
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Marr, Stefan (2013) Supporting Concurrency Abstractions in High-level Language Virtual Machines.
 Doctor of Philosophy (PhD) thesis, Software Languages Lab, Vrije Universiteit Brussel.

DOI

Link to record in KAR

http://kar.kent.ac.uk/63836/

Document Version

Author's Accepted Manuscript

Faculty of Science and Bio-Engineering Sciences
Department of Computer Science

Software Languages Lab

Supporting Concurrency Abstractions in

High-level Language Virtual Machines

Dissertation Submitted for the Degree of Doctor of Philosophy in Sciences

Stefan Marr

Promotor: Prof. Dr. Theo D’Hondt

Copromotor: Dr. Michael Haupt

January 2013

Print: Silhouet, Maldegem

© 2013 Stefan Marr

2013 Uitgeverij VUBPRESS Brussels University Press
VUBPRESS is an imprint of ASP nv (Academic and Scientific Publishers nv)
Ravensteingalerij 28

B-1000 Brussels
Tel. +32 (0)2 289 26 50

Fax +32 (0)2 289 26 59

E-mail: info@vubpress.be
www.vubpress.be

ISBN 978 90 5718 256 3

NUR 989

Legal deposit D/2013/11.161/010

All rights reserved. No parts of this book may be reproduced or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior written permission of the author.

info@vubpress.be
www.vubpress.be

DON’T PANIC

A B S T R A C T

During the past decade, software developers widely adopted JVM and CLI
as multi-language virtual machines (VMs). At the same time, the multicore
revolution burdened developers with increasing complexity. Language im-
plementers devised a wide range of concurrent and parallel programming
concepts to address this complexity but struggle to build these concepts on
top of common multi-language VMs. Missing support in these VMs leads
to tradeoffs between implementation simplicity, correctly implemented lan-
guage semantics, and performance guarantees.

Departing from the traditional distinction between concurrency and paral-
lelism, this dissertation finds that parallel programming concepts benefit from
performance-related VM support, while concurrent programming concepts
benefit from VM support that guarantees correct semantics in the presence of
reflection, mutable state, and interaction with other languages and libraries.

Focusing on these concurrent programming concepts, this dissertation finds
that a VM needs to provide mechanisms for managed state, managed execution,
ownership, and controlled enforcement. Based on these requirements, this disser-
tation proposes an ownership-based metaobject protocol (OMOP) to build novel
multi-language VMs with proper concurrent programming support.

This dissertation demonstrates the OMOP’s benefits by building concur-
rent programming concepts such as agents, software transactional memory,
actors, active objects, and communicating sequential processes on top of the
OMOP. The performance evaluation shows that OMOP-based implementa-
tions of concurrent programming concepts can reach performance on par
with that of their conventionally implemented counterparts if the OMOP is
supported by the VM.

To conclude, the OMOP proposed in this dissertation provides a unifying
and minimal substrate to support concurrent programming on top of multi-
language VMs. The OMOP enables language implementers to correctly im-
plement language semantics, while simultaneously enabling VMs to provide
efficient implementations.

iii

S A M E N VAT T I N G

Over de laatste jaaren hebben softwareontikkelaars de JVM en CLI beginnen
gebruiken als multi-language virtual machines (VM). Gelyktydig werd door
de multicore revolutie de taak van de softwareontwikkelaar vermoeilijkt. Pro-
grammeertaalontwerpers ontwikkelden een grote variëteit aan concurrente
en parallelle programmeerconcepten, maar het implementeren van deze con-
cepten bovenop de multi-language VM’s blijft een penibel probleem. Gebrek-
kige ondersteuning hiervoor in de VM’s leidt tot afwegingen in de program-
meertaalimplementaties tussen simpliciteit, correctheid en performantie.

Vertrekkende van de traditionele verdeling tussen concurrent en parallel
programmeren vindt deze verhandeling dat parallelle programmeerconcepten
voordeel halen uit performantie-gerelateerde VM ondersteuning, gelykaardig
halen concurrente programmeerconcepten voordeel halen uit correctheids-
garanties van semantiek onder reflectie, mutable state en interactie met an-
dere programmeertalen en libraries.

Door het toe te spitsen op deze concurrente programmeerconcepten vindt
deze verhandeling dat een VM mechanismen moet aanbieden voor managed

state, managed execution, ownership en controlled enforcement. Daarop gebaseerd
stelt deze verhandeling een ownership-based metaobject protocol (OMOP) voor
om vernieuwende multi-language VM’s te bouwen met fatsoenlijke onderste-
uning voor concurrente programmeerconcepten.

We demonstreeren de voordelen van de OMOP door er concurrente pro-
grammeerconcepten bovenop te bouwen, zoals agents, software transactional
memory, actors, active object en communicating sequential processes. De per-
formantieëvaluatie toont aan dat implementaties bovenop de OMOP van deze
concurrente programmeerconcepten de performantie kan evenaren van con-
ventionele implementaties, zolang de OMOP ondersteund is door de VM.

In conclusie, de OMOP biedt een verenigd substraat aan om concurrent pro-
grammeren te ondersteunen bovenop multi-language VM’s. De OMOP laat
programmeertaalontwikkelaars toe om op een correcte manier de semantiek
van een taal te implementeren, maar het laat ook deze VM’s toe om hiervoor
een efficiënte implementatie te voorzien.

v

A C K N O W L E D G M E N T S

First and foremost, I would like to heartily thank my promotors Theo D’Hondt
and Michael Haupt for their advice and support. I am truly grateful to Theo
for the opportunity and freedom to pursue my research interests at his lab. I
am greatly indebted to Michael for sparking my interest in virtual machines
with his lectures and for his continuous support throughout the years.

I sincerely thank the members of my Ph.D. committee for the time and
effort they put into the evaluation of this work: David Ungar, Shigeru Chiba,
Tom Van Cutsem, Wolfgang De Meuter, and Jacques Tiberghien.

I am earnestly thankful to David Ungar and IBM Research for their collab-
oration as part of the Renaissance project. His persistence in searching for the
fundamental roots of a problem greatly influenced my work and thinking.

To all of my colleagues of the Software Languages Lab, I am equally grate-
ful. Your feedback guided my investigations for this dissertation. Moreover, I
am truly indebted for your support from the very beginning. Your help was
essential for me to successfully write and defend my scholarship proposal.
Special thanks goes to the Parallel Programming Group for all of our insight-
ful debates. I would especially like to thank Charlotte Herzeel and Bruno De
Fraine for their feedback on the very first drafts of this dissertation.

My personal thanks go to Stijn Timbermont and Elisa González Boix for
“getting ze German started” at the lab and helping me to find my way in
Brussels. I also want to thank Andoni, Andy, Carlos, Christophe, Coen, Eline,
Engineer, Jorge, Lode, Nicolás, Wolf, et al. for their friendship and support.

Ganz besonders möchte ich mich auch bei meinen Eltern und Schwestern für ihre

bedingungslose Liebe, stetige Unterstützung und beständigen Rückhalt bedanken.

I want to thank my friends in Brussels from all over the world. Brussels is
a wonderful place to learn about cultural differences and I would not want to
miss this experience, nor the beach volleyball during rainy summers. Thanks!

Last but not least, I would like to thank Kimberly for her patience and
understanding and the time we have together.

This work is funded by a Ph.D. scholarship of IWT, for which I am grateful.

vii

C O N T E N T S

1. Introduction 1

1.1. Research Context . 2

1.2. Problem Statement . 3

1.3. Research Goals . 5

1.4. Dissertation Outline . 6

1.5. Supporting Publications and Technical Contributions 8

2. Context and Motivation 13

2.1. Multi-Language Virtual Machines 14

2.2. The Multicore Revolution . 17

2.3. Concurrent vs. Parallel Programming: Definitions 18

2.3.1. Concurrency and Parallelism 18

2.3.2. Concurrent Programming and Parallel Programming . . 20

2.3.3. Conclusion . 23

2.4. Common Approaches to Concurrent and Parallel Programming 23

2.4.1. Taxonomies . 24

2.4.2. Threads and Locks . 26

2.4.3. Communicating Threads 27

2.4.4. Communicating Isolates 30

2.4.5. Data Parallelism . 33

2.4.6. Summary . 35

2.5. Building Applications: The Right Tool for the Job 36

2.6. Summary . 37

3. Which Concepts for Concurrent and Parallel Progr. does a VM need

to Support? 39

3.1. VM Support for Concurrent and Parallel Programming 40

3.1.1. Survey Design . 40

3.1.1.1. Survey Questions 40

ix

Contents

3.1.1.2. Survey Subjects 41

3.1.1.3. Survey Execution 42

3.1.2. Results . 44

3.1.2.1. Threads and Locks 45

3.1.2.2. Communicating Threads 49

3.1.2.3. Communicating Isolates 50

3.1.2.4. Data Parallelism 53

3.1.2.5. Threats to Validity 53

3.1.3. Conclusion . 55

3.2. A Survey of Parallel and Concurrent Programming Concepts . 56

3.2.1. Survey Design . 57

3.2.1.1. Survey Questions 57

3.2.1.2. Selecting Subjects and Identifying Concepts . . 58

3.2.2. Results . 59

3.2.3. Threats to Validity . 67

3.2.4. Summary . 67

3.2.4.1. General Requirements 69

3.2.4.2. Connection with Concurrent and Parallel Pro-
gramming . 70

3.2.4.3. Conclusions . 71

3.3. Common Problems for the Implementation of Concurrency Ab-
stractions . 71

3.3.1. Overview . 71

3.3.2. Isolation . 72

3.3.3. Scheduling Guarantees 75

3.3.4. Immutability . 77

3.3.5. Reflection . 79

3.3.6. Summary . 81

3.4. Requirements for a Unifying Substrate for Concurrent Program-
ming . 82

3.5. Conclusions . 86

4. Experimentation Platform 89

4.1. Requirements for the Experimentation Platform 90

4.2. SOM: Simple Object Machine . 90

4.2.1. Language Overview and Smalltalk Specifics 91

4.2.2. Execution Model and Bytecode Set 94

4.3. Squeak and Pharo Smalltalk . 100

x

Contents

4.4. RoarVM . 101

4.4.1. Execution Model, Primitives, and Bytecodes 102

4.4.2. Memory Systems Design 104

4.4.3. Process-based Parallel VM 107

4.4.4. Final Remarks . 107

4.5. Summary . 108

5. An Ownership-based MOP for Expressing Concurrency Abstractions109

5.1. Open Implementations and Metaobject Protocols 110

5.2. Design of the OMOP . 113

5.3. The OMOP By Example . 118

5.3.1. Enforcing Immutability 118

5.3.2. Clojure Agents . 121

5.4. Semantics of the MOP . 124

5.5. Customizations and VM-specific Design Choices 128

5.6. Related Work . 130

5.7. Summary . 134

6. Evaluation: The OMOP as a Unifying Substrate 137

6.1. Evaluation Criteria . 138

6.1.1. Evaluation Goal . 138

6.1.2. Evaluation Criteria and Rationale 138

6.2. Case Studies . 141

6.2.1. Clojure Agents . 142

6.2.2. Software Transactional Memory 148

6.2.3. Event-Loop Actors: AmbientTalkST 153

6.2.4. Conclusion . 157

6.3. Supported Concepts . 158

6.3.1. Supported Concepts . 158

6.3.2. Partially Supported Concepts 160

6.3.3. Conclusion . 161

6.4. Comparing Implementation Size 161

6.4.1. Metrics . 162

6.4.2. Clojure Agents . 163

6.4.3. LRSTM: Lukas Renggli’s STM 164

6.4.4. Event-Loop Actors: AmbientTalkST 167

6.4.5. Summary and Conclusion 168

6.5. Discussion . 169

6.5.1. Remaining Evaluation Criteria 169

xi

Contents

6.5.2. Limitations . 176

6.5.3. Conclusion . 177

6.6. Conclusion . 178

7. Implementation Approaches 181

7.1. AST Transformation . 182

7.1.1. Implementation Strategy 182

7.1.2. Discussion . 187

7.1.3. Related Work and Implementation Approaches 188

7.2. Virtual Machine Support . 189

7.2.1. Implementation Strategy 190

7.2.2. Discussions . 197

7.3. Summary . 199

8. Evaluation: Performance 201

8.1. Evaluation Strategy . 202

8.1.1. Evaluation Goal . 202

8.1.2. Experiments and Rationale 202

8.1.3. Virtual Machines . 205

8.1.4. Generalizability and Restrictions of Results 206

8.2. Methodology . 207

8.2.1. Precautions for Reliable Results 207

8.2.2. Presentation . 209

8.3. Baseline Assessment . 209

8.4. Ad hoc vs. OMOP Performance 214

8.5. Assessment of Performance Characteristics 219

8.5.1. OMOP Enforcement Overhead 219

8.5.2. Inherent Overhead . 221

8.5.3. Customization Constant Assessment 223

8.6. Absolute Performance . 227

8.7. Discussion and Threats to Validity 229

8.8. Conclusions . 232

9. Conclusion and Future Work 235

9.1. Problem and Thesis Statement Revisited 236

9.2. Contributions . 237

9.3. Limitations . 239

9.4. Overall Conclusions . 241

xii

Contents

9.5. Future Work . 242

9.5.1. Support for Parallel Programming 243

9.5.2. Support for Just-in-Time Compilation 243

9.5.3. Relying on the CPU’s Memory Management Unit 244

9.5.4. Representation of Ownership 245

9.5.5. Applying the OMOP to JVM or CLI 245

9.5.6. Formalization . 246

9.5.7. Additional Bytecode Set for Enforced Execution 246

9.6. Closing Statement . 247

A. Appendix: Survey Material 249

A.1. VM Support for Concurrent and Parallel Programming 249

A.2. Concurrent and Parallel Programming Concepts 254

B. Appendix: Performance Evaluation 261

B.1. Benchmark Characterizations . 261

B.1.1. Microbenchmarks . 262

B.1.2. Kernel Benchmarks . 264

B.2. Benchmark Configurations . 267

References 271

xiii

L I S T O F F I G U R E S

2.1. Mockup of an e-mail application 36

5.1. Ownership-based metaobject protocol 114

5.2. Possible object configuration during runtime 115

5.3. Enforcing immutability with the OMOP 119

8.1. Baseline performance: CogVM and RoarVM 211

8.2. Baseline performance, detailed: CogVM and RoarVM 212

8.3. Baseline performance: Clang 3.0 vs. GCC 4.2 214

8.4. Ad hoc vs. OMOP microbenchmarks 217

8.5. Ad hoc vs. OMOP kernel benchmarks 218

8.6. OMOP enforcement overhead . 220

8.7. RoarVM+OMOP inherent overhead 222

8.8. Customization constant overhead, unenforced execution 224

8.9. Customization constant overhead, enforced execution 225

8.10. Customization constant benefits: AmbientTalkST and LRSTM . 226

8.11. Absolute performance: CogVM+AST-OMOP vs. RoarVM+OMOP228

xv

L I S T O F TA B L E S

2.1. Flynn’s taxonomy . 24

2.2. Almasi and Gottlieb’s taxonomy 25

3.1. VM survey subjects . 43

3.2. VM survey results . 44

3.3. Surveyed languages and papers 59

3.4. Survey results: concepts classified 60

3.5. Subsumed concepts . 61

3.6. Implementation challenges on top of multi-language VMs . . . 83

3.7. Requirements for a unifying substrate 85

4.1. RoarVM method header . 103

4.2. The Smalltalk-80 bytecodes . 105

6.1. Implementation challenges, recapitulated 142

6.2. Requirements for a unifying substrate, recapitulated 143

6.3. Concepts supported by the OMOP 159

6.4. Agent implementation metrics 163

6.5. Detailed comparison of the LRSTM implementations 166

6.6. Metrics for ad hoc and OMOP-based implementations 169

6.7. Concepts supported by the OMOP and today’s VMs 172

7.1. RoarVM+OMOP method header 196

7.2. VM primitives for the OMOP . 197

8.1. Experiments to assess ad hoc vs. OMOP-based performance . . 215

A.1. VM survey: VM details and concept exposure 251

A.2. Concepts provided by languages and proposed in papers . . . 256

xvii

L I S T O F L I S T I N G S

2.1. Clojure Agent example . 28

3.1. Example of incomplete state encapsulation 73

3.2. Example for missing scheduling guarantees 76

4.1. SOM language example . 91

4.2. Cascaded message sends . 93

4.3. Non-local returns in Smalltalk 94

4.4. SOM stack frames and initial bootstrapping 95

4.5. Basics of the SOM interpreter . 97

4.6. SOM method and primitive invocation 98

5.1. Definition of a domain for immutable objects 121

5.2. Clojure agents implemented in SOM Smalltalk 122

5.3. Domain definition for an agent 124

5.4. Structural changes to support the OMOP in SOM 125

5.5. Reifying mutation of object fields 126

5.6. Reifying reading of object fields 127

5.7. Perform reified message send . 127

5.8. Reifying primitive invocations 128

6.1. Clojure agents implemented in SOM Smalltalk, restated 144

6.2. Domain definition for an agent, restated 146

6.3. Definition of a domain for immutable objects, restated 148

6.4. Sketch of the STM implementation 150

6.5. Definition of a domain for an STM 152

6.6. Primitive reimplemented for STM 153

6.7. Definition of a domain for event-loop actors 156

7.1. Maintaining the domain a Process executes in 183

xix

List of Listings

7.2. Applying transformation to #readSendWrite 184

7.3. Implementation of store and pop bytecodes 193

7.4. Adapted primitive for shallow object copies 195

A.1. Survey structure for concurrent and parallel programming sup-
port in VMs . 249

A.2. Example: Information recorded for the DisVM 250

A.3. Survey structure to record concepts 254

A.4. Example: Information recorded for the Axum language 255

A.5. Survey structure for the identified concepts 260

A.6. Example: Information recorded for Clojure atoms 260

B.1. Benchmark configuration for performance evaluation 267

xx

1
I N T R O D U C T I O N

During recent years, multicore processors have become available in a majority
of commodity hardware systems such as smartphones, laptops, and worksta-
tions. However, threads, locks, message passing, and other concurrent and
parallel programming techniques continue to remain the tools of specialists
for system programming or high-performance computing, because they are
considered to be too complex and too hard to manage for application de-
velopers. However, these techniques become increasingly important for the
development of mobile and desktop applications, since it becomes manda-
tory to exploit parallelism at the application level in order to achieve desired
performance levels on modern hardware.

At the same time, managed languages, i. e., high-level programming lan-
guages on top of virtual machines (VMs), have become ubiquitous. The range
of devices that utilize such general-purpose platforms grew steadily over the
last decade, enabling the same application to run on wristwatches, phones,
tablet devices, laptops, workstations, servers, and clusters. In addition, im-
provements in runtime technologies such as just-in-time compilation and au-
tomatic memory management widened the range of possible applications on
top of these VMs. Eventually, this led to ecosystems emerging around multi-
language VMs such as the Java Virtual Machine (JVM) and the Common Lan-
guage Infrastructure (CLI). Supported by growing ecosystems, these VMs be-
came the target platform of choice in many application domains.

However, research has not reconciled these two trends have so far. While,
the complexity of concurrent and parallel programming inspired a wide range

1

1. Introduction

of solutions for different application domains, none of the VMs provide suf-
ficient support for these techniques, and thus, application developers cannot
benefit from these solutions. Furthermore, current research [Catanzaro et al.,
2010; Chafi et al., 2010] indicates that there is no one-size-fits-all solution to
handle the complexity of concurrent and parallel programming, and there-
fore, application developers are best served with access to the whole field of
solutions.

Domain-specific languages are one promising way to alleviate the complex-
ity of concurrent and parallel programming. While the academic community
continuously proposes abstractions that facilitate certain use cases, reduce the
accidental complexity, and potentially provide improved performance, lan-
guage implementers struggle to build these abstractions on top of today’s
VMs, because the rudimentary mechanisms such multi-language VMs pro-
vide are insufficient and require the language implementers to trade off im-
plementation simplicity, correctly implemented language semantics, and per-
formance.

The goal of this dissertation is to improve the support VMs provide for con-
current and parallel programming in order to enable language implementers
to build a wide range of language abstractions on top of multi-language VMs.

1.1. Research Context

The research presented in this dissertation touches upon the domains of con-

current and parallel programming as well as on virtual machine construction. The
main concerns of these domains are the following:

Concurrent and Parallel Programming Today, an overwhelmingly large body
of literature describes a wide range of different concepts to manage
concurrency, coordinate parallel activities, protect shared resources, de-
scribe data dependencies for efficient computation, etc. Already with
the first computers, i. e., the Zuse Z3 [Rojas, 1997] and the ENIAC [Mitch
and Atsushi, 1996], researchers have experimented with such concepts
for concurrent and parallel programming, but never came close to a
one-size-fits-all solution.

Virtual Machine Construction Software developers widely adopted high-level
language VMs such as the JVM and the CLI as multi-language run-
times, because the research on just-in-time compilation [Aycock, 2003]

2

1.2. Problem Statement

and garbage collection [Jones et al., 2011] led to highly efficient VM im-
plementations that can support a wide variety of use cases. The diversity
in supported use case as well as availability turned these VMs into rel-
evant targets for language implementation. With the invokedynamic

bytecode [Rose, 2009; Thalinger and Rose, 2010], the JVM improved its
support for dynamic languages even further. Moreover, other language
paradigms may benefit from improved support.

1.2. Problem Statement

While many domains, e. g., web applications or single-use scripts, are sen-
sitive to programmer productivity, the field of concurrent and parallel pro-
gramming frequently requires a tradeoff in favor of performance. In practice,
the need for parallel execution only arises when certain performance prop-
erties like minimal latency, responsiveness, or high throughput are required
and these requirements cannot be fulfilled with sequential implementations.
Sequential performance improvements eventually level off because of phys-
ical and engineering limitations, known as the power wall, memory wall, and
instruction-level parallelism wall [Asanovic et al., 2006]. Additionally, the rise of
devices that are sensitive to energy efficiency further increases the need for
parallelization. Compared to today’s personal computers, the restricted en-
ergy budget of mobile and autonomous devices effectively reduces available
sequential processing power. Thus, it becomes more common for application
developers to consider performance, further increasing the necessity to utilize
parallel and concurrent programming techniques.

When exploiting parallel hardware, the diversity of concurrent and par-
allel programming concepts and the absence of a one-size-fits-all solution
suggest using problem-specific abstractions to enable application developers
to address the inherent complexity. However, today’s VMs support only a
small and often low-level set of such concepts. While the rise of dynamic lan-
guages led, for example, to explicit support of customizable method lookup
strategies in the JVM through the invokedynamic bytecode, VMs do not
provide similar mechanisms to enable library and language implementers to
build custom abstractions for concurrent and parallel programming. On the
contrary, platforms such as the JVM and CLI, which feature shared memory
semantics and thread-based concurrency models, make it hard to faithfully
implement abstractions like the actor model [Karmani et al., 2009]. On such
platforms, implementation simplicity or correct language semantics are often

3

1. Introduction

traded in for better performance, which hinders the development of domain-
specific abstractions.

An additional problem arises from the fact that the field of concurrent and
parallel programming is largely uncharted, i. e., there is no widely accepted
taxonomy that covers the wide range of different concepts. While a number
of surveys provide an overview of programming concepts and language con-
structs [Briot et al., 1998; De Bosschere, 1997; Gupta et al., 2001; Skillicorn
and Talia, 1998], they are far from complete and do not cover more recent
work in the field. Thus, it is not even clear which concepts a VM should sup-
port in order to be a viable platform for a wide range of different problems
from the field of concurrent and parallel applications. Supporting all possible
concepts directly would not be possible, because of the resulting complex fea-
ture interactions within VMs. Since there is no one-size-fits-all solution either,
one problem this dissertation needs to solve is to identify which of all these
concepts a virtual machine should support in order to enable library and lan-
guage implementers to provide domain-specific solutions for a relevant range
of concurrent and parallel programming.

To conclude, VMs such as the JVM and the CLI lack sufficient support for
parallel and concurrent programming. The goal of this dissertation is to iden-
tify a unifying substrate for concurrent and parallel programming that allows
efficient implementation in a VM and provides the necessary abstractions to
enable language and library implementers to implement custom abstractions.
In summary, the two problems that need to be addressed are:

Insufficient Support for Concurrent and Parallel Programming in VMs To-
day’s VMs do not provide sufficient support for concurrent and parallel
programming in order to enable library and language implementers to
build domain-specific abstractions.

