
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Haupt, Michael and Hirschfeld, Robert and Pape, Tobias and Gabrysiak, Gregor and Marr, Stefan
and Bergmann, Arne and Heise, Arvid and Kleine, Matthias and Krahn, Robert (2010) The SOM
Family: Virtual Machines for Teaching and Research. In: Proceedings of the 15th Annual Conference
on Innovation and Technology in Computer Science Education (ITiCSE).

DOI

Link to record in KAR

http://kar.kent.ac.uk/63848/

Document Version

Author's Accepted Manuscript

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/189717711?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The SOM Family

Virtual Machines for Teaching and Research

Michael Haupt1 Robert Hirschfeld1 Tobias Pape1 Gregor Gabrysiak1

Stefan Marr2 Arne Bergmann1 Arvid Heise1 Matthias Kleine1 Robert Krahn1

1 Software Architecture Group, Hasso-Plattner-Institut, University of Potsdam, Germany
2 Software Languages Lab, Vrije Universiteit Brussel, Belgium

michael.haupt@hpi.uni-potsdam.de, hirschfeld@hpi.uni-potsdam.de, stefan.marr@vub.ac.be
{firstname.lastname}@student.hpi.uni-potsdam.de

ABSTRACT

This paper introduces the SOM (Simple Object Machine)
family of virtual machine (VM) implementations, a collec-
tion of VMs for the same Smalltalk dialect addressing stu-
dents at different levels of expertise. Starting from a Java-
based implementation, several ports of the VM to different
programming languages have been developed and put to suc-
cessful use in teaching at both undergraduate and graduate
levels since 2006. Moreover, the VMs have been used in var-
ious research projects. The paper documents the rationale
behind each of the SOM VMs and results that have been
achieved in teaching and research.

Categories and Subject Descriptors

K.3.2 [Computer and Information Science Education]:
Computer science education, Information systems educa-
tion; D.3.4 [Processors]: Interpreters, Memory manage-
ment, Optimization, Run-time environments; D.2.11 [Soft-
ware Architectures]: Domain-specific architectures

General Terms

Design, documentation, languages

Keywords

Virtual machine, teaching, research, architecture.

1. INTRODUCTION
The increasing importance of virtual execution environ-

ments (virtual machines, VMs), for programming-language
execution indicates that it is not enough to teach the lan-
guages alone. Maybe counter-intuitively, the relevance of
knowledge about the inner workings of the underlying VMs

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ITiCSE’10, June 26–30, 2010, Bilkent, Ankara, Turkey.
Copyright 2010 ACM 978-1-60558-820-9/10/06 ...$10.00.

grows—in spite of the promise that employing a hosted lan-
guage allows for ignoring details of its implementation. The
idea that the VM will take care of it all is näıve: for in-
stance, literature on Java idioms devotes numerous pages to
describing performance impacts of using synchronization [5].

In the light of this, it is apparent that VMs are an impor-
tant topic of teaching in computer science. A solid knowl-
edge base of VM implementations is helpful, especially given
that the topics one will inevitably touch when dealing with
the matter include aspects of systems programming that are
of broader interest, such as memory management, synchroni-
sation and locking, compilers, and (adaptive) optimisation.

Admittedly, an operating systems curriculum will likewise
treat most of these topics, but addressing them from the
point of view of programming language implementation con-
stitutes an alternative angle, putting programmer interest in
perspective. Few computer science students will eventually
develop operating systems, but many, if not most of them
will use hosted programming languages, so learning about
their implementations seems to be a good choice.

Teaching VMs faces two problems. On the one hand, the
time available to students in any given particular course is
limited—typically, there are other courses to work for. On
the other hand, VM implementations tend to be rather com-
plex, so that one typically cannot expect students to deeply
understand and appreciate, not to say extend (e. g., in ful-
filment of coursework assignments) a large body of source
code given the limited timeframe mentioned above.

