16.9 20.4 16.9 20.6 16.9 20.9 21.4 9.9
cellcycle 13.6 17.1 14.0 17.5 13.9 17.7 17.8 10.2
church 11.8 12.7 12.3 12.7 12.1 12.4 12.4 10.2
derisi 13.2 14.4 13.2 13.9 13.2 14.4 14.4 10.3
eisen 15.0 20.2 15.1 19.9 15.1 20.1 20.4 10.5
gasch1 16.4 19.7 16.4 19.4 16.4 19.5 19.9 10.2
gasch2 14.1 17.0 14.1 17.5 14.2 18.1 18.3 10.2
spo 14.7 15.4 14.9 15.2 14.7 15.2 15.4 10.3
expr 16.0 20.5 16.1 19.8 16.1 19.9 20.1 10.2
struc 15.5 11.7 15.5 13.8 15.5 13.9 11.9 10.1
hom 22.2 12.0 22.2 17.5 22.2 17.2 12.1 9.9

Avg. Rank 5.7 3.3 5.0 3.5 5.1 3.0 2.4 8.0

Ageing
GO

worm Numeric 31.9 33.5 31.8 30.2 31.8 31.0 31.7 32.3
PPI 33.4 30.8 31.2 30.0 33.4 32.2 30.7 32.5

Motifs 34.6 33.1 33.9 31.8 34.7 33.0 33.0 34.7

fly Numeric 39.8 38.3 39.8 38.4 39.8 38.4 38.6 38.6
PPI 40.9 40.9 40.9 38.5 40.9 38.4 38.4 40.5

Motifs 40.4 40.2 40.4 38.3 40.4 38.6 38.4 40.7

human Numeric 36.0 35.0 35.9 33.2 36.0 34.3 35.0 32.9
PPI 38.2 39.6 37.6 37.8 38.0 39.1 39.4 38.8

Motifs 38.6 37.9 36.9 35.6 39.2 38.6 38.8 40.2

mouse Numeric 37.6 36.7 37.6 36.2 37.6 36.2 36.8 37.2
PPI 39.2 38.5 38.6 37.1 39.6 38.4 37.0 40.3

Motifs 37.8 37.7 37.9 36.6 38.2 37.6 36.9 39.9

yeast Numeric 32.2 34.1 31.9 30.0 32.1 33.8 34.7 32.1
PPI 36.6 39.4 36.0 37.9 36.0 38.3 37.0 37.7

Motifs 31.6 31.9 30.6 30.2 32.1 32.5 33.4 35.6

Avg. Rank 3.4 4.2 4.6 7.2 3.2 5.2 5.1 3.1

Ageing
MP0

KEGG 55.6 56.3 55.0 53.3 55.6 55.1 54.6 56.0
KEGGI 54.7 54.6 53.7 54.0 54.1 53.6 52.6 55.9
Motifs 54.5 55.1 54.2 52.7 54.6 53.9 53.6 54.4
Numeric 53.7 54.6 53.9 54.5 54.0 55.1 55.2 53.6
PPI 54.4 54.1 52.9 52.5 54.1 54.1 52.9 55.1

Avg. Rank 3.5 2.4 5.9 6.6 3.7 4.8 5.9 3.2

Overall Avg. Rank 4.5 3.5 5.0 5.6 4.1 3.9 3.7 5.7

CD

1

PCTEN

2

HDN-nHPC

3

LHC

4

PCT-LHC

5

PCT

6

HDN-PCT

7

HDN

8

ELHNB

Figure 6.4: Comparison of all classifiers against each other using the Nemenyi test
considering the AUPRCw measure
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Table 6.7: Predictive performance (%) results for the AUPRC measure

Class Hier. Feat. Type PCT PCTEN HDN-PCT HDN PCT-LHC LHC HDN-nHPC ELHNB

Vens’ GO
Datasets

seq 2.3 2.0 2.3 2.3 2.3 2.6 1.9 0.9
cellcycle 1.7 1.6 1.7 1.8 1.7 2.1 1.4 0.9
church 1.5 1.2 1.5 1.4 1.5 1.5 1.0 0.9
derisi 1.6 1.3 1.6 1.5 1.6 1.7 1.2 0.9
eisen 2.6 2.4 2.6 2.4 2.6 2.7 1.9 1.1
gasch1 2.1 2.0 2.1 2.0 2.1 2.4 1.7 0.9
gasch2 1.8 1.6 1.8 1.8 1.8 2.1 1.5 0.9
spo 1.9 1.5 1.9 1.6 1.9 1.8 1.2 0.9
expr 1.9 2.0 1.9 2.0 1.9 2.3 1.6 0.7
struc 2.0 0.9 2.0 1.5 2.0 1.6 0.9 0.9
hom 3.3 0.9 3.3 2.1 3.3 2.2 1.0 0.9

Avg. Rank 3.0 5.8 3.0 4.3 3.0 2.0 6.9 7.9

Vens’
FunCat
Datasets

seq 4.2 4.8 4.2 4.7 4.2 4.7 4.3 1.7
cellcycle 2.9 3.5 3.0 3.8 3.0 3.9 3.4 1.8
church 2.4 2.5 2.5 2.6 2.4 2.5 2.2 1.8
derisi 2.9 2.9 2.9 2.9 2.9 3.0 2.7 1.8
eisen 3.7 4.8 3.7 4.7 3.7 4.8 4.1 2.1
gasch1 3.8 4.4 3.8 4.4 3.8 4.5 4.0 1.8
gasch2 2.9 3.6 2.9 4.0 2.9 4.1 3.6 1.8
spo 3.1 3.0 3.1 3.1 3.1 3.1 2.8 1.8
expr 3.7 4.8 3.7 4.5 3.7 4.6 4.0 1.8
struc 3.1 2.1 3.1 2.7 3.1 2.8 2.0 1.8
hom 5.9 2.1 5.9 3.8 5.6 3.7 2.2 1.7

Avg. Rank 4.8 3.5 4.5 2.9 4.8 2.3 5.2 8.0

Ageing
GO

worm Numeric 9.6 10.1 9.6 8.5 9.6 8.7 8.9 9.4
PPI 9.8 8.8 9.5 8.4 9.8 9.0 8.6 9.6

Motifs 10.5 9.8 10.4 8.9 10.6 9.2 9.2 10.5

fly Numeric 13.3 12.8 13.3 12.8 13.3 12.8 12.8 12.8
PPI 13.5 13.6 13.5 12.8 13.5 12.8 12.8 13.6

Motifs 13.4 13.3 13.4 12.8 13.4 12.8 12.8 13.5

human Numeric 9.4 9.1 9.4 8.5 9.4 8.6 8.8 8.4
PPI 10.0 10.3 9.9 9.6 10.0 9.9 10.0 10.6

Motifs 10.3 9.8 10.0 9.2 10.5 10.0 9.8 11.0

mouse Numeric 13.2 12.5 13.2 12.6 13.2 12.6 12.7 12.8
PPI 13.8 13.2 13.7 12.8 13.9 13.1 12.7 14.1

Motifs 13.3 13.1 13.2 12.7 13.4 12.9 12.8 14.0

yeast Numeric 8.0 8.5 8.0 6.8 8.0 8.1 8.3 7.9
PPI 9.6 11.0 9.6 9.7 9.6 9.9 12.7 11.4

Motifs 7.9 7.9 7.8 7.2 8.0 8.4 8.1 10.5

Avg. Rank 3.4 4.3 4.1 7.3 3.0 5.5 5.4 3.0

Ageing
MP0

KEGG 14.6 14.8 14.3 13.3 14.6 14.1 13.8 15.0
KEGGI 14.1 14.0 13.5 13.9 13.7 14.1 12.9 15.2
Motifs 13.6 13.9 13.4 12.8 13.6 13.4 13.1 13.9
Numeric 12.8 12.9 12.8 13.2 12.9 13.4 13.4 12.7
PPI 13.6 13.2 12.6 12.3 13.3 13.0 12.4 13.8

Avg. Rank 3.6 3.3 6.0 6.4 4.1 4.1 6.1 2.4

Overall Avg. Rank 3.7 4.4 4.2 5.3 3.6 3.6 5.8 5.5

CD

1

PCT-LHC

2

LHC

3

PCT

4

HDN-PCT
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PCTEN
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7

ELHNB

8
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Figure 6.5: Comparison of all classifiers against each other using the Nemenyi test
considering the AUPRC measure
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6.4 Model Interpretation Results

In this section we shall interpret PCT models to extract potentially relevant ageing-

related knowledge from them. It is worth noticing that interpreting the PCT

models is valuable for the stand-alone PCT models and the hybrid algorithms

that use the same PCT model as a base to induce further classification models

(HDN-PCT and PCT-LHC).

We focus on interpreting PCT models, rather than DN models, because the

former are simpler (smaller) global models, i.e., each PCT tree contains predictions

for all hierarchical classes; whereas each DN-based model contains a large collection

of local classification models, i.e., each local model contains predictions for a single

class.

The interpretation of the hierarchical classification models was performed in

conjunction with Dr. Jennifer M. A. Tullet, an expert on the biology of ageing,

and published in (Fabris, Freitas and Tullet 2015).

6.4.1 Coverage Scores of Features in the PCT Models

We calculate the coverage score of a given feature by building a PCT decision tree

(model) using all available instances in the entire dataset and dividing the number

of instances that used that feature for their classification (i.e., the feature occurs

in the path from the root to the leaf node where the instance is classified) by the

total number of instances that were classified. Higher coverage values correspond

to more “useful” features, i.e., features that were used more often to predict which

class labels are associated with each instance (gene or protein). In particular, a

feature in the root node has the maximum coverage of 1, since that feature is used

to classify all instances in the dataset; whereas features in deeper tree nodes have

lower coverage, since they are used to classify fewer instances.

Table 6.8 presents the features with a coverage score greater than 0.5 in the

PCT decision trees for the dataset with ageing-related GO terms as classes and

PPI features using the s-value that maximises the AUPRC measure. We have

chosen this measure because it generates larger decision trees, maximising the

opportunity of finding interesting relations between features and ageing-related

GO terms. We focus on the Ageing GO PPI dataset because the PPI features

have greater interpretability compared to the numeric and motif features, the GO

classes are very popular among biologists, and the GO hierarchy annotates a more

diverse set of animal species.
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Table 6.8 shows for each feature: its rank, from most relevant (1) to least

relevant; the feature identifier; the full name of the feature; and the feature’s

coverage score.

Analysing the human dataset, the top-ranked PPI feature for predicting ageing-

related GO terms is represented by interaction with CREBBP (CREB binding

protein), an acetyl transferase involved in the acetylation of histones and other

proteins within the cell (Bedford and Brindle 2012). CREBBP has diverse func-

tions and is important for development, physiology and disease. One of its targets

is the FOXO transcription factor (Daitoku et al. 2004), a protein tightly linked to

longevity and ageing in several species, including humans (Guevara-Aguirre et al.

2011).

Mutations in the gene that encodes the protein in the second ranked interaction,

PTPN11 (protein tyrosine phosphatase, non-receptor type 11), are known to cause

myeloid leukemia, dramatically reducing human life expectancy (Hou et al. 2007).

In particular, activating mutations in this gene have been shown in cell culture to

cause proliferative arrest and senescence. The mechanisms of which could provide

insight into the initial onset of PTPN11-related cancers (Zheng et al. 2013).

The third-ranked feature in the human dataset represents interaction with

TP53 (Transformation-related Protein 53), commonly known as p53 and an impor-

tant tumor suppressor that has been described as “the guardian of the genome”.

Its relationship with ageing is complex as decreased expression of the gene leads

to tumor formation which increases mortality, but in contrast certain mutations in

the gene have also been linked to increased life expectancy in humans (van Heemst

et al. 2005). Interestingly, interaction with TP53 was also selected as an important

feature in the mouse dataset. This supports the hypothesis that this protein may

play an important role in the prediction of ageing-related GO terms.

For the yeast dataset, the top 13 features illustrate a wide variety of molecular

interactions, making it difficult to comment on individual processes. However, one

of the top genes in the list is Ribosomal protein 51. Ribosomal proteins, via their

role in translation, are strongly implicated in lifespan regulation in several species

and represent a key mode of ageing modulation (Charmpilas et al. 2014).