Set of Required Concepts Unknown Since supporting all possible concepts
is prohibitively complex, a VM needs to make abstractions of concrete
programming concepts or support a subset of them. However, the subset
of concurrent and parallel programming concepts that would enable
domain-specific solutions is currently unknown.

4

1.3. Research Goals

1.3. Research Goals

The thesis of this dissertation is:

There exists a relevant and significant subset of concurrent and parallel

programming concepts that can be realized on top of a unifying substrate.

This substrate enables the flexible definition of language semantics that

build on the identified set of concepts, and this substrate lends itself to an

efficient implementation.

This dissertation pursues the following research goals in support of this
thesis:

Identify a Set of Requirements First, this dissertation has to examine how
concurrency and parallelism are supported in VMs today, how the un-
derlying concepts for concurrent and parallel programming relate to
each other, and which problems occur when building higher-level ab-
stractions on top of today’s VMs. The resulting understanding of the
state of the art and common problems enable the establishment of a set
of requirements that guide the implementation of such concepts on top
of a VM.

Define a Unifying Substrate Based on the set of requirements identified in
the first step, this dissertation has to defines an abstraction that can
serve as a unifying substrate for the implementation of a significant sub-
set of concurrent and parallel programming concepts. This abstraction
has to enable library and language implementers to customize seman-
tics and guarantees for the programming concepts they want to provide,
while preserving acceptable performance. Since complexity is an inher-
ent issue for VM implementations, the abstraction has to demonstrate
unifying characteristics. Thus, it has to generalize over a set of program-
ming concepts to achieve abstraction, while avoiding adding indepen-
dent, i. e., separate, support for each of the programming concepts to
the VM.

Demonstrate Applicability This dissertation has to demonstrate the applica-
bility of the proposed unifying substrate as an extension to high-level
language VMs in order to show its benefits for building multi-language
runtimes. The evaluation is based on the implementation of common
abstractions for concurrent programming on top of the proposed sub-
strate. The goal is to show the substrate’s potential compared to classic

5

1. Introduction

ad hoc implementations. Therefore, this dissertation need to show that
the substrate fulfills the posed requirements, that it enables enforcement
of the desired language semantics, and that it gives rise to an efficient
implementation.

Note that the investigation of security aspects, reliability, distribution, and
fault-tolerance is outside of the scope of this dissertation. This dissertation
primarily focuses on improving support for concurrent and parallel program-
ming for multi-language runtimes in the form of high-level language virtual
machines.

1.4. Dissertation Outline

This dissertation is structured as follows:

Chapter 2: Context and Motivation

This chapter outlines the rationale for the assumptions stated above. It
argues that VMs are target platforms for a wide range of applications,
and thus, require better support for concurrent and parallel program-
ming abstractions as a responds to the multicore revolution. Further-
more, it defines concurrent and parallel programming, and introduces
common concepts for it as background for this dissertation. The chap-
ter concludes with a vision for constructing applications in the presence
of appropriate abstractions for concurrent and parallel programming to
motivate the goal of this dissertation.

Chapter 3: Which Concepts for Concurrent and Parallel Programming

does a VM need to Support?

This chapter establishes the requirements for VM support for a wide
range of different abstractions for concurrent and parallel programming.
First, it surveys contemporary VMs, assessing the state of the art by
identifying which concepts the VMs support and how they realize these
concepts. Second, the chapter surveys the field of concurrent and paral-
lel programming in order to identify its basic concepts, concluding that
parallel programming concepts benefit from VM support for a wide
range of different optimizations, while concurrent programming con-
cepts benefit from extended support for their semantics. This leads to
the observation that both sets of programming concepts have distinct
requirements. This dissertation focuses on VM support for concurrent

6

1.4. Dissertation Outline

programming concepts. The third part of the chapter identifies common
problems in implementing concurrent programming concepts on top
of today’s VMs. Based on survey results and identified problems, this
chapter concludes with requirements for comprehensive VM support
for concurrent programming.

Chapter 4: Experimentation Platform

This chapter discusses the motivation and choices for the platforms used
for experiments and evaluation. First, it introduces SOM (Simple Object
Machine), a minimal Smalltalk dialect, which is used throughout this
dissertation for code examples and the discussion of the OMOP’s se-
mantics. This section includes an introduction to general Smalltalk syn-
tax and its semantics. Second, it motivates the choice of Smalltalk as
platform for this research. Finally, it discusses RoarVM as a choice for
the VM implementation experiments and detailed its implementation.

Chapter 5: An Ownership-based MOP to Express Concurrency Ab-

stractions
This chapter introduce this dissertation’s main contribution, an own-
ership-based metaobject protocol (OMOP). The OMOP is a unifying
substrate for the implementation of concurrent programming concepts.
First, the chapter discusses the foundational notions of open implemen-
tations and metaobject protocols. Second, it presents the OMOP itself.
Third, it discusses examples of how to apply the OMOP to enforce im-
mutability and how to implement Clojure agents with it. Finally, the
chapter defines the OMOP’s semantics based on SOM’s bytecode inter-
preter and discusses the OMOP in the context of related work.

Chapter 6: Evaluation – The OMOP as Unifying Substrate

In order to evaluate the OMOP, this chapter discusses how it fulfills the
identified requirements. First, the chapter discusses the evaluation crite-
ria. Second, it examines the case studies implementing Clojure agents,
software transactional memory (STM), and AmbientTalk actors. Third,
the chapter discusses concepts identified in Chapter 3 and argues that
the OMOP supports all of the concepts that require VM support for
guaranteeing correct semantics. Fourth, the chapter shows that the us-
ing OMOP does not have a negative impact on the implementation size
of agents, actors, and STM, by comparing their OMOP-based implemen-
tations against their ad hoc implementations. Finally, the limitations of
the OMOP are discussed.

7

1. Introduction

Chapter 7: Implementation Approaches

This chapter details OMOP implementation strategies. First, it discusses
the OMOP implementation based on program transformation with ab-
stract syntax trees. Secondly, it describes the implementation in the
RoarVM bytecode interpreter and the chosen optimizations.

Chapter 8: Evaluation – Performance

This chapter evaluates the performance of the OMOP implementations.
Furthermore, it compares the performance of an STM and an actor im-
plementation based on the OMOP with the performance of their corre-
sponding ad hoc, i. e., conventional, implementations. To that end, the
chapter first details the methodology used for the performance evalu-
ation. Second, it assesses the performance of the VMs used for the ex-
periments. Third, it compares the performance of the ad hoc with the
OMOP-based implementations. Fourth, it evaluates the performance of
different aspects of the OMOP implementation, such as inherent over-
head and the impact of the optimizations. Finally, it compares the abso-
lute performance of the two OMOP implementations.

Chapter 9: Conclusion and Future Work

The last chapter revisits the dissertation’s problem and thesis statement
to argue that the OMOP is an appropriate unifying substrate for im-
plementing a wide range of concepts for concurrent and parallel pro-
gramming on top of a VM. It summarizes the OMOP as well as this
dissertation’s research contributions. Finally, it discusses the OMOP’s
current limitations and outlines future work. For example, it speculates
how the OMOP could be supported on VMs with statically typed lan-
guages, and how just-in-time compilation could improve performance.

1.5. Supporting Publications and Technical

Contributions

A number of publications, exploratory activities, and technical contributions
directly support this dissertation. This section discusses them briefly to high-
light their relevance to this work.

Main Idea The main idea, i. e., the design of an ownership-base MOP and
initial experiments were presented at TOOLS’12 [Marr and D’Hondt, 2012].

8

1.5. Supporting Publications and Technical Contributions

Chapter 5 and part of the evaluation in Chapter 6 and Chapter 8 are based on
the material presented in:

• Stefan Marr and Theo D’Hondt. Identifying a unifying mechanism for
the implementation of concurrency abstractions on multi-language vir-
tual machines. In Objects, Models, Components, Patterns, 50th International

Conference, TOOLS 2012, volume 7304 of Lecture Notes in Computer Sci-

ence, pages 171–186, Berlin / Heidelberg, May 2012. Springer. ISBN
978-3-642-30560-3. doi: 10.1007/978-3-642-30561-0_13.

This publication builds on gradual development based on an initial idea of
abstracting from concrete concurrency models, presented at the PLACES’09

workshop [Marr et al., 2010a]. The evolving ideas were also presented at sev-
eral other occasions: as posters [Marr and D’Hondt, 2010], which once re-
sulted in a Best Poster Award [Marr and D’Hondt, 2009], or as a contribution
to the SPLASH’10 Doctoral Symposium [Marr, 2010].

Surveys Chapter 3 relies on three surveys conducted during the prepara-
tion of this dissertation. The main part of Sec. 3.2 was also part of Marr and
D’Hondt [2012]. The other two surveys have been presented at the VMIL’09

and VMIL’11 workshops:

• Stefan Marr, Michael Haupt, and Theo D’Hondt. Intermediate language
design of high-level language virtual machines: Towards comprehensive
concurrency support. In Proc. VMIL’09 Workshop, pages 3:1–3:2. ACM,
October 2009. ISBN 978-1-60558-874-2. doi: 10.1145/1711506.1711509.
(extended abstract)

• Stefan Marr, Mattias De Wael, Michael Haupt, and Theo D’Hondt. Which
problems does a multi-language virtual machine need to solve in the
multicore/manycore era? In Proceedings of the 5th Workshop on Virtual

Machines and Intermediate Languages, VMIL ’11, pages 341–348. ACM, Oc-
tober 2011a. ISBN 978-1-4503-1183-0. doi: 10.1145/2095050.2095104.

Exploring Programming Models While the surveys provided a good over-
view of the field, the practical insights gathered during exploring and exper-
imenting with the different technologies provided valuable additional expe-
rience that enabled a proper classification of the obtained knowledge. Exper-
iments were conducted with barrier-like synchronization [Marr et al., 2010b],
resulting in a Best Student Paper Award, different notions of Actor languages

9

1. Introduction

and systems [De Koster et al., 2012; Renaux et al., 2012; Schippers et al., 2009]
were explored, experience was gathered by teaching Erlang and Clojure [Van
Cutsem et al., 2010], as well as with the general exploration of concurrent
language implementations [Marr et al., 2012].

• Stefan Marr, Stijn Verhaegen, Bruno De Fraine, Theo D’Hondt, and Wolf-
gang De Meuter. Insertion tree phasers: Efficient and scalable barrier
synchronization for fine-grained parallelism. In Proceedings of the 12th

IEEE International Conference on High Performance Computing and Com-

munications, pages 130–137. IEEE Computer Society, September 2010b.
ISBN 978-0-7695-4214-0. doi: 10.1109/HPCC.2010.30. Best Student Pa-
per Award.

• Joeri De Koster, Stefan Marr, and Theo D’Hondt. Synchronization views
for event-loop actors. In Proceedings of the 17th ACM SIGPLAN symposium

on Principles and Practice of Parallel Programming, PPoPP ’12, pages 317–
318, New York, NY, USA, February 2012. ACM. doi: 10.1145/2145816.
2145873. (Poster)

• Hans Schippers, Tom Van Cutsem, Stefan Marr, Michael Haupt, and
Robert Hirschfeld. Towards an actor-based concurrent machine model.
In Proceedings of the Fourth Workshop on the Implementation, Compilation,

Optimization of Object-Oriented Languages, Programs and Systems, pages 4–
9, New York, NY, USA, July 2009. ACM. ISBN 978-1-60558-541-3. doi:
10.1145/1565824.1565825

• Thierry Renaux, Lode Hoste, Stefan Marr, and Wolfgang De Meuter.
Parallel gesture recognition with soft real-time guarantees. In Proceed-

ings of the 2nd edition on Programming Systems, Languages and Applications

based on Actors, Agents, and Decentralized Control Abstractions, SPLASH
’12 Workshops, pages 35–46, October 2012. ISBN 978-1-4503-1630-9. doi:
10.1145/2414639.2414646

• Tom Van Cutsem, Stefan Marr, and Wolfgang De Meuter. A language-
oriented approach to teaching concurrency. Presentation at the work-
shop on curricula for concurrency and parallelism, SPLASH’10, Reno,
Nevada, USA, 2010. URL http://soft.vub.ac.be/Publications/2010/

vub-tr-soft-10-12.pdf.

• Stefan Marr, Jens Nicolay, Tom Van Cutsem, and Theo D’Hondt. Modu-
larity and conventions for maintainable concurrent language implemen-
tations: A review of our experiences and practices. In Proceedings of

10

http://soft.vub.ac.be/Publications/2010/vub-tr-soft-10-12.pdf
http://soft.vub.ac.be/Publications/2010/vub-tr-soft-10-12.pdf

1.5. Supporting Publications and Technical Contributions

the 2nd Workshop on Modularity In Systems Software (MISS’2012), MISS’12.
ACM, March 2012. doi: 10.1145/2162024.2162031.

Technical Contributions The work of this dissertation has only been made
possible by starting from existing research artifacts. These research artifacts
enabled this dissertation’s experiments and provide the foundation for the
implemented prototypes. The main artifact used for the experiments is the
RoarVM, designed and implemented by Ungar and Adams [2009]. It was
later documented in a so-far unpublished report [Marr et al., 2011b]. The fol-
lowing list briefly discusses these key research artifacts and their relation to
this dissertation. The source code and an overview of all artifacts is available
online.1

RoarVM The RoarVM is a Smalltalk interpreter compatible with Squeak and
Pharo Smalltalk. It was designed to experiment with manycore archi-
tectures such as the Tilera TILE64 and runs on up to 59cores on these
machines. This dissertation relies on the RoarVM as an experimentation
platform to study the OMOP’s performance in a VM with a bytecode
interpreter.

URL: https://github.com/smarr/RoarVM

AST-OMOP This dissertation’s first implementation of the OMOP is based
on AST transformation of Smalltalk code and can be used with standard
Smalltalk VMs. Thus, it enables experimentation with the OMOP’s basic
mechanisms without requiring VM changes.

URL: http://ss3.gemstone.com/ss/Omni.html

RoarVM+OMOP Using the RoarVM as a foundation, the RoarVM+OMOP
adds support for the complete ownership-based metaobject protocol in
the interpreter. The current implementation changes the bytecode to
support the OMOP’s semantics (cf. Chapter 7).

URL: https://github.com/smarr/OmniVM

SOM+OMOP Building on SOM (Simple Object Machine), which was used
for previous research projects [Haupt et al., 2010, 2011a,b], SOM+OMOP
is a simple Smalltalk interpreter implementing and documenting the
OMOP’s semantics as part of this dissertation.

URL: http://ss3.gemstone.com/ss/Omni.html
1http://www.stefan-marr.de/research/omop/

11

https://github.com/smarr/RoarVM
http://ss3.gemstone.com/ss/Omni.html
https://github.com/smarr/OmniVM
http://ss3.gemstone.com/ss/Omni.html
http://www.stefan-marr.de/research/omop/

1. Introduction

ReBench This dissertation’s performance evaluation requires rigorous prepa-
ration and a proper experimental setup to yield reliable results. ReBench
is a benchmarking tool that documents the experiments and facilitates
their reproduction. It uses configuration files for all benchmarks, docu-
menting the benchmark and VM parameters used for the experiments,
and thus providing the necessary traceability of results and a convenient
benchmark execution.

URL: https://github.com/smarr/ReBench

SMark The benchmarks used for the performance evaluation have been im-
plemented based on SMark, which is a framework inspired by the idea
of unit-testing that allows the definition of benchmarks in the style of
SUnit.

URL: http://www.squeaksource.com/SMark.html

12

https://github.com/smarr/ReBench
http://www.squeaksource.com/SMark.html

2
C O N T E X T A N D M O T I VAT I O N

This chapter introduces the context for this dissertation. It motivates the need
for multi-language virtual machines (VMs) and argues that their rudimen-
tary support for parallel and concurrent programming needs to be extended
to maintain the versatility of these VMs in the multicore era. Furthermore, it
defines concurrent programming and parallel programming deviating from exist-
ing literature to overcome the shortcomings of the existing definitions. The
newly proposed definitions enable a classification of programming concepts
based on intent and purpose to facilitate the discussion in the later chapters.
Based on that, this chapter gives a brief overview of concurrent and parallel
programming concepts as a foundation for the remainder of this dissertation.
Finally, the chapter concludes by combining the different elements to envision
how applications are built when developers are able to utilize appropriate ab-
stractions to tackle the challenges of concurrency and parallelism.

13

2. Context and Motivation

2.1. Multi-Language Virtual Machines: Foundation for

Software Ecosystems

High-level language VMs are used as general purpose platforms with large

software ecosystems. The role of high-level language VMs has been shift-
ing over the past decades. Starting out as interpreted VMs for languages
that offer high productivity, they became VMs that use highly efficient just-
in-time compilation technology [Aycock, 2003] and well tuned garbage col-
lectors [Craig, 2006; Smith and Nair, 2005]. The resulting performance im-
provements opened the door for a wide range of application domains. Con-
sequently, VMs are now the platform for many applications that earlier on
would have been implemented in native languages such as C or C++ and
targeted a particular operating system. With the increased adoption of VMs
came additional support from a wide range of parties. Software and tool ven-
dors, as well as the various open source communities started to build large
software ecosystems [Gregor, 2009] around VMs. Reasons for this adoption
are availability of libraries, code reuse, portability, and the desire to integrate
different systems on the same platform. Studies such as the one of Ruiz et al.
[2012] show that code reuse in such diverse ecosystems is not merely a theo-
retical opportunity, but realized in practice. In addition to code reuse, tooling
is an important motivation. For instance, the availability of IDEs, performance
analysis tools, testing frameworks, and continuous integration techniques are
important factors. Eclipse1 and Netbeans2 as IDEs, and tools like VisualVM3

enable developers to use multiple languages, while relying on the same com-
mon tools.

Language implementers target VMs to provide appropriate abstractions for

specific problem domains. While the adoption of VMs like JVM and CLI
grew over the years, the desire to use different kinds of languages interop-
erating with the existing ecosystem, grew as well. Both, JVM and CLI, were
originally tailored towards either one specific language, i. e., Java for the JVM,
or a set of closely related languages, i. e., VB.NET and C# for the CLI. The
resulting VMs were however efficient enough to attract a vast number of lan-

1http://www.eclipse.org/
2http://www.netbeans.org/
3http://visualvm.java.net/

14

http://www.eclipse.org/
http://www.netbeans.org/
http://visualvm.java.net/

2.1. Multi-Language Virtual Machines

guage designers and implementers, who built hundreds of languages on top
of them.4,5

Often the motivation for such language implementations is to fill a partic-
ular niche in which the language-specific properties promise higher produc-
tivity, even when the performance might be sacrificed. Another motivation
might be adoption. While a new language with its own runtime typically
lacks tooling and libraries for productive use, targeting an existing platform
such as the JVM and CLI can ease the integration with existing systems, and
thus, facilitate adoption. To give a single example, Clojure6 integrates well
with the ecosystem of the JVM, which enabled adoption and brought concur-
rent programming concepts such as agents, atoms, and software transactional
memory to a wider audience.

Support for dynamic languages was extended to strengthen VMs as gen-

eral purpose platforms. Over the years, the JVM and CLI grew into fully
adopted general purpose platforms and with their success grew the adoption
of new JVM and CLI languages. This motivated efforts to reduce the perfor-
mance cost of dynamic languages. The various method dispatch semantics of
dynamic languages were one of the largest performance concerns. To improve
the situation, the JVM specification was extended by infrastructure around
the new invokedynamic bytecode [Rose, 2009; Thalinger and Rose, 2010],
which gives language designers a framework to specify method dispatch se-
mantics and enables the just-in-time compiler to optimize the dispatch for
performance. With the Dynamic Language Runtime for the CLI, Microsoft went
a different route and provides a common dynamic type system and infrastruc-
ture for runtime code generation. However, both approaches have in common
that they extend the reach of the underlying platform to new languages, and
thus application domains.

Multi-language VMs are targets for library and language implementers.

With the additional infrastructure for dynamic languages in place, the JVM
and the CLI became multi-language VMs. While the notion has been used

4A list of languages targeting the .NET Framework, Brian Ritchie, access date: 28 September 2012

http://www.dotnetpowered.com/languages.aspx
5Programming languages for the Java Virtual Machine JVM and Javascript, Robert Tolksdorf, access

date: 28 September 2012 http://www.is-research.de/info/vmlanguages/
6http://clojure.org

15

http://www.dotnetpowered.com/languages.aspx
http://www.is-research.de/info/vmlanguages/
http://clojure.org

2. Context and Motivation

in literature [Folliot et al., 1998; Harris, 1999] and industry,7 the exact mean-
ing remains undefined. This dissertation assumes a multi-language VM to
be a high-level language runtime that supports language and library imple-
menters actively in their efforts to implement a wide range of programming
abstractions for it.

With the advent of multicore hardware, mechanisms for concurrency and
parallelism became important concerns for general-purpose platforms. How-
ever, the JVM and CLI provide only minimal support. Most importantly, they
lack features that enable language designers to build efficient abstractions for
concurrent and parallel programming. An equivalent to invokedynamic for

concurrency becomes highly desirable to enable these VMs to remain general
purpose platforms and multi-language VMs, facilitating applications that need
to utilize concurrency and parallelism for various purposes.

Complex feature-interaction in VMs requires a minimal set of unifying

abstractions. The complexity of VMs is not only a challenge for their imple-
mentation [Haupt et al., 2009], but also presents difficulties for their evolution
and extension. The dependencies between the wide range of supported mech-
anisms lead to situations where it is unclear whether a desired feature can be
supported without breaking the existing features.

One prominent example in the context of the JVM is support for tail call
elimination, which is particularly desirable for functional languages [Schinz
and Odersky, 2001]. First, it was assumed that it cannot be supported be-
cause of Java’s use of stack inspection for its security features [Fournet and
Gordon, 2003]. Later, theoretical [Clements and Felleisen, 2004] and practi-
cal [Schwaighofer, 2009] solutions were found. However, the solutions have
tradeoffs and tail call elimination is still not included in the JVM specification
because of the complex interplay of VM features.

In conclusion, multi-language VMs need to offer a limited number of ab-
stractions that have unifying characteristics. That is to say, the offered abstrac-
tions need to enable a wide range of language features. From our perspective,
it would be infeasible to add every possible language feature directly to a
VM. The complexity of their interactions would be unmanageable. Thus, the
abstractions offered by a VM need to provide a unifying substrate that facili-
tates the implementation of concrete language features on top of the VM.

7The Da Vinci Machine Project: a multi-language renaissance for the Java Virtual Machine architec-

ture, Oracle Corp., access date: 28 September 2012

http://openjdk.java.net/projects/mlvm/

16

http://openjdk.java.net/projects/mlvm/

2.2. The Multicore Revolution

2.2. The Multicore Revolution

Performance improvements for sequential processors are tailing off. Be-
fore 2005, processor designers could use more transistors and higher clock
frequencies to continuously increase the performance of new processor gen-
erations. Moore’s Law, which states that with improved manufacturing tech-
niques and the resulting miniaturization the number of transistors doubles
approximately every two years without extra cost, enabled them to increase
the amount of logic that processors could contain. They used the additional
logic to improve techniques such as out-of-order execution, branch predic-
tion, memory caching schemes, and cache hierarchies. Unfortunately, these
techniques are optimizations for specific usage patterns and eventually, their
returns diminish [Hennessy and Patterson, 2007; Michaud et al., 2001].8 With
the shrinking transistor sizes, it was possible to steadily increase the clock
frequency as well.

Higher clock speeds become impractical. Around 2005, processor design-
ers reached a point were it was no longer feasible to keep increasing the clock
speed with the same pace as in previous decades. An increase in clock speed
corresponds directly to higher energy consumption and more heat dissipa-
tion [Hennessy and Patterson, 2007, p. 18]. However, handling the lost heat
beyond a certain limit requires cooling techniques that are impractical for
commodity devices. For mobile devices, the necessary increase in power con-
sumption and the resulting heat make clock speed increases beyond a certain
limit prohibitive. Processor designers worked around the issue by applying
various engineering techniques to handle the heat. This led to processors that
can over-clock themselves when the thermal budget permits it. However, none
of these techniques could deliver the performance improvements software de-
velopers have gotten accustomed to over the decades.