That said, a certain skill level in low-level programming
should be expectable from students who enrol for a course on
VM implementations. Therefore, a tool for teaching VMs—
i. e., a VM used as a model and for extensions—does not
have to be simplistic, but it should be accessible. This core
requirement has three parts, namely simplicity, openness,
and adequacy, which will be detailed below.

This paper describes a family of VM implementations1

hosting the same language (a Smalltalk [7] dialect) that ful-
fils the accessibility requirement. The SOM family (Simple
Object Machine) today has four members implemented in
different programming languages. All of these VMs can be
applied in teaching; some at undergraduate, some at gradu-
ate levels. Moreover, they have proven to be viable tools for
graduate, doctoral, and post-doctoral research.

1The entire family is available from the project home page
at www.hpi.uni-potsdam.de/swa/projects/som/.

18

SOM
Java;(5,899(PSLOC

CSOM
C;(6,849(PSLOC

SOM++
C++;(5,804(PSLOC

AweSOM
Smalltalk;(2,432(LOC

NXTalk
C;(4,154(PSLOC

SOM
Java;(3,789(PSLOC

CSOM/PL
C,(VMADL,(AspectC++

SomActors++
C++

!"#$%&'(

)"*"#)$%

Figure 1: The SOM Family and genealogy.

An overview of the entire SOM family is given in Fig. 1;
the figure separates the teaching VMs from research projects
(some are hybrids) and also mentions their sizes (in physical
source lines of code, PSLOC2 [15]) for comparison. The
family members, and results achieved using them, will be
described in the next section after detailing the requirements
imposed on VM implementations used in teaching. In Sec. 3,
the design of the VM course in which SOM family members
were used and developed is described in detail; also, results
of students’ evaluation of the course are given. Sec. 4 wraps
up the paper and outlines future plans with the SOM family.

2. INTRODUCING THE SOM FAMILY
The accessibility requirement breaks down into three re-

quirements. Simplicity refers to both the hosted language
or virtual instruction set architecture (ISA) and the VM ar-
chitecture. The former should not be overly complicated
and should allow a quick start in understanding the VM’s
inner workings based on tracing how the hosted language’s
semantics is implemented. The latter should be comprehen-
sible and use clean abstractions. Next, openness means that
the VM should be ready for use as well as open for exten-
sion, and that documentation should be available to provide
answers to at least the most common questions. The final
requirement, adequacy, addresses the way a VM appropri-
ately provides low-level structures and typical VM mecha-
nisms. In brief, a teaching VM should be an enabler for the
curious, not getting in their way too much.

This section first wraps up results of the evaluation of
some VMs that were available at the time SOM was ulti-
mately chosen. The ensuing sections 2.2 through 2.5 each
present one particular member of the SOM family, and the
ways in which they were put to use in teaching; course-
work results are listed. Sec. 2.6 briefly summarises research
projects building on particular SOM VMs.

2.1 Exploring Virtual Machines
At the time the choice of VM had to be made, two VMs

were closely investigated. The Jikes Research Virtual Ma-
chine3 [1, 2] is a Java VM implemented in Java, exceptionally
well documented, and an excellent research platform. Due
to the complexity of the Java ISA, it is however not sim-
ple. Since it is intended to be a research platform for high-
performance server applications, its source code is highly
optimised and thus not easily accessible.

The Squeak VM4 [17] supports the simple Smalltalk ISA
[7]. As it is implemented in a stripped-down Smalltalk di-
alect, the VM is entirely visible and observable from within

2Lines of code, excluding comments and blank lines.
3jikesrvm.org
4squeakvm.org

a Smalltalk environment. Documentation is scarce, how-
ever, and the Smalltalk dialect mentioned above is actually
a variant of C with Smalltalk-like syntax. In summary, the
Squeak VM is far from being accessible.