6.4.2 Interpreting Classification Models

In this section we present some classification models (decision trees) generated by

the PCT algorithm and the analysis of some over-represented ageing-related GO
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Table 6.8: PPI features with coverage score > 0.5 in the decision trees built by
the PCT algorithm for the AUPRC measure and Ageing GO classes.

Organism Rank Feat.
Id.

Full Name Score

Worm
1 LET60 LEThal family member 1.00
2 wei Molecular weight 0.94

Fly
1 AMN Amnesiac 1.00
2 len Sequence length 0.92

Human

1 CREBBP CREB binding prot. 1.00
2 PTPN11 Tyrosine-prot. phosphatase non-rec.

type 11
0.83

3 TP53 Transformation-related Prot. 53 0.76
4 VTN Vitronectin 0.52
5 NOTCH1 Notch homolog 1 0.51

Mouse
1 TP53 Transformation related prot. 53 1.00
2 POU5F1 POU domain, class 5, transcription fac-

tor 1
0.92

Yeast

1 HHT1 Histone H3 1.00
2 RPS17B Ribosomal prot. 51 0.85
3 ATP6 ATP synthase 0.80
4 PIF1 PIF1 5’-To-3’ DNA Helicase 0.79
5 FCY2 Purine-cytosine permease 0.77
6 CYR1 Adenylate cyclase 0.76
7 HOS2 Histone deacetylase and subunit of Set3

and Rpd3L complexes
0.73

8 VPS38 Vacuolar prot. sorting-assoc. prot. 38 0.70
9 len Molecular length 0.67
10 ATG12 Ubiquitin-like prot. ATG12 0.67
11 IDH2 Isocitrate dehydrogenase (NAD) sub-

unit 2, mitochondrial
0.56

12 BAS1 Myb-like DNA-binding prot. BAS1 0.52
13 CLN1 G1/S-specific cyclin CLN1 0.51
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terms in some leaf nodes of the decision tree. Recall that the PCT algorithm

generates a decision tree that contains, in each node, a test that splits the testing

instances into two different paths. When an instance reaches a leaf node (a cluster),

a class (GO term) probability vector is assigned to it.

We focus again on the PPI features for predicting ageing-related GO terms,

which are easier to interpret in comparison with the numeric and motif features,

and we discard the human and yeast decision trees (with 13 and 52 nodes, respec-

tively), because their larger sizes make interpretation more difficult.

Figures 6.6 to 6.8 show some over-expressed GO terms and the decision tree

model generated by the PCT algorithm maximising the AUPRC measure for the

worm, fly and mouse organisms, respectively. The choice of over-expressed GO

terms in the tables in Figures 6.6b, 6.7b and 6.8b took into account both their

small p-value and their relevance to ageing based on current biological knowledge.

In the models, the first number in the pair before the first decision split rep-

resents the a priori mean entropy of the class labels. Entropy is defined as:

H(P̂ ) = −
∑

i P̂i log(P̂i), where P̂i is the proportion of instances with class i in the

current node of the decision tree. Smaller entropy values represent sets of instances

that have more separated (more reliably predicted) classes. The second number

in the pair before the first decision split represents the total number of instances

classified by the decision tree. In the leaf nodes, the pair of numbers represents

the entropy and number of instances in the current leaf node.

In the decision tree shown in Figure 6.6a, if a given protein does not interact

with “LET60” (LEThal family member 60), then the protein is assigned to a cluster

based on its molecular weight. In Figure 6.6a the number of proteins that do not

interact with “LET60” is 246, almost all of the 263 instances, and the entropy value

did not decrease significantly. Hence, not interacting with the “LET60” protein

is not a good predictor of ageing-related GO terms. On the other hand, proteins

that interact with both “LET60” and “LIN45” (assigned to cluster 3) have a much

smaller class entropy compared to other clusters, indicating that these two protein

interactions are relevant predictors of ageing-related GO terms.

The table in Figure 6.6b, below the decision tree, shows 3 over-expressed ageing-

related GO terms (class labels) in the clusters of the two leaf nodes for the worm

Ageing GO PPI dataset. This table shows: the cluster ID, the GO term id and

name, and the probability that the number of occurrences of the GO term in the

current cluster is greater than or equal to the number of observed occurrences,

assuming that the occurrence of the GO term in an instance follows a Bernoulli
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distribution with the GO term’s frequency in the training dataset used as the

‘success’ probability. The table also displays, before the GO terms of each cluster,

the feature-based conditions in the decision tree that must be satisfied in order for

an instance to be assigned to a particular cluster.

Considering the worm dataset, of the GO terms reaching a significance of 10−4

or less, almost half are related to developmental processes. Perhaps this is not

surprising as development and, more recently, growth, have been implicated in

ageing related processes (Kenyon 2010; Gems and de la Guardia 2013). The

remaining significant GO terms were divided almost equally between involvement

in either reproductive processes or signalling pathways. Again, it is difficult to

argue against the importance of either of these in ageing; particularly the latter,

where the use of genetics and molecular biology have allowed many key ageing

pathways to be dissected in worms (Kenyon 2010).

Figure 6.6b suggests that the feature representing interaction with the “LET60”

(LEThal family member 60) protein is a good predictor for GO terms related to

organism development in worms. This is consistent with the fact that the let-60

gene encodes the C. elegans’ Ras protein, which is central to a variety of different

signaling pathways. One of these is the RTK-Ras-ERK pathway, which is well

conserved between species (Udell et al. 2011).

This pathway is critical during development and controls many biological pro-

cesses during adulthood. Mutations in components of the RAS pathway are also

implicated in many human syndromes and diseases, e.g. cancer (Karnoub and

Weinberg 2008; Tidyman and Rauen 2009).

In worms, let-60 is expressed in neural, muscle, and hypodermal lineages and

its activity is required for proper larval development. It has also been linked to

ageing and shown to promote longevity. Two suggested mechanisms for this are:

1) Promoting protein homeostasis via the ubiquitin proteosome system (UPS) (Liu

et al. 2011) and; 2) Activation of the transcription factor SKN-1, which represses

insulin-like peptide expression and down regulates the insulin signalling pathway

(Okuyama et al. 2010). There are also other, less direct, implications that Ras

acts to control ageing and healthspan. Thus, it is interesting that (based on the

large coverage score) interaction with LET60 is the most important discriminator

for ageing-related GO terms in the worm Ageing GO PPI dataset.

Figure 6.7a shows the decision tree generated for the fly dataset, where inter-

actions with the AMN (Amnesiac) protein greatly reduce the entropy of the class

labels.
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(Ent . : 77 . 50 , #Ins t . : 263)
LET60 = No (74 . 92 , 246)
| wei > 96753.69 ( 88 . 06 , 53)
| Clus te r 0
| wei <= 96753.69 ( 68 . 51 , 193)
| Clus te r 1
LET60 = Yes (69 . 41 17)
| LIN45 = No (66 . 77 , 12)
| Clus te r 2
| LIN45 = Yes (34 . 77 , 5)
| Clus te r 3

(a) PCT classification model for the worm Ageing GO PPI dataset.

Clust. GO term p-value
IF LET60 = Yes AND LIN45 = No

2 GO:0050793 (Reg. of dev. proc.) 10−4

IF LET60 = Yes AND LIN45 = Yes
3 GO:0022414 (Reproductive process) 10−5

GO:0023052 (Signalling) 10−5

(b) Most statistically significant over-expressed ageing-related GO terms in the PCT
model’s leaf nodes for the worm Ageing GO PPI dataset.

Figure 6.6: PCT model and over-expressed GO terms (classes) in the worm Ageing
GO PPI dataset

In the fly data set, most over-represented GO terms were involved in develop-

ment, food recognition and behaviour, learning and memory. As with the worm,

development and growth are not surprising. However, lifespan can be extended

dramatically in a wide variety of organisms by reducing caloric intake (Mair and

Dillin 2008), thus it is logical that feeding, and behaviour that influences this

would affect lifespan.

Interestingly, as shown in Figure 6.7b, the over-expressed GO terms (class

labels) in cluster 2 are associated with brain development. In fact, AMN has

been shown to be required for normal brain development, sleep regulation and

adult memory consolidation (Hashimoto, Shintani and Baba 2002). Both sleep

regulation and memory decline with age in a number of species, and indeed AMN

is linked to these processes in an age-dependent fashion in the flies (Tamura et al.

2003). Thus, it is interesting that this gene was identified as relevant by the PCT

algorithm.

Figure 6.8a shows the decision tree built for the mouse dataset. We can see

that the most important feature (the feature at the root of the decision tree) is
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( 115 . 88 , 79)
AMN = No (112 . 60 , 73)
| len > 741 .0 (127 . 81 , 20)
| Clus te r 0
| len <= 741.0 ( 95 . 58 , 53)
| Clus te r 1
AMN = Yes ( 9 . 8 0 , 6)

C lus t e r 2

(a) PCT classification model for the fly Ageing GO PPI dataset.

Clust. GO term p-value
IF AMN = Yes

2 GO:0007631 (feeding behaviour) 10−6

GO:0007613 (memory) 10−6

GO:0048589 (dev. cell growth) 10−5

(b) Most statistically significant over-expressed ageing-related GO terms in the PCT
model’s leaf nodes for the fly Ageing GO PPI dataset.

Figure 6.7: PCT model and over-expresed GO terms (classes) in the fly Ageing
GO PPI dataset

TP53, which interestingly, was also selected by the model induced for the human

organism.

There are fewer significant GO terms in the mouse data set and these are en-

riched for terms implicated in a variety of different signalling pathways, i.e. apop-

totic pathways, cell cycle and regulation of gene expression. This contrasts with the

worm and fly data where “developmental processes” predominate. However, it does

complement the analysis based on feature coverage scores (see Table 6.8), showing

that interaction with p53, PTPN11 and CREBPB (all key signalling molecules) is

important for ageing.

6.4.3 Analysis of the Predictive Class Relationships

As an example of the benefit of detecting predictive class relationships and how to

use them to improve predictive performance, Table 6.9 presents the 10 strongest

predictive class relationships for the Numeric GO Ageing Yeast dataset. Rela-

tionships are ranked in decreasing order of the mean AUPRC accuracy measure

difference, calculated as the AUPRC of the pair of classifiers (M c̃i
(i,i′) and M ci

(i,i′))

minus the AUPRC of the single classifier (M(i,i′)), over the 10 folds of the cross-

validation procedure.
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(190 .68 107)
TP53 = No (180 . 25 , 98 )
| POU5F1 = No (178 . 78 , 92 )
| Clus te r 0
| POU5F1 = Yes ( 96 . 0 7 , 6 )
| Clus te r 1
TP53 = Yes (190 .97 9)

Clus te r 2

(a) PCT classification model for the mouse Ageing GO PPI dataset.

Clust. GO term p-value
IF TP53 = Yes

2 GO:051726 (regulation of cell cycle ) 10−5

GO:008630 (intrinsic apoptotic signalling pathway in re-
sponse to DNA damage)

10−4

GO:010468 (reg. of gene expression) 10−5

(b) Most statistically significant over-expressed ageing-related GO terms in PCT model’s
leaf nodes for the mouse Ageing GO PPI dataset.

Figure 6.8: PCT model and over-expresed GO terms (classes) in the mouse Ageing
GO PPI dataset

Table 6.9: Mean, maximum and minimum AUPRC differences (across the folds of
the 10-fold cross validation process) between the pair-wise classifiers (M c̃i

(i,j) and

M ci
(i,j)) and the single classifier (M(i,j)). From this table it is clear that the SVM

classifier predicting class C1 greatly benefits from the dataset split based on C2

values.