Increasing transistor budgets led to multicore processors. Still, the tran-
sistor budget for processors keeps increasing. In an attempt to satisfy the
software industry’s need for constant performance improvement, processor
designers started to explore the design space of parallel processors. The in-
creasing transistor budget can be spent on a wide range of different features
of a modern processor [Hill and Marty, 2008]. Duplicating functional units,

8Welcome to the Jungle, Herb Sutter, access date: 27 June 2012

http://herbsutter.com/welcome-to-the-jungle/

17

http://herbsutter.com/welcome-to-the-jungle/

2. Context and Motivation

e. g., arithmetic units enables higher degrees of instruction-level parallelism.
In combination with duplicated register files, techniques such as simultane-
ous multithreading can hide memory latency and utilize the available func-
tional units more efficiently. Duplicating whole cores enables more heteroge-
neous parallel workloads. However, workloads such as data-intensive graphic
operations are better served by large data-parallel units. These can come in
the form of vector processing units embedded into a traditional processor, or
modern GPU computing processors that consist of vast numbers of very sim-
ple but highly parallel processing elements. Depending on target applications,
processor vendors mix and match these design options to offer more compu-
tational power to their customers [Hennessy and Patterson, 2007]. However,
exploiting available hardware parallelism remains a task for software devel-
opers.

To conclude, multicore processors will play a major role for the foreseeable
future and software developers will need to use the offered parallelism to
fulfill the performance requirements for their software.

2.3. Concurrent vs. Parallel Programming: Definitions

The goal of this section is to clarify the notions of concurrency and parallelism

in order to accurately categorize the programming concepts of this field later
in this dissertation. To this end, this dissertation introduces the additional
notions of concurrent programming and parallel programming, which provide
stronger distinguishing properties and facilitate the discussions in Chapter 3.

2.3.1. Concurrency and Parallelism

Distinction often avoided Defining the two terms concurrency and paral-

lelism is often avoided in literature. Subramaniam [2011, p. xiv] even claims
“there’s no clear distinction between these two terms in industry[...]”. Others such
as Axford [1990, p. 4,6] and Lea [1999, p. 19] mention the terms, but do not
make a clear distinction between them. However, they indicate the difference
between systems with physical parallelism and systems with merely time
shared execution.

Distinction by execution model from historical perspective Lin and Sny-
der [2008, p. 21] explain the situation within its historic context. The term con-

currency was used in the operating system and database communities, which

18

2.3. Concurrent vs. Parallel Programming: Definitions

were mostly concerned with small-scale systems that used time shared exe-
cution. Following their argumentation, the term parallelism on the other hand
comes from the supercomputing community, which was mostly concerned
with large-scale systems and physically parallel execution of programs. How-
ever, for the purpose of their book, they conclude the discussion by saying:
“we will use the terms [concurrent and parallel] interchangeably to refer to logical

concurrency”.

Definitions of Sottile et al. Overall, the field distinguishes the two terms
based on the underlying execution model. A set of concrete definitions is
given by Sottile et al. [2010, p. 23-24]. They write: “We define a concurrent
program as one in which multiple streams of instructions are active at the same

time.” Later, they go on and write: “Our definition of a parallel program is an

instance of a concurrent program that executes in the presence of multiple hardware

units that will guarantee that two or more instruction streams will make progress

in a single unit of time.” While these definitions are seldom spelled out pre-
cisely in literature, the definitions of Sottile et al. seem to reflect the common
consensus of what concurrency and parallelism mean. Therefore, parallel pro-
grams are considered to be a subset of concurrent programs. For instance,
Sun Microsystems, Inc. [2008] uses very similar definitions.

Not all parallel programs are concurrent programs. The major issue of
characterizing parallel programs as a subset of concurrent programs is the
implication that all parallel programs are concurrent programs as well. Thus,
all parallel programs can be mapped on a sequential execution. However,
there are useful algorithms such as the elimination stack proposed by Shavit
and Touitou [1995b] that are not strictly linearizable [Herlihy and Wing, 1990].
Which means, parallel programs can have executions that cannot be replicated
by any concurrent program, i. e., they cannot be mapped on a sequential exe-
cution without losing semantics.

Current definitions do not add value to explain programming concepts. In
addition to the conceptual problem of characterizing parallel programs as a
subset of concurrent programs, the notion of a subset relation does not add
explanatory value in practice, either.

For example, Cilk’s fork/join with a work-stealing scheduler implementa-
tion [Blumofe et al., 1995] is designed for parallel programming. The idea of
fork/join is to recursively divide a task to enable parallel execution of sub-

19

2. Context and Motivation

tasks with automatic and efficient load-balancing. When the execution model
provides only time shared execution, the overhead of fork/join is in most
implementations prohibitive [Kumar et al., 2012], especially when compared
to a sequential recursive implementation. Furthermore, the problem of load-
balancing that is solved by work-stealing does not exist in the first place. To
conclude, parallel programming needs to solve problems that do not exist for
concurrent programs, and parallel programs require solutions that are not
necessarily applicable to concurrent programs.

Conversely, low-level atomic operations such as compare-and-swap have been
conceived in the context of few-core systems. One important use case was to
ensure that an operation is atomic with respect to interrupts on the same core.
One artifact of the design for time shared systems is that Intel’s compare-and-
swap operation in the IA-32 instruction set (CMPXCHG) requires an additional
LOCK prefix to be atomic in multicore environments [Intel Corporation, 2012].
Similarly to the argumentation that parallel programming concepts do not
necessarily apply to time shared systems, the usefulness of low-level atomic
operations originating in concurrent systems is limited. Using them naively
restricts their scalability and their usefulness diminishes with rising degree of
parallelism [Shavit, 2011; Ungar, 2011]. They are designed to solve a particular
set of problems in concurrent programs but are not necessarily applicable to
the problems in parallel programs.

Concluding from these examples, it would be beneficial to treat concurrent

programming and parallel programming separately to properly reflect the char-
acteristics and applicability of the corresponding programming concepts.

2.3.2. Concurrent Programming and Parallel Programming

This section defines the notions of concurrent programming and parallel program-

ming to create two disjoint sets of programming concepts. Instead of focusing
on the execution model as earlier definitions do, the proposed definitions
concentrate on the aspect of programming, i. e., the process of formalizing
an algorithm using a number of programming concepts with a specific intent
and goal. The distinction between the execution model and the act of pro-
gramming is made explicitly to avoid confusion with the common usage of
the terms concurrency and parallelism.

One inherent assumption for these definitions is that they relate the notions
of concurrent and parallel programming with each other on a fixed level of
abstraction. Without assuming a fixed level of abstraction, it becomes easily
confusing because higher-level programming abstractions are typically built

20

2.3. Concurrent vs. Parallel Programming: Definitions

on top of lower-level abstractions, which can fall into a different category. For
instance, as discussed after these definitions, parallel programming abstrac-
tions are often implemented in terms of concurrent programming abstrac-
tions. Thus, these definitions have to be interpreted on a fixed and common
abstraction level.

Definition 1. Parallel programming is the art of devising a strategy to coordi-

nate collaborating activities to contribute to the computation of an overall result by

employing multiple computational resources.

Definition 2. Concurrent programming is the art of devising a strategy to coor-

dinate independent activities at runtime to access shared resources while preserving

the resources’ invariants.

This means that parallel programming is distinct from concurrent program-
ming because it provides techniques to employ multiple computational re-
sources, while concurrent programming provides techniques to preserve se-
mantics, i. e., the correctness of computations done by independent interact-
ing activities that use shared resources.

Furthermore, an important aspect of parallel programming is the decom-
position of a problem into cooperating activities that can execute in parallel
to produce an overall result. Therefore, the related concepts include mecha-
nisms to coordinate activities and communicate between them. This coordina-
tion can be done by statically planing out interactions for instance to reduce
communication, however, it usually also needs to involve a strategy for the
communication at runtime, i. e., the dynamic coordination.

In contrast, concurrent programming concepts include techniques to pro-
tect resources, for instance by requiring the use of locks and monitors, or by
enforcing properties such as isolation at runtime, preventing undesirable ac-
cess to shared resources. The notion of protecting invariants, i. e., resources is
important because the interacting activities are independent. They only inter-
act based on conventions such as locking protocols or via constraint interfaces
such as messaging protocols to preserve the invariants of the share resources.

The nature of activities remains explicitly undefined. An activity can there-
fore be represented for instance by a light-weight task, a thread, or an operat-
ing system process, but it could as well be represented by the abstract notion
of an actor.

Note that these definitions do not preclude the combination of concurrent
and parallel programming. Neither do they preclude the fact that program-
ming concepts can build on each other, as discussed in the beginning of this

21

2. Context and Motivation

section. For instance, the implementation of barriers that are used in parallel
programming rely on concurrent programming concepts [Marr et al., 2010b].
Thus, in many cases developers need to combine parallel and concurrent pro-
gramming techniques to account for their requirements.

It remains to be mentioned that similar definitions have been proposed
before. For instance, in the teaching material of Grossman [2012].9 The defi-
nitions given by this dissertation use a different wording to avoid the impli-
cation of performance and the concrete notions of threads, since concurrent
and parallel programming are more general.

Rationale These two definitions are partially based on the following obser-
vations: Classic parallel programming approaches such as single program mul-

tiple data (SPMD) techniques based on MPI [Message Passing Interface Forum,
2009] or shared memory approaches such as OpenMP [OpenMP Architecture
Review Board, 2011] are used to decompose problems to use multiple com-
putational resources such as processor cores. All activities in such programs
collaborate to calculate the overall result. They are coordinated by the use of
barriers and collective operations to make an abstraction of concrete data de-
pendencies requiring all activities to actively participate, which is trivial in a
single program model. However, even contemporary APGAS languages such
as X10 (cf. Sec. 2.4.4) provide barriers [Shirako et al., 2008], while advocating
for fork/join-like programming models that encourage a much higher degree
of dynamics than in the SPMD model.

In addition to the use of barriers, the fork/join-based programming model
in the style of Cilk [Blumofe et al., 1995] is strongly based on the notion of
collaborating activities. It uses the notion of recursive divide-and-conquer to
expose the parallelism in a problem. One important assumption that is inher-
ent to this model is that the recursive devision makes an abstraction of all data
dependencies. Thus, it is assumed that the resulting program is data-race-free
when it synchronizes correctly on completion of its sub-tasks. The fork/join
model itself does not provide any means to coordinate access to shared re-
sources other than by synchronizing on the completion of sub-tasks. Thus, all
activities have to collaborate and it is assumed that no independent activities
in the system interact in any way with the fork/join computation. Therefore,
correctness of the computation is ensured by construction and does not need
to be enforced at runtime.

9The key notions are also mentioned in Grossman and Anderson [2012].

22

2.4. Common Approaches to Concurrent and Parallel Programming

The observations for concurrent programming concepts are different. Con-
ventional approaches based on mutexes require sequential execution of activ-
ities that work on a shared resource in order to enforce correctness. Programs
using these concepts typically consist of multiple activities that have different
purposes but require a common resource. In such systems, interactions are
resource-centric, without a common purpose, and require that the invariants
for the shared resources hold. Reader/writer locks for instance exclude only
conflicting operations from using the same resource. Software transactional
memory (cf. Sec. 2.4.3) goes further by removing the need for managing re-
sources manually. In contrast, event-loop concurrency models (cf. Sec. 2.4.4)
promote resources to active entities that are responsible for managing their
consistency and allow clients to interact via an asynchronous interface only.
Thus, the main commonality of these concepts is the protection of invariants
of shared resources to guarantee correctness, while permitting interaction of
independent activities at runtime.

The following section discusses these approaches in more detail.

2.3.3. Conclusion

To conclude, the definitions of concurrency and parallelism as found in the
literature can be inappropriate when it comes to categorizing concepts.

In contrast, the alternative definitions for concurrent programming and paral-

lel programming given here categorize concepts in two disjoint sets. Instead of
focusing on the execution model, these definitions focus on the aspect of pro-
gramming and relate to the intent and goal of a programming concept. There-
fore, concurrent programming concepts coordinate modifications of shared
resources, while parallel programming concepts coordinate parallel activities
to compute a common result.

2.4. Common Approaches to Concurrent and Parallel

Programming

This section gives an overview of common concepts in the field of concurrent
and parallel programming to provide a foundation for our later discussions.
Note that this section introduces Clojure agents, which are used in later chap-
ters as running examples and therefore discussed here in more detail.

23

2. Context and Motivation

Table 2.1.: Flynn’s taxonomy

Data Stream

Single Multiple

Instruction Single SISD SIMD
Stream Multiple MISD MIMD

2.4.1. Taxonomies

To structure the discussion of the vast field of concurrent and parallel pro-
gramming, this section reviews two taxonomies proposed in the literature.
These two taxonomies unfortunately do not match the focus of this disserta-
tion. Therefore, a partial taxonomy is introduced to structure the discussion
here and in later chapters of this dissertation.

Flynn’s Taxonomy

Flynn’s taxonomy can be used as a coarse categorization of programming
concepts [Flynn, 1966]. Originally, the proposed taxonomy is meant to catego-
rize computer organizations, but it is abstract enough to be used in a more
general context. Flynn based it on the notions of instruction streams and data

streams, where a set of instructions forms a program to consume data in a
given order. Using these notions, Flynn identifies four possible categories (cf.
Tab. 2.1): single instruction stream - single data stream (SISD), single instruction

stream - multiple data streams (SIMD), multiple instruction streams - single data

stream (MISD), and multiple instruction streams - multiples data streams (MIMD).
For the purpose of this dissertation, SISD represents classic single threaded
programs. SIMD corresponds to single threaded programs that use vector
instructions to operate on multiple data items at the same time. MISD can
be understood as a multi-threaded program that runs on a single core with
time shared execution without exhibiting real parallelism. Thus, each thread
of such a program corresponds to a distinct instruction stream (MI), but the
observable sequence of memory accesses is a single data stream coming from
a single data store. MIMD corresponds then to applications with multiple
threads executing in parallel, each having its distinct stream of memory ac-
cess, i. e., separate data streams and data stores. Since the concurrent and
parallel programming concepts relevant for this dissertation are variations of
multiple instruction streams (MI), Flynn’s taxonomy is too coarse-grained to
structure the discussion.

24

2.4. Common Approaches to Concurrent and Parallel Programming

Almasi and Gottlieb’s Taxonomy

Almasi and Gottlieb [1994] use a different taxonomy to classify “most parallel

architectures”. Their taxonomy (cf. Tab. 2.2) is based on two dimensions data

and control, much like Flynn’s. However, the interpretation of these dimen-
sions is very different. The data mechanism divides the parallel architectures
into being based on shared or private memory. The control mechanism on the
other hand, classifies based on the way control flow is expressed. Their classifi-
cation starts with control driven as the category with the most explicit control,
and ends with data driven for mechanism that depend the least on explicit
control flow.

Table 2.2.: Classification of computational models, with examples. [Almasi and Got-
tlieb, 1994, p. 25]

Data Mechanism

Control Mechanism Shared Memory Private Memory (message passing)
Control driven von Neumann Communicating processes
Pattern driven Logic Actors
Demand driven Graph reduction String reduction
Data driven Dataflow with I-structure Dataflow

While this taxonomy covers a wide range of concurrent and parallel pro-
gramming concepts, it does so on a very abstract level. Especially its emphasis
on the control mechanism is of lesser relevance for this dissertation. Since this
research targets contemporary multi-language VMs, all computational mod-
els have to be mapped to a control-driven representation.

A Partial Taxonomy of Contemporary Approaches

Neither Flynn’s nor Almasi and Gottlieb’s taxonomy reflect common concur-
rent and parallel programming concepts in a way that facilitates their discus-
sion in the context of this dissertation. Therefore, this dissertation uses a par-
tial taxonomy on its own. The following section discusses this taxonomy and
its four categories Threads and Locks, Communicating Threads, Communicating

Isolates, and Data Parallelism. The categorization focuses on how concurrent
and parallel activities interact and coordinate each other, since these aspects
are the main mechanisms exposed to the programmer, and one point which
makes the various concepts distinguishable, even with the necessarily brief
discussions of the concepts in this dissertation.

25

2. Context and Motivation

The remainder of this section gives a brief overview over the four categories
and then discuss them and the corresponding concepts in more detail.

Threads and Locks

The main abstraction for computation in this case is threads of execution

that use mechanisms like locks, semaphores, and condition variables
as their means to coordinate program execution in a shared memory
environment.

Communicating Threads

The main abstraction for computation in this case is threads of execution

in a shared memory environment. The concepts in this category use
higher-level means than basic locks and condition variables for coor-
dination and communication. Message sending and channel-based ab-
stractions are examples for such higher-level abstractions. Threads that
coordinate with barriers, clocks, or phasers, fall into this category as
well. Programming models can be based on active objects or for instance
variants of communicating sequential processes without the isolation prop-
erty.

Communicating Isolates

Communicating isolates are similar to communicating threads, but with
a strict enforcement of memory isolation between threads of execution.
Thus, the main distinguishing feature is the absence of an inherent
notion of shared memory between different threads of execution. The
means of communication in this category vary substantially. They range
from message or channel-based communication to restricted on-demand
shared-memory data structures. Programming models in this category
are for instance actors and communicating event-loops, which require iso-
lation as one of their main characteristics.

Data Parallelism

This category combines abstractions for data parallel loops, fork/join,
map/reduce, and data-flow. The common key idea is the focus on ab-
stractions for parallel programming instead of concurrent programming.

2.4.2. Threads and Locks

This category is currently believed to represent the mainstream of concur-
rent and parallel programming concepts applied in practice. Languages such

26

2.4. Common Approaches to Concurrent and Parallel Programming

as Java [Gosling et al., 2012], C [ISO, 2011], C++ [ISO, 2012], C# [ECMA Inter-
national, 2006], and Smalltalk [Goldberg and Robson, 1983] come with the
notion of threads and mechanisms that enable the protection of shared re-
sources. Threads are often directly based on the abstraction provided by the
underlying operating system, however, for instance Smalltalk implementa-
tions instead tend to use green threads that are managed by the Smalltalk
implementation.

In addition to threads, the mentioned languages often provide support for
monitors, mutexes, locks, condition variables, and atomic operations. These
mechanisms facilitate the coordination of threads at the level of resources,
and are considered as low-level abstractions requiring careful engineering to
prevent data races and deadlocks.

Systems software had to deal with concurrency for decades, and since these
parts of the software stack are performance sensitive, the available abstrac-
tions have been threads and locking mechanisms. While experts are able to
build stable systems on top of these low-level abstractions, the engineering ef-
fort is high [Cantrill and Bonwick, 2008]. Consequently, the proposed higher-
level abstractions are discussed in the following sections.

2.4.3. Communicating Threads

Message or channel-based communication, as well as high-level synchroniza-
tion mechanisms such as barriers [Gupta and Hill, 1989], clocks [Charles et al.,
2005], and phasers [Shirako et al., 2008] fall into this category. A few selected
abstractions are detailed below.

Active Objects The active objects pattern [Lavender and Schmidt, 1996] is
one such abstraction for object-oriented languages. It distinguishes active and
passive objects. Active objects are objects with an associated execution thread.
Methods on these objects are not executed directly, but asynchronously by
reifying the invocation and deferring its execution using a queue. The execu-
tion thread will process one such invocation at a time. Passive objects do not
have their own thread of execution, but are used by the active objects. The
active object pattern does not introduce any restrictions on how passive ob-
jects are to be used, but it is implied that an active object takes responsibility
for its own subgraph of the overall object graph. In the case where such a
design is not feasible, synchronization still needs to be done explicitly using
lower-level mechanisms.

27

2. Context and Motivation

Clojure Agents The Clojure programming language offers a variation in-
spired by the active objects pattern called agents.10 An agent represents a
resource with a single atomically mutable state cell. However, the state is
modified only by the agent itself. The agent receives update functions asyn-
chronously. An update function takes the old state and produces a new state.
The execution is done in a dedicated thread, so that at most one update func-
tion can be active for a given agent at any time. Other threads will always
read a consistent state of the agent at any time, since the state of the agent is
a single cell and read atomically.

Specific to agents is the integration with the Clojure language and the
encouraged usage patterns. Clojure aims to be “predominantly a functional

programming language”11 that relies on immutable, persistent data structures.
Therefore, it encourages the use of immutable data structures as the state
of the agent. With these properties in mind, agents provide a more restrictive
model than common active objects, and if these properties would be enforced,
it could be classified as a mechanism for communicating isolates. However, Clo-
jure does not enforce the use of immutable data structures as state of the
agent, but allows for instance the use of unsafe Java objects.

The described set of intentions and the missing guarantees qualify agents
as an example for later chapters. Thus, it is described here in more detail.

1 (def cnt (agent 0))

2 (println @cnt) ; prints 0

3

4 (send cnt + 1)

5 (println @cnt) ; might print 0 or 1, because of data race

6

7 (let [next-id (promise)]

8 (send cnt (fn [old-state]

9 (let [result (+ old-state 1)]

10 (deliver next-id result) ; return resulting id to sender

11 result)))

12 @next-id) ; reliably read of the update function ’s result

Listing 2.1: Clojure Agent example

Lst. 2.1 gives a simple example of how to implement a counter agent in Clo-
jure, and how to interact with it. First, line 1 defines a simple counter agent
named cnt with an initial value of 0. Printing the value by accessing it directly

10http://clojure.org/agents
11Clojure, Rich Hickey, access date: 20 July 2012 http://clojure.org/

28

http://clojure.org/agents
http://clojure.org/

2.4. Common Approaches to Concurrent and Parallel Programming

with the @-reader macro would result in the expected 0. At line 4, the update
function + is sent to the agent. The + takes the old state and the given 1 as
arguments and returns the updated result 1. However, since update functions
are executed asynchronously, the counter might not have been updated when
it is printed. Thus, the output might be 1 or 0. To use the counter for instance
to create unique identifiers, this is a serious drawback, especially when the
counter is highly contended. To work around this problem, a promise can com-
municate the resulting identifier ensuring synchronization. Line 8 shows how
a corresponding update function can be implemented. The next-id promise
will be used in the anonymous update function to deliver the next identifier
to the sender of the update function. After delivering the result to the waiting
client thread, the update function returns, and the state of the agent will be
set to its return value. When reading next-id, the reader will block on the
promise until it has been delivered.

Software Transactional Memory For a long time, various locking strategies
have been used in low-level software to address the tradeoff between main-
tainability and performance. A fine-granular locking scheme enables higher
degrees of parallelism and can reduce contention on locks, but it comes with
the risks of programming errors that can lead to deadlocks and data corrup-
tion. Coarse-grained locking on the other hand is more maintainable, but may
come with a performance penalty, because of the reduced parallelism.

To avoid these problems Shavit and Touitou [1995a] proposed software trans-

actional memory (STM), taking concepts from the world of database systems
with transactions and apply them to a programming language level. The main
idea is to avoid the need for having to deal with explicit locks, and the com-
plexity of consistent locking schemes. Thus, locking is done implicitly by the
runtime system when necessary. Critical code sections are not protected by
locks, but are protected by a transaction. The end of a critical section cor-
responds to aborting or committing the transaction. The STM system will
track all memory accesses during the execution of the transaction and en-
sure that the transaction does not lead to data races. For the implementation
of STM, a wide range of different approaches have been proposed [Herzeel
et al., 2010]. Theoretically, these can provide the desired engineering benefits,
however, STM systems proposed so-far still have a significant performance
penalty [Cascaval et al., 2008]. The performance overhead forces developers
to optimize the use and thus, has a negative impact on the theoretically ex-
pected engineering benefit.

29

2. Context and Motivation

To achieve the desired modularity with STMs, nesting of transactions is
a solution that comes with additional complexity and performance trade-
offs [Moravan et al., 2006]. Similarly, transactional memory systems have a
number of known problems with pathological situations such as starvation
of transactions and convoying of conflicting transactions [Bobba et al., 2007].
These can lead to performance problems and require additional effort to de-
bug. These problems lead to STM being one option for handling concurrent
programming, but prevent it from being a general solution.

PGAS (Partitioned Global Address Space) programming languages like Co-
Array Fortran [Numrich and Reid, 1998] and Unified Parallel C [UPC Consor-
tium, 2005] have been proposed to increase the programmer productivity in
the field of high-performance computing applications, running on supercomput-
ers and large clusters. Thus, they are meant for large scale distributed mem-
ory clusters, but are also used in smaller systems with strong non-uniform
memory access (NUMA) [Herlihy and Shavit, 2008] characteristics.

They are commonly designed for Single Program Multiple Data (SPMD) sce-
narios providing the illusion of shared memory, while indicating to the de-
veloper the additional cost of this abstraction by differentiating between local
and remote memory. The dominating synchronization mechanisms for these
kind of languages are barrier-like constructs and data-oriented parallel reduce
operators.

Note that PGAS and with it some of the SPMD approaches are categorized
as communicating threads instead of data parallel. The main reason for this de-
cision is that common realizations of these approaches are highly imperative
and control-flow focused, while data parallel programming models tend to
deemphasize the control-flow aspect.