Other approaches tailored to teaching VMs are Javy [8]
and Jack [14]. Javy provides a 3D environment in which a
software agent, represented by an avatar, emulates a Java
VM. Javy concentrates on conveying details about the Java
bytecode instruction set but does not touch upon actual VM
implementation aspects. The Jack VM is one part in a com-
plete software stack intended to teach all aspects of com-
puter architecture, ranging from the processor to user appli-
cations. The Jack ISA is very simple and does not provide
object-oriented abstractions.

2.2 SOM
Foraging for VM implementations suitable for teaching led

to the eventual discovery of SOM (Simple Object Machine).
SOM had been implemented in the Java programming lan-
guage at the University of Århus, Denmark, and had been
applied there in a course on object-oriented VMs in 2002.

Its features made SOM an excellent choice. First of all, it
was implemented in a mainstream high-level programming
language (Java), good knowledge of which could safely be
assumed in students at both undergraduate and graduate
levels. Next, its implementation applied object-oriented ab-
straction sensibly—employing interfaces and classes—leading
to an overall very comprehensible architecture. Finally, it
came with a set of tests and benchmarks that could be used
to assess modifications to its implementation.

SOM’s Smalltalk ISA consists of only 16 bytecode instruc-
tions; they are executed by a simple switch/case interpreter.
The compiler translating Smalltalk code to bytecodes is im-
plemented as an abstract syntax tree (AST) traversal; the
AST is generated by an ANTLR5 parser.

The SOM authors (see Acknowledgements) kindly con-
tributed the source code and permitted its further use under
the terms and conditions of the MIT license6.

In this form, SOM was applied in an undergratuate course
on compilers and VMs at Lancaster University, United King-
dom, and in a graduate course on VMs at Technische Uni-
versität Darmstadt, Germany. Students were given various
small-to-medium-scale coursework assignments, such as im-
plementing integer canonicalisation (for boxed integers: ex-
actly one box per number), verbose stack traces for “does
not understand”messages [7], and a bytecode manipulation
framework. Another programming assignment was to imple-
ment a mark/sweep memory manager—a strange thing to
do when the implementation language is Java and features
a garbage collector anyway.

5antlr.org
6www.opensource.org/licenses/mit-license.php

19

In 2009, SOM was subject to a major revision, during
which the Smalltalk compiler was replaced with the one con-
tained in SOM++ (see below in Sec. 2.4), which was back-
ported from C++ to Java. The SOM source code was also
updated to Java 6, making use of the available modern lan-
guage features such as generics and enumerable types. This
new version of SOM is 3,789 PSLOC large and thus consid-
erably smaller than the original.

2.3 CSOM
Accepting the inadequacy of letting students implement a

low-level tool (a garbage collector) for a VM whose imple-
mentation actually relied on the memory management facil-
ities of a high-level language (Java) led to the decision to
port SOM to the C programming language. This choice was
further fortified because C provides natural access to low-
level structures and thus allows for conducting many more
interesting VM-related implementation experiments.

The port, resulting in CSOM, was subject to some re-
quirements. The object-oriented internal structure of SOM
was to be retained, as well as compatibility with pre-existing
SOM Smalltalk applications, and accessibility should be pre-
served as much as possible.

Retaining the object-oriented architecture required OOP
emulation in C. Virtual method tables were now managed by
hand, and all message sends were handled by a SEND macro.
The Smalltalk compiler could be easily ported, as a C back-
end for the ANTLR parser generator became available at the
time of porting. CSOM did not have a memory manager—
this was left for an exercise. The port was achieved by one
skilled undergraduate student in six months time.

This first version of CSOM was applied in a graduate
course on VMs in 2007. Students worked in groups of 2–3
members and were given one large-scale programming as-
signment per group. They implemented mark/sweep and
reference counting garbage collectors, native and green7 mul-
tithreading support, and just-in-time compilers.