C1 C2 Mean Max. Min.
GO:0046483 GO:0034641 0.56 0.50 0.59
GO:0034641 GO:0006725 0.55 0.51 0.62
GO:0006725 GO:0046483 0.54 0.51 0.58
GO:0006807 GO:0046483 0.53 0.52 0.53
GO:0034641 GO:1901360 0.51 0.41 0.58
GO:0006725 GO:0034641 0.51 0.49 0.54
GO:1901360 GO:0006807 0.49 0.43 0.60
GO:0046483 GO:0006807 0.49 0.46 0.53
GO:0034641 GO:0046483 0.49 0.35 0.57
GO:1901360 GO:0034641 0.47 0.42 0.52

It is clear that there are strong relationships in the yeast dataset that may be

exploited by our algorithm. Table 6.10 presents additional information about the

GO terms from Table 6.9. This table contains in its columns the GO term Id,

its name, the average depth of the term and the average height of the term. The
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Table 6.10: Information about the GO terms in Table 6.9

Go term Name Avg. Depth Avg. Height
GO:0046483 heterocycle metabolic pro-

cess
4.0 4.5

GO:0034641 cellular nitrogen compound
metabolic process

4.0 4.0

GO:0006725 cellular aromatic compound
metabolic process

4.0 4.8

GO:0006807 nitrogen compound
metabolic process

3.0 4.8

GO:1901360 organic cyclic compound
metabolic process

4.0 4.5

average depth of a term is computed by calculating the average length of all paths

from the root node of the hierarchy to that GO term. Similarly, the average height

of a GO term is computed by calculating the average length of all paths from that

GO term to the reachable leaves of the term hierarchy.

The average depth and average height of a GO term inform us how specific

that GO term is. Broadly speaking, deeper nodes tend to be more specific than

shallower nodes; likewise, nodes with shorter heights tend to be more specific. More

specific GO terms tend to provide more information to users of the classification

system. Although average depth is a more common measure of term specificity,

we also use the average height because sometimes a relatively shallower node may

be more specific than a deeper one.

Table 6.10 shows that the selected GO terms are located, in general, in the

middle of the GO hierarchy, as far as depth and height are concerned. In other

words, there is a compromise between specificity and generality, probably because

deeper GO terms are easier to differentiate from the other nodes but, at the same

time, contain fewer labeled instances.

Figure 6.9 shows the ancestors of the GO terms present in Table 6.10, with solid

edges representing the original GO relationships and dashed edges representing

the predictive class relationships detected by the algorithm. It is clear that the

relationships found by the algorithm connect classes that are semantically related;

all of them are related to metabolism and are relatively close in the original class

(GO) hierarchy. This is a sign that these predictive class relationships are in fact

meaningful. Note that the class dependencies represented by the dashed edges (i.e.,

detected by our method) would be ignored by a conventional local hierarchical
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classification algorithm, which would consider only parent-child relationships in

the original class hierarchy.

8150

9987

8152

44237
6807

71704

34641

6725

46483

1901360

Figure 6.9: GO terms in Table 6.10 and their ancestors. Solid edges represent the
original GO term relationships. Dashed edges represent the class dependencies
present in Table 6.9.

6.5 Worst-Case Time Complexity Analysis of the

HDN-nHPC Classification Algorithm

Unfortunately it is not possible to directly compare, in a fair way, the CPU clock

runtime of all hierarchical classification algorithms in the datasets used in our

experiments. This is due to two factors, as follows.

First, all the algorithms were run on a computer cluster with 60 processors, and

when an algorithm is executed on that computer cluster, the number of processors

actually allocated to run that algorithm depended on the number of processors

available at that particular time, which varied depending on the number of users

that were using the cluster at that time and on the runtime of their programs. Ob-

viously, it is not fair to compare the CPU clock runtime of two or more algorithms

run on different number of processors in the cluster.

Second, even if all algorithms were run on the same number of processors, in

general, the algorithms were implemented in different and mixed combinations of

programming languages, and the language(s) used has(ve) a significant effect on

the runtime of an algorithm. To be more precise about the diversity of program-

ming languages used, the algorithms can be divided into four groups, as follows:

(a) the PCT and PCTEN algorithms were primarily implemented in the Java
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programming language, with a few integration parts implemented in the Python

programming language; (b) the HDN, LHC and HDN-nHPC used a C++ imple-

mentation of the “flat” SVM used as a base classification algorithm and Python

for the rest of the algorithms; (c) the HDN-PCT and PCT-LHC hybrid algorithms

involve hybrid Python/C++/Java implementations, with the PCT part in Java,

the “flat” SVM in C++, and the HDN part and dataset preparations used by

both HDN and LHC in Python; and (d) the ELHNB algorithm, which is fully

implemented in Python.

Hence, instead of reporting CPU clock running times, in this section we per-

form a theoretical analysis of time complexity, which has the advantage of being

programming language-independent. We focus on the worst-case time complexity

of the HDN-nHPC algorithm, for two reasons. First, out of the new hierarchical

classification algorithms proposed in the thesis, it was the most successful overall,

in terms of predictive performance, as discussed earlier. Second, this algorithm was

also overall the most time consuming hierarchical classification algorithm used in

our experiments, mainly due to the procedure to find the non-hierarchical relation-

ships and the multiple runs of an SVM algorithm used to predict each hierarchical

class. Hence, a worst-case time complexity analysis of this algorithm will help us to

understand the limitations of its scalability to very large datasets, as a function of

several relevant variables describing the size of the classification problem or a pa-

rameter of the algorithm. More precisely, the variables used in our time-complexity

analysis are as follows:

• N : number of classes.

• M : number of features.

• J : number of training/testing instances.

• it: number of Gibbs sampling iterations.

We present next the worst-case time complexity analysis of the training and

testing phases of the HDN-nHPC hierarchical classification algorithm.

6.5.1 Training Time Complexity

We begin our analysis by the training phase of the algorithm, which is presented

in Algorithm 5.2. Lines 2 and 3 are trivial, having negligible time complexity. The
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for loop starting at line 4 is executed, in the worst case, (N − 1)2 times if the

class hierarchy is degenerated and has all hierarchical classes at the first level of

the hierarchy, without edges between the nodes at the first level of the hierarchy.

Therefore, the worst-case scenario complexity of the for loop starting at line 4 is

O(N2).

Lines 5 and 6 have negligible time complexity, but at line 7 the algorithm runs

the F -test feature selection algorithm, which has time complexity of O(MJ), as

calculating the F-statistic for each feature involves calculating the variance of the

feature, which has linear complexity on the number of instances.

Next, in lines 8, 9 and 10, three SVM classification models are induced, by

running the SVM algorithm three times. For our complexity analysis it is enough to

consider only the SVM algorithm run at line 10, that uses the most instances. The

training complexity of the SVM algorithm using the RBF kernel is O(max(J,M)×

min(J,M)2) (Chapelle 2007), which clearly dominates the complexity of running

the F -test. Therefore, so far, the time complexity of Algorithm 5.2 is O(N2 ×

max(J,M)×min(J,M)2).

Lines 11 to 18 iterate over each instance in the set Dvalid (whose size is limited

by O(J)) and get their prediction using the SVM algorithm. The complexity of

the prediction phase of the SVM algorithm is O(J2) (Abdiansah and Wardoyo

2015). Therefore, the overall complexity of lines 11 to 18 is O(J3), and the overall

algorithm complexity so far is O(N2 × (max(J,M)×min(J,M)2 +O(J3))).

Line 19 of the algorithm has linear time on the number of instances, therefore

its time complexity is dominated by the other previously analysed lines. Line

20 is executed in constant time, therefore it is negligible. Line 23 takes O(N2)

operations and is also negligible when compared to the complexity of the for loop

starting at line 4.

The final time complexity of the training phase of the HDN-nHPC algorithm

is, therefore, O(N2 × (max(J,M)×min(J,M)2 +O(J3))).

6.5.2 Testing Time Complexity

Now we analyse the time complexity of the testing phase of the HDN-nHPC al-

gorithm, presented in Algorithm 5.4. This algorithm is called for every testing

instance, therefore we begin with a complexity of O(J). In line 2 the predictive

class label vector is randomly initiated, which has a complexity of O(N). This
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complexity, however, will be dominated by the following analysis and can be ig-

nored.

Next, the for loop starting at line 3 is executed it times, bringing the current

complexity to O(J × it). At line 4 the for loop iterates over all N class labels,

bringing the complexity to O(J × it×N).

Lines 5 is executed in constant time, hence it can be ignored. For our worst-

case analysis, let us assume that the if condition at line 6 always fails. This

assumption must be made because the time complexity of line 7 is always smaller

than the time complexity of line 10, as line 10 will use at least one SVM classifier

(and possibly more) to predict the class probability of the instance.

Now me must analyse line 10 of the algorithm. This line calls Algorithm 5.3,

which has the worst-case complexity of O(N × J2). This is the case if all other

class labels are in the Markov blanket of every class label and the prediction of the

SVM algorithm (which has the complexity of O(J2)) must be retrieved (N − 1)

times.

This brings the overall complexity of the algorithm so far to O(J3 × it×N2).

Because the lines 11 to 19 of the algorithm have constant time, this is the final time

complexity of Algorithm 5.4, which is the time complexity of the testing phase of

the HDN-nHPC algorithm.

6.6 Conclusions

After analysing the results in Section 6.3, we have concluded that for one out of

the three hierarchical predictive performance measures used in our experiments,

one of our four new algorithms (the HDN-nHPC algorithm) outperforms all other

seven algorithms in terms of average rank across the 42 hierarchical classification

datasets.

In Section 6.4 we interpret the models generated by the PCT hierarchical clas-

sification algorithm. The interpretation of the PCT model has corroborated known

biological facts about the biology of ageing and has also found protein-protein in-

teractions in some model organisms that are known to be ageing related in other

animals, which may indicate that the effect of the protein is conserved between

species. We have also validated the predictive class relationships found by the

HDN-nHPC algorithm, showing that the HDN-nHPC algorithm has found strong

new relationships between hierarchical classes.



Chapter 7

Meta-Learning for Hierarchical

Classification

7.1 Introduction

The cost of performing high-throughput biological assays has been constantly de-

creasing throughout the years. This increases the availability of freely available

biological data and thus, the need for computational methods to help biologists

extract useful knowledge from this data.

As we have previously presented, one of the computational tools available for

biologists are hierarchical classification algorithms, these algorithms take as input a

dataset containing instances described by numerical features and some class labels

that annotate the instances, and learn a model that can be used to label unseen

instances. Recall that, in hierarchical classification, the class labels are structured

using ontologies structured as a tree or a Directed Acyclic Graph (DAG), where

each node is a class label and each edge represents a “IS-A” relationship between

labels. This means that if an instance is annotated with one class label, it is

implicitly annotated with all of that label’s ancestor labels.

Meta-learning for algorithm recommendation in classification problems is the

computational task of recommending to the user a classification algorithm (or a

ranking of classification algorithms) from a pool of algorithms, for any new classifi-

cation dataset (new meta-instance), given the past performance of the algorithms

in other datasets (Brazdil et al. 2008). To make this recommendation, a meta-

classifier is induced using meta-features describing characteristics of datasets in

the meta-training set (where each meta-instance represents a dataset), and using

144
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as meta-class labels the best classification algorithm for each dataset in the meta-

training set. Then, when a new dataset becomes available, the meta-classifier is

used to recommend the best algorithm for that new dataset. Meta-learning ap-

proaches are useful in two main ways: 1) Since they automate the choice of the

best algorithm to a new dataset, they avoid the need for running many classifica-

tion algorithms on the new dataset, which is an ad hoc but very popular approach

to choose the best classification algorithm in practice. 2) If interpretable meta-

classification models are induced, they can be used to explain why a hierarchical

classification algorithm recommended for a new dataset.

Meta-learning approaches can be of great use in hierarchical classification prob-

lems. In such problems it is typically difficult to choose an appropriate hierarchical

classification algorithm for the task. The higher problem complexity and the usu-

ally very long run times associated with applying many hierarchical classification

algorithms to a new dataset make the use of exploratory experiments more difficult.

In this work we have experimented with the following commonly used hier-

archical classification algorithms: Predictive Clustering Tree (PCT) (Vens et al.

2010), Predictive Clustering Trees Ensemble (PCTEN) (Schietgat et al. 2010),

and Local Hierarchical Classifiers (LHC) (Koller and Sahami 1997). We propose

new meta-features for meta-learning in hierarchical classification, and also propose

a new algorithm for generating classification datasets from existing ones exploit-

ing the particularities of hierarchical classification problems. As far as we know,

this is the first work to propose meta-learning for automatically recommending a

hierarchical classification algorithm.

We also propose a new algorithm for generating new hierarchical classification

datasets from existing ones exploiting the particularities of hierarchical classifica-

tion problems. As far as we know, this is the first time meta-learning has been

applied in the context of hierarchical classification.