2.4.4. Communicating Isolates

The main difference with communicating threads is the strict isolation of
threads of execution. Thus, the basic model does not provide shared memory
between isolates, which requires them to make any form of communication
explicit. Especially in the context of concurrent applications, this approach
is considered to be less error-prone and more high-level than communicating

threads. In the field of high-performance computing (HPC) however, the use
of explicit communication in the form of MPI [Message Passing Interface Fo-
rum, 2009] is considered more low-level than the model offered by PGAS
languages. One possible explanation is that concurrent applications are often

30

2.4. Common Approaches to Concurrent and Parallel Programming

task-oriented, while HPC applications are mostly data-oriented, which leads
to different tradeoffs in the design and implementation of algorithms.

Actors The actor model is a formalism to describe computational systems.
Hewitt et al. [1973] distilled it from the many ideas of that time in the field
of artificial intelligence to provide a “coherent manageable formalism”. This for-
malism is based on a single kind of object, an actor. These actors are compu-
tational units that respond to messages by sending messages to other actors,
create new actors, or designate how to handle the next message they receive.
Communication is done via addresses of other actors. An actor has to be in-
troduced explicitly to another actor or it has to create the actor to know its
address. Later, Hewitt [2012] clarified that the actor model assumes that mes-
sages are processed concurrently, and more importantly, that actors do not
require any notion of threads, mailboxes, message queues, or even operating
system processes.

The benefit of the actor model is that it provides a concise formalism to
describe systems. By using the simplest possible notion of the actor model
in the way Hewitt [2012] proposes, the actor model achieves desirable theo-
retical properties such as locality, safety of communication, and unbounded
nondeterminism.

However, the minimalism of the model comes with a significant engineer-
ing tradeoff. Similarly to the discussion of the right object granularity for
code reuse, which component-based software engineering tries to address,
the granularity of actors becomes important when actors are used to build
software systems. The idea of event-loop concurrency tries to address these
granularity issues.

Event-Loop Concurrency E and AmbientTalk propose the idea of actors in-
tegrated with object-oriented programming languages [Miller et al., 2005; Van
Cutsem et al., 2007]. E uses the term vat to denote a container of objects, which
in AmbientTalk corresponds to an actor, that holds an object graph. Inside a
vat, objects can refer to each other with near references. References between
different vats are only possible via far references. While near references allow
synchronous access to objects, far references only allow asynchronous inter-
action. The semantics of far references is that of asynchronous message sends.
Every vat executes an infinite loop that processes incoming messages. Based
on these ideas, Van Cutsem describes the three main properties of the event-
loop concurrency model as follows: Serial execution is guaranteed inside a vat.

31

2. Context and Motivation

Each vat processes a maximum of one event at a time. Non-blocking communi-

cation is ensured by construction. All operations that have blocking semantics
are realized by deferring the continuation after that operation asynchronously,
freeing the event-loop to enable it to process another event, and rescheduling
the continuation once the blocking condition is resolved. Exclusive state access

is guaranteed by vat semantics to ensure freedom from low-level data races
and provide strong encapsulation of actors.

Event-loop concurrency is often seen as an extension of the actor model
proposed by Hewitt et al. Vats, or event-loop actors, provide a higher level
of abstraction and extend the notion of actors from elementary particles to
coarser-grained components.

Communicating Sequential Processes Hoare [1978] proposed the idea of
Communicating Sequential Processes (CSP) as a fundamental method for struc-
turing programs. The idea is that input and output are basic programming
primitives that can be used to compose parallel processes. Later the idea was
developed further into a process algebra [Hoare, 1985], which is also the foun-
dation for the occam programming language [May, 1983]. The main concepts
of the algebra and occam are blocking communication via channels and paral-
lel execution of isolated processes. They support the notion of instruction se-
quences, non-deterministic writing and reading on channels, conditions, and
loops. This provides an algebra and programming model that is amenable to
program analysis and verification.

The idea of channel-based communication has been used and varied in a
number of other languages and settings such as JCSP [Welch et al., 2007], the
Go programming language,12 occam-π [Welch and Barnes, 2005], and the Dis
VM [Lucent Technologies Inc and Vita Nuova Limited, 2003] for the Limbo
programming language. Notable is here that the strong isolation of processes
is often not guaranteed by the programming languages or libraries that pro-
vide support for CSP. Thus, depending on the actual implementation, many
incarnations of CSP would need to be categorized as communicating threads

instead.

MPI (Message Passing Interface [Message Passing Interface Forum, 2009]) is
a widely used middleware for HPC applications. Programs are typically writ-
ten in an SPMD style using MPI to communicate between the isolated, and
often distributed parts of the application. MPI offers send and receive oper-

12http://golang.org/

32

http://golang.org/

2.4. Common Approaches to Concurrent and Parallel Programming

ations, but also includes collective operations such as scatter and gather. In
general, these operations have rendezvous semantics. Thus, every sending op-
eration requires a matching receive operation and vice versa. MPI-2 [Message
Passing Interface Forum, 2009] added operations for one-sided communica-
tion to introduce a restricted notion of shared memory in addition to the main
message passing, for situations where rendezvous semantics are not flexible
enough.

While MPI is widely used, and still considered the standard in HPC ap-
plications when it comes to performance, it is also criticized for not being
designed with productivity in mind [Lusk and Yelick, 2007]. Its low-level API
does not fit well with common HPC applications. In addition to offering com-
parably low-level APIs and data types, there is a potential misfit between
message-passing-based programming and data-centric applications.

APGAS (Asynchronous PGAS) languages were conceived with the same
goals as PGAS languages to solve the problems MPI has with regard to pro-
grammer productivity. The distinguishing feature of APGAS languages com-
pared to PGAS languages is the notion that all operations on remote memory
need to be realized via an asynchronous task that executes on the remote
memory. Thus, APGAS language try to make the cost of such remote mem-
ory accesses more explicit than in PGAS languages. This programming model
is supposed to guide developers to utilize data locality efficiently and to struc-
ture data and communication to reduce costly operations.

Languages such as X10 [Charles et al., 2005] and Habanero [Cavé et al.,
2010] realize that idea by making locality explicit as part of the type system.
X10’s specification [Saraswat et al., 2012] goes so far as to define remote ac-
cesses as having a by-value semantics for the whole lexical scope. This results
in a programming model very similar to message-passing. X10 combines this
with a fork/join-like task-based parallelism model, which makes is a hybrid
language in terms of our categorization. X10 differentiates between different
places as its notion of locality. Across places, it enforces isolation, but inside a
single place it provides a programming model that corresponds to our defini-
tion of communicating threads.

2.4.5. Data Parallelism

Approaches for data parallelism provide abstractions to handle data depen-
dencies. In general, the tendency in these approaches is to move from control

33

2. Context and Motivation

driven to data driven computation. However, control driven programming,
i. e., imperative programming remains important.

Fork/Join utilizes the inherent parallelism in data-oriented problems by us-
ing recursion to divide the computation into steps that can be processed in
parallel. It thereby makes an abstraction of the concrete data dependencies by
using recursive problem decomposition and relying on explicit synchroniza-
tion points when the result of a subproblem is required. While it is itself a
control-driven approach, relying on control-flow-based primitives, it is typi-
cally used for data-parallel problems. However, it leaves it to the programmer
to align the program with its data-dependencies.

Cilk [Blumofe et al., 1995] introduced fork/join as a novel combination of
the classic recursive divide-and-conquer style of programming with an ef-
ficient scheduling technique for parallel execution. Nowadays, it is widely
known as fork/join and available, e. g., for Java [Lea, 2000] and C/C++ with
libraries such as Intel’s Threading Building Blocks13. Primitives of this par-
allel programming model are the spawn, i. e., fork operation, which will
result in a possibly parallel executing sub-computation, and the sync, i. e.,
join-operation, which will block until the corresponding sub-computation is
finished. Fork/join is a model for parallel programming in shared memory
environments. It enables developers to apply divide-and-conquer in a par-
allel setting, however, it does not provide mechanisms to handle for instance
concurrency on global variables. Such mechanisms have been proposed [Frigo
et al., 2009], but the original minimal model focuses on the aspect of parallel
execution.

With work-stealing, Cilk also pioneered an efficient scheduling technique
that makes parallel divide-and-conquer algorithms practical for situations in
which a static schedule leads to significant load imbalances and thus subopti-
mal performance.

MapReduce Functional programming languages have introduced the no-
tion of mapping a function on a sequence of values to produce a result se-
quence, which then can be reduced to some result value with another func-
tion. Based on this simple notion, distributed processing of data has become
popular [Lämmel, 2008]. For companies like Google, Microsoft, or Yahoo, pro-
cessing of large amounts of data became a performance challenge that re-
quired the use of large clusters and resilient programming models. The model

13http://threadingbuildingblocks.org/

34

http://threadingbuildingblocks.org/

2.4. Common Approaches to Concurrent and Parallel Programming

proposed by Dean and Ghemawat [2004] includes mechanisms to provide
fault tolerance and scalability to utilize large clusters. It also extends the basic
map/reduce idea with notions of combiner functions and they describe how
to support side-effects for map and reduce operators. The side-effects are
however restricted to being idempotent and atomic to ensure deterministic
results in the case of failure and recomputation. Side-effects on the input data
themselves are however not supported. Instead, the input data are considered
to be immutable for the overall process.

Compared to fork/join, MapReduce exposes the developer much less to
the aspect of control flow. Instead, it requires only input data and a set of op-
erators that are applied in a predefined order, without making any promises
about the order in which the input data are processed.

Data-flow Programming languages attempt to move entirely to data-de-
pendency based program representation. Languages such as Lucid [Ashcroft
and Wadge, 1977] do not regard the sequential notation as imperative to
the order of program execution. Instead, programs are evaluated in a lazy,
demand-driven manner.

Other languages such as StreamIt [Thies et al., 2002] make data dependen-
cies even more explicit by reifying the notion of data streams to which a set
of kernel functions is applied. These programming languages enable the ex-
plicit encoding of data dependencies, which can then be used by optimizing
compilers to generate highly efficient code that exploits the available data
parallelism in the application.

2.4.6. Summary

This section introduced a partial taxonomy to categorize concurrent and paral-
lel programming concepts, because Flynn’s and Almasi and Gottlieb [1994]’s
taxonomies do not reflect the common approaches to concurrent and paral-
lel programming in a way that facilitates their discussion in the context of
this dissertation. Therefore, this dissertation proposes to categorize concur-
rent and parallel programming concepts into communicating threads, commu-

nicating isolates, and data parallelism. For each of these categories, this section
discussed a number of common approaches.

Clojure agents are highlighted and discussed in more detail, because Chap-
ter 5 and Chapter 6 rely on them as a running example.

35

2. Context and Motivation

2.5. Building Applications: The Right Tool for the Job

Researchers often make the case that the implementation of parallel and con-
current systems is a complex undertaking that requires the right tools for the
job, perhaps more so than for other problems software engineering encoun-
tered so far [Cantrill and Bonwick, 2008; Lee, 2006; Sutter, 2005]. Instead of
searching for a non-existing silver bullet approach, this dissertation argues,
like other research [Catanzaro et al., 2010; Chafi et al., 2010], that language
designers need to be supported in building domain-specific concurrency ab-
stractions.

Typical desktop applications such as the e-mail application sketched in
Fig. 2.1 combine several components that interact and have different potential
to utilize computational resources. The user interface component is tradition-
ally implemented with an event-loop to react to user input. In a concurrent
setting, it is also desirable to enforce encapsulation as in an actor model, since
encapsulation simplifies reasoning about the interaction with other compo-
nents. Thus, a programming model based on event-loop concurrency might
be the first choice.

9135134 rkfqeq"/"Rtqvqv{rg"Vguv"/"O{Rcig"3

313jvvru<11rkfqeq0eqo1tcddkv1rtqvqv{rg1tguwnv18;;331rcig22231umgvejgf

Htqo Uwdlgev Fcvg

Cpp Oggvkpi 3<67ro

Igqtig HYF<"Tguwnvu 33<42co

Lcogu Fkppgt"rncpuA :<64co

Codgt TG<"Yqtmujqr [guvgtfc{

Igv"Ockn Tg Hyf Pgy Ugctej

Htqo<"Igqtig
Uwdlgev<"HYF<"Tguwnvu
Vq<"og

Ncvguv"tguwnvu"cvvcejgf0
//Igqtig

Ockn

Kpdqz
Wptgcf
Hnciigf
Urco

Figure 2.1.: Mockup of an E-Mail Application

Another part of the application is data storage for emails and address book
information. This part traditionally interacts with a database. The natural way
to implement this component is to use an STM system that extends the trans-
action semantics of the database into the application. This allows for unified

36

2.6. Summary

reasoning when for instance a new mail is received from the network compo-
nent and needs to be stored in the database.

A third part is a search engine that allows the user to find emails and
address book entries. Such an engine can typically exploit data-parallel pro-
gramming concepts like map/reduce or parallel collection operations with
PLINQ14 for performance.

However, supporting the various parallel and concurrent programming
concepts on top of the same platform comes with the challenge to identify
basic commonalities that allow to make abstractions of the particularities of
specific constructs and languages. Today’s VMs such as JVM and CLI pro-
vide direct support for threads and locks only. While some concepts such as
fork/join [Lea, 2000], concurrent collections [Budimlic et al., 2009], or PLINQ
can be implemented as libraries without losing any semantics or performance,
concepts such as the actor model are typically implemented with weaker se-
mantics than originally proposed, losing for instance the engineering benefits
of encapsulation [Karmani et al., 2009].

While it is desirable to support different kinds of models, it is not clear
how a single language can support them directly. In his PLDI’12 keynote,
Doug Lea15 emphasized the point that “effective parallel programming is too

diverse to be constrained by language-based policies”. While he combines the no-
tions of concurrent and parallel programming (cf. Sec. 2.3), others have raised
similar opinions before. The problems that need to be tackled by concurrent
and parallel programming techniques are too diverse to be tackled appropri-
ately by a fixed set of abstractions [Catanzaro et al., 2010; Chafi et al., 2010].
Instead, domain-specific abstractions are necessary to be able to achieve an
appropriate level of abstraction and achieve the desired performance.

The goal of this dissertation is to identify a way to realize this vision and
enable library and language implementers to provide domain-specific abstrac-
tions for concurrent and parallel programming.

2.6. Summary

This chapter gave an overview over the context and motivation behind the
research in this dissertation.

14http://msdn.microsoft.com/en-us/library/dd460688.aspx
15Parallelism From The Middle Out, Doug Lea, access date: 16 July 2012

http://pldi12.cs.purdue.edu/sites/default/files/slides_pldi12-dlea.pdf

37

http://msdn.microsoft.com/en-us/library/dd460688.aspx
http://pldi12.cs.purdue.edu/sites/default/files/slides_pldi12-dlea.pdf

2. Context and Motivation

First, it discussed the notion of multi-language VMs as general purpose
platforms, which are used for a wide range of applications. Language im-
plementers need to be supported in implementing abstractions for concur-
rent and parallel programming to enable VMs to remain general purpose
platforms. Furthermore, VMs need unifying abstractions for that support, be-
cause supporting a wide range of independent features in a VM is infeasible.

Second, this chapter briefly revisited the background behind the multicore
revolution, which increases the need to support concurrent and parallel pro-
gramming in VMs. Multicore processors will play a major role for the fore-
seeable future and therefore, software developers will need to utilize them to
satisfy their application’s performance requirements.

Third, this chapter proposed the notions of concurrent programming and par-

allel programming to enable the categorization of the corresponding program-
ming concepts based on their intent, realizing two distinct sets of concepts.
Concurrent programming concepts are meant to coordinate modification of
shared resources, while parallel programming concepts are meant to coordi-
nate parallel activities to compute a common result.

Fourth, a partial taxonomy is proposed to categorize concurrent and par-
allel programming concepts into threads and locks, communicating threads, com-

municating isolates, and data parallelism. This chapter discusses a number of
concepts based on this categorization and details Clojure agents, because they
are used in the remainder of this dissertation as a running example.

Finally, the chapter concludes with a vision on how to build applications in
the multicore era. Applications need to be able to exploit concurrency and par-
allelism, and software developers want to utilize appropriate programming
abstractions for the different parts of an application to achieve their goals.
With this vision in mind, the next chapter discusses the question of which
concurrent and parallel programming concepts multi-language VMs needs to
support.

38

3
W H I C H C O N C E P T S F O R C O N C U R R E N T A N D PA R A L L E L
P R O G R A M M I N G D O E S A V M N E E D T O S U P P O RT ?

The goal of this chapter is to identify requirements for a unifying substrate
that supports parallel and concurrent programming. First, a survey of the
state of the art in VM support finds that support for parallel programming
is relegated to libraries, while concurrent programming is only supported se-
lectively. Thus, VM support is currently insufficient for supporting the notion
of a multi-language runtime for concurrent and parallel programming. Sec-
ond, a survey of the field of concurrent and parallel programming identifies
concepts that significantly benefit from VM support either for performance
improvement or to guarantee correct semantics. Based on these concepts, this
chapter derives general requirements for VMs, which cover two independent
areas of research. This dissertation focuses on the research to enforce lan-
guage semantics, and thus correctness, leaving the research on performance
improvement for future work. With this focus in mind, this chapter discusses
common problems of language implementers that need to be solved to im-
prove support for concurrent programming on multi-language VMs. Finally,
the survey results and discussed problems are used to extract concrete require-
ments for the design of a unifying abstraction for concurrent programming.

39

3. Which Concepts for Concurrent and Parallel Progr. does a VM need to Support?

3.1. VM Support for Concurrent and Parallel

Programming

The goal of this section is to investigate the state of the art in VM support
for concurrent and parallel programming, in order to determine the require-
ments for multi-language VMs. To this end, the survey identifies for thirteen
VMswhich concepts they support and how the VMs expose them. First, this
section details the survey design, i. e., the questions to be answered for each
VM, the VMs to be discussed, and the survey approach to be taken. Then
it categorizes the VMs based on the taxonomy used in Sec. 2.4.1 and reports
on the support they provide. Finally, it discusses the threats to validity and
presents the conclusions.

The main conclusion is that currently most VMs support only one or two
categories of concurrent programming concepts as part of the VM. Moreover,
the analyzed VMs support parallel programming in libraries only. Thus, the
vision of multi-language VMs that offer support for a wide range of different
approaches to concurrent and parallel programming is as yet not supported.

3.1.1. Survey Design

The survey is designed to answer the following question: How do today’s VMs

support parallel and concurrent programming?

Following the goal of this dissertation, this survey focuses on VMs that are
used as multi-language VMs, i. e., VMs that have been designed as platforms
for multiple languages or are contemporary targets for multiple language
implementations. To complement these VMs, the survey includes a number
of high-level language VMs that provide support for concurrent and parallel
programming concepts or are known for contributions to VM implementation
techniques.

3.1.1.1. Survey Questions

To focus and standardize the survey, the following concrete questions are
answered for each survey subject, i. e., VM:

Which concepts are supported by the language runtime system, i. e., VM?

How are the supported concepts exposed by the VM?

40

3.1. VM Support for Concurrent and Parallel Programming

The first question refers to the general set of concepts for concurrent and
parallel programming that is supported by a subject, i. e., the VM under inves-
tigation. Note, the question refers explicitly to language runtime systems instead
of VMs. Thus, the analysis includes concepts provided by the corresponding
standard library as well. Hence, a wider range of concepts is covered and it
becomes possible to determine how the concepts that are directly provided
by the VM are used.

To answer the second question, each concept is assigned to one of the fol-
lowing four categories:

Implicit Semantics Concepts like the memory models guaranteed by the JVM
and the CLI, or the global interpreter lock semantics used by Python, are
realized by the combined underlying infrastructure instead of a single
mechanism. Thus, overall semantics of the system implicitly supports
the concept by coordinating a wide range of mechanisms.

Instruction Set Architecture (ISA) Concepts that are either supported by a
specific set of opcodes, or concepts which are realized by the structures
which the VM operates on are classified as being part of the instruc-
tion set architecture (ISA). Examples are opcodes to acquire and release
locks, as well as flags in a method header that require the VM to acquire
an object’s lock before executing that method.

Primitive Concepts that require direct access to VM internals but do not fit
into the ISA are typically realized by so-called primitives. They are rou-
tines provided as part of the runtime, implemented in the implementa-
tion language of the VM. Common examples are thread-related opera-
tions.

Library Other concepts can be delivered as an integral part of the language
runtime system, but are implemented entirely in terms of other abstrac-
tions provided by the VM, i. e., without requiring new primitives for
their implementation.

Appendix A documents the outline of the questionnaire for this survey in
Lst. A.1. The appendix also includes an example of a completed questionnaire
in Lst. A.2.

3.1.1.2. Survey Subjects

Based on the goal of this dissertation, which is improvementing concurrent
and parallel programming support for multi-language VMs, the focus of this

41

3. Which Concepts for Concurrent and Parallel Progr. does a VM need to Support?

survey is the set of VMs that are used as runtime platforms for a wide range of
languages for a single system. Thus, distributed VMs such as the PVM [Geist
et al., 1994] are not considered because they solve a distinct set of problems
such as physical distribution and fault tolerance, which are outside of the
scope of this dissertation.

This survey considers the Java Virtual Machine (JVM) [Lindholm et al.,
2012], the Common Language Infrastructure (CLI) [ECMA International, 2010],
and the Parrot VM to be multi-language VMs. The JVM is with the addition
of the invokedynamic bytecode [Rose, 2009; Thalinger and Rose, 2010] ex-
plicitly designed to host a wider range of languages. The CLI and Parrot VM1

have been explicitly designed as execution platforms for multiple languages
from the beginning. Because of its close relation to the JVM (cf. Sec. 3.1.2.1),
the survey includes the Dalvik VM as a multi-language VM, as well.

While JavaScript and its VMs have not been designed as multi-language
platforms, wide availability led to their adoption as a platform for language
implementation.2 Therefore, this survey includes JavaScript as well. The dis-
cussion is based on JavaScript’s standardized form ECMAScript [ECMA In-
ternational, 2011] and the upcoming HTML5 standard to cover WebWorkers3

as a mechanism for concurrent programming.
To complement these multi-language VMs, this survey includes additional

VMs that either support relevant concurrent and parallel programming con-
cepts, or have contributed to VM implementation techniques. The selected
VMs are: DisVM [Lucent Technologies Inc and Vita Nuova Limited, 2003], Er-
lang [Armstrong, 2007], Glasgow Haskell Compiler (GHC), Mozart/Oz, Perl,4

Python,5 Ruby,6 Self [Chambers et al., 1989], and Squeak [Ingalls et al., 1997].
An overview over the subjects, including the relevant version information is
given in Tab. 3.1.

3.1.1.3. Survey Execution

For each subject of the survey, the analysis uses the VM specification if it is
available and if it provides sufficient information for the assessment. Other-
wise, it examines the source code of the implementation and the language

1Parrot – speaks your language, Parrot Foundation, access date: 4 December 2012

http://www.parrot.org/
2altJS, David Griffiths, access date: 4 December 2012 http://altjs.org/
3http://www.whatwg.org/specs/web-apps/current-work/multipage/workers.html
4http://perldoc.perl.org/perl.html
5http://docs.python.org/release/3.2.3/
6http://www.ruby-lang.org/en/documentation/

42

http://www.parrot.org/
http://altjs.org/
http://www.whatwg.org/specs/web-apps/current-work/multipage/workers.html
http://perldoc.perl.org/perl.html
http://docs.python.org/release/3.2.3/
http://www.ruby-lang.org/en/documentation/

3.1. VM Support for Concurrent and Parallel Programming

VM Spec. Src. Version

CLI X 5th edition
Dalvik X Android 4.0
DisVM X 4th edition
ECMAScript+HTML5 X X ECMAScript5.1, HTML5

Erlang X Erlang/OTP R15B01

GHC X GHC 7.5.20120411

JVM X X Java SE 7 Edition
Mozart X 1.4.0.20080704

Perl X 5.14.2
Python X 3.2.3
Ruby X 1.9.3
Self X 4.4
Squeak X X 4.3

Table 3.1.: VM survey subjects, their version, and the availability of specification and
source code.

documentation. For example, the CLI’s specification describes the relevant
parts of the standard library and is therefore deemed to be sufficient. For
the JVM however, the analysis includes one of the actual implementations
(HotSpot and OpenJDK7) and its accompanying documentation since the stan-
dard library is not covered by the specification. In the case of ECMAScript and
HTML5, the specification is complemented with an analysis of the implemen-
tations based on V88 and SpiderMonkey9

For languages without specification such as PHP, Python, or Ruby, the anal-
ysis includes only the implementation that is widely regarded to be the offi-
cial, i. e., standard implementation, as well as the available documentation.