After the course, CSOM was assessed. At the time, it
consisted of no less than 15,232 PSLOC, 11,324 of which be-
longed to the Smalltalk compiler: too much code was spent
on too little actual functionality. The compiler, first trans-
lating Smalltalk source code into an AST before generat-
ing bytecodes, was also too complicated given the simplicity
of the SOM bytecode. Memory management was nonexis-
tent. The entire VM source code was also not well struc-
tured (there was not even a proper directory structure). In
a nutshell, CSOM was not as accessible as intended.

To improve on this, CSOM underwent a massive refac-
toring and partial reimplementation. The source code was
organised into logical modules, which were mapped to corre-
sponding directories. The robust mark/sweep garbage col-
lector from the past coursework assignment was included as
the default memory manager and enriched by statistics fa-
cilities. The Smalltalk compiler was completely rewritten
and ANTLR abandoned; instead, a recursive-descent parser
was written by hand. This resulted in a reduction in lines
of code by 55.5% to 6,782. The compiler alone shrunk by
86.4%, amounting to a mere 1,535 PSLOC.

This new version of CSOM was employed in the same
course in 2008, where students implemented Smalltalk vir-
tual images (as opposed to only reading Smalltalk source

7Green (user-level) multithreading does not rely on OS
thread support, but implements scheduling at VM level.

files upon startup) [7], threaded interpretation (to speed up
execution) [4], and tagged integers (to save memory for rep-
resenting small integral numbers) [7].

2.4 SOM++
Employing CSOM in teaching in two subsequent years, it

was observed that especially the OOP emulation unnecessar-
ily bloated the VM’s source code. This led to the decision to
port CSOM to a “low-level” OOP language, namely C++.
This resulted in SOM++, a member of the growing SOM
family exploiting the facilities offered by C++ where possi-
ble and sensible. That is, the standard template library was
used to manage data structures, operator overloading was
used to design more convenient interfaces, and so forth.

One graduate student achieved the port in his Master’s
research, addressing in his thesis the question of which pro-
gramming language would be the optimal choice for imple-
menting teaching VMs, and to investigate the benefit of us-
ing object-oriented abstractions in low-level system code.
Overall, the SOM++ source code is 14.4% smaller than that
of CSOM (5,804 PSLOC). Moreover, the implementation is
more type-safe and slightly faster than CSOM.

SOM++ was used in 2009, in the same graduate course
as CSOM before. Students implemented a wide range of
extensions: a debugger, a profiler, memory managers based
on an object table [7] and generational garbage collection
[12], multithreading with M:N scheduling (M green threads
mapped on N native ones), and a just-in-time compiler.

2.5 AweSOM
The youngest member of the SOM family is AweSOM,

which started out as a coursework project in the 2009 VM
course in which SOM++ was applied. AweSOM is a com-
plete implementation of a SOM VM in Squeak Smalltalk.

The rationale behind AweSOM is twofold. On the one
hand, it was interesting to have a SOM VM implemented in
a language that is even more “extreme” than Java, which
is after all statically typed. Moreover, Squeak, being a
Smalltalk environment, features sophisticated development
tools and supports a development style that is highly explo-
rative and avoids edit-compile-run-debug cycles. Instead,
one permanently deals with “living objects” and can observe
and manipulate the running AweSOM VM. This is a highly
interesting perspective for future teaching activities.

On the other hand, AweSOM is a first step in a larger re-
search context, inspired by the PyPy8 project [16], a metacir-
cular Python implementation. Like PyPy, AweSOM shall
either run in the high-level environment it is implemented
in (Squeak), or lower-level (C++) code shall be generated
and compiled, yielding a quick “production”VM. C++ code
generation is a current project.

AweSOM is the smallest of all SOM family members, with
only 2,432 LOC (including comments, ignoring blank lines).
It is around 11 times slower than SOM++. AweSOM can
however be completely explored as a live system in Squeak,
which greatly improves accessibility.

2.6 Spin-off Projects
This section briefly presents results from applying SOM

VMs in research projects. For details on the projects, the
reader is referred to the respective resources.