This chapter is organised as follows: Section 7.2 presents background on meta-

learning. Section 7.3 presents the definition of the meta-features used to describe

the hierarchical classification datasets. Section 7.4 describes the algorithm pro-

posed to split existing hierarchical classification datasets into new datasets (using

different parts of the class hierarchy), thus greatly increasing the number of meta-

instances. Section 7.5 presents the experimental setup we used to build our meta-

learning framework. Section 7.6 presents the results of our meta-learning frame-

work, including an analysis of the predictive performance of our meta-classification

system and an interpretation of the meta-models generated to choose between the
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four above mentioned candidate hierarchical classification algorithms given the

meta-features.

7.2 Background on Meta-learning

Meta-learning for algorithm recommendation, in the classification setting, is the

computational task of predicting the performance of classification algorithms (rep-

resenting meta-classes) given their past performance and meta-features that de-

scribe the characteristics of datasets (the meta-instances).

Broadly speaking, there are three types of meta-features: 1) dataset-derived

meta-features (Peng et al. 2002), 2) landmarking meta-features (Peng et al. 2002)

and 3) sampling meta-features (Leite and Brazdil 2010). The first type of meta-

feature are numerical values that characterise some aspect of the dataset, such as

the number of instances, the number of classes, the class distribution, and so on,

which can be directly extracted from the dataset, without inducing a classification

model. Landmarking meta-features are defined as features characterising some

classification model induced using the dataset. Typically, this classification model

must be relatively computationally inexpensive to induce and should provide in-

sights about the classification problem at hand. The last type of meta-feature,

sampling meta-features, consists of applying the classification algorithms whose

performance are being predicted in a sample of the testing dataset and using the

predictive performance results as meta-features.

Both approaches (landmarking and sampling) aim to extract meta-features

from classification models that can be induced fast. Note, however, that landmark-

ing approaches usually use a fast classification algorithm and extract meta-features

from the model that was induced using the full base dataset (meta-instance). For

instance, if the classification model is a decision tree, structural descriptors of the

tree can be used as meta-features. On the other hand, sampling approaches can

use more computationally expensive classification algorithms trained on a small

sample of each base dataset (meta-instance). Usually, sampling approaches use

as meta-features the predictive performance of the classification models on the

dataset samples, instead of characteristics of the model. Commonly, the set of

classification algorithms used in the sampling approach is the same set as the set

of possible algorithm recommendations. The principle is that the performance on

a dataset sample is a good predictor of the performance on the full dataset.

There are other, more refined meta-features. For instance, in (Sun and Pfahringer
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2013) the authors induce a decision tree classifier at the meta-level and use the

boolean value of each rule (each path from the root node to a leaf node) as a

meta-feature for another meta-model. In this work the authors also propose the

Approximate Ranking Trees (ART) ensemble method, which is an adaptation of

the decision tree algorithms to predict algorithms’ ranks. In (van Rijn et al. 2015)

the authors build a learning curve by plotting predictive performance against sam-

pling successively larger samples from the datasets (meta-instances). Next they

analyse the behaviour of this learning curve to recommend the best classification

algorithm for a new meta-instance.

In (Leite, Brazdil and Vanschoren 2012) authors propose an active testing

framework to choose the best algorithm to be applied to a new meta-instance.

Their algorithm works by doing several tournament-style comparisons between

the current best classifier and a promising competitor. Their objective is to min-

imise the number of models that must be trained to get a reasonably good rec-

ommendation. Note that all these previous works addressed only the conventional

classification task; unlike this work, which addresses the more challenging task of

hierarchical classification.

The meta-learning approach proposed in this chapter has two goals. First,

we want to build meta-classification models with a high predictive performance,

in order to provide reliable algorithm recommendations to the user. Second, we

want to discover general (and meaningful) relationships between the meta-features

representing characteristics of the hierarchical classification datasets and the hi-

erarchical classification algorithms (meta-classes) used in our experiments. These

relationships could be used as explanations for the algorithm recommendations

output by the meta-learning system. Hence, we do not employ predictive per-

formance measures that combine runtime and predictive performance, such as the

ones presented in (Abdulrahman and Brazdil 2014; Peng et al. 2002; van Rijn et al.

2015), as optimizing runtime often reduces classification performance.

Regarding related work, some works have applied automated techniques to

choose the best ‘flat’ classification algorithm to predict the individual class nodes

of hierarchical classification problems. In (Holden and Freitas 2008) the authors

use a swarm intelligence algorithm to select which ‘flat’ classification algorithm to

use, from a pool of classifiers. In (Silla Jr. and Freitas 2009, 2011b) authors apply

a strategy to select both the best classification algorithm and best instance rep-

resentation to improve the performance of their hierarchical classification system.
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Note, however, that these approaches do not aim to select the whole hierarchi-

cal classification algorithm, instead, they try improve parts of a fixed hierarchical

classification model. Also, these approaches do not build a model to encode the

information of when to use a certain classifier, like we are doing. Instead they test

all possible classifiers and select the one that optimizes a predictive performance

measure.

7.3 Definition of the Proposed Meta-features

The proposed meta-features for describing properties of hierarchical classification

datasets are divided into three broad types: simple multi-label dataset-derived

meta-features, hierarchical dataset-specific meta-features, and meta-features ex-

tracted from the landmarking PCT classification model.

The first meta-feature type describes properties of a multi-label classification

dataset (Tsoumakas, Katakis and Vlahavas 2010), without referring to hierarchi-

cal classification aspects. However, since every hierarchical classification dataset

is implicitly a multi-label dataset (Silla Jr. and Freitas 2011a) (an instance is

assigned class labels at multiple levels of the class hierarchy), such meta-features

are still potentially useful to describe hierarchical classification datasets.

The second meta-feature type, specific for hierarchical classification datasets,

describes the characteristics of the graph that represents the class hierarchy (Silla

Jr. and Freitas 2011a).

The meta-features of these first two types are new meta-features, since this is

the first work on meta-learning for hierarchical classification.

The third meta-feature type is generated by inducing a PCT hierarchical classi-

fication model (a decision tree) using the base dataset and extracting meta-features

directly from the induced decision tree. These meta-features are not new, they are

broadly based on the meta-features proposed in (Peng et al. 2002) for standard

(flat) classification, but used here for the first time in the more complex scenario

of hierarchical classification.

1. Multi-label dataset-derived meta-features

(a) NumClasses – Number of class labels.

(b) LabCard (label cardinality) – Average number of class labels per in-

stance.
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(c) DistLabSetSize – Number of distinct label sets that occur in at least

one instance.

(d) NumFeats – Number of features.

(e) NumInsts – Number of instances.

(f) InstFeatRatio – Number of instances divided by the number of features.

2. Hierarchical dataset-specific meta-features

(a) AvgDepth – The average length of all possible paths from the root to

all the leaf nodes of the class hierarchy.

(b) ClassImbal – Average class imbalance, defined as the average proportion

of positive class instances across all class nodes in the hierarchy. Recall

that a hierarchical classification problem can be viewed as a collection

of binary classification problems, with restrictions defined by the class

hierarchy.

(c) NumLeaves – Number of leaf class labels.

(d) HierType – Class hierarchy’s structure type (tree or DAG).

(e) AvgDegree – Average degree (number of edges) per class node.

(f) MaxDegree – Maximum degree across all class nodes.

(g) MaxLevelSize – Maximum number of nodes in a class level, across all

levels. A class label is in the i-th level if there is a path of length “i”

from the root to that class label’s node. Note: for DAGs the same node

may be in multiple levels.

(h) MinLevelSize – Minimum number of class nodes in a level across all

levels.

(i) MeanLevelSize – Mean number of class nodes in a level across all levels.

(j) LongBranch – Longest path among all possible paths from the root to

a leaf class.

(k) ShortBranch – Shortest path among all possible paths from the root to

a leaf class.

(l) MeanBranch – Mean path length among all possible paths from the

root to a leaf class.
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3. Meta-features extracted from the landmarking PCT hierarchical classifica-

tion model

(a) NumNodesPCT – Number of nodes in the decision tree induced by

PCT.

(b) NumLeavesPCT – Number of leaves in the decision tree induced by

PCT.

(c) MaxLevelSizePCT – Maximum number of internal nodes in a level of

the decision tree induced by PCT, across all tree levels.

(d) MeanLevelSizePCT – Mean number of class nodes in a level of the

decision tree induced by PCT across all levels of the tree.

(e) LongBranchPCT – Longest path among all possible paths from the root

to a leaf node of the decision tree induced by PCT.

(f) ShortBranchPCT – Shortest path among all possible paths from the

root to a leaf node of the decision tree induced by PCT.

(g) MeanBranchPCT – Mean path length among all possible paths from

the root to a leaf node of the decision tree induced by PCT.

(h) PercSelPCT – % of input features selected for inclusion in the decision

tree induced by PCT (any feature with number of occurrences > 0 in

the tree)

(i) BalancednessPCT – This measures how distant the tree induced by

PCT (tree T) is from a balanced tree, defined as:

balancedness(T ) = (unbAvgDepth(|T |)−actualAvgDepth(T ))
(unbAvgDepth(|T |)−balAvgDepth(|T |))

.

Where: unbAvgDepth(|T |) is the average depth of a completely unbal-

anced tree (worst case scenario) containing |T | nodes, balAvgDepth(|T |)

is the average depth of the most balanced binary tree possible (best case

scenario) containing |T | nodes, and actualAvgDepth(T ) is the actual

average depth of the tree T .

This meta-feature has value 1 if T is the most balanced tree possible

and value 0 if it is the most unbalanced tree possible.

In Figures 7.1 and 7.2 we illustrate graphically the characteristics of some in-

teresting meta-features. Note that some pairs of meta-features are substantially

more correlated than others, as measured by Pearson’s linear correlation coeffi-

cient (r). For instance, the meta-features NumInsts and NumClasses are more
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positively correlated (r = 0.40), see Figure 7.1, than the pair of meta-features

InstFeatRatio and AvgDepth (r = 0.18), see Figure 7.2. This fact will be im-

portant in Section 7.6, when we analyse the meta-features selected by the decision

tree algorithm C4.5.
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Figure 7.1: Scatter plot of the meta-features number of instances (NumInsts) and
number of class labels (NumClasses), for our hierarchical classification datasets.
Each ‘x’ represents a meta-instance. Note that there is a positive correlation
between the two meta-features – linear correlation coefficient r = 0.40.
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Figure 7.2: Scatter plot of the meta-features instance to feature ratio
(InstFeatRatio) and average class depth (AvgDepth). Each ‘x’ represents a meta-
instance. Notice that the correlation between these two meta-features (r = 0.18)
is not so clear as the correlation in Figure 7.1.
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7.4 Algorithm for Splitting the Hierarchical Datasets

One of the main challenges of applying meta-learning to data mining tasks is

collecting a reasonable number of datasets to be used as meta-instances to train

the meta-classifiers. This problem is exacerbated when dealing with hierarchical

classification problems, as there are substantially fewer freely available datasets

for this specific task than for standard (“flat”) classification tasks. Actually, there

is no systematic repository of hierarchical classification datasets, unlike the case

for standard classification, where there are well-known dataset repositories like the

UCI one (Lichman 2013).

For this reason we propose a new approach for creating a larger number of

hierarchical classification datasets from an existing set of available hierarchical

classification datasets. Note that the created datasets preserve part of the data

contained in the original datasets, as explained below. Hence, the new datasets

still contain real-world data, rather than being synthetic datasets generated in

a random way. In this work we have applied this approach (formalised by Algo-

rithm 7.1) to divide the original 42 hierarchical classification datasets into 862 new

hierarchical classification datasets. Broadly speaking, for each original dataset,

Algorithm 7.1 divides the existing class label hierarchy into sub-hierarchies and

creates a new hierarchical classification dataset (to be used as a meta-instance)

for each sub-hierarchy. Each instance in the full original dataset is present in a

new hierarchical classification dataset if that instance is annotated with at least

one class label from the sub-hierarchy corresponding to that new dataset.