To answer the survey questions, the analysis assesses whether a concept is
realized with the help of VM support or purely as a library. For VMs where
only the specification was examined, the assessment was deduced from this
information. For VMs where the implementation was inspected, the decision
was simpler. A concept is considered to be realized as a library if its imple-
mentation is written completely in the language provided by the VM. None
of the VM’s primitives, i. e., mechanisms directly provided by the VM are an
essential part of the concept’s implementation. This criterion was unambigu-
ous in this survey because none of the inspected implementations relied on a

7http://openjdk.java.net/
8https://github.com/v8/v8/archive/3.9.24.zip
9http://ftp.mozilla.org/pub/mozilla.org/firefox/releases/12.0b5/

43

https://github.com/v8/v8/archive/3.9.24.zip
http://ftp.mozilla.org/pub/mozilla.org/firefox/releases/12.0b5/

3. Which Concepts for Concurrent and Parallel Progr. does a VM need to Support?

meta-circular implementation, which makes primitives and their use directly
identifiable in the code.

3.1.2. Results

Structure of the Discussion This section first discusses the VMs supporting
Threads & Locks (T&L), then the ones with support for Communicating Threads

(ComT), and finally the ones supporting Communication Isolates (ComI) (cf.
Sec. 2.4.1). In the case a VM supports more than a single category, the discus-
sions for the different categories build on each other. The category of Data

Parallelism (DPar) is not discussed because all VMs examined in this survey
relegate support for parallel programming to libraries. These libraries build
on lower-level mechanisms, which are concurrent programming concepts on
their own and are used for other purposes as well.

The remainder of this section discusses the survey questions and highlights
the concepts supported by the different VMs. A full overview of the survey is
given in Appendix A, Tab. A.2.

General Remarks Tab. 3.2 provides an overview of the categorization of the
various VMs. Furthermore, while three of the VMs can be categorized as
belonging to two categories, most of the VMs focus on supporting a single
category of concurrency-related mechanisms.

VM T&L ComT ComI DPar

CLI X X Lib
Dalvik X Lib
DisVM X
ECMAScript+HTML5 X
Erlang X
GHC X Lib
JVM X Lib
Mozart X X
Perl X
Python X X
Ruby X
Self X
Squeak X

Table 3.2.: Categories of approaches supported by VMs: Threads & Locks (T&L),
Communicating Threads (ComT), Communicating Isolates (ComI), and Data
Parallelism (DPar)

44

3.1. VM Support for Concurrent and Parallel Programming

The Parrot VM is excluded from the remainder of the discussion, because
the mismatch between implementation and documentation is too significant.
While it is a interesting and relevant subject, a correct assessment of its feature
set and capabilities was not possible (cf. Sec. 3.1.2.5).

3.1.2.1. Threads and Locks (T&L)

The group of VMs supporting concurrency abstractions based on Threads and

Locks is the largest. Tab. 3.2 shows that eight of the selected VMs provide
mechanisms for these abstractions. However, they expose them in different
ways, e. g., as part of the ISA or as primitives.

Common Language Infrastructure (CLI) The Common Language Infras-
tructure is the standard describing Microsoft’s foundation for the .NET Frame-
work, and was developed as a reaction to the success of Java. Furthermore, it
was designed as a common platform for the various languages supported
by Microsoft. Initially, this included C#, Visual Basic, J#, and Managed C++.
While JVM and CLI have many commonalities [Gough, 2001], the designers
of the CLI benefited from the experiences gathered with the JVM.

The analysis of the Common Language Infrastructure (CLI) is solely based
on its standardized ECMA-335 specification [ECMA International, 2010]. Since
the specification includes a discussion of the relevant details, concrete imple-
mentations such as Microsoft’s .NET or Mono were not considered.

The CLI specifies shared memory with threads as the standard abstraction
used by applications. It further specifies that the exact semantics of threads,
i. e., whether they are cooperative or pre-emptive, is implementation specific.
To facilitate shared memory programming, the CLI specifies a memory model.
The memory model includes ordering rules for read and write operations to
have reliable semantics for effects that need to be observable between threads.
The CLI further includes the notions of volatile variables as part of the in-
struction set. The ISA provides the instruction prefix ‘volatile.’ to indicate
that the subsequent operation has to be performed with cross-thread visibility
constraints in mind, as specified by the memory model. The memory model
further guarantees that certain reads and writes are atomic operations. For
this survey, the memory model and the related mechanisms are considered to
be realized by the implicit semantics implemented in the VM and its just-in-
time (JIT) compiler.

The foundation for locks and monitor primitives exposed in the standard
libraries is laid in the specification as well. Building on that, the object model

45

3. Which Concepts for Concurrent and Parallel Progr. does a VM need to Support?

defines that each object is implicitly associated with a lock to enable synchro-
nized methods. The metadata associated with every method, which is part of
the ISA, has therefore to contain the ImplFlags.Synchronized flag, according
to the specification. Other atomic and synchronization operations are defined
in terms of primitives for instance for compare-and-swap, atomic update op-
erations, and explicit memory barriers, i. e., fences.

Beyond these mechanisms, the specification also discusses the functions
Parallel.For, Parallel.ForEach, and Parallel.While. They are part of the
standard library to provide parallel looping constructs. With the notion of
AppDomains it also includes a mechanism to facilitate communicating isolates,
which is discussed in Sec. 3.1.2.3.

Java Virtual Machine (JVM) The analysis of the Java Virtual Machine (JVM)
relies on the specification [Lindholm et al., 2012] and considers the OpenJDK7

for details about the standard library.
The JVM provides a programming model that is solely based on shared

memory. It relies on the memory model defined by the Java Language Spec-
ification [Gosling et al., 2012] to establish the semantics of operations on this
shared memory and the visibility of changes to the memory between oper-
ations and threads. The semantics are defined in terms of happens-before re-
lationships between operations. For example, synchronization operations as
well as reading and writing of volatile fields have specific semantics, which
constrain optimizations of compilers and processors to guarantee that the
observable ordering of operations is deterministic. Similar to the CLI, these
semantics are realized in terms of the implicit semantics implemented in the
VM and its JIT compiler.

In addition to the memory model, locking-based abstractions are a key con-
currency feature, because every object is implicitly associated with a lock to
enable synchronized methods and can also be used as a condition variable.
Methods can carry the ACC_SYNCHRONIZED flag, and the two bytecode instruc-
tions monitorenter and monitorexit expose the object’s lock on the ISA level
to enable the implementation of synchronized blocks. A note in the specifica-
tion also hints at Object.wait and Object.notify being realized as primi-
tives. In contrast to the CLI, the JVM does not have the notion of volatile
variables, because it does not have closures. Instead, it provides only volatile
object fields, which are realized in the ISA by a the ACC_VOLATILE flag in the
object field’s metadata.

46

3.1. VM Support for Concurrent and Parallel Programming

The JVM does not provide any high-level mechanisms for communication
between threads. While the standard library provides futures, a set of con-
current objects/data structures, barriers, and the necessary abstractions for
fork/join programming, these libraries completely rely on the abstractions
provided by the VM in terms of volatile fields, locks, and atomic operations.

Dalvik VM Google develops the Dalvik VM for its Android platform. While
there is no specification available, Google stated its goal to build a VM that
implements the semantics of the Java Language Specification (JLS) [Gosling
et al., 2012].

An inspection of the source code reveals that Dalvik provides monitorenter
and monitorexit instructions to interact with an object’s lock, which are sim-
ilar to the instructions in the JVM. Furthermore, Google intends to provide
a Java-compatible standard library as well. With these similarities in mind,
Dalvik is classified for the purpose of this discussion as a JVM derivative. It
differs in certain points from the JVM, e. g., using a register-based bytecode
format and a different encoding for class files, but does not deviate from the
JVM/JLS when it comes to concurrency and parallelism-related aspects.

Mozart The Mozart VM is an implementation of the Oz language. The multi-
paradigm approach of Oz also has an impact on the VM and the concepts it
exposes. The Oz language provides a variety of different abstractions for con-
current and distributed programming. This includes a shared memory model
extended by different adaptable replication semantics and remote references
for distributed use. The Mozart VM combines the notions of green threads,
locks, and data-flow variables. It exposes Ports as a channel-based abstraction,
and additionally reifies data-flow variables to be used as futures/promises.
Similarly to the CLI and JVM, lock support is provided at the instruction set
level with a parameterized LOCKTHREAD instruction that represents operations
on reentrant locks. In addition to this VM support, the standard library and
documentation discuss concepts built on top of these abstractions, e. g., mon-
itors and active objects.

Sec. 3.1.2.2 discusses the abstractions related to Communicating Threads.

Python Traditionally, Python offers a thread-based shared memory program-
ming model. In contrast to the CLI and JVM, its memory model is defined by
global interpreter lock-semantics. The global interpreter lock (GIL) prevents par-
allel execution of Python code, however, it for instance enables the use of I/O

47

3. Which Concepts for Concurrent and Parallel Progr. does a VM need to Support?

or computational intensive operations provided by the underlying system or
primitives. Thereby, it enables a certain degree of parallel execution and la-
tency hiding. C modules for Python are able to use PyEval_AcquireLock()

and PyEval_ReleaseLock() to release the lock before starting I/O or compu-
tational intensive operations that do not require interpreter intervention and
thereby enable other threads to use it.

The threading module provides threads, locks, recursive locks, barriers,
semaphores, and condition variables. However, only thread operations, locks,
and recursive locks are implemented as primitives. Barriers, semaphores, and
condition variables are built completely on top of them.

Similarly to Mozart, Python’s support for Communicating Isolates is dis-
cussed separately in Sec. 3.1.2.3.

Ruby Similarly to Python, Ruby’s standard implementation is based on a
GIL, called global VM lock (gvl). C modules that want to execute in parallel
can do so by using the high-level rb_thread_blocking_region(..) function,
by which they promise to take care of threading issues by themselves, and
the VM will release the gvl during execution. However, this is of course not
offered at the language level.

To the user, Ruby offers primitives for Threads and Mutexes combined with
the shared memory model as part of VM support. The standard library builds
on this basic support by offering for instance condition variables.

Self and Squeak Squeak is based on the ideas of Smalltalk-80 [Goldberg and
Robson, 1983] and follows its specification closely (cf. sections 4.3 and 4.4).
Self [Chambers et al., 1989] belongs to the Smalltalk family of languages as
well, but has significant differences in terms of its object model. Furthermore,
it pioneered important language implementation techniques such as dynamic
optimization. Both Squeak and Self closely follow the standard Smalltalk
model when it comes to concurrent and parallel programming. They offer
the notion of green threads in combination with semaphores.

Squeak implements these concepts based on primitives. It provides for in-
stance yield, resume, and suspend primitives to influence the scheduling of
green threads (instances of the Process class). Furthermore, it provides the
signal and wait primitives to interact with the semaphore implementation
of the VM. Based on these, the libraries provide mutexes, monitors, and con-
current data structures such as queues.

48

3.1. VM Support for Concurrent and Parallel Programming

In Self, the functionality is implemented completely in libraries. The VM
provides only preemptive green threads and the so-called TWAINS_prim prim-
itive. This provides sufficient VM support to build scheduling, semaphores,
and other abstractions on top.

3.1.2.2. Communicating Threads (ComT)

Similarly to Threads and Locks, the Communicating Threads-based models offer
shared memory and come with the notion of threads as a means of execu-
tion. However, they offer approaches to communicate between threads that
are distinct from approaches that rely on locks for correctness. For instance,
channel-based communication has software engineering tradeoffs different
from the use of locks.

Dis VM The Dis VM [Lucent Technologies Inc and Vita Nuova Limited,
2003] is part of the Inferno OS and hosts the Limbo programming language.
Since the source code does not seem to be available, the analysis relies solely
on the specification and manuals.

Limbo, and consequently the Dis VM are strongly inspired by Hoare’s CSP
(cf. Sec. 2.4.4). However, Limbo and the Dis VM provide the notion of shared
mutable memory between threads and do not follow the notion of isolated
processes as proposed by CSP.

The instruction set of the Dis VM provides operations to mutate shared
memory, spawn threads, and use channel-based communication with send-
ing and receiving. Since the Dis VM uses a memory-to-memory instruction
set architecture, instead of relying on registers, most operations mutate heap
memory. While threads are available, there are no locking-like primitives or
instructions available. Instead the send, recv, and alt channel operations are
the only instructions in the specification that provide synchronization.

Nevertheless, the Limbo language manual demonstrates how monitors can
be built on top of channels.

Glasgow Haskell Compiler The Glasgow Haskell Compiler (GHC) was one
of the first language implementations to include a software transactional
memory (STM) system in its standard distribution. While Haskell is designed
as a side-effect free language with lazy execution semantics, its monadic-style
can be used in an imperative way, which makes it necessary to coordinate
side-effects when parallel execution is used. To that end, GHC introduced

49

3. Which Concepts for Concurrent and Parallel Progr. does a VM need to Support?

STM based on mutable TVars [Harris et al., 2005]. TVars, i. e., transaction vari-
ables, are shared memory locations that support atomic memory transactions.
It is implemented as part of the GHC runtime system, i. e., it is supported
directly by the VM. One of the provided STM-implementation strategies uses
fine-grained locking of TVars to minimize serialization of execution during
commits.

Independently from the STM system, GHC supports explicit spawning of
parallel executing sparks, which are lightweight threads. Haskell’s par eventu-
ally results in a call to the corresponding newSpark primitive in the runtime.

With the support for MVars, GHC enables additional communication pat-
terns, for instance channel-based communication, building on the ideas of M-
Structures [Barth et al., 1991; Peyton Jones et al., 1996]. MVars are synchroniza-
tion variables that can store values. Their basic operations are takeMVar and
putMVar. When an MVar is empty, a takeMVar will block. Similarly, putMVar
will block when it is full. MVars are implemented in the runtime (StgMVar).

The standard library provides a semaphore construct on top of MVars. Fur-
thermore, the library includes proper channels and various abstractions to
perform map/reduce and data parallel operations.

Mozart The data-flow variables of Oz, and their direct support in the Mozart
VM enable algorithm designs that are significantly different from algorithms
based on threads and locks. An OzVariable represents these data-flow vari-
ables inside the VM and for instance keeps track of all threads that are
suspended on unresolved data dependencies. The directly exposed VM sup-
port for channels (OzPort) enriches the choice for programmers even further.
Therefore, we conclude that the Mozart VM provides abstractions for Commu-

nicating Threads in addition to the Threads and Locks-based ones.

3.1.2.3. Communicating Isolates (ComI)

As defined in Sec. 2.4.1, the main concept introduced by communicating iso-
lates is the strong state encapsulation between concurrent entities. This breaks
with the typical shared memory model and enforces clear separation between
components. Communication has to be performed either via value-based mes-
saging or by using explicitly introduced and constrained shared memory data
structures.

Common Language Infrastructure In addition to Threads and Locks-based
abstractions, the CLI specifies so-called application domains that provide a no-

50

3.1. VM Support for Concurrent and Parallel Programming

tion of isolated execution of different applications in the same VM process.
This concept has to be supported by a VM implementation in order to provide
isolation properties similar to operating system processes. Different applica-
tion domains can only communicate using the remoting facilities.10 Remoting

is Microsoft’s and the CLI’s technique for inter-process communication and
distributed objects. The remoting facilities enable remote pointers and mar-
shaling protocols for remote communication in an object-oriented manner.
They are realized with System.MarshalByRefObject which is according to
the specification supposed to use a proxy object, which locally represents the
remote object of another application domain.

Because application domains are isolated from each other, the static state
of classes is not shared between them either. This isolation approach goes as
far as to require types to be distinct in different application domains.

ECMAScript+HTML5 JavaScript as well as the current version of the corre-
sponding ECMAScript standard [ECMA International, 2011] do not provide
any abstractions for concurrent or parallel programming. Since browsers use
event loops to react to user input, they process the corresponding JavaScript
code at a later point in time to guarantee sequential execution. Furthermore,
the execution model is nonpreemptive, and each turn of the browser’s event
loop executes completely and is not interrupted. In the absence of parallel
execution on shared memory, ECMAScript/JavaScript does not provide any
mechanisms for synchronization.

However, this survey includes the widely available Web Worker11 exten-
sion, which is proposed for standardization as part of HTML5. Web work-
ers introduce the notion of background processes that are completely isolated
from the main program. The specification names the communication interface
MessagePort and offers a postMessage method as well as an onmessage event
handler to enable communication between web workers. They communicate
solely via these channels with by-value semantics. The two JavaScript browser
runtimes SpiderMonkey and V8 support processes and channels directly.

Erlang Erlang is known for its support of actor-based concurrent program-
ming. It is implemented on top of the BEAM (Bogdan’s Erlang Abstract Ma-
chine [Armstrong, 2007]), which exposes the main abstractions required for an

10.NET Remoting Overview, Microsoft, access date: 15 Sep. 2012

http://msdn.microsoft.com/en-us/library/kwdt6w2k(v=vs.71).aspx
11http://www.whatwg.org/specs/web-apps/current-work/multipage/workers.html

51

http://msdn.microsoft.com/en-us/library/kwdt6w2k(v=vs.71).aspx
http://www.whatwg.org/specs/web-apps/current-work/multipage/workers.html

3. Which Concepts for Concurrent and Parallel Progr. does a VM need to Support?

actor-based language directly to application programs. The main operations
are directly provided by the instruction set. The send instruction implements
asynchronous message sends to a specified actor, i. e., Erlang process. The
wait and wait_timeout instructions are used to wait for incoming messages
on the message queue. To facilitate Erlang’s pattern matching, messages are
only removed from the message queue when the explicit remove_message in-
struction is used. However, new Erlang processes are spawned by a primitive.

For use-cases like the Mnesia database,12 Erlang also provides a set of prim-
itives for mutable concurrent hash-tables (ets, Erlang term storage13) that can
be shared between actors. While this introduces a restricted notion of shared
state, it is not part of the core primitives suggested for general use.

Perl The Perl14 VM offers support for so-called threads. However, this ter-
minology is not in line with the commonly accepted notion of threads. Perl’s
threads are more directly comparable to OS processes as they provide a non-
shared memory programming model by default. However, the VM provides
primitives in the threads::shared module to enable the use of shared data
structures between these threads. Data structures can only be shared between
threads after they have been explicitly prepared for sharing with the share()

primitive. To use this restricted form of shared memory, the VM provides
the Queue data structure for channel-like communication, as well as a lock

primitive, a Semaphore class, and primitives for condition variables.

Python As discussed in Sec. 3.1.2.1, Python’s main programming model is
based on threads and locks with a VM implementation that is constrained
by global interpreter lock (GIL) semantics. Since the GIL hinders any form of
parallel execution of Python bytecodes, VM support for process-based paral-
lelism was added. The standard library provides the multiprocessing mod-
ule to offer an abstraction for parallel programming similar to Perl. Python’s
VM includes primitives for channels in the form of a message queue (Queue),
as well as primitives for semaphores on top of which for instance the Lock and
Condition classes are built. These can operate on shared memory that has to
be requested explicitly between communicating processes and is restricted
to certain data structures. Value and Array are the shareable data structure
primitives directly exposed by the library. Value is by default a synchronized

12http://www.erlang.org/doc/apps/mnesia/
13http://www.erlang.org/doc/man/ets.html
14http://perldoc.perl.org/perl.html

52

http://www.erlang.org/doc/apps/mnesia/
http://www.erlang.org/doc/man/ets.html
http://perldoc.perl.org/perl.html

3.1. VM Support for Concurrent and Parallel Programming

wrapper around an object, while Array wraps an array with implicit synchro-
nization.

3.1.2.4. Data Parallelism (DPar)

Surprisingly, none of the VMs examined in this survey expose direct sup-
port for data parallelism. Instead, they are typically accompanied by stan-
dard libraries that build support for parallel programming on top of lower-
level abstractions. Examples are the CLI with its library of parallel loop con-
structs, the JVM (incl. Dalvik) with its support for fork/join parallelism in
the java.util.concurrent library,15 and GHC with libraries for map/reduce
parallelism. These libraries are built on top of concepts already available, e. g.,
threads, atomic operations, and locks, and therefore the analyzed VMs do not
provide primitives that expose parallel programming concepts directly.

3.1.2.5. Threats to Validity

Completeness of Selected Subjects The main survey question was: how do

today’s VMs support parallel and concurrent programming approaches? The answer
to this question is based on a set of thirteen VMs. Thus, the number is limited
and the selected set may exclude VMs that provide other mechanisms and ex-
pose them in other ways to the application programmer. However, since the
survey covers contemporary multi-language VMs, and a number of additional
VMs respected for their support for parallel and concurrent programming,
it covers the VMs that are directly relevant for the goal of this dissertation.
Furthermore, the selected VMs reflect common practice in VM support for con-
current and parallel programming approaches, because the selection includes
the most widely used VMs, as well.

Correctness and Completeness of Results With respect to the concrete sur-
vey questions of which concepts are exposed and how they are exposed, a
number of threats to correctness and completeness of the results need to be
considered.

General Threats to Accuracy As shown in Tab. 3.1, the analysis did not in-
clude the implementations of the CLI and DisVM. Instead, the quality of their

15http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/package-

summary.html

53

http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/package-summary.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/package-summary.html

3. Which Concepts for Concurrent and Parallel Progr. does a VM need to Support?

specification is deemed sufficiently precise to answer the questions for which

and how concepts are exposed accurately.
Other aspects have a stronger impact on the confidence in the results. In

general, the survey is based on the specifications, language manuals, and
inspection of actual implementations. While it initially included the Parrot
VM16 as an interesting subject, it was omitted, since the mismatch between
documentation and implementation was major. It was not clear whether the
documentation was outdated or visionary, or whether the understanding of
the implementation was not sufficient, making a proper assessment impossi-
ble. This example raises the question of how valid the results are. Most imple-
mentations use customary names and make an effort to be comprehensible,
which results in a high confidence in the results. However, it is not possible
to eliminate the possibility that the analysis is to a lesser extent inaccurate or
incomplete.

Exposure Assessment The confidence in the assessment that a given con-
cept is supported directly by a VM is high, because the VM implementations
provide direct evidence that a concept is supported as primitive or as part
of the the instruction set. However, a concept may have been missed. Thus,
some concepts may in fact be supported by the VM directly. Completeness is
thus an issue for the question of whether concepts are directly supported by
a VM. This assessment could also not by verify trivially. However, this form
of completeness has only little impact on the overall results, since it includes
a larger number of different VMs.

Concept Completeness The confidence in the completeness of the overall
identified set of concepts that is exposed by a VM and its libraries is high,
because the typically sufficiently extensive and well structured language doc-
umentations enable a trivial verification for completeness.

Problematic are concepts that are solely available in the implementations
and remain undocumented. One example for such a case is the relatively
well know Unsafe class in Oracle’s JVM implementation.17 Other similarly
private APIs might have been missed. Arguably, such concepts are not meant
to be used by programmers targeting the VM, and therefore do not need to be
considered as concepts that are offered by the VM. Instead, these concepts are

16http://www.parrot.org/
17http://hg.openjdk.java.net/jdk7/jdk7/jdk/log/tip/src/share/classes/sun/misc/U

nsafe.java

54

http://www.parrot.org/
http://hg.openjdk.java.net/jdk7/jdk7/jdk/log/tip/src/share/classes/sun/misc/Unsafe.java
http://hg.openjdk.java.net/jdk7/jdk7/jdk/log/tip/src/share/classes/sun/misc/Unsafe.java

3.1. VM Support for Concurrent and Parallel Programming

considered internal basic building blocks outside of the scope of this survey,
and thus do not have an influence on our results.

3.1.3. Conclusion

Summary This survey investigated the state of the art in VM support for
concurrent and parallel programming. It examined thirteen VMs, including
contemporary multi-language VMs and a number of VMs selected for their
support for concurrent and parallel programming. The analysis identified for
each VM the concepts it exposes and whether it exposes them in terms of
implicit semantics, as part of the VM’s instruction set architecture, in terms of
primitives, or merely as part of the standard libraries. The main insight is
that the analyzed VMs only support one or two categories of concepts. Fur-
thermore, they consistently relegate support for parallel programming to the
standard library without providing explicit support for optimization.