8codespeak.net/pypy

20

CSOM/PL is a post-doctoral research project, providing
a VM product line [6], i. e., it is possible to choose among
various features to build a customised variant of CSOM.
The feature set consists of most of the coursework results
on CSOM from the years 2007 and 2008; in CSOM/PL,
they are combinable instead of stand-alone extensions. To
achieve this, the entire implementation of the base VM and
all features was subject to a drastic remodularisation that
was conducted in one student’s Master’s research. Based
on the observation that VM implementations tend to be
complex, leading to a high degree of entanglement between
logical modules, an aspect-oriented approach was chosen to
enhance the modularity characteristics of CSOM [9].

NXTalk9 [3] is a Smalltalk programming environment for
the Lego Mindstorms NXT10 platform. NXTalk applications
are implemented in Squeak and transferred to the dedicated
Smalltalk run-time environment installed on the NXT. The
NXTalk VM resulted from a Master’s thesis and is a direct
derivative of CSOM, which was tailored to run in the NXT
environment. It is not only a research project investigat-
ing the feasibility of implementing dynamic object-oriented
programming languages on embedded platforms, but also a
viable teaching device for embedded systems.

SomActors++ is an experiment conducted as part of a
doctoral research project concerned with providing VM ab-
stractions for concurrency [13]. Inspired by work on an
actors-based execution model [18], SOM++ was adapted to
implement concurrency using actors [10]. The goal of this
experiment was the evaluation of different implementation
strategies for VMs on upcoming many-core architectures.
SomActors++ was enabled by the results of using SOM++
for teaching, being based on a coursework group’s imple-
mentation of a classic object table [7] for SOM++.

3. TEACHING VIRTUAL MACHINES
This section first gives an overview of the organisation and

arrangement of the graduate VM course that was taught at
HPI for three subsequent years (2007–2009). At HPI, all
courses are evaluated by students; results for the VM course
from all three years are also described below.

3.1 Course Design
The HPI VM course is a 4-SWS11 course with 50% lec-

turing and 50% coursework sessions. Lecturing covers, in
the given order, the following topics.

Introduction: Abstraction vs. virtualisation, history of
virtualisation, machine architectures and VM types. This
part of the lecture builds on chapter 1 of Smith and Nair’s
book on VMs [11]. The introduction is broad; the remainder
of the course focuses on high-level language (HLL) VMs.

High-Level Language VMs: Process and HLL VMs,
HLL VM building blocks by example: a tour of the source
code of CSOM (2007/8) or SOM++ (2009).

Representing Application and Application Enti-

ties: This large block deals with the different forms in which
applications can be fed to a VM for execution (static repre-
sentation), and how applications and their elements look

9www.hpi.uni-potsdam.de/swa/projects/nxtalk
10www.mindstorms.com
11SWS is the German abbreviation for contact hour per week
per semester ; 1 SWS denotes a 45-minute block. Blocks
occur in pairs, so 4 SWS imply two 90-minute slots per week
during a 14-week lecturing period.

at run-time (dynamic representation). The “static” part
covers classes (blueprints for objects, virtual method dis-
patch tables, formats: source code, class files, virtual im-
ages) and methods (bytecode instructions, instruction set
architectures); the “dynamic”, objects (slots, layout) and
methods (in the form of activations / stack frames).

Execution: Interpreters and their optimisation (thread-
ing, selective inlining), just-in-time compilation (including a
brief discussion of call graph-based optimisations), adaptive
optimisation (profiling, sampling, on-stack replacement).

Memory Management: History of memory manage-
ment, garbage collection in object-oriented HLL VMs (ref-
erence counting, mark/sweep, compaction, copying and gen-
erational collectors), factors influencing memory behaviour.