Algorithm 7.1 requires the specification of a “spanning set” by the user. In our

context, a “spanning set” is a set of class labels that Algorithm 7.1 uses to decide

how to “break down” the class hierarchy: the children of the class labels in this set

define the unique classes of the new sub-hierarchies, that is, these children will not

be shared between the new sub-hierarchies. Note that the classes in the spanning

set must be chosen according to the structure of the hierarchy: a good spanning

set is one containing class labels with a reasonable number of child class labels (so

that a considerable number of sub-hierarchies can be generated) and close to the

hierarchy’s root node (so that each generated sub-hierarchy can have a reasonable

number of instances).

Algorithm 7.1 works by iterating over the children of the class labels in the

“spanning set” (line 5) and checking if the current child node has less thanminDesSize

(minimum Desirable Size) instances (line 6) – a user-defined parameter. If this is
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the case, the instances in the current child node are added to the temporary set

toGenerate (line 7). Notice that if an instance belongs to multiple classes, it can-

not appear multiple times in this set; this is guaranteed by the append operator

(line 7). If toGenerate has accumulated minDesSize or more instances (line 8),

a new hierarchical classification dataset containing the instances in toGenerate is

created (line 9) and the algorithm proceeds to iterate over the next child node of

a class node in the spanning set.

If the current child class node has minDesSize instances or more (i.e., the

if test in line 6 fails), a new hierarchical classification dataset is created using

that child node and its descendants (line 13). Finally, when the for loop ends,

the algorithm checks if the current number of instances in toGenerate is greater

than or equal to minAccSize (minimum Acceptable Size) – another user-defined

parameter. If that is the case, a new hierarchical classification dataset is created

(line 17); otherwise the instances are discarded, as we consider that a dataset with

less than minAccSize instances does not contain enough information to be used

in our experiments.

Algorithm 7.1 Split a hierarchical classification dataset into many smaller ones

1: procedure Split(span (The spanning set))
2: minDesSize = 200
3: minAccSize = 20
4: toGenerate = {}
5: for each child ∈ span.children do
6: if |child.instances| < minDesSize then
7: toGenerate.append(child.instances)
8: if |toGenerate| ≥ minDesSize then
9: generateDS(toGenerate)

10: toGenerate = {}
11: end if
12: else
13: generateDS({child.instances})
14: end if
15: end for
16: if |toGenerate| ≥ minAccSize then
17: generateDS(toGenerate)
18: end if
19: end procedure

In our experiments we have set the value ofMinDesSize to 200 andMinAccSize

to 20. As a result, the algorithm will first generate hierarchical datasets with at
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least 200 instances during the execution of the for loop. Then, at the end of the

algorithm, it will generate at most one dataset with at least 20 instances with class

labels that could not pass the MinDesSize criterion, in order to avoid discarding

instances unnecessarily.

root

C1 C2 C3

C1.1

(270)

. . .

..
.

C1.2

(120)

. . .

..
.

C2.1

(70)

. . .

..
.

C2.2

(20)

. . .

..
.

C3.1

(30)

. . .
..
.

C3.2

(30)

. . .

..
.

root

C1

C1.1

(270)

. . .

..
.

root

C1 C2

C1.2

(120)

. . .

..
.

C2.1

(70)

. . .

..
.

C2.2

(20)

. . .

..
.

root

C3

C3.1

(30)

. . .

..
.

C3.2

(30)

. . .

..
.

Figure 7.3: Result of applying Algorithm 7.1 on a hypothetical dataset with the
hierarchy presented in the top part of the figure using a set containing class labels
C1,C2, and C3 as the spanning set. The bottom part of the figure shows the result-
ing new hierarchies. Numbers in brackets are the number of instances annotated
with a particular class. Ellipses mean suppressed hierarchical classes.

Figure 7.3 shows the result of applying Algorithm 7.1 to a hypothetical class

hierarchy using the set of classes {C1, C2, C3} as the spanning set. We show in

brackets the number of instances belonging to a class node that is a child of some

node in the spanning set. These numbers are suppressed in the other nodes because

they are not relevant to Algorithm 7.1. Also, note that the leaf classes have an

arbitrary number of descendants (represented by ellipses) that do not change the



CHAPTER 7. META-LEARNING 155

behaviour of the algorithm.

Line 5 of Algorithm 7.1 iterates over the children of the class labels in the

spanning set. In our example, those children are classes C1.1, C1.2, C2.1, C2.2, C3.1,

and C3.2. Starting with class C1.1, the algorithm checks at line 6 if the class label

C1.1 annotates less than minDesSize (200) instances. Because this is not the case,

at line 13 the algorithm generates a new hierarchical classification dataset using

the instances that are annotated with class label C1.1. The sub class hierarchy

corresponding to this dataset is presented in the leftmost graph in the bottom

part of Figure 7.3.

Next, the algorithm iterates over the next class label, C1.2. This time the

class label annotates less than MinDesSize instance, so line 7 is executed and

the 120 instances that are annotated with the class label C1.2 are added to the

set toGenerate, which was previously empty. Now toGenerate has less than

MinDesSize instances, failing the if condition at line 8. The algorithm pro-

ceeds to iterate over the next class label, C2.1, the if condition at line 6 is satisfied

and the instances that are annotated with class label C2.1 are added to the set

toGenerate. Assuming, for simplicity, that instances do not have, at the same

time, class labels C1.2 and C2.1, toGenerate now has size 190 (120 instances from

C1.2 and 70 instances from C2.1). For this reason the if condition at line 8 fails again

and the instances with the next class label, C2.2, are added to the set toGenerate,

which now has size 210. Therefore, the if condition at line 8 is now evaluated

as true and line 9 is executed, creating a new dataset with instances annotated

with classes C1.2, C2.1, and C2.2 (as well as their descendants), emptying the set

toGenerate in the next line. The sub class hierarchy associated with classes C1.2,

C2.1, and C2.2 is shown in the middle graph at the bottom of Figure 7.3.

Next, the algorithm iterates over the class labels C3.1 and C3.2. As both class

labels have less than MinDesSize instances, they are added to the set toGenerate

(line 7). The list of children of the class nodes in the spanning set terminates,

finishing the for loop (line 15). Next, the if condition at line 16 is evaluated to

true, as the set toGenerate has more than MinAccSize (20) instances. Therefore,

line 17 is executed, generating the final dataset with 60 instances and class labels

C3.1 and C3.2 (assuming that no instance is annotated with labels C3.1 and C3.2 at

the same time). The subclass hierarchy containing classes C3.1 and C3.2 is displayed

in the rightmost graph at the bottom of Figure 7.3.

Regarding related work, the idea of generating new meta-instances from ex-

isting ones, in order to substantially increase the number of meta-instances, has
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been explored in the very different context of flat (non-hierarchical) regression.

In (Loterman and Mues 2015) the authors exchange the roles of predictive fea-

tures and the continuous target variable to create more meta-instances. That is,

each feature is interpreted as a target variable, using the original target and all

other features as predictive features, hence creating a new dataset for each feature

used as a target. However, as far as we know, our current work is the first one to

propose a new algorithm to create new classification datasets from existing ones

in meta-learning, using information about the hierarchical classes, as proposed in

this section.

In addition, in the new datasets created in (Loterman and Mues 2015), the cor-

responding new regression problems are arguably very artificial, since the original

features were not supposed to be used as target variables. In contrast, our proposed

Algorithm 7.1 preserves the roles of class labels and features, therefore keeping the

original purpose of the datasets. On the other hand, Algorithm 7.1 creates datasets

that are smaller than the original datasets; in contrast with (Loterman and Mues

2015), which preserves the size of the original datasets.

7.5 Experimental Setup

Our meta-learning approach consists of inducing a multi-class meta-classifier using

the meta-features presented in Section 7.3 as predictive attributes and the name of

the best hierarchical classifier for a particular meta-instance (hierarchical classifica-

tion dataset) as the meta-classes to be predicted. We use 10-fold cross validation to

estimate the performance of hierarchical classification algorithms. This multi-class

meta-classifier must be capable of outputting a score that represents the likelihood

of a meta-instance belonging to each one of the meta-classes (a hierarchical classi-

fication algorithm). The scores are used to determine the recommended algorithm

ranking, i.e., for each meta-instance, the hierarchical classification algorithm with

the highest score is ranked first, the hierarchical classification the with the second

highest score is ranked second, and so on.

In order to induce the meta-classifier, we have selected two multi-class classifi-

cation algorithms for our experiments: the Support Vector Machine (SVM) algo-

rithm (Boser, Guyon and Vapnik 1992) and the C4.5 decision tree algorithm (Quin-

lan 1993). These algorithms have complementary characteristics: the SVM algo-

rithm usually produces models having high predictive accuracy, but difficult to
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interpret; while the C4.5 algorithm often produces models that are usually asso-

ciated with good interpretability but with inferior predictive accuracy when com-

pared with SVM – although of course the issue of which algorithm is more accurate

depends on the underlying dataset. Actually, in our experiments J48 performed

better than SVM, as reported later. We have used the J48 implementation of

C4.5 from the Weka data-mining framework (Hall et al. 2009) and the SVM from

LibSVM (Chang and Lin 2011). We have used the default parameters for the J48

algorithm and the Gaussian kernel for the SVM algorithm, using an internal cross

validation procedure to select the value of parameter σ, varying its value from 0.0

to 1.0, with 0.1 increments.

In summary, the SVM algorithm implicitly maps the original problem to a

high-dimensional space using kernel functions and finds a meta-class-separation

hyperplane on this space that minimises classification error. The J48 algorithm

builds a decision tree that recursively divides the data using a feature-based con-

dition. Several conditions are tested and the algorithm selects the one that better

separates the meta-classes of the meta-instances. We call our meta-learner using

the J48 algorithm the Decision Tree Meta-Ranker (DTMR) and our meta-learner

using the SVM algorithm the SVM Meta-Ranker (SVMMR).

We have used the three predictive performance measures defined in Section 6.2

to define our meta-classes. Because the measures have different biases, each one

leads to a different ranking for the hierarchical classifiers. Therefore we created

three meta-datasets, one for each predictive performance measure. That is, the

meta-features present in the three meta-datasets are the same, but the meta-classes

are different: The meta-class of each meta-instance in each of the three meta-

datasets is the hierarchical classifier with the best predictive performance for the

particular measure we are considering (AU(PRC) , AUPRCw , and AUPRC ).

Recall that the 4 hierarchical classifiers used as meta-classes are PCT, PCTEN,

LHC and HDN-nHPC (see Section 6.2).

In addition to the DTMR and SVMMR rankers, we also test two simple base-

lines: the first is a simple naive classification algorithm called the Prior Ranker

(PR). This algorithm outputs as the predicted rank the classifier rank observed

in the training set, that is, the first ranked hierarchical classifier is the one with

more wins in the training set, the classifier ranked second is the next classifier in

terms of wins, and so on. The second baseline is the Random Ranker (RR), which

randomly assigns the rankings of the hierarchical classifiers to each meta-instance.
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7.6 Experimental Results

In this section we present the meta-learning results of applying the approach for in-

ducing and combining our meta-classifiers (as described in the previous section) to

our meta-instances generated using Algorithm 7.1 (described in Section 7.4). Sub-

section 7.6.1 presents the predictive performance results, comparing our method

with the two aforementioned simple baselines using 10 fold cross-validation and

two measures of predictive performance: the Spearman’s rank correlation coeffi-

cient (Gautheir 2001), which is often used in meta-learning research, and the more

traditional accuracy performance measure. In Subsection 7.6.2 we interpret the

meta-models induced by J48 using the whole meta-dataset to try to get useful

knowledge about which characteristics of hierarchical classification datasets are

good predictors of the best hierarchical classification algorithm for a new dataset.

7.6.1 Meta-Learning Performance Evaluation

We use two measures of predictive performance. The first one is the traditional

accuracy measure, defined as the number of correct predictions divided by the

total number of predictions. We consider that a prediction is correct if the pre-

dicted best hierarchical classifier (the meta-class) is the actual best classifier, for

a given dataset (meta-instance). If there is a tie in the meta-classifier’s ranks for

the predicted best classifiers, we use the tied meta-class with the highest prior

probability. If there is a tie in the actual best hierarchical classifiers, predicting

any of the tied hierarchical classifiers as the best classifier is considered correct.