Concept Exposure In answering the question of how concepts are exposed,
the survey shows that very general concepts such as shared memory, mem-
ory models, and global interpreter lock semantics are realized by a combina-
tion of mechanisms in the VM, which were categorized as implicit semantics

(cf. Sec. 3.1.1.1). Typically, they have an impact on most parts of a VM, be-
cause they require guarantees from a wide range of VM subsystems. More
restricted, and often performance sensitive concepts are exposed as part of
the overall instruction set architecture. Examples are monitors, synchronized
methods, volatile variables, and in some cases also high-level concepts like
channels, message sends, message receives, and threads or processes.

Primitives are used for a wide range of concepts. Design decisions differ
between VMs, thus some concepts are supported either in the instruction
set or as primitives, e. g., locks, channels, and threads, but also concepts like
atomic operations, and condition variables. Other high-level concurrency con-
cepts such as concurrent data structures are provided as libraries. With the
definitions of concurrent and parallel programming of Sec. 2.3 in mind, the
conclusion is that none of the concepts that are provided with implicit seman-
tics, ISA support, or primitives is directly related to parallel programming.
Instead, all the identified parallel programming concepts have been realized
in the form of libraries.

Only limited support for concurrent and parallel programming. Since sup-
port for parallel programming is based on libraries, none of the VMs is cate-

55

3. Which Concepts for Concurrent and Parallel Progr. does a VM need to Support?

gorized as providing abstractions for Data Parallelism. However, roughly half
of the VMs provide abstractions around Threads and Locks. Three provide ab-
stractions for Communicating Threads, and five provide abstractions for Com-

municating Isolates. Only three of the VMs provide abstractions for two of
these categorizes. Therefore, most of the contemporary VMs concentrate on a
single model for concurrent programming.

To conclude, it is uncommon to support multiple concurrent or parallel
programming concepts. This is not surprising, since most VMs are built for a
single language. Furthermore, support for parallel programming is relegated
to libraries, and none of the examined VMs provides direct support for it.

Seeing the current state of the art and the design choice of supporting only
a small number of specific concepts in VMs, it remains open how multiple
concepts can be supported on a modern multi-language VM.

3.2. A Survey of Parallel and Concurrent Programming

Concepts

After investigating the state of the art in VM support for concurrent and par-
allel programming, it can be concluded that the vision of this dissertation
has not yet been realized. Thus, there is currently no unifying substrate that
enables language and library developers to implement concurrent and paral-
lel programming concepts on top of multi-language VMs. However, the field
of these programming concepts is wide and it is not yet clear what exactly
a VM needs to support. To discuss this question in its full generality, this
section reports on a survey that covers as many of the field’s programming
concepts as possible to reach a more complete understanding of which con-
cepts benefit from VM support. Specifically, this survey identifies concepts
that significantly benefit from VM support. To this end, the survey divides
the concepts of the field into the concepts that require VM support to guaran-
tee their semantics, and the concepts that can achieve significantly improved
performance using VM support.

The main result of this survey is a set of general requirements for the two
groups of concepts. The concepts that benefit from improved performance
require support for dynamic optimization and runtime monitoring that cap-
tures specific execution characteristics to enable adaptive optimization. The
concepts that require VM support to guarantee their semantics benefit most
from mechanisms to specify custom method execution and state access poli-
cies. Since the requirements for the two sets of concepts are independent

56

3.2. A Survey of Parallel and Concurrent Programming Concepts

of each other and require significantly different research, this dissertation
chooses to focus on guaranteeing the semantics, i. e., the correctness of imple-
mentations for concurrent programming concepts on top of multi-language
VMs.

3.2.1. Survey Design

The goal of this survey is to identify concepts that are relevant for a multi-
language VM in order to facilitate the implementation of concurrent and
parallel programming abstractions. To that end, this section first discusses
the selected questions that categorize the concepts. Then, it details the ap-
proach to identify parallel and concurrent programming concepts and finally,
it presents the findings and concludes with general requirements for the sup-
port of these concepts.

3.2.1.1. Survey Questions

When features are considered for inclusion in a VM, one of the main goals is
to avoid unnecessary complexity (cf. Sec. 2.1). From this it follows that a new
concurrent or parallel programming concept needs to be added to a VM only
if it cannot reasonably be implemented in terms of a library on top of the VM.
Thus, our first question is:

Lib Can this concept be implemented in terms of a library?

Interpreting the question very broadly, it considers whether some variation
of the concept can be implemented, i. e., a variation for instance with missing
semantic guarantees such as isolation. Thus, such a library implementation
can either suffer from losing semantic guarantees, or it has to accept perfor-
mance drawbacks. The following two questions account for this variation:

Sem Does this concept require runtime support to guarantee its semantics?

Perf Are there indications that runtime support would result in significant
performance improvements compared to a pure library solution?

The answers to Sem also consider interactions of different languages on top
of a VM as well as the influence of reflection. This is relevant since language
guarantees are often enforced by a compiler and do not carry over to the
level of the VM. One example is the semantics of single-assignment variables,
which is typically not transferred to the bytecode level of a VM.

57

3. Which Concepts for Concurrent and Parallel Progr. does a VM need to Support?

The answers to Perf consider intuitive optimizations that become pos-
sible with knowledge of full language semantics. For instance, knowledge
about immutability enables constant folding, and taking the semantics of crit-
ical sections into account enables optimizations like lock elision [Rajwar and
Goodman, 2001]. Furthermore, the answers rely on the literature of proposed
implementation strategies that require changes to a VM.

The last categorization criterion is whether the concept is already common
to VMs that are used as multi-language platforms and should be regarded as
prior art (PA). When it is already available to the major multi-language VMs
identified in Sec. 3.1.1.2, i. e., the JVM or CLI, general VM support for the con-
cept is considered to be feasible and well understood, and therefore, does not
need to be included in further discussion. Only JVM and CLI are considered
here, because these two are specifically designed as multi-language VMs.

PA Is the concept already supported by a VM like the JVM or CLI?

3.2.1.2. Selecting Subjects and Identifying Concepts

The survey of Briot et al. [1998] of concurrent and distributed systems as well
as the survey of Skillicorn and Talia [1998] of parallel models and languages
are the main subjects to identify concurrent and parallel programming con-
cepts. They provide a broad foundation and an overview over a wide range of
concurrent and parallel programming concepts. Since concurrent and parallel
programming have been investigated for years in the field of logic program-
ming as well, two surveys for parallel logic programming [De Bosschere, 1997;
Gupta et al., 2001] complement the surveys from the imperative world. How-
ever, since all four surveys are dated and lack coverage of recent work, a
number of languages used in research or industry and selected research pa-
pers from recent years are included as subjects to cover current trends. The
full list of subjects is given in Tab. 3.3.

This survey identifies for each of these subject the basic concurrent and par-
allel programming concepts it introduces, i. e., the concepts that are presented
by the paper or provided by the language. For languages, this includes con-
cepts from the language-level as well as the implementation-level. Note that
the identified concepts abstract necessarily from specific details that vary be-
tween the different subjects. Thus, this analysis does not regard minor vari-
ations of a concept separately. However, this leaves room for different inter-
pretations of the survey questions. Furthermore, the analysis of subjects such
as C/C++ and Java considers only the core language and standard libraries.

58

3.2. A Survey of Parallel and Concurrent Programming Concepts

Table 3.3.: Survey Subjects: Languages and Papers

Active Objects [Lavender and Schmidt, 1996] JCSP [Welch et al., 2007]
Ada Java 7 [Gosling et al., 2012]
Aida [Lublinerman et al., 2011] Java Views [Demsky and Lam, 2010]
Alice Join Java [Itzstein and Jasiunas, 2003]
AmbientTalk [Van Cutsem et al., 2007] Linda [Gelernter, 1985]
Ateji PX MPI [Message Passing Interface Forum, 2009]
Axum MapReduce [Lämmel, 2008]
Briot et al. [1998] MultiLisp [Halstead, Jr., 1985]
C# Occam-pi [Welch and Barnes, 2005]
C/C++11 [ISO, 2011, 2012] OpenCL
Chapel OpenMP [OpenMP Architecture Review Board, 2011]
Charm++ Orleans [Bykov et al., 2011]
Cilk [Blumofe et al., 1995] Oz [Mehl, 1999]
Clojure Parallel Actor Monitors [Scholliers et al., 2010]
CoBoxes [Schäfer and Poetzsch-Heffter, 2010] Parallel Prolog [De Bosschere, 1997; Gupta et al., 2001]
Concurrent Haskell Reactive Objects [Nordlander et al., 2002]
Concurrent ML [Reppy et al., 2009] SCOOP [Morandi et al., 2008]
Concurrent Objects [Herlihy, 1993] STM [Shavit and Touitou, 1995a]
Concurrent Pascal Skillicorn and Talia [1998]
Concurrent Smalltalk [Yokote, 1990] Sly [Ungar and Adams, 2010]
Erlang [Armstrong, 2007] StreamIt [Thies et al., 2002]
Fortran 2008 Swing
Fortress UPC [UPC Consortium, 2005]
Go X10 [Charles et al., 2005]
Io XC

Thus, common libraries and extensions for these languages are considered as
separate subjects.

3.2.2. Results

The analysis of the subjects given in Tab. 3.3 resulted in 97 identified concepts.
Since most of them are accepted concepts in the literature and major ones
have been covered in Sec. 2.4, this section restricts their discussion to the re-
sults of the survey questions. As mentioned earlier, some concept variations
have been considered together as a single concept. For example, the distinct
concepts of monitors and semaphores, have been regarded as part of locks

in this survey. Similarly, the concept of parallel bulk operations also covers the
concept of parallel loops for the purpose of this discussion, because both are
similar enough and have closely related implementation strategies. With these
subsumptions, Tab. 3.4 needs to cover only the 66 major concepts and their re-
spective survey results. See Tab. 3.5 for the details about which concepts have
been considered together.

59

3. Which Concepts for Concurrent and Parallel Progr. does a VM need to Support?

Table 3.4.: Identified concepts classified. PA: prior art, Lib: implemented as library,
Sem: support for semantics required, Perf: support for performance

Prior Art PA Lib Sem Perf Prior Art PA Lib Sem Perf

Asynchronous Operations X X X Join X
Atomic Primitives X X Locks X X X
Co-routines X X Memory Model X X X
Condition Variables X X X Method Invocation X X
Critical Sections X X X Race-And-Repair X X
Fences X X Thread Pools X X
Global Address Spaces X X X Thread-local Variables X X X
Global Interpreter Lock X X Threads X X
Green Threads X Volatiles X X
Immutability X X X Wrapper Objects X X X

Library Solutions PA Lib Sem Perf Library Solutions PA Lib Sem Perf

Agents X Guards X
Atoms X MVars X
Concurrent Objects X Message Queue X
Event-Loop X Parallel Bulk Operations X
Events X Reducers X
Far-References X Single Blocks X
Futures X State Reconciliation X

Potential Perf. Benefits PA Lib Sem Perf Potential Perf. Benefits PA Lib Sem Perf

APGAS X X Implicit Parallelism X X
Barriers X X Locality X
Clocks X X Mirrors X X
Data Movement X One-sided Communication X X
Data-Flow Graphs X X Ownership X
Data-Flow Variables X X PGAS X X
Fork/Join X X Vector Operations X X

Semantics req. Support PA Lib Sem Perf Semantics req. Support PA Lib Sem Perf

Active Objects X X Message sends X X X
Actors X X X No-Intercession X X X
Asynchronous Invocation X X X Persistent Data Structures X X
Axum-Domains X X Replication X X
By-Value X X X Side-Effect Free X X
Channels X X X Speculative Execution X X
Data Streams X X X Transactions X X X
Isolation X X X Tuple Spaces X X
Map/Reduce X X Vats X X X

60

3.2. A Survey of Parallel and Concurrent Programming Concepts

Table 3.5.: Subsumed concepts: These concepts are regarded together.

Main Concept Subsumed Concepts

Atomic Primitives atomic swap, compare-and-swap
By-Value isolates
Fences memory barriers
Futures ivars, promises
Global Address Spaces shared memory
Immutability single assignment variables
Isolation encapsulation, processes
Locks monitors, reader-writer-locks, semaphore, syn-

chronized methods
No-Intercession no-reflection
Parallel Bulk Operations data parallelism, parallel blocks, parallel loops,

parallel prefix scans
Speculative Execution speculative parallelism
Transactions atomic operations
Volatiles volatile fields, volatile variables

As Tab. 3.4 shows, with 34 concepts about half of the concepts are already
available in JVM and CLI or can be implemented in terms of a library without
sacrificing semantics or performance. Therefore, this section discusses only
the remaining 32 concepts. It starts with detailing the assessment for the 14

concepts for which only potential performance benefits have been identified.
This discussion is completed by detailing the 18 concepts that require run-

time support to enforce their semantics properly. This analysis briefly de-
scribes what exactly the VM needs to enforce and if applicable, how VM
support could improve performance.

Improved Performance without Semantic Impact The concepts listed in
Tab. 3.4 under Potential Performance Benefits could benefit from VM support
in terms of performance. However, they do not require an enforcement of
semantic guarantees by the runtime.

APGAS, One-sided Communication, PGAS The PGAS (cf. Sec. 2.4.3) and
APGAS (cf. Sec. 2.4.4) languages make the distinction between local and re-
mote operations or memory explicit. Thereby, they give the programmer a
better intuition on the cost of an operation. However, this leads to engineer-
ing tradeoffs between defining general algorithms and optimizing for the lo-
cal case [Barik et al., 2011].

Proposed compiler optimizations can be applied to reduce the need for
communication and improve performance [Barik et al., 2011; El-Ghazawi et al.,

61

3. Which Concepts for Concurrent and Parallel Progr. does a VM need to Support?

2006; Serres et al., 2011; Zhao and Wang, 2009]. However, such static compiler
optimizations cannot take dynamic properties into account. Thus, additional
runtime information could lead to further optimizations. Optimizations to
reduce and optimize communication adaptively require information on com-
munication patterns, for instance to batch and interleave them. Furthermore,
since such optimizations could likely benefit from language-specific details,
the VM would need to expose JIT compiler infrastructure to enable an inter-
action between language implementation and runtime.

Barriers, Clocks Barriers, X10’s clocks, and phasers [Shirako et al., 2008]
have traditionally been implemented as libraries, since they can be efficiently
realized based on atomic operations only. One example is our design of an
efficient and scalable phaser implementation [Marr et al., 2010b]. However,
since the use of barriers varies widely, static analysis can select more effi-
cient implementations based on the actual use in a program [Vasudevan et al.,
2009].

Additionally, runtime information could complement static analysis and
reduce the overall need for synchronization even further. Following the idea
of phasers, a conservative barrier could be weakened dynamically to avoid
over synchronization. Such an optimization would require information on
data access and access patterns in high-level data structures. Furthermore, it
would need to interact with the JIT compiler to adapt the generated code.

Data Movement, Locality Since multicore and manycore architectures have
increasingly Non-Uniform Memory Access (NUMA) characteristics, data local-
ity becomes a significant performance concern. While the mentioned PGAS
and APGAS programming models tackle that problem in an explicit manner
by exposing distribution on the language level like in X10 or Chapel, current
NUMA support in VMs is often restricted to allocating objects in memory that
is local to the core which performed the allocation. Here feedback-driven ap-
proaches to dynamic optimization could improve the locality by moving data
or computation based on actual usage patterns. Such optimizations could be
realized based on low-level hardware features taking the processor’s cache
architecture into account. Thus, they need precise information about con-
crete hardware properties, GC behavior, and heap layout. For instance, the
approach proposed by Zhou and Demsky [2012] monitors memory accesses
at the page level and changes caching policies and locality accordingly. Such

62

3.2. A Survey of Parallel and Concurrent Programming Concepts

an optimization would be at the VM level and does not require interaction
with the high-level language on top of the VM.

Data-Flow Graphs, Data-Flow Variables, Implicit Parallelism Optimiza-
tions for data parallel programs are often represented as data-flow graphs that
enable more powerful static analyses than control-flow graphs (cf. Sec. 2.4.5).
However, this representation is usually only an intermediate form that is used
to compile to traditional imperative native code representations. In that step,
parallelism is often coarsened up in terms of a sequential cut-off to reduce
its overhead and make it practical on today’s hardware architectures. These
coarsening techniques are relevant for programs in data-flow representation,
programs based on data-flow variables, or implicit parallelism. Furthermore,
they could also be beneficial to models like fork/join.

Such optimizations typically require detailed knowledge about the seman-
tics of the compiled language. Furthermore, they could benefit from profiling
information during runtime to assess the cost of operations more precisely.
Thus, they would benefit from access to the corresponding dynamic profiling
information and the JIT compiler infrastructure.

Fork/Join While fork/join could benefit from classic compiler optimizations
such as coarsening, Kumar et al. [2012] report that one of the most significant
costs is the reification of tasks. Thus, they propose to integrate the work-
stealing that is used for fork/join into the runtime and reify task objects only
lazily. With such an optimization, the sequential overhead of fork/join would
be significantly reduced. On the other hand, the runtime would need to pro-
vide facilities to inspect and modify the call stack during execution.

To support multiple different languages, with potentially different varia-
tions of fork/join, an extended VM interface to realize such optimizations to
tailor the implementation to the specific language semantics would be benefi-
cial.

Mirrors While mirrors [Bracha and Ungar, 2004] are not directly related
to concurrency and parallelism, languages like AmbientTalk integrate them
tightly with the concurrency model. Furthermore, their use can enable the
enforcement of certain language guarantees at a library level for systems
that use a capability-based security model. Problematic is the performance
overhead of reflective operations (cf. Sec. 8.5.1). Approaches like invokedy-

63

3. Which Concepts for Concurrent and Parallel Progr. does a VM need to Support?

namic [Thalinger and Rose, 2010] or partial evaluation [Shali and Cook, 2011]
can reduce that overhead by enabling optimization of reflective calls.

Ownership The notion of object ownership is used in a number of concepts
such as Clojure agents, actors, and CSP to define policies that distinguish
between entities that access an object. The implementation of ownership in
a library would require an extension of every object to keep track of its
owner. Runtime support in the memory management system could optimize
the memory overhead by keeping track of the owner implicitly for instance
by splitting the heap in regions that can belong to different owners. Similar
optimizations have been proposed to keep track of meta data for garbage
collection, for instance whether objects contain pointers.[Jones et al., 2011]

Vector Operations VM support for vector operations enables efficient data-
parallel processing of homogenous data vectors. However, they are not yet
widely available in VM instruction sets, even though some argue that it would
provide performance benefits [Parri et al., 2011].

Conclusion From our perspective, the discussed concepts can benefit from
a wide range of different optimizations. The most notable commonality is
that they could benefit from VM infrastructure that provides feedback for
adaptive optimizations. This includes information on high-level communica-
tion behavior, order of data accesses to high-level data structures, information
about low-level data access frequencies, and access to execution profiling data.
Furthermore, it would be beneficial to have a VM interface to inspect and ma-
nipulate the runtime stack, control heap layout, and the location of objects.

Most of these optimizations would rely on a common access to the JIT
compiler and could benefit from solutions such as Graal [Würthinger, 2011].
However, it seems likely that they would also require a significant amount of
infrastructure to be added to a VM that is specific to a single programming
concept.

To conclude, these concepts can benefit from advanced infrastructure for
dynamic optimizations and the corresponding facilities for runtime feedback
and monitoring.

Enforcement of Semantics The following concepts require VM support for
enforcing correct semantics. Some of then could also show from improved

64

3.2. A Survey of Parallel and Concurrent Programming Concepts

performance when they are supported by the VM. These concepts are listed
in Tab. 3.4 under Semantics require Support.

Asynchronous Invocation, Active Objects Active objects and other concepts
that rely on asynchronous invocation are typically designed to disallow any syn-
chronous invocation in order to have control over the coordination between
concurrent activations. Some actor systems for object-oriented languages com-
bine the notion of method invocation and message sends while assuming
asynchronous semantics to avoid low-level deadlocks. While these semantics
can often be enforced by relying on proxies, proxies themselves introduce
for instance the identity problem. Furthermore, the desired semantics are in
general not protected against reflective operations.

Actors, Axum-Domains, Isolation, Vats The concepts of actors, vats, Axum’s

domains, and isolation (cf. Sec. 2.4.4) are in general based on proper state encap-
sulation. State encapsulation is often guaranteed by construction. Providing
state encapsulation on top of a system that only has the notion of shared
memory and protecting it against reflection and other languages cooperat-
ing on the same system becomes difficult. Approaches that wrap references
exchanged via interfaces are possible but have performance drawbacks. Fur-
thermore, they do not provide a general guarantee when reflective capabilities
are available. Sec. 3.3.2 discusses the related problems in more detail.

By-Value, Channels, Message Sends The notion of state encapsulation for
actors, CSP, and others also requires proper messaging semantics. Thus, mes-
sages send between different entities need to have value semantics to guar-
antee isolation between these entities. Independent of whether they commu-
nicate via channels or other forms of message sends, the by-value needs to be
enforced. For performance reasons, copying is to be avoided. However, this
requires different entities not to have pointers to the same mutable state at
the same time, or that they cannot observe and mutate state concurrently.
The mechanisms for reflective programming offered by VMs are often able to
subvert such guarantees.

Sec. 3.3.2 discusses the problems related to safe messaging in more detail.

Data Streams, Immutability, Map/Reduce, No-Intercession, Persistent Data

Structures, Replication, Side-effect Freedom, Tuple Spaces Notions such
as immutability or the guarantee of side-effect free computation are relevant for

65

3. Which Concepts for Concurrent and Parallel Progr. does a VM need to Support?

a wide range of concepts such as persistent data structures, tuple spaces, the
data used in data streams and for map/reduce. As an example, a concept that
provides the notion of consistent data replication needs to be able to track
all modifications in order to propagate them correctly. The main obstacles
to these guarantees are typically reflective capabilities of a VM that do not
provide any powerful means to disable intercession or to scope or restrict them
in some way (cf. Sec. 3.3.5).

Speculative Execution, Transactions Similarly to the required ability to re-
strict intercession is the need to integrate some of the programming concepts
deeply into the system. Transaction systems often rely on the ability to track
all loads and stores to memory locations, which is often problematic in the
presence of primitive operations. These have to be adapted to provide the
necessary support for such a software transactional memory system. Some
programming concepts for implicit parallelism require similar capabilities
to provide speculative execution [Hennessy and Patterson, 2007; Herzeel and
Costanza, 2010], enabling them to cancel the side-effects of branches that are
not taken. Here, a full integration with the underlying system can become
unavoidable to enforce the language semantics and causality even in the pres-
ence of speculative execution.

Conclusions Following from our discussion, the concepts that require en-
forcement of semantics vary in only a small number of points, but with these
variations they achieve different sets of language guarantees. One of the as-
pects is the semantics of executing code or invoking methods. A language
can for instance require asynchronous execution or consider other constraints
to allow execution. Another aspect is the accessibility and mutability of state.
The different concepts have a wide range of rules. For some concepts the
owner has the exclusive right to read or mutate state, and other concepts
require full tracking of all state accesses. In addition, all these basic aspects
need to be properly integrated with concepts such as reflection to achieve the
desired semantics.

To conclude, these concepts benefit from a VM interface that enables cus-
tomizable semantics for execution and state access as well as customizable
enforcement against reflection.

66

3.2. A Survey of Parallel and Concurrent Programming Concepts

3.2.3. Threats to Validity

For the validity of the conclusions drawn from this survey, two of its proper-
ties are of major interest: completeness and correctness. The completeness of this
study cannot be guaranteed since it did not cover all existing literature in the
field. Even if it would have covered all known literature, it would still suf-
fer from the completeness problem since an analysis requires manual work
in which certain concepts could be overlooked. However, since this study is
based on existing surveys and is complemented with programming languages
and a wide range of recent work, it covers a significant range of concepts and
includes all major trends.

The correctness of this survey might be reduced by the subsumption of con-
cepts, because relevant details may have been ignored that could have yielded
additional problems that need to be tackled by a VM. However, since the dis-
carded details are most likely specific to a single concept, they would not have
yielded problems that are as general as the ones already discussed in this sur-
vey. Another aspect of the correctness of the results is their consistency with
the discussion in Sec. 3.1. To prevent such consistency issues, the data for the
survey is recorded in a machine readable format. Appendix A.2 details the
used templates for the survey and gives the full list of concepts identified for
each subject. By using a machine readable notation, it was possible to check
the consistency between the two surveys automatically. For instance, the au-
tomation includes a cross-check of the assessment of the different surveys on
whether a concept is supported by a VM, and whether a library implementa-
tion is possible. Thus, consistency between concepts and their implementation
and implementability is given between the two surveys.