The three large main blocks of the course all use exam-
ple VM implementations to illustrate realisations of the dif-
ferent concepts. After having introduced the concepts by
means of a CSOM/SOM++ walkthrough, students are able
to map them to more complex implementations easily. The
used example VMs are the implementations of Smalltalk-80,
Squeak, and Java in the form of Jikes (see Sec. 2.1).

Optionally, an introduction to the Smalltalk programming
language is given if students have no experience with the
language. This lecture is inserted right after the course in-
troduction, and introduces the language in general, and the
SOM Smalltalk dialect in particular.

In 2008/9, lecturing was mostly done in block mode early
in the lecturing term, to convey the technical background
early on, thus setting the stage for programming coursework.

3.2 Grading
Students are graded solely based on coursework assign-

ments. They work in groups of two to three members, which
are fixed. Coursework is split in two parts: a programming
and a reading part. Both are equally weighted in grading.

Each group is assigned a single large-scale programming
task (cf., e. g., Sec. 2.3) that has to be completed by the end
of the course. On a regular basis, each group presents their
intermediate results to all course participants and discusses
them with the plenum. On the final (block-mode) day of
the course, all groups give final presentations and submit
a paper describing their implementation, along with their
code. These three items are graded.

Two papers on VM research, ranging from historical pa-
pers to papers presenting very recent results, are assigned
to each group. Each paper is also dealt with by two groups:
one proponent group presents the paper in plenum and de-
fends it in the ensuing discussion, and one opponent group
attacks it. This requires both groups to thoroughly read the
paper, and assigning two papers to each group ensures that
groups act as both proponents and opponents. Presentation
and discussion performance are both graded.

3.3 Course Evaluation
In Tab. 1 (see next page), relevant results from students’

evaluation of the VM courses in which members of the SOM
family were applied are displayed. All grades shown in the
table may range from 1.0 (best) to 5.0 (worst), according to
the German grading system. The upper part of the table
gives information about course participants including the
average grade they obtained in the course.

The lower part of the table presents results from course
evaluation, focusing on the overall result and on those parts

21

year → 2007 2008 2009

participants 15 8 17
participation in evaluation 69% 50% 63%
participants’ average grade 1.26 1.25 1.23

course evaluation 1.67 1.23 1.38
material 1.74 1.42 1.47

enough available 1.78 1.5 1.3
improves understanding 1.67 1.5 1.4
clearly arranged 1.78 1.25 1.7

coursework 1.96 1.0 1.33
improves understanding 1.78 1.0 1.33
encouraging atmosphere 1.89 1.0 1.44
aligned with lectures 2.22 1.0 1.22

Table 1: Evaluation of VM courses at HPI.

of the course where SOM VMs played an important role,
namely the teaching materials and coursework categories.
As a more detailed evaluation is not performed at HPI, the
teaching materials category covers lecture slides as well as
tools (to which group the VMs belong). Likewise, course-
work covers both the programming and reading assignments.

Students generally obtained very good grades in all of the
three courses, as the table shows. In fact, the worst grade
in all three years was 1.7. Thus, it can be deduced that the
SOM VMs are well appreciated, and that they allow stu-
dents to participate in a course with great success. The VM
courses are generally among the top-rated courses in grad-
uate education at HPI. In 2008, the VM course was ranked
the best non-seminar course. Notably, this was the second
year where CSOM was applied. In 2009, using SOM++, the
course is evaluated a little less favourably, which is especially
apparent in the coursework category.

4. SUMMARY AND FUTUREWORK
The SOM family is a set of accessible VM implementations

for use in teaching VM concepts to students at all levels and
even constitutes a viable research platform. The facts that
the hosted language, a Smalltalk dialect, is the same for
all SOM family members, and that the different members’
architectures are essentially the same, allows for seamless
transitions between members, e. g., as skill levels improve.

Future work on the SOM family members consists in pro-
viding more standard components, e. g., a just-in-time com-
piler, and on continuously assessing and improving the over-
all architecture and shape of the code. Comprehensive writ-
ten documentation is also an important part of our ongoing
work, to eventually enable the employment of SOM VMs in
other than our own institution.