The second measure of predictive performance we use is the mean Spearman’s

rank correlation coefficient (R̄) across all the datasets. R̄ measures the agreement

between the ranking of the base hierarchical classification algorithms predicted by

the meta-classifier and their corresponding actual ranking, for each dataset, and

it is defined as (Gautheir 2001):

R̄ =
1

J

J
∑

j=1

[

1−
6
∑A

a=1(prj,a − arj,a)
2

A3 − A

]

. (7.1)

Where J is the number of meta-instances (hierarchical classification datasets),

A is the number of base hierarchical classification algorithms, prj,a is the pre-

dicted rank for the a-th base hierarchical classification algorithm in the j-th meta-

instance, and arj,a is the actual rank for the a-th base hierarchical classification
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algorithm in the j-th meta-instance. The multi-class meta-classification models

we are using do not output meta-class ranks, however they output scores, which

can be simply transformed to ranks by ordering the scores from the largest (most

probable meta-class) to the smallest (least probable meta-class) one.

The R̄ correlation measure lies in the interval [−1, 1], where R̄ = 1 means that

there is a perfect agreement between the predicted and actual ranks, R̄ = 0 means

that there is no correlation between the predicted and actual ranks, and R̄ = −1

means that there is a perfect disagreement between the predicted and actual ranks.

This ranking correlation coefficient has been used in several works dealing with

ranking-based meta-learner evaluation in the classification task, e.g.: (Peng et al.

2002; Sun and Pfahringer 2013; Brazdil, Soares and Da Costa 2003).

Table 7.1 shows the results of applying the two more sophisticated meta-rankers

(DTMR and SVMMR), the Prior Ranker (PR), and the Random Ranker (RR) to

our three meta-datasets. We show the predictive performance results using two

different measures, the previously defined R rank correlation coefficient and the

more common accuracy measure. Recall that a ‘perfect’ ranker (a ranker that

always predict the ranking of the classification algorithm correctly) would have a

R rank correlation and accuracy of 1.0.

Table 7.1: Rank correlation coefficient and accuracy results of applying the DTMR,
SVMMR, PR, and RR meta-rankers to our meta-datasets, one meta-dataset for
each hierarchical classification version of the AUPRC measure, using the 10-fold
cross-validation procedure.

R rank correlation Accuracy

DTMR SVMMR PR RR DTMR SVMMR PR RR

AU(PRC) 0.5197 0.3628 0.3691 0.0325 0.5821 0.4648 0.3745 0.2498
AUPRCw 0.3915 0.2013 0.2234 0.0147 0.5130 0.3933 0.3382 0.2722
AUPRC 0.4298 0.2240 0.2066 0.0218 0.5306 0.4342 0.3977 0.2827

Table 7.1 clearly shows that the DTMR meta-ranker is superior to every other

meta-ranker we tested, including the SVMMR meta-ranker, surprisingly. We have

applied pairwise paired t-tests to the results of the 10 folds of the cross-validation

procedure, as suggested in (Japkowicz and Shah 2011), to compare the results of

DTMR against each of the other three meta-rankers. Using paired t-tests is recom-

mended when comparing one baseline learning algorithm (in this case the DTMR)

to a set of other learning algorithms using one dataset when using reasonably-sized

datasets. The test rejected the null hypothesis of classifier equivalence in every
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comparison, with α = 0.05, with all p-values < 0.0005. We attribute the poor

performance of SVMMR to the sensitivity of kernel choice. Note that we have not

tried to optimise the type of kernel in this work, we leave this task as future work;

but we have optimised the choice of the σ parameter for the Gaussian Kernel using

internal cross-validation, as mentioned earlier. In contrast, we have not optimised

any J48 parameter – its default parameters were robust in our experiments.

7.6.2 Interpreting the Meta-Classification Models

The meta-models induced to predict which hierarchical classification algorithm

(meta-class) is more accurate in each dataset (meta-instance) using the J48 deci-

sion tree algorithm (Witten and Frank 2000) are shown in Figures 7.4, 7.5, and

7.6, for the three predictive performance measures we have used, respectively:

AU(PRC), AUPRCw and AUPRC. These meta-models were induced by J48

using the whole meta-dataset, maximising J48’s potential to find interesting meta-

classification rules. We chose to interpret the J48 model instead of the SVM model

because the J48 model is much easier to interpret and it has achieved much bet-

ter predictive performance in comparison with the SVM model. In addition to

showing each meta-model, we select some interesting meta-rules, interpret their

meaning and, when possible, compare them with similar meta-rules found when

using different predictive performance measures, thus reaching conclusions across

the three measures.

In Figures 7.4, 7.5, and 7.6, each line of the presented meta-models represents

a decision split, that is, a condition that must be satisfied by the meta-feature of

a meta-instance in order for it to be passed to the next decision split, eventually

reaching a leaf node, when a meta-classification is made. On the leaf nodes of the

meta-model we display in general two values: the first is the total number of meta-

instances classified by the leaf node, the second is the number of meta-instances

misclassified by that leaf node. If this second value is not shown, it means there

is no misclassified meta-instance in that node.

In the next section we discuss the quality of some meta-classification rules in

terms of their precision and recall. Precision is the number of correct predic-

tions (true positive predictions) made by the rule divided by the number of meta-

instances covered by the rule. Recall is the number of correct predictions made

by the rule divided by the total number of meta-instances with the meta-class

predicted by the rule.
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Interpreting the meta-model for the AU(PRC) measure

InstFeatRatio ≤ 0.02: PCT (43.0/4.0)

InstFeatRatio > 0.02

| NumFeats ≤ 551

| | HierType = Tree

| | | AvgDepth ≤ 2.19: PCTEN (29.0/9.0)

| | | AvgDepth > 2.19: LHC (228.0/113.0)

| | HierType = DAG

| | | AvgDegree ≤ 2.58

| | | | AvgDegree ≤ 2.36: PCTEN (21.0/5.0)

| | | | AvgDegree > 2.36

| | | | | NumNodesPCT ≤ 2: PCT (11.0/1.0)

| | | | | NumNodesPCT > 2: HDN-nHPC (15.0/7.0)

| | | AvgDegree > 2.58

| | | | NumInsts ≤ 1077: PCTEN (390.0/173.0)

| | | | NumInsts > 1077: LHC (72.0/4.0)

| NumFeats > 551: PCTEN (53.0/8.0)

Figure 7.4: Meta-model generated to classify the meta-instances into meta-classes
PCTEN, PCT, LHC, and HDN-nHPC, when considering the AU(PRC) measure.

Figure 7.4 shows the meta-model induced when considering the AU(PRC)

measure. The first line of the model encodes the meta-rule: “If the instance to

feature ratio (InstFeatRatio) is smaller than or equal to 0.02, that is, the base

dataset has on the order of one instance for every 50 or more features, use the

PCT classifier”. This meta-rule has high precision (0.91), much higher than the

a priori probability for the ‘PCT’ meta-class (0.12). The recall of this meta-

rule is also reasonably good, capturing 38% (39 out of 103) of all meta-instances

annotated with the ‘PCT’ meta-class label. This meta-rule indicates that the

decision tree-based PCT algorithm deals well with datasets with relatively few

instances and many features, which seems due to its implicit class hierarchy-aware

feature selection procedure. That is, by finding successive conditions that divide

the set of meta-instances based on their different hierarchical classes well, the

decision tree performs feature selection by analysing each feature’s predictive power

across a large set of hierarchical classes, instead of analysing just one class at a

time, like the LHC and HDN-nHPC algorithms do.

Although the advantage of the PCT classifier over the LHC and HDN-nHPC

classifiers is clear when the instance to feature ratio is so small, it is not so

clear why the PCTEN classifier did not perform so well on the datasets where
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InstFeatRatio is smaller than or equal to 0.02. Upon further analysis, we have

concluded that such a low InstFeatRatio is also correlated with a simpler classi-

fication problem, that is, hierarchical classification datasets (meta-instances) with

low InstFeatRatio also tend to have much lower average values for NumClasses,

NumInst, NumLeaves, and DistLabSetSize. This justifies why PCTEN was not

the best performing algorithm for these datasets, i.e., given the relative simplicity

of these datasets, the power of the PCTEN ensemble is not needed to maximise

predictive performance. To show this point, Table 7.2 shows the average values of

the previously mentioned meta-features considering the full meta-dataset and the

subset of meta-instances with InstFeatRatio ≤ 0.02.

Table 7.2: Mean value of some meta-features (first column) in the whole meta-
dataset (second column) and in the leaf node in the first line of the meta-model
shown in Figure 7.4, where all meta-instances have InstFeatRatio ≤ 0.02 (third
column). The last column shows the 95% confidence interval, assuming a normal
distribution, of each meta-feature in the set of meta-instances of that leaf node.

Feature Name Mean in meta-dataset Mean in leaf 95% conf. inter. in leaf
InstFeatRatio 5.63 0.011 [0.010, 0.012]
NumClasses 152.27 85.95 [64.8, 107.1]
NumInst 530.52 217.57 [196.2, 239.0]

NumLeaves 47.08 23.95 [19.1, 28.8]
DistLabSetSize 72.52 31.24 [24.9, 37.6]

The last line of the meta-decision tree shown in Figure 7.4 contains another in-

teresting meta-rule: ‘if the instance to feature ratio (InstFeatRatio) is greater

than 0.02, and the number of features (NumFeats) is greater than 551, use

PCTEN. This points to the advantage of using the PCTEN algorithm when the

problem is more complex (higher number of features), but with enough instances

to learn from (with an instance to feature ratio that is not too small). This meta-

rule also has a high precision of 0.85, much higher than the a priori meta-class

probability of 0.40. It also has a reasonable recall of 13% of all meta-instances an-

notated with the ‘PCTEN’ meta-class label. The next meta-rule from Figure 7.4

that we would like to highlight is as follows.

IF (InstFeatRatio > 0.02) AND (NumFeats ≤ 551) AND (HierType = DAG)

AND (AvgDegree > 2.58) AND (NumInst > 1077) THEN LHC (72.0/4.0)

Overall, this meta-rule seems to suggest that the LHC classifier is clearly rec-

ommended when the problem is moderately difficult (relatively many instances,
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not very many features, a DAG class hierarchy and a class hierarchy with large av-

erage degree). Note that this meta-rule has a precision of 94% on the meta-dataset

and a reasonable recall (68 meta-instances), capturing 22% of all meta-instances

annotated with the ’LHC’ meta-class label.

Lastly, we highlight the following meta-rule for the HDN-nHPC meta-class.

IF (InstFeatRatio > 0.02) AND (NumFeats ≤ 551) AND (HierType = DAG)

AND (AvgDegree ≤ 2.58) AND (AvgDegree > 2.36)

AND (NumNodesPCT > 2) THEN HDN-nHPC (15.0/7.0)

This meta-rule captures meta-instances with InstFeatRatio greater than 0.02,

like the PCTEN. Note, however that the number of features is limited to 551

(NumFeats ≤ 551), and the average degree of the nodes in the class hierarchy is in

the interval (2.36, 2.58], which is close to the mean of the AvgDegree meta-feature

(2.69) on the entire meta-dataset. In addition, this meta-rule captures meta-

instances whose landmarking PCT is not too small (NumNodesPCT > 2). Note

that the recall of this meta-rule is not high (7%), but its precision is reasonably

high (0.53), compared to the a priori meta-class probability of 0.12. In summary

this meta-rule seems to capture meta-instances with considerable complexity with

non-trivial landmarking PCT models. Note that this is the only meta-rule that has

predicted the HDN-nHPC meta-label, and has a relatively poor quality in terms

of precision and recall when compared to the other meta-rules, which indicates the

difficulty of finding good meta-rules for predicting this particular meta-class label.