3.2.4. Summary

This survey discusses a wide range of concepts for concurrent and parallel
programming. For each concept, it answers the question of whether the con-
cept’s semantics benefit from an enforcement in the VM and whether its per-
formance could benefit significantly from VM support.

A flexible optimization infrastructure and monitoring facilities can be ben-

eficial for performance. The first conclusion is that the various concepts
would benefit from a wide range of different optimizations. They all could
benefit from access to the JIT compiler infrastructure to improve optimiza-
tion. However, to use it properly they would require additional mechanisms

67

3. Which Concepts for Concurrent and Parallel Progr. does a VM need to Support?

in the VM to gather a wide range of runtime information for adaptive opti-
mizations, e. g., high-level communication behavior and low-level data access
frequency information. Further extensions, for instance to inspect and manip-
ulate the runtime stack or the heap layout, would be useful as well. Thus a
VM needs to provide advanced infrastructure for dynamic optimization as
well as facilities for customizable runtime feedback and monitoring.

Policies for execution and state access require support from the VM to be

enforced and need to be integrated with reflection. The second conclusion
is that concepts that require VM support to guarantee their semantics show
a number of commonalities. These concepts vary in only a small number
of aspects, but with these variations they achieve different sets of language
guarantees. The first aspect is the semantics of executing code or invoking
methods, and the second aspect is the accessibility and mutability of state. An
additional common problem is that these basic aspects need to be properly
integrated with concepts such as reflection to achieve the desired semantics.

Improving performance and improving the support for language seman-

tics are two distinct research projects. To improve execution performance,
an investigation of dynamic compilation, adaptive optimization, and runtime
monitoring techniques is necessary. The main focus is on finding efficient tech-
niques to gather and utilize a wide range of different runtime information to
adapt execution dynamically. Such research is expected to yield improvement
for non-functional system requirements.

In contrast, improved support for language semantics requires an investi-
gation of correctness issues and techniques for changing language behavior.
While performance is an issue here as well, the focus is on providing more
flexibility to language developers to adapt execution semantics as necessary.
Thus, this research is expected to yield improvements for functional require-
ments. While performance is a relevant aspect for this research question as
well, it is not in the focus. To conclude, the two research questions are dis-
tinct. Therefore, from our perspective, they should be tackled by two distinct
research projects in order to provide the projects with a clear scope and re-
search goal.

This dissertation concentrates on improving support for language seman-
tics in VMs as the first step in order to achieve a full understanding of the
corresponding problems and to treat the question comprehensively. The main
reason is to concentrate on improving functional concerns first and therefore

68

3.2. A Survey of Parallel and Concurrent Programming Concepts

defer research on the non-functional concerns to future work. The improve-
ments in the area of language semantics promise to alleviate some of the diffi-
culties that come with concurrent and parallel programming today. Support-
ing language implementers by simplifying the implementation of language
guarantees can lead to languages that in turn support the application devel-
oper by providing desirable correctness and engineering properties, which is
the main vision behind this dissertation.

However, performance improvements are an important topic as well and
will be pursued as part of future work (cf. Sec. 9.5.1).

3.2.4.1. General Requirements

Derived from the observations of this survey, the requirements for a multi-
language VM that supports a wide range of abstractions for concurrent and
parallel programming are:

Flexible Optimization Infrastructure Concepts such as barriers, data-flow exe-

cution, mirrors, and vector operations would benefit from access to the JIT
compiler infrastructure to optimize the generated code either based on
static analysis or based on runtime feedback.

Flexible Runtime Monitoring Facilities To facilitate adaptive optimization of
languages that use concepts such as PGAS, barriers, locality, data-flow

Graphs, a VM would need to provide an infrastructure that enables effi-
cient and flexible monitoring of a wide range of aspects. It would need
to record information on low-level data access, high-level data structure
usage, high-level communication patterns, and other information spe-
cific to a given concept.

Powerful VM Interface Related to the flexible optimization infrastructure is
the desire for a powerful VM interface that enables customization of var-
ious aspects. Examples could be customizability of heap arrangements
to support ownership or full support to intercept primitives for accurate
tracking of memory load and store operations, and influence data local-

ity. Another objective is complete access to the runtime stack to support
efficient work-stealing for fork/join.

Custom Execution and State Access Policies The wide range of variations
for method execution and state access policies suggests the need for vari-
able semantic guarantees. A language and library implementer needs
to be able to modify and adjust language semantics for a particular

69

3. Which Concepts for Concurrent and Parallel Progr. does a VM need to Support?

purpose, for instance in the case of of domain-specific languages. The
guarantees that at least need to be supported are asynchronous invocation,
isolation in terms of state encapsulation and safe messaging, scheduling

policies, and immutability. Thus, a VM needs to provide a mechanism for
custom semantics of code execution and state access.

Semantic Enforcement against Reflection As mentioned in the previous dis-
cussions, these guarantees need to be enforceable also in the presence
of reflection. Thus, a form of scoping or a way to differentiate language
guarantees is required (cf. Sec. 3.3.5).

3.2.4.2. Connection with Concurrent and Parallel Programming

This survey indicates a strong correlation between the concepts that require
semantic enforcement on the part of a VM and the category of concepts that fit
the definition of concurrent programming (cf. Sec. 2.3). The definition says that
concurrent programming is about devising a strategy to coordinate indepen-
dent activities at runtime that access a shared resource in order to preserve
the resource’s invariants. Based on this definition, asynchronous invocation,
active objects, actors, Axum-domains, isolation, vats, by-value, channels, mes-
sage sends, immutability, persistent data structures, tuple spaces, and trans-
actions can be categorized as being concepts that are inherently meant to
facilitate concurrent programming.

On the other hand, parallel programming is defined to be the art of de-
vising a strategy to coordinate collaborating activities in order to compute a
common result by employing multiple computational resources. With this def-
inition, PGAS, one-sided communication, barriers, data movement, data-flow
graphs, implicit parallelism, fork/join, and vector operations can be catego-
rized as concepts for parallel programming. None of these concepts is meant
to coordinate arbitrary activities as the concepts for concurrent programming
do. Instead, these concepts either make data dependencies explicit, or try to
make abstractions of them, while facilitating parallel execution.

This distinction seems to be a useful one, because it enables a categorization
of the wide field of concepts in two disjoint sets. While the implementation
of concepts for parallel programming might require concepts for concurrent
programming, on an abstract level they can be discussed as two independent
groups.

The main insight of this survey is that the two identified sets of concepts
require orthogonal support from a VM. Thus, this dissertation focuses on one

70

3.3. Common Problems for the Implementation of Concurrency Abstractions

of them. As argued above in Sec. 3.2.4, this dissertation focuses on concepts
that require support for an enforcement of their semantics on the part of the
VM. Based on the distinction provided by the two definitions, this dissertation
focuses on the set of concurrent programming concepts, i. e., the concepts that
are meant to support algorithms to yield consistent and correct results.

3.2.4.3. Conclusions

This survey discussed a wide range of concepts for concurrent and parallel
programming. It categorizes the concepts identified in literature and program-
ming languages based on answering the question of whether their semantics
benefit from an enforcement in the VM and the question of whether their
performance could significantly benefit from VM support.

Parallel programming concepts benefit most from flexible infrastructure for
performance optimizations, while concurrent programming concepts require
support from the VM in order to enforce their semantics.

The remainder of this dissertation focuses on concurrent programming con-
cepts, i. e., concepts that require support from the VM to guarantee correct
semantics, and proposes a unifying substrate for concurrent programming.

3.3. Common Problems for the Implementation of

Concurrency Abstractions

The previous section concluded that a wide range of concurrent program-
ming concepts require runtime support to enforce their semantics in an effi-
cient way. This section discusses the semantic issues of these concepts in more
detail. The analysis is based on the work of Karmani et al. [2009] who iden-
tified and discussed a number of problems in the context of actor-oriented
frameworks, as well as examples from our own experiences in implementing
concurrent languages [Marr et al., 2010a, 2011a,b, 2012] that are problematic
for multi-language VMs. The in-depth investigation of these problems pre-
pares, as the main result of this chapter, the formulation of requirements for
multi-language VMs.

3.3.1. Overview

Karmani et al. surveyed actor-oriented frameworks for the JVM to assess
which semantics these frameworks provide and what the performance cost

71

3. Which Concepts for Concurrent and Parallel Progr. does a VM need to Support?

of the different actor properties are. The analysis in this dissertation concen-
trates on the issues that are relevant for multi-language VMs and disregards
problems that are relevant for distributed systems only. The relevant actor
properties for this discussion are insufficient guarantees with regard to isola-

tion of state as well as with regard to scheduling guarantees. While Karmani
et al. concentrated on actor-oriented frameworks, the analysis in this section
shows that these actor properties are relevant for a wider range of concur-
rency abstractions.

In addition to these problems, the analysis in this section includes previ-
ously discussed issues related to immutability and reflection [Marr et al., 2011a].
Supporting reliable immutability and enabling reflection while maintaining
concurrency-related language guarantees lead to complex implementations of
concurrency abstractions. This section demonstrates with examples that lan-
guage implementers face a number of significant problems when they try to
realize such concepts on top of today’s VMs. Therefore, these problems need
to be considered in order to determine the requirements for multi-language
VMs with extended support for concurrent programming.

3.3.2. Isolation

Isolation, often also referred to as encapsulation, is a valuable property that en-
ables local reasoning about the effects of operations since it clearly separates
two entities from each other and enforces the use of explicit interfaces for
interaction. It is of high relevance, because many concurrent programming
concepts rely on strong isolation between entities in order to restrict the set
of directly mutable entities and thus, limit the number of potential data races
in a concurrent system. Karmani et al. make a distinction between state encap-

sulation and safe messaging to clarify the underlying problems.

State Encapsulation Integrating the actor model correctly with languages
that have mutable state, e. g., conventional object-oriented languages, is a chal-
lenge. Sharing mutable state between actors violates the actor model, because
communication and interaction are supposed to be based on message-based
communication only. Therefore, mutable state has to be owned by a single
actor and any form of access needs to be restricted to its owner.

Semantic Aspects See Lst. 3.1 for the example Karmani et al. use to illus-
trate the problem. The depicted Scala code is supposed to implement a basic

72

3.3. Common Problems for the Implementation of Concurrency Abstractions

1 object semaphore {

2 class SemaphoreActor () extends Actor {

3 // ...

4 def enter () {

5 if (num < MAX) {

6 // critical section

7 num = num + 1; } } }

8

9 def main(args : Array[String]) : Unit = {

10 var gate = new SemaphoreActor ()

11 gate.start

12 gate ! enter // executes on gate’s thread

13 gate.enter // executes on the main thread

14 } }

Listing 3.1: Example of incomplete State Encapsulation: This semaphore has a race
condition since Scala’s actors do not enforce encapsulation and the actor as well
as the main thread have access to the num field. [Karmani et al., 2009, Fig. 2]

semaphore. The SemaphoreActor has a counter num, which indicates the num-
ber of activities that entered the critical section.

However, Scala’s actor implementation does not guarantee encapsulation.
This makes the gate object simultaneously accessible in the main thread and
the thread of gate, i. e., the SemaphoreActor. Both threads can execute enter

at the same time, leading to a race condition on the num variable, undermining
one of the main benefits of the actor model. If encapsulation would be guar-
anteed, as it is for instance in Erlang, this example would work as intended,
because only the owning actor could access num and the data race would not
be possible.

While actors require state encapsulation to yield full engineering benefits,
implementing this guarantee comes either at the cost of a high implemen-
tation complexity or a significant performance impact. The main reason is
that VMs such as the JVM do not provide sufficient abstraction for the no-
tion of ownership and state encapsulation. AmbientTalk [Van Cutsem et al.,
2007], JCoBox [Schäfer and Poetzsch-Heffter, 2010], and NAct18 enforce the
discussed encapsulation by construction. The compiler ensures that only so-
called far references can be obtained to objects such as the SemaphoreActor.
These far references enforce state encapsulation to guarantee isolation.

Kilim [Srinivasan and Mycroft, 2008] is an example for another approach to
the problem. Kilim employs compile-time checking based on annotations to

18http://code.google.com/p/n-act/

73

http://code.google.com/p/n-act/

3. Which Concepts for Concurrent and Parallel Progr. does a VM need to Support?

guarantee isolation. The compiler ensures that references are only passed on
in messages when they are no longer used within the sending actor.

Problematic with both types of approaches is that they rely on the com-
piler and statically determinable properties. Moreover, these properties nei-
ther carry over to other languages on the same VM, nor do they apply to the
standard libraries. Thus, they are only guaranteed for a specific language.

Interacting with legacy libraries, code written in other languages, or the
use of reflection typically break these guarantees. On a multi-language plat-
form, this situation cannot be avoided and seriously restricts the language
and library implementers flexibility.

Applicability beyond Actors Other concurrent programming concepts than
the actor model also rely on state encapsulation. It applies to all models that
provide communicating isolates (cf. Sec. 2.4.4), i. e., non-shared-memory mod-
els most notably CSP and APGAS languages that require mutation to be per-
formed locally to a process or the state-owning place, i. e., region. Other con-
cepts such as Clojure agents (cf. Sec. 2.4.3), have different semantics, but also
restrict the capability of mutating state to its owner.

Safe Messaging Karmani et al. further discuss the issue of messaging. Non-
shared memory models require that message passing has by-value semantics.
Otherwise, shared mutable state is introduced by passing normal references.
An example would be similar to Lst. 3.1. By passing any mutable Java object
as argument to a message send in Scala, the object becomes shared between
the sender and the receiver actor and thereby introduces shared mutable state.
Scala does not enforce safe messaging, and thus, it does not handle the con-
tent of a message to ensure semantics. Instead, objects are simply passed by
reference.

Performance Aspects Traditional solutions enforce by-value semantics ei-
ther by copying the object graph of a message or by relying on a type or an-
notation system that enables static checks at compile-time as in Kilim. Copy-
ing the whole object graph referenced by a message often implies significant
overhead as measured by Karmani et al. They report that a microbenchmark
for passing on messages has a maximal runtime of ca. 190sec when naive
deep-copying is used. An optimization that does not copy immutable objects
reduces the runtime to 30sec. However, this is still significantly slower than

74

3.3. Common Problems for the Implementation of Concurrency Abstractions

when the benchmark uses pass-by-reference, which brings the runtime down
to ca. 17sec.

Approaches based on type systems or other forms of static verification en-
able the safe passing of references, and thus, bring significant performance
advantages. However, a type system comes with additional implementation
complexity, its guarantees do not reach beyond language boundaries, and are
typically voided by the use of reflection.

Again, these problems are universal and apply to communicating isolate con-
cepts, e. g., CSP [Hoare, 1978] and APGAS [Saraswat et al., 2010] concepts as
well (cf. Sec. 2.4.4). For instance, JCSP [Welch et al., 2007] does not guaran-
tee safe messaging for reference types. The by-value semantics is only given
for primitive types, and channels that are based on network socket com-
munication. The main concerns are performance, similar to actor-oriented
frameworks on the JVM and frameworks like Retlang19 on top of the CLI.
X10 [Charles et al., 2005] as one example for an APGAS language explicitly
specifies that deep copying is performed [Saraswat et al., 2012]. Similarly, the
application domains specified by the CLI rely on marshalling, i. e., either deep
copying or far references, to enforce safe messaging and state encapsulation.
Thus, the implementation of properties such as safe messaging can become a
performance issue when the VM does not provide mechanisms to support it,
which often leads to language and library implementers giving up on desir-
able semantic properties.

Conclusion Following this discussion, the implementation of isolation on
today’s multi-language VMs is challenging and thus, it often remains unen-
forced or only partially supported. Solutions for enforcing isolation imply
tradeoffs between performance and implementation complexity. Furthermore,
mechanisms to handle reflection and the interaction with other languages re-
main uncommon.

Note that the notion of ownership is central for the definition of isolation.
Furthermore, a mechanism for ownership transfer between entities can sim-
plify the implementation of safe messaging greatly.

3.3.3. Scheduling Guarantees

The second issue identified by Karmani et al. is that the overall progress guar-
antee of an actor systems assumes fair scheduling. In systems without fair
scheduling, actors can be starved of computation time and block the overall
19http://code.google.com/p/retlang/

75

http://code.google.com/p/retlang/

3. Which Concepts for Concurrent and Parallel Progr. does a VM need to Support?

1 object fairness {

2 class FairActor () extends Actor {

3 // ...

4 def act() { loop {

5 react {

6 case (v : int) => { data = v }

7 case (wait) => {

8 // busy -waiting section

9 if (data > 0) println(data)

10 else self ! wait

11 }

12 case (start) => {

13 calc ! (add , 4, 5)

14 self ! wait

15 }

16 }}}}}

Listing 3.2: Example for missing Scheduling Guarantees: Without the guarantee of
fair scheduling, busy-waiting can starve other actors forever. [Karmani et al., 2009,
Fig. 3]

system from making progress. The example they give is shown in Lst. 3.2.
Here the actor busy-waits by sending itself a message to await the arrival of
the computation result. While the example is contrived, livelocks like this can
be effectively avoided by fair scheduling.

An ad hoc solution to these problems is the use of a lightweight task repre-
sentation for actors, which is used to schedule these tasks on top of the thread-
ing mechanism provided by the VM to guarantee the desired fairness prop-
erty. To this end, the Java standard library provides the ExecutorServices20

and the CLI offers a TaskScheduler.21

Ad hoc solutions to enforce scheduling policies have limitations and in-

troduce tradeoffs. Since these solutions build on top of the VM’s thread
abstraction, the provided guarantees are restricted. Computationally expen-
sive operations and blocking primitives can bind the underlying thread. This
restricts the ability of the scheduler to enforce the desired guarantees, be-
cause as Karmani et al. note, the actor or task scheduler is prevented from
running. It is possible to compensate to a certain degree for such effects by

20http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ExecutorServic

e.html
21http://msdn.microsoft.com/en-us/library/system.threading.tasks.taskscheduler

.aspx

76

http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ExecutorService.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ExecutorService.html
http://msdn.microsoft.com/en-us/library/system.threading.tasks.taskscheduler.aspx
http://msdn.microsoft.com/en-us/library/system.threading.tasks.taskscheduler.aspx

3.3. Common Problems for the Implementation of Concurrency Abstractions

introducing additional preemptive OS threads that schedule actors, i. e., tasks.
Karmani et al. propose to use a monitoring thread. This thread will spawn
additional threads if it does not observe progress. However, there are limits
to the approach and it requires tradeoffs between application responsiveness,
overhead, and monitoring precision. Furthermore, it can add complexity to
the implementation since it prescribes how actors can be represented.

Applicability beyond Actors Again, the problem of scheduling guarantees
is not specific to actor-based concepts. Instead, it has to be carefully consid-
ered for any concurrent system that implies any notion of overall forward
progress. The absence of such required guarantees is for instance visible in
Clojure. Its agent construct makes a clear distinction between normal oper-
ations, and operations that result in long running computations or blocking
I/O. For the latter kind of operations, Clojure offers the (send-off) construct,
which will use a new thread to execute the operation to avoid starvation of
other agents.

Conclusion While ad hoc solutions used today have drawbacks, they pro-
vide the flexibility to implement custom policies that can be adapted precisely
to the characteristics of a specific concurrent programming concept. The main
problem with these approaches is the missing control over primitive execution
and computationally expensive operations, which can prevent these ad hoc
solutions from enforcing their policies.

3.3.4. Immutability

Immutability is a desirable guarantee to simplify reasoning over programs in
a concurrent setting, and it facilitates techniques such as replication, or con-
stant propagation. However, in today’s VMs, immutability is guaranteed with
limitations only. Often it is provided at the language-level only and not pre-
served at the VM level. For instance, the JVM and CLI allow a programmer to
change final or readonly object fields via reflection. Nonetheless, it is used
for optimizations, and the JVM specification includes a warning on the visi-
bility of such reflective changes, because JIT compilers for the JVM perform
constant propagation for such fields.

Weak immutability is a workaround for missing functionality. While im-
mutability by itself is desirable, notions of weak immutability have been used

77

3. Which Concepts for Concurrent and Parallel Progr. does a VM need to Support?

for other purposes than optimization and strong guarantees for program-
mers. One use case for such weak immutability is provided by VisualWorks
7 [Cincom Systems, Inc., 2002]. It allows marking objects as immutable and
raises an exception when mutation is attempted. The exception handler is
then free to mutate such an object. This behavior is used to map objects to
persistent data storage and enable efficient consistency management. In this
case the programmer does not consider the object to be immutable, instead
this technique is a workaround for the missing capability of tracking muta-
tion. However, the example also illustrates the relation between immutability
and reflection. In sequential programs, such workarounds do not necessar-
ily have a negative impact on the guarantees the programmer relies on. In a
concurrent setting however, such workarounds can easily lead to unintended
race conditions.

Benefits of Immutability For a concurrency-aware VM, immutability can be
used for performance optimization, either by avoiding copying of immutable
objects, or replicating them to improve locality of access. In either case, im-
mutability semantics have to be guaranteed to avoid semantic problems. Us-
ing it as sketched in the above example of VisualWorks is not an option.

When immutability for a particular language is guaranteed by its compiler
only, interactions across language boundaries become problematic, similarly
to the use of reflection. JCoBox and Kilim use the knowledge of immutability
to avoid copying objects in their implementation of safe messaging, but they
rely on the absence of reflection for their semantics. Clojure’s approach to the
problem is different. Its language model of mostly side-effect free concurrency
on immutable data structures creates engineering benefits when direct access
to the underlying Java ecosystem is avoided. However, it is not enforced. On
the contrary, Clojure’s close integration with Java is an important aspect for
its adoption.

Conclusion Immutability is a basic property that needs to be preserved, es-
pecially in concurrent systems. Using it for other purposes such as the track-
ing of mutation in VisualWorks 7 should be avoided and the necessary facil-
ities for such use cases should be provided directly. The main problem with
immutability in a concurrent context is its relation to reflection. While there
are use cases such as deserialization that can require the use of reflection and
setting of final fields, in the context of concurrency, immutability requires
strict guarantees.

78

3.3. Common Problems for the Implementation of Concurrency Abstractions

3.3.5. Reflection

Reflection, i. e., metaprogramming is used to circumvent the restrictions of
a particular language or to modify and extend its language semantics. When
reflection is used, language guarantees are no longer enforced and developers
have to take care not to violate inherent assumptions made by the rest of the
program. In sequential programs this is common practice and used widely
for a variety of use cases.

Bypassing Language Restrictions Many common use cases bypass restric-
tions imposed by language semantics. Examples are the modification of sup-
posedly immutable objects or bypassing restrictions to access protected fields.
These capabilities are often desirable to enable the implementation of frame-
works that work on any given object by dynamically reflecting over it. Widely
used examples are unit testing frameworks reflecting over classes to execute
tests, mockup generators to facilitate testing without the need to explicitly
define test classes, object-relational mappers (ORM) to bridge between appli-
cation and database for persistence, and other frameworks for general mar-
shalling and serialization.

Note that the characteristics of these use cases are very similar. The main re-
flective features used include inspecting objects, invoking methods, or chang-
ing fields reflectively. While language restrictions such as modifiers for private
and protected fields need to be circumvented, concurrency-related language
properties should not be circumvented in these use cases. Instead, in most
situations reflection should be able to respect these language guarantees.

Concurrency properties need to be maintained during reflection. Since the
described use cases are ubiquitous, it is impractical to ban the use of reflection
to guarantee the semantics of a particular concurrent programming concept.
Instead, a VM needs to provide a mechanism that makes it safe to use re-
flection for application purposes while maintaining the desired part of the
language guarantees, in this case the concurrency properties.

Imagine an application implemented in an actor language that uses a re-
flective object-relational mapping (ORM) system such as Hibernate [Bauer
and King, 2005], which by itself is not actor-aware. One actor tries to per-
sist an object owned by another actor. Hibernate would use reflection to
read the state. Since the Java reflection API22 does not preserve concurrency-

22http://docs.oracle.com/javase/6/docs/api/java/lang/reflect/package-summary.h

tml

79

http://docs.oracle.com/javase/6/docs/api/java/lang/reflect/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/lang/reflect/package-summary.html

3. Which Concepts for Concurrent and Parallel Progr. does a VM need to Support?

related properties, Hibernate can observe inconsistencies because of race con-
ditions caused by the other actor executing in parallel. In the case of Java,
the java.util.concurrent.atomic23 package introduced an API for updat-
ing fields specifically to maintain concurrency properties such as those given
by volatile fields. However, this requires mixing different APIs and is only
restricted to field semantics.

Other language guarantees that need to be maintained are for instance con-
straints on method invocations. For instance, active objects require that their
methods are not executed directly but via an indirection that ensures that the
method is executed asynchronously by the active object’s thread. With Join
Java [Itzstein and Jasiunas, 2003], execution constraints can be more complex.
It allows the developer to define join patterns that need to be fulfilled before a
method is activated. Using reflection to circumvent these constraints can have
undesired effects. Thus, depending on the use case, even reflective invocation
should be able to preserve the constraints specified by such methods.

Another complication comes from the vision of a multi-language VM. In
this scenario it is insufficient to make reflection aware of a single set of de-
sired guarantees. Instead, additional flexibility is required. Language seman-
tics such as isolation for an actor language are to be implemented on top of
the VM, based on a unifying abstraction. A multi-language VM will need
to be able to distinguish between situations where an enforcement of guar-
antees is required and situations where enforcement is not desired. Kiczales
et al. [1997] and Tanter [2009] discuss how to scope reflection. Similarly, in
the context of multi-language VMs, it also needs to be possible to scope, i. e.,
restrict reflection to circumvent a small set of language guarantees only, while
maintaining others.

Reflection and Security The power of reflection is also an issue for security.
Therefore, the JVM and CLI provide infrastructure to manage reflection in
a way that allows them to restrict the reflective capabilities depending on a
security context. For the JVM the SecurityManager24 is consulted for reflec-
tive operations to verify that the necessary permissions are given. The CLI
provides similar mechanisms with its System.Security facilities.25

The SecurityManager provides the flexibility to customize the check that
is performed for reflective operations. However, the offered interface is very

23http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/atomic/package-

summary.html
24http://docs.oracle.com/javase/7/docs/api/java/lang/SecurityManager.html
25http://msdn.microsoft.com/en-us/library/stfy7tfc.aspx

80

http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/atomic/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/atomic/package-summary.html
http://docs.oracle.com/javase/7/docs/api/java/lang/SecurityManager.html
http://msdn.microsoft.com/en-us/library/stfy7tfc.aspx

3.3. Common Problems for the Implementation of Concurrency Abstractions

minimal and does not provide the flexibility required for multi-language VMs.
For instance, the JVM relies on the problematic method setAccessible(bool),
which needs to be called to disable the security checks to circumvent language
restrictions. While setAccessible(bool) is covered by the SecurityManager

and its handler can be customized with another security strategy, the ob-
ject can be manipulated at will once obj.setAccessible(true) succeeded.26

Thus, enforcing complex policies is not possible with this approach. Another
weak point is that the security infrastructure only considers fields that are
protected by Java language semantics. Thus, public fields of an object are not
covered by the security manager, which therefore cannot be used to express
concurrency policies for all objects.

Conclusion Reflection in the form it is supported on today’s VMs is not
designed to enable the required fine-grained control. Common approaches
provide only limited security-related mechanisms to restrict the reflective ca-
pabilities. However, the provided abstractions are not expressive enough to
distinguish between different parts of a language. For instance, is not possible
to freely use reflection on objects inside of an actor to circumvent their private
field restrictions, without risking to have concurrency issues with objects that
belong to another actor, because the reflection would also circumvent these
concurrency restrictions.

Thus, reflection needs to provide the ability to do metaprogramming with
the possibility to circumvent only certain language restrictions, while adher-
ing to other parts of the language, for instance concurrency-related semantics.

3.3.6. Summary

As argued in this section, the implementation of proper isolation, scheduling

guarantees, and immutability is problematic with today’s VMs. For the imple-
mentation of isolation, language designers have to make a tradeoff between
semantic guarantees, performance, and implementation complexity. To en-
sure progress in models such as actors or CSP, language designers have to
be able to rely on scheduling guarantees which are typically implemented on
top of the VM, and thus, handling of computationally expensive or blocking
operations undermines the required guarantees.

Immutability also requires proper enforcement to yield its full engineer-
ing benefit, especially in the setting of a multi-language VM for concurrent

26http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/reflect/Field.html#set

(java.lang.Object,java.lang.Object)

81

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/reflect/Field.html#set(java.lang.Object, java.lang.Object)
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/reflect/Field.html#set(java.lang.Object, java.lang.Object)

3. Which Concepts for Concurrent and Parallel Progr. does a VM need to Support?

programming. The main issue with immutability for the implementation of
languages on top of today’s VMs is its interaction with reflection, and the
missing enforcement of guarantees.

One issue with guaranteeing such semantics is the presence of reflection.
Today’s VMs support reflection in a way that circumvents all language guar-
antees, while it would be beneficial to restrict it to a certain subset of the lan-
guage guarantees that it bypasses. This way, for instance concurrency-related
guarantees could still be enforced. In the context of reflection, the results of
the survey in Sec. 3.2, i. e., the need for custom execution and state access policies

(cf. Sec. 3.2.4.1) becomes relevant. Different execution policies and state access

policies can require for correctness that they are enforced for reflective opera-
tions as well. In this context, the notion of ownership becomes relevant again,
because reflection can be allowed with its full capability inside an entity such
as an actor, but might be restricted with respect to other entities.

The result of this discussion is given in Tab. 3.6. The table lists the identified
challenges language and library implementers are facing today when they
target multi-language VMs such as the JVM and CLI.

3.4. Requirements for a Unifying Substrate for

Concurrent Programming

This section concludes the preceding discussions and derives requirements
for a unifying substrate for concurrent programming. This substrate is meant
to support the vision of a multi-language VM that enables language and li-
brary developers to provide problem-specific abstractions for the multicore
age.

Sec. 3.2 discussed a wide range of concepts from the field of concurrent
and parallel programming. This dissertation focuses on the concepts for con-
current programming in order to construct a unifying substrate for them.
Sec. 3.2.4.1 identified a general set of requirements. From this set, the need
for flexible optimization and monitoring facilities are outside the scope of
this dissertation. Instead, requirements for a powerful VM interface, custom se-

mantics for execution and state access, as well as enforcement of semantics against

reflection are in its focus.
Sec. 3.3 detailed common problems for the implementation of concepts for

concurrent programming. Isolation in the form of state encapsulation and safe
messaging requires support to ensure semantics and performance. Schedul-
ing guarantees typically lack enforceability, too. Immutability as a specific

82

3.4. Requirements for a Unifying Substrate for Concurrent Programming

Table 3.6.: Common Challenges for the Implementation of Concurrent Programming
Concepts on top of Multi-language VMs.

Enforcement of

Isolation Guaranteeing isolation between entities requires state encapsula-

tion and safe message passing, to ensure that only the owner of
an object can access it. State encapsulation relies on restricting ac-
cess, while safe message passing relies on by-value semantics or the
transfer of ownership of objects between entities. The absence of
support for these notions leads to implementation challenges
and incomplete isolation, high implementation complexity, or
low performance.

Scheduling Policies Guaranteeing scheduling policies such as fairness or dependency
ordering requires control over executed code. Primitives and
computationally expensive operations reduce the degree of con-
trol and reduce the guarantees that can be given. Ad hoc solu-
tions based on monitoring require tradeoffs between overhead
and precision.

Immutability Only guaranteed immutability provides semantic benefits in a
concurrent setting. The ability to reflectively change immutable
objects limits its guarantees and reduces its engineering benefit.
Using it as a workaround for missing functionality is therefore
counterproductive. Instead, reflection must be able to respect
such concurrency-related properties.

Execution Policies Guaranteeing a wide range of execution policies is challenging.
Policies such as for asynchronous invocation and guarded exe-
cution can be circumvented by reflection even if it is not desired.
Furthermore, their implementation can be challenging, because
they typically require the notion of ownership, which is not sup-
ported by today’s VMs.

State Access Policies Guaranteeing a wide range of state access policies is equally
challenging. On today’s VMs, they are hard to enforce, because
of the presence of primitives and reflection. The implementation
of such policies can be facilitate by enabling adaptation of prim-
itives, and by enabling a higher degree of flexibility for the use
of reflection with regard to its effect on semantic guarantees.

83

3. Which Concepts for Concurrent and Parallel Progr. does a VM need to Support?

concept relevant for concurrency abstractions is hardly enforceable on any
of the surveyed platforms today. The main reason for weak enforceability is
the ubiquitous availability and use of reflection. Since immutability and other
concurrency properties are essential for correctness of code, reflection needs
to be flexible and allow developers to circumvent only the necessary subset
of language guarantees for a given use case.

In conclusion, a unifying substrate needs to support some form of man-
aged state and managed execution. This is necessary to enable custom

semantics for execution and state access and a powerful VM interface. This disser-
tation refers to managed state as the notion of reifying access to state, i. e.,
reading and writing of object fields or global variables. Managed execu-
tion is the notion of reifying execution of methods and primitives.

A mechanism satisfying these two notions is supposed to enable at least
the implementation of asynchronous invocation, isolation, scheduling policies, im-

mutability, ownership, and interception of primitives.
The discussion of for instance active objects, CSP, and actors, showed that

concurrency policies, i. e., for instance access restrictions can be based on the
notion of ownership of objects. To support such concurrency policies, a uni-
fying substrate needs to complement managed state and managed exe-
cution with ownership. A mechanism satisfying this requirement enables
the implementation of isolation and supports concepts such as Clojure actors
which allow reads from arbitrary entities but restrict write access to the own-
ing entity.

To enforce scheduling policies, this dissertation requires a VM to support
some form of preemptive scheduling that will enable a higher prior thread to
execute when necessary to ensure fairness. Blocking primitives remain prob-
lematic however, because they can block the scheduling logic from executing.
Thus, primitives have to be manageable as we required it for execution in
general. This aspect is covered by managed execution.

The required enforcement of guarantees against reflection needs to be flex-
ible. As explained with the example of an ORM system, reflection needs to
be enabled to obey concurrency semantics (cf. Sec. 3.3.5), while the ORM still
needs to be able to circumvent access restrictions like private modifiers for
fields to fulfill its purpose. Thus, such an implementation needs to be able
to specify whether an operation is supposed to be executed with enforce-
ment enabled or disabled. To conclude, a VM needs to provide the notion of
controlled enforcement. A mechanism that satisfies this notion has to
enable for instance reflection over private fields of an objects while its concur-
rency properties are maintained. In the context of an STM system, this would

84

3.4. Requirements for a Unifying Substrate for Concurrent Programming

Table 3.7.: Requirements for a Unifying Substrate for Concurrent Programming

Requirement

Managed State Many concepts impose rules for when and how
state can be accessed and modified. Thus state ac-
cess and mutation must be manageable in a flexi-
ble manner.

Needs to facilitate: isolation, immutability, reified access to object
field and globals.

Managed

Execution

Similarly, the activation of methods on an object
needs to be adaptable. This includes the activation
of primitives to be able to handle their effects and
scheduling properties.

Needs to facilitate: asynchronous invocation, scheduling policies, in-
terception of primitives.

Ownership One recurring notion is that mutation and exe-
cution are regulated based on and relative to an
owning entity. Thus, ownership of objects needs
to be supported in a manner that enables adapt-
able state access and execution rules.

Needs to facilitate: definition of policies based on ownership.

Controlled

Enforcement

To be applied safely, reflection still needs to follow
the concurrency-related language semantics for
many use cases. Thus, whether language guaran-
tees should be enforced needs to be controllable.

Needs to facilitate: Flexible switching between enforced and unen-
forced execution.

85

3. Which Concepts for Concurrent and Parallel Progr. does a VM need to Support?

mean that in certain situations reflective state changes need to be tracked in
the same way that normal state changes are tracked.

Tab. 3.7 summarizes these requirements briefly.

3.5. Conclusions

VMs support only concurrent programming concepts directly. Parallel pro-

gramming concepts are provided in libraries only. Sec. 3.1 investigated the
state of the art in VM support for concurrent and parallel programming. The
survey examined thirteen VMs, including the contemporary multi-language
VMs, and a number of VMs that are reputed for their support for concurrent
and parallel programming. The analysis identified for each VM the concepts
it exposes and whether it exposes them in terms of implicit semantics, as part
of the VM’s instruction set architecture, in terms of primitives, or merely as
part of standard libraries. The major insight is that the surveyed VMs sup-
port only one or two categories of concepts. Furthermore, they consistently
relegate support for parallel programming to their standard library without
providing explicit support for optimization.

Another observation is that common language guarantees such as isolation

for actors or the constraints around the STM system of Haskell are realized as
part of these VMs. Thus, the VM has full control over the exact set of provided
guarantees. however, providing support for all conceivable concepts is not
desirable for a multi-language VM. Problems with complexity and feature
interaction make it infeasible, as argued in Sec. 2.1.

Parallel programming concepts benefit from performance optimizations,

while concurrent programming concepts require semantic enforcement.

Sec. 3.2 discussed a wide range of concepts for concurrent and parallel pro-
gramming. Concepts are categorized by answering the question of whether
their semantics benefit from an enforcement in the VM and the question of
whether their performance could benefit significantly from VM support. The
result is that parallel programming concepts benefit most from performance
optimization, while concurrent programming concepts require support from
the VM to enforce their semantics.

The concepts that require support from the VM to guarantee their semantics
were chosen as the focus of this dissertation. Therefore, the remainder of this
dissertation investigates a unifying substrate for concurrent programming.

86

3.5. Conclusions

Proper support for isolation, scheduling guarantees, immutability, and re-

flection are an issue with contemporary VMs. Sec. 3.3 analyses existing lit-
erature and additional examples that detail five common problems for the im-
plementation of concurrent programming concepts on top of multi-language
VMs. Proper implementation of isolation, scheduling guarantees, and immutabil-

ity on top of contemporary VMs is challenging since performance, imple-
mentation complexity, and an enforcement of desirable semantics have to be
traded off against each other. The way reflection is supported in today’s VMs
makes it hard to use in concurrent settings, because it circumvents all lan-
guage guarantees instead of circumventing only the required ones.

Note that later chapters use these problems as part of the evaluation.

Requirements Sec. 3.4 concludes the discussion with a set of concrete re-
quirements. These requirements are derived from the surveys and from the
discussion of common implementation problems. The requirements have been
chosen to facilitate the design of a framework in which a unifying substrate
for concurrent programming concepts can be defined. The basic requirements
for such a unifying substrate are support for the notions of managed state,
managed execution, ownership, and controlled enforcement.

These requirements guide the design of the proposed solution and are the
foundation for its evaluation in the remainder of this dissertation.

87

4
E X P E R I M E N TAT I O N P L AT F O R M

The goal of this chapter is to introduce the chosen experimentation platform.
Furthermore, for each VM this chapter gives the rationale for its choice. First,
it sketches the requirements for a platform on which the research for this
dissertation can be performed. Based on these requirements, SOM (Simple
Object Machine), Squeak/Pharo Smalltalk, and the RoarVM are chosen. Sec-
ond, it introduces SOM and gives an overview of Smalltalk and the syntax
used in this dissertation. Third, the chapter briefly introduces Squeak, Pharo,
and the CogVM as the platform for the initial implementation of the evalu-
ation case studies. Finally, the RoarVM and a number of its implementation
details are described to aid in later chapters.

89

4. Experimentation Platform

4.1. Requirements for the Experimentation Platform

It is desirable to define a precise and minimal executable semantics to explain
and document the ownership-based metaobject protocol (OMOP), which is
the proposed solution of this dissertation (cf. Chapter 5). Furthermore, it is
desirable to choose a medium for the definition of this executable semantics
that is similar to the platforms used for the implementation and evaluation of
the OMOP, because the similarity facilitates their explanation as well.

To demonstrate that the OMOP satisfies the identified requirements, this
dissertation evaluates its applicability and assesses its performance. This eval-
uation needs to assess the impact of the OMOP by comparing implementa-
tions of concurrent programming abstractions with classic ad hoc implemen-
tations, including an assessment of the implementation size. Thus, it must
be possible to implement concurrent programming concepts based on com-
mon implementation strategies in addition to implementing them based on
the OMOP. For the assessment of the OMOP’s performance it is necessary to
evaluate an implementation based on direct VM support.

This dissertation uses three Smalltalk systems for these tasks: SOM (Simple
Object Machine), Squeak/Pharo Smalltalk, and the RoarVM. The remainder
of this chapter motivates their choice and gives a brief overview of them to lay
the foundation for the technical discussions in later chapters. The discussion
of SOM includes an introduction to the essential concepts of Smalltalk and
the syntax used throughout this dissertation. Note that these general ideas,
i. e., language and execution model, apply to the other Smalltalk dialects and
VMs discussed here as well.

4.2. SOM: Simple Object Machine

SOM1 (Simple Object Machine) is a Smalltalk variant meant for teaching lan-
guage implementation and VM techniques. Therefore, it is kept as simple as
possible and its implementation focuses on accessibility and clarity of con-
cepts rather than execution performance. It has been implemented in Java
(SOM), C (CSOM), C++ (SOM++), and Smalltalk (AweSOM). Following the
Smalltalk tradition, SOM is an object-oriented language based on classes and
supports the Smalltalk-80 notion of closures called blocks.

1 Originally developed at the University of Århus, SOM is now maintained at the HPI:
http://hpi.uni-potsdam.de/hirschfeld/projects/som/. It was also the foundation for
Resilient Smalltalk and the OOVM [Andersen et al., 2005].

90

http://hpi.uni-potsdam.de/hirschfeld/projects/som/

4.2. SOM: Simple Object Machine

SOM’s focus on clarity and a minimal set of concepts makes it a good can-
didate to express the execution semantics of the OMOP. Essential semantics
can be expressed while the accidental complexity that comes with the exten-
sive feature set of common mainstream languages is avoided. Compared to
basing the semantics on a calculus such as the impς-calculus of Abadi and
Cardelli [1996], SOM provides a platform that is closer to common language
implementations. It includes common language concepts and their essential
complexity. For instance, this directly allows a discussion of the special case
of VM primitives, which would not be the case with an application of the
impς-calculus, without adding specific extensions to it.

AweSOM2 is chosen over the other available SOM implementations, be-
cause its Smalltalk implementation is the most concise in the SOM family and
enables the formulation of an executable semantics that is concise enough to
serve for illustration as part of this dissertation.

4.2.1. Language Overview and Smalltalk Specifics

This section gives a brief overview of SOM’s Smalltalk syntax and Smalltalk
concepts used in the source code examples of this dissertation.

SOM’s standard implementation relies on a textual syntax for class defini-
tions. Lst. 4.1 gives a minimal definition of the class Object. Note that Object
inherits from nil and thus, it is the root class of the class hierarchy. If neither a
superclass nor nil are given, a class will implicitly have Object as superclass.

1 Object = nil ("defines the class Object , superclass is ‘nil ’"

2 | class | "object fields: each object has a field ‘class ’"

3

4 class = (^class) "method to return field ‘class ’"

5 = other = (^self == other)

6 == other = primitive "equality test implemented in the VM"

7 asString = (^’instance of ’ + (self class))

8 value = (^self)

9 yourself = (^self)

10 ifNil: nilBlock ifNotNil: goBlock = (^ goBlock value)

11

12 "Error recovering"

13 doesNotUnderstand: selector arguments: arguments = (

14 self error: ’Method not found: ’

15 + class name + ’>>#’ + selector))

Listing 4.1: SOM Language Example: Object class extending nil

2https://github.com/smarr/SOM/#readme

91

https://github.com/smarr/SOM/#readme

4. Experimentation Platform

Classes and Methods Object fields are defined with a syntax similar to local
variables in methods of other Smalltalk versions. In this case, every object has
a class field, referring to the object’s class.

Note that SOM uses object-based encapsulation. Thus, only the object itself
has access to its fields. This is different from class-based encapsulation as
used for instance in Java [Gosling et al., 2012]. In languages with class-based
encapsulation, all objects of a class can access the private fields of other objects
of the same class.

Methods in Smalltalk have either no arguments, one argument when the
method selector is a special symbol, or they use so-called keyword messages,
which indicate the arguments with colons.

The first method in line 4 is a simple method without arguments. It is an
accessor to the class field and directly returns the value. Note the circumflex
(^), which corresponds to the return keyword in other languages. Further
note that the body text of this dissertation refers to methods in source code
examples by their selector symbol, i. e., the method name with a preceding
hashmark (#). Thus, line 4 defines the method #class.

Line 5 defines a second method #=, which takes the argument other to
implement object equality by using the reference equality message #==. Ex-
amples for binary messages are #= and #==, which take an extra argument in
addition to the receiver. In this particular case #== refers to its argument as
other. Line 6 defines #== to be implemented via a VM primitive, which checks
the receiver and the argument for reference equality. The #ifNil:ifNotNil:

method defined in line 10 is a convenience method implementing a simple
control structure based on blocks. It is a keyword message with two parame-
ters, here called nilBlock and goBlock.

Blocks are anonymous functions, i. e., lambdas. Depending on the Smalltalk
implementation, they are either full closures or classic restricted blocks as in
Smalltalk-80 [Goldberg and Robson, 1983]. Classic blocks cannot be used once
they left the dynamic extend in which they have been created. Thus, they
cannot be returned from the method in which they were created.

SOM also supports class-side methods and static fields in terms of fields of
the class object. Since classes are objects, the same rules apply and they are
treated identically.

Handling of Globals References to classes are treated as lookups of global
variables. Such global variables can also refer to objects other than classes.
However, assignments to globals are ignored and not directly supported by

92

4.2. SOM: Simple Object Machine

1 SOMUniverse = ("..."

2 bootstrapFrameWithArguments: args = (

3 (interpreter pushNewFrameWithMethod: self bootstrapMethod)

4 push: (self globalAt: #system);

5 push: args;

6 yourself "convenience method to return self"))

Listing 4.2: Cascaded Message Sends

the language. Instead, the binding of global variables can only be changed by
the explicit use of a VM primitive. Thus, supposedly constant globals such as
true, false, and class references cannot simply be assigned. While they might
appear to be keywords or special literals, similar to how they are treated in
languages such as C++ or Java, in SOM, they are treated like any other global
and will be looked up in the globals dictionary. Following the Smalltalk spirit
of everything is an object, true, false, and nil are objects as well. More pre-
cisely, they are the sole instances of their corresponding class. Consequently,
they can be adapted and customized when necessary.

Cascaded Message Sends Some code examples use Smalltalk’s cascaded mes-

sage sends for conciseness, which is a language feature that is uncommon in
other languages. The example in Lst. 4.2 defines a method that uses a complex
expression in line 3 that yields a frame object. This frame object still needs to
be populated with initial data, i. e., the method pushes a number of objects
onto the frame. For conciseness, instead of assigning the frame object to a
temporary variable, the method uses cascaded message sends. Thus, the re-
sulting frame object of the expression becomes the receiver of the first regular
message send in line 4, which pushes the #system global, and then indicated
by the semicolons, also becomes the receiver of the two following message
sends in lines 5 and 6. Note the last message #yourself in Lst. 4.2, it is a
convenience method defined in Object. It is often used in cascaded message
sends to return self. In this case it returns the frame object that was the result
of the initial expression on line 3.

Dynamic Array Creation Some of the code examples in this dissertation
use a notation for dynamically created arrays that is currently not part of the
SOM implementation. However, it is commonly used in Squeak and Pharo
Smalltalk to instantiate arrays in concise one-liners. The syntax uses curly
braces to delimit a list of Smalltalk statements. The result value of each of

93

4. Experimentation Platform

these statements is used as the value of the corresponding array index. As an
example, the following line of code will create an array with three elements,
the symbol #foo, the integer 42, and a new object:

anArray := {#foo. 21 * 2. Object new}

All statements are evaluated at runtime and can contain arbitrary code,
including assignments.

Non-local Returns Smalltalk offers the notion of non-local returns to facilitate
the implementation of custom control structures based on blocks. A non-local
return from a block will not just return from the block’s execution, as is done
for instance with JavaScript’s return statement inside a lambda, but it will
return from the enclosing method of the block. This dissertation uses it as
illustrated in Lst. 4.3 to avoid additional nesting of the else branch. Line 3

returns from #foo: when the argument aBool is true. Thus, the remainder of
the method will only be executed if the argument was false.

1 Example = (

2 foo: aBool = (

3 aBool ifTrue: [^ #bar].

4 " else: multiple statements without need to nest them "

5 ^ #baz))

Listing 4.3: Non-local Returns in Smalltalk

4.2.2. Execution Model and Bytecode Set

Since SOM focuses on clarity of concepts, its implementation is kept as ac-
cessible and straightforward as possible. This means that the VM implemen-
tation does not apply common optimizations. For instance, the interpreter
loop in the AweSOM implementation uses a simple double dispatch for the
bytecodes, which are represented as objects.

The execution model of SOM is based on a simple stack machine, which
is a simplified variant