Acknowledgements

SOMwas created at the University of Århus by Jakob Roland
Andersen, Kasper Verdich Lund, Lars Bak, Mads Torgersen,
and Ulrik Pagh Schultz. The authors are grateful for their
contribution. Sebastian Kanthak and Jan-Arne Sobania have
made particular contributions to the implementations of SOM
and CSOM, respectively, for which we thank them. We also
thank all students that have participated in VM courses at
HPI in 2007–2009. Their feedback has helped improve both
the VMs’ source code and the understanding of what proper-
ties are important in a VM implementation used in teaching.

5. REFERENCES
[1] B. Alpern et al. The Jalapeño Virtual Machine. IBM

Systems Journal, 39(1):211–238, February 2000.

[2] B. Alpern et al. The Jikes Virtual Machine Research
Project: Building an Open-Source Research
Community. IBM Systems Journal, 44(2):399–418,
2005.

[3] M. Beck, M. Haupt, and R. Hirschfeld. NXTalk.
Dynamic Object-Oriented Programming in a
Constrained Environment. In Proc. IWST. ACM,
2010. To appear.

[4] J. R. Bell. Threaded code. CACM, 16(6), 1973.

[5] J. Bloch. Effective Java: A Programming Language
Guide. Addison-Wesley Longman, 2nd revised edition,
2008.

[6] P. Clements and L. Northrop. Software Product Lines:
Practices and Patterns. Addison-Wesley, 2002.

[7] A. Goldberg and D. Robson. Smalltalk-80: The
Language and its Implementation. Addison-Wesley,
1983.

[8] P. P. Gómez-Mart́ın, M. A. Gómez-Mart́ın, and P. A.
González-Calero. Javy: Virtual Environment for
Case-Based Teaching of Java Virtual Machine. In
Proc. KES, 2003.

[9] M. Haupt, B. Adams, S. Timbermont, C. Gibbs,
Y. Coady, and R. Hirschfeld. Disentangling Virtual
Machine Architecture. IET Software, 3(3):201–218,
2009.

[10] C. Hewitt, P. Bishop, and R. Steiger. A universal
modular actor formalism for artificial intelligence. In
Proc. IJCAI, San Francisco, CA, USA, 1973.

[11] J. E. Smith and R. Nair. Virtual Machines: Versatile
Platforms for Systems and Processes.
Morgan-Kaufmann, 2005.

[12] R. Jones and R. Lins. Garbage Collection. Algorithms
for Automatic Dynamic Memory Management. Wiley,
1996.

[13] S. Marr, M. Haupt, S. Timbermont, B. Adams,
T. D’Hondt, P. Costanza, and W. De Meuter. Virtual
machine support for many-core architectures:
Decoupling abstract from concrete concurrency
models. In Proc. PLACES, volume 17 of EPTCS,
2010.

[14] N. Nisan and S. Schocken. The Elements of
Computing Systems. Building a Modern Computer
from First Principles. MIT Press, 2005.

[15] R. E. Park. Software size measurement: A framework
for counting source statements. Technical Report
CMU/SEI-92-TR- 20, ESC-TR-92-20, Software
Engineering Institute, Carnegie Mellon University,
September 1992.

[16] A. Rigo and S. Pedroni. Pypy’s approach to virtual
machine construction. In Proc. OOPSLA’06. ACM,
2006.

[17] T. Rowledge. A Tour of the Squeak Object Engine. In
M. Guzdial and K. Rose, editors, Squeak: Open
Personal Computing and Multimedia. Prentice Hall,
2001.

[18] H. Schippers, T. Van Cutsem, S. Marr, M. Haupt, and
R. Hirschfeld. Towards an actor-based concurrent
machine model. In Proc. ICOOOLPS. ACM, 2009.

22