Even thought the quality of this rule is arguable, we chose to keep for the sake of

completeness.
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Interpreting the meta-model for the AUPRCw Measure

InstFeatRatio ≤ 0.02: PCT (43.0/2.0)

InstFeatRatio > 0.02

| MeanLevelSizePCT ≤ 2.5

| | ClassImbal ≤ 0.60

| | | NumInsts ≤ 43: LHC (10.0)

| | | NumInsts > 43

| | | | ClassImbal ≤ 0.06: HDN-nHPC (15.0/4.0)

| | | | ClassImbal > 0.06

| | | | | AvgDegree ≤ 3.69: PCT (336.0/183.0)

| | | | | AvgDegree > 3.69: LHC (13.0/3.0)

| | ClassImbal > 0.60: PCTEN (16.0/2.0)

| MeanLevelSizePCT > 2.5

| | LongBranchPCT ≤ 21

| | | MinLevelSize ≤ 1

| | | | NumFeats ≤ 2425: LHC (382.0/190.0)

| | | | NumFeats > 2425: PCTEN (17.0/3.0)

| | | MinLevelSize > 1: PCT (16.0/7.0)

| | LongBranchPCT > 21: HDN-nHPC (14.0)

Figure 7.5: Meta-model generated to classify the meta-instances into meta-classes
PCTEN, PCT, LHC, and HDN-nHPC, when considering the AUPRCw measure.

Analysing the meta-model shown in Figure 7.5 we observe that, interestingly,

the same condition that the J48 algorithm selected to predict the ‘PCT’ meta-class

using the AU(PRC) measure was selected again to predict the ‘PCT’ meta-class

for the AUPRCw measure. It is interesting that both models chose this condition

as the root of the meta-decision tree, highlighting the importance of the meta-

feature InstFeatRatio. In addition, note that the same threshold of 0.02 was

consistently chosen for the InstFeatRatio meta-feature in both Figure 7.4 and

Figure 7.5. This meta-rule has a precision of 0.95, much higher than the a priori

meta-class probability of 0.28. In addition, this meta-rule has a similar number

of 41 true positive instances as the meta-rule for the AU(PRC) measure. This

coverage, however, represents a recall of only 17% of the meta-instances annotated

with the ‘PCT’ meta-class label, rather than 38% as in the corresponding meta-

rule for the AU(PRC) measure. This is because PCT performed better when

considering the AUPRCw measure, being ranked first in more base datasets.

For predicting the PCTEN meta-class, we highlight the following interesting

meta-rule in Figure 7.5:
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IF (InstFeatRatio > 0.02) AND (MeanLevelSizePCT ≤ 2.5)

AND (ClassImbal > 0.60) THEN PCTEN (16.0/2.0)

This meta-rule, although different from the meta-rule predicting PCTEN high-

lighted for the AU(PRC) , captures a broadly similar type of classification prob-

lem: like the meta-rule predicting PCTEN for the AU(PRC) measure, the con-

dition “InstFeatRatio > 0.02” was selected as the root of the PCT meta-model,

meaning that the PCTEN algorithm is recommended when the ratio of the number

of instances divided by the number of features is not very small. The other two

conditions point out to a complex hierarchical classification problem: the condi-

tion “ClassImbal > 0.60” captures classification problems with a relatively large

degree of class imbalance and the condition “MeanLevelSizePCT ≤ 2.5” captures

problems where the PCT landmark tends to be small, indicating that the model

is underfit for the base hierarchical classification dataset. Note that the condition

“MeanLevelSizePCT ≤ 2.5” might also capture problems where the PCT land-

mark is unbalanced, having few nodes per level but being, possibly, very deep.

This, however, was not the case, as the average longest branch size (LongBranch-

PCT) of the PCT landmark models when “MeanLevelSizePCT ≤ 2.5” is just

2.0, much smaller than the longest branch size of the PCT landmark models when

“MeanLevelSizePCT > 2.5” (8.6). This meta-rule has a high precision (0.86) com-

pared to the a priori probability of the ‘PCTEN’ meta-label (0.28), but low recall,

capturing only 8% of all meta-instances annotated with the ‘PCTEN’ meta-class

label.

Next, we analyse an interesting meta-rule for recommending the LHC algorithm

in Figure 7.5:

IF (InstFeatRatio > 0.02) AND (MeanLevelSizePCT > 2.5)

AND (LongBranchPCT ≤ 21) AND (MinLevelSize ≤ 1)

AND (NumFeats ≤ 2425) THEN LHC (382.0/190.0)

The first condition of this meta-rule is the same as in the meta-rule predict-

ing the PCTEN meta-class label. The second condition (MeanLevelSizePCT >

2.5) uses the same meta-feature, but the complementary range of its values, by

comparison with the meta-rule predicting PCTEN – which involves the condition

MeanLevelSizePCT ≤ 2.5. Hence, the meta-rule predicting LHC refers to land-

mark PCT models with larger numbers of nodes across the levels of the PCT tree,

suggesting the base dataset is more complex. Interestingly, the next condition
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(LongBranchPCT ≤ 21) captures meta-instances whose PCT landmark models

have the longest branch smaller than or equal to 21 nodes. Unfortunately, the

condition (MinLevelSize ≤ 1) does not inform us if the classification problem is

complex or simple, it merely inform us that at least one level of the class hierarchy

has one class node. Notice that the ‘less than’ part of this condition is superfluous,

since there are no meta-instances with less then 1 node in a given level of the class

hierarchy.

The last condition points out that when there are not too many features (2425

or less), it is recommended using LHC instead of PCTEN. This is consistent with

the meta-rule predicting LHC for the AU(PRC) measure, which also recommends

using LHC when the number of features is smaller than 551, InstFeatRatio > 0.02

(as in the current meta-rule), and other conditions are satisfied. This meta-rule

has a very high recall, capturing 79% of the meta-instances annotated with the

meta-class label ‘LHC’, and has a reasonable precision: about 0.50, substantially

higher than the a priori probability for the meta-class label LHC, which is 0.32.

The last meta-rule we would like to present is the one predicting the HDN-

nHPC meta-label:

IF (InstFeatRatio > 0.02) AND (MeanLevelSizePCT > 2.5)

AND (LongBranchPCT > 21) THEN HDN-nHPC (14.0)

The first condition of this meta-rule is the same as the one for predicting

the PCTEN meta-class label. Broadly speaking, the second condition captures

meta-instances with large PCT landmark models, indicating that they may be

over-fitting the data. This second condition uses the same meta-feature used in

the meta-rules predicting LHC and PCTEN. The difference is that the meta-rule

predicting PCTEN uses the “≤ 2.5” range of values, whist the meta-rules predict-

ing LHC and HDN-nHPC use the “> 2.5” range of values. The last condition

checks if the landmark PCT model is deep (its longest branch has more than 21

conditions), indicating that HDN-nHPC is more suited when the landmark PCT

model is large and the problem is complex. The precision of this rule is 1.0 (perfect

predictive accuracy). Its recall, on the other hand, is relatively low (8%).
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Interpreting the meta-model for the AUPRC Measure

NumInsts ≤ 667

| PercSelPCT ≤ 0.0004

| | ClassImbal ≤ 0.60: PCT (186.0/39.0)

| | ClassImbal > 0.60: PCTEN (16.0/3.0)

| PercSelPCT > 0.0004

| | meanBranchPCT ≤ 2.4

| | | AvgDegree ≤ 3.5: PCT (202.0/101.0)

| | | AvgDegree > 3.5: PCTEN (25.0/9.0)

| | meanBranchPCT > 2.4

| | | LabCard ≤ 2.7: PCT (20.0/4.0)

| | | LabCard > 2.7: PCTEN (233.0/108.0)

NumInsts > 667

| ShortBranch ≤ 4

| | InstFeatRatio ≤ 21.2

| | | PercSelPCT ≤ 0.003: PCTEN (12.0/3.0)

| | | PercSelPCT > 0.003

| | | | AvgDepth ≤ 7.12

| | | | | LongBranchPCT ≤ 10: LHC (74.0/37.0)

| | | | | LongBranchPCT > 10: HDN-nHPC (27.0/9.0)

| | | | AvgDepth > 7.12: LHC (10.0)

| | InstFeatRatio > 21.17

| | | ShortBranchPCT ≤ 2: PCT (10.0/1.0)

| | | ShortBranchPCT > 2: LHC (29.0/10.0)

| ShortBranch > 4: LHC (18.0)

Figure 7.6: Meta-model generated to classify the meta-instances into meta-classes
PCTEN, PCT, LHC, and HDN-nHPC, when considering the AUPRC measure.

Analysing the meta-classification model for the AUPRC measure as shown in

Figure 7.6, we can draw broadly similar conclusions to the conclusions derived for

measures AU(PRC) and AUPRCw.

Namely, when the problem has characteristics that are commonly recognised to

harm predictive performance (e.g. the class distribution is very imbalanced, there

are relatively few instances), PCTEN is more suited to solve the problem than

PCT. The following two meta-rules show this behaviour. These two meta-rules

are represented in decision tree format in order to highlight the fact that they differ

only in the value range of the meta-feature ClassImbal (in the third condition) and

in the predicted meta-class label.
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NumInsts ≤ 667

| PercSelPCT ≤ 0.0004

| | ClassImbal ≤ 0.60: PCT (186.0/39.0)

| | ClassImbal > 0.60: PCTEN (16.0/3.0)

Note that these two meta-rules have a condition covering datasets with a rela-

tively small number of instances (≤ 667) and a condition covering datasets where

a very small percentage of features is selected by the PCT landmark model (Perc-

SelPCT ≤ 0.0004).

The meta-rule leading to the prediction of the ‘PCTEN’ meta-class label has

the precision of 0.81, much higher than the a priori ‘PCTEN’ meta-class label

probability of 0.20; but a low recall, only capturing 8% of the meta-instances

annotated with the ‘PCTEN’ meta-class label. However, we consider that the

precision is high enough for this meta-rule to be explicitly mentioned.

Conversely, the meta-rule leading to the prediction of the ‘PCT’ meta-class

label has opposite characteristics: a relatively high recall (capturing 44% of all

meta-instances annotated with the meta-class label ‘PCT’) and a slightly lower

precision (0.79), although that precision is still relatively high, compared to the a

priori ‘PCT’ meta-class label probability (0.39).

We present the following meta-rule to predict the LHC meta-label.

IF (NumInsts > 667) AND (ShortBranch > 4) THEN LHC (18.0)

Once again, the meta-rule predicts the LHC meta-class label when the problem

tends to be simpler. In this case, a problem with more instances and fewer class la-

bels, since meta-instances with the shortest branch having more than 4 class-labels

correlate strongly with meta-instances with fewer classes. The average number of

classes (NumClasses meta-features) in the meta-instances when ShortBranch > 4

is 59, much smaller than the average number of classes when ShortBranch ≤ 4,

which is 156.5. This apparently counter-intuitive result is due to the fact that

the Gene Ontology datasets have more leaf hierarchical classes at shallower levels,

and also have, overall, more hierarchical classes. This meta-rule has the perfect

precision of 1.0, and a reasonable recall of 10%.

Finally, we highlight the following meta-rule that predicts the HDN-nHPC

meta-class label.
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IF (NumInsts > 667) AND (ShortBranch ≤ 4) AND (InstFeatRatio ≤ 21.2)

AND (PercSelPCT > 0.003) AND (AvgDepth ≤ 7.12)

AND (LongBranchPCT > 10) THEN HDN-nHPC (27.0/9.0)

This long meta-rule is difficult to interpret, since it comprises conditions that

cover both complex and simple hierarchical classification problems. For instance,

the condition “NumInsts > 667” and “AvgDepth ≤ 7.12” cover simpler meta-

instances (base datasets). The condition “InstFeatRatio ≤ 21.2” seem to cover

more complex classification problems. However, upon further analysis, this condi-

tion covers the vast majority (94%) of meta-instances, so this condition actually

removes the 6% of the easiest meta-instances according to the InstFeatRatio meta-

feature. The condition “ShortBranch ≤ 4” covers more complex meta-instances,

as previously explained in the interpretation of the meta-rule for the LHC algo-

rithm. The other two conditions (PercSelPCT > 0.003) and (LongBranchPCT >

10), once again, clearly cover meta-instances with complex PCT landmark models.

Note that the condition (PercSelPCT > 0.003) is strongly related with the PCT

landmark model size; meta-instances that satisfy this condition have an average

NumNodesPCT of 33.2, much larger than the average NumNodesPCT of 5.8 for

the meta-instances satisfying the complement of this condition (PercSelPCT ≤

0.003).

Note that, once again, the recall of this meta-rule is not high (19%). Its

precision is relatively high (0.66), compared to the a priori HDN-nHPC meta-

class label probability of 0.11. Also, again, this is the only meta-rule that has

predicted the HDN-nHPC meta-label for the AUPRC measure, which indicates

the difficulty of finding good rules for predicting this particular meta-class label.

7.7 Conclusions

In this chapter we have proposed the first meta-learning approach for hierarchical

classification and proposed new meta-features, specific for the hierarchical classifi-

cation task. We have also proposed a new algorithm to generate new hierarchical

classification datasets from existing ones. This algorithm tackles the main issue of

applying meta-learning in hierarchical classification problems, the limited number

of datasets, by using the class hierarchy to generate new datasets.

Summarising our interpretation findings, we have concluded that overall, at a

high level of abstraction, PCTEN (an ensemble algorithm) is more suited to solve
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the target hierarchical classification problem when the corresponding dataset is

relatively complex. Broadly speaking, the PCT algorithm seems to perform better

when the problem is simpler and has more features, while the LHC algorithm

performs better when the number of features is smaller. The relative superiority

of the HDN-nHPC algorithm was the most difficult to predict, but it appears that

the HDN-nHPC algorithm may be indicated when the landmark PCT model for

the base dataset is relatively large.



Chapter 8

Conclusions and Future Research

In this chapter we present a summary of the contributions of this thesis in Sec-

tion 8.1 and possible lines of future research in Section 8.2.

8.1 Summary of Contributions

This interdisciplinary work has proposed several contributions to the area of hi-

erarchical classification and applications in bioinformatics, specifically in the clas-

sification of ageing-related genes/proteins. In essence, these contributions are as

follows:

1. We have proposed a modification of the Extended Local Hierarchical Naive

Bayes (ELHNB) algorithm, greatly improving its running time without sac-

rificing predictive performance. This work is presented in Chapter 4.

2. We have created new hierarchical classification datasets for ageing research,

including the development of a new feature type, the KEGG Influence (KEGGI).

The creation of the datasets and the new feature type are described in sec-

tions 6.1.2 and 6.1.3.

3. We have created four new algorithms for hierarchical classification, as de-

scribed in Chapter 5. These algorithms are evaluated in Chapter 6.

4. We have also proposed the first meta-learning approach for automatically

recommending the best hierarchical classification algorithm to a new hierar-

chical classification dataset. We report the results of this study in Chapter 7.
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5. We have performed a biological interpretation of some hierarchical classifica-

tion models generated to classify ageing-related proteins. This interpretation

has been done in collaboration with a biologist expert on ageing, Dr. Jen-

nifer M. A. Tullet (University of Kent), as presented in Section 6.4. We have

also performed a literature review, in collaboration with the ageing biology

expert Dr. João Pedro Magalhães (University of Liverpool), on the current

state of the interpretation of supervised machine learning algorithms’ results

on ageing research, as described in Section 3.3.

Next, we describe each one of these contributions in more detail.

8.1.1 Reducing the Runtime of the ELHNB Algorithm

We have substantially reduced both the training and testing run times of the

ELHNB (Extended Local Hierarchical Naive Bayes) algorithm. This algorithm

is an extension of the Naive Bayes algorithm for hierarchical classification that

considers the state of the neighbourhood of a class variable in the class hierarchy

to classify an instance. This algorithm can be seen as a collection of local Naive

Bayes classifiers that take into account the prediction of other classifiers in the

class hierarchy.

We have exploited the fact that this algorithm was designed to work with

classification problems where each instance is associated with a single path from the

root node to a leaf node in the class hierarchy – called single path, mandatory leaf

class prediction problems – to substantially reduce the runtime of both its training

and testing phases. The runtime of the modified algorithm was significantly better

than the standard version, with equivalent predictive performance.

8.1.2 Creation of Hierarchical Classification Datasets of

Ageing-Related Genes

We have created 20 new ageing-related hierarchical classification datasets to test

our new hierarchical classification algorithms. These new datasets were described

in sections 6.1.2 and 6.1.3 and are freely available at https://dx.doi.org/10.

13140/RG.2.2.34027.23843.

We have also proposed a new type of feature relevant for gene/protein function

prediction. This type of feature is derived from KEGG biological pathways. This

feature measures the influence that a certain protein (an instance) has in a given

https://dx.doi.org/10.13140/RG.2.2.34027.23843
https://dx.doi.org/10.13140/RG.2.2.34027.23843
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KEGG pathway as a whole – producing one such feature for each of the KEGG

pathways being considered. This feature type has good predictive power and can

be used in problems where it is important to have an interpretable classification

model. This new feature type was described in Section 6.1.3.

8.1.3 Creation of new Algorithms for Hierarchical Classi-

fication

We have developed four new algorithms for hierarchical classification: the Hier-

archical Dependence Network (HDN) algorithm, the HDN based on finding non-

Hierarchically related Predictive Classes (HDN-nHPC), and two hybrids involving

the well-known Predictive Clustering Tree (PCT) algorithm, namely PCT com-

bined with HDN (HDN-PCT) and PCT combined with Local Hierarchical Classi-

fiers (PCT-LHC).

We have concluded that one of our four new algorithms (the HDN-nHPC algo-

rithm) outperforms all other seven algorithms in terms of average rank across 42

hierarchical classification datasets (according to one out of the three hierarchical

predictive performance measures). The other algorithms compared against HDN-

nHPC included the state-of-the-art hierarchical classification algorithm PCTEN

(an Ensemble of PCT classifiers). In terms of statistically significant ranking

differences, our HDN-nHPC algorithm outperforms four other hierarchical classi-

fication algorithms, including the popular PCT algorithm, in one out of the three

hierarchical predictive performance measures. The HDN-nHPC algorithm uses De-

pendence Networks (DN), an under-explored type of probabilistic graphical model,

to model class dependencies that are not specified in the predefined class hierarchy

using a data-driven approach; and it uses Gibbs Sampling to get the inferences

out of the DN during the testing phase.

In one of the other two predictive performance measures, the PCT ensemble

(PCTEN) algorithm was the best hierarchical classification algorithm in terms of

average rank, but it was statistically significantly better than only two other clas-

sifiers. In the third predictive performance measure, the winner in terms of overall

average rank was our proposed PCT-LHC hybrid algorithm, tied with the standard

LHC algorithm. In this measure both algorithms were statistically significantly

better than three other hierarchical classification algorithms.
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8.1.4 Meta-Learning for Hierarchical Classification

We have proposed the first meta-learning approach for recommending the best

hierarchical classification algorithm to a new hierarchical classification dataset.

This resulted in three contributions, as follows.

First, we have proposed new meta-features for the meta-learning task of ranking

hierarchical classification algorithms in new datasets. These new meta-features

were created by using existing relations in the class hierarchy.

Second, we have developed a new algorithm to create new hierarchical datasets

from existing ones based on the structure of the class hierarchy. This allowed us to

substantially increase the number of hierarchical classification datasets used in our

meta-learning experiments, addressing the main bottleneck of meta-learning ex-

periments in general, which is the lack of availability of a large number of datasets.

Third, we have interpreted the meta-models to extract useful information about

which hierarchical classification algorithm should be applied, depending on the

characteristics of the hierarchical dataset to be analysed. Specifically, we have ob-

served that the Decision Tree Meta Ranker (DTMR) method clearly outperformed

the other three meta-rankers by a large margin. In addition, the DTMR method

provided useful meta-knowledge from our meta-instances. This meta-knowledge

can be broadly summarized as follows: the Ensemble of PCTs (PCTEN) hierar-

chical classification algorithm is more suited to relatively complex classification

problems, the PCT algorithm is more suited to relatively simple problems with

a reasonable number of features, the LHC algorithm performs better when the

problem is relatively simple and has a reduced number of features and the HDN-

nHPC algorithm is indicated when the landmark PCT model (a type of decision

tree) for the hierarchical classification dataset (meta-instance) is large, which may

indicates an over-fit of the PCT model.

8.1.5 Biological Interpretation of Classification Models in

Ageing Research

We have performed an in-depth interpretation of PCT classification models in-

duced to predict ageing-related protein functions with the assistance of the ageing

biology expert Dr. Jennifer M. A. Tullet (University of Kent). In summary, we

have concluded that the models have found (as relevant features) several protein-

protein interactions involving genes that are known to be related to ageing. The

models have also found protein-protein interactions in some model organisms that
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are known to be ageing related in other animals, which may indicate that the effect

of the protein is conserved between species.

We have also discussed some elements of the classification model generated by

the HDN-nHPC algorithm, showing that it was able to find strong relationships

between ageing-related GO terms (class labels) that were not explicitly represented

in the class hierarchy.

In addition, we have identified 14 papers containing the interpretation of some

results obtained by supervised machine learning algorithms (i.e., classification or

regression algorithms) applied to ageing research. We have observed that several

key findings coming from biological ageing-research have been confirmed by su-

pervised machine learning algorithms. For instance, it has been confirmed that

ageing-related proteins tend to be more connected than non-ageing-related pro-

teins, and several genes and proteins known to be involved in ageing were identified

as ageing-related by data mining algorithms.

We have also observed that only one of the reviewed works performed wet-

lab experimentation to validate the predictions of the supervised machine learning

methods. This suggests that a greater integration between data mining and ageing

experts would be a significant improvement in order to better translate the results

of ageing research using machine learning (or data mining) methods into more

established biological knowledge about ageing.

8.2 Future Work

Next, we list some possible lines of future work derived from this thesis.

A possible complementation of the study of the M-ELHNB algorithm may be

the application of that algorithm in other domains. Another future work may be

the extension of the algorithm for other types of hierarchical classification problems

such as class structures organised as DAGs, instances annotated with multiple

paths in the class hierarchy, and non-mandatory leaf class prediction classification

problems.

Regarding the HDN-nHPC hierarchical classification algorithm, we plan to ex-

tract the strongest correlations found by the algorithm and analyse their biological

meaning. As some correlations found in our data seem to be deterministic, (e.g.:

some hierarchical classes never co-occur), this raises the question of whether or not

these correlations should be explicitly represented in the class hierarchy, as mak-

ing use of them could improve the predictive performance of other hierarchical
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classification algorithms used on this kind of data.

Also, the HDN-nHPC algorithm could be applied in the flat multi-label clas-

sification scenario, where there are no hierarchical relationships between classes.

Flat multi-label problems are also common when classifying biological data.

A natural extension of the HDN-nHPC algorithm would be the application

of some ensemble technique, such as bagging or boosting, to increase its predictive

performance. It is well known that the use of ensemble techniques usually improves

predictive performance of classification algorithms (Zhou 2012). One drawback

of using such techniques is the increased running time. Actually, running the

ensemble version of the HDN-nHPC algorithm on all datasets used in Chapter

6, with the available hardware, would require too much time (on the order of

months). Therefore, we would need more processing power to run the current

version of the HDN-nHPC algorithm in reasonable times, or we would need to

implement optimisations and/or simplifications to drastically reduce the running

time of the HDN-nHPC algorithm.

Another line of future research would be to improve the PCT-based hybrid

algorithms in at least two ways: first, by studying the effects of using the HDN-

nHPC algorithm in the hybrid (instead of using the HDN or LHC algorithms).

Second, to devise a way to automatically select which hierarchical classification

algorithm (among, e.g., HDN, LHC or HDN-nHPC) to use in the hybrid, based on

the characteristics of the clusters formed by the PCT algorithm. The conclusions

of our meta-learning study could be used here to help select which hierarchical

classification algorithm to use.

Regarding meta-learning, we plan to test other types of kernel functions to try

to improve the predictive performance of the meta-model generated by the Support

Vector Machine (SVM) classification algorithm. Usually, SVMs tend to have better

predictive performance than decision trees, which was the best meta-classification

algorithm in terms of predictive power in our meta-learning study. We also plan to

use other measures of performance that consider both the predictive performance

of the methods and their running time.

One possible line of future research is to add more hierarchical classification

algorithms to our meta-learning study, as well as further validation of our findings

by adding to our experiments more hierarchical classification datasets that will be

made available in the future by other researchers.

Finally, we plan to interact more with ageing specialists, further using data

mining to try to discover new biological knowledge related to ageing. In particular,
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we plan to analyse other existing databases of ageing-related data, such as the

Digital Ageing Atlas database (Craig et al. 2014), and discover new correlations

between ageing and genes and/or protein functions.
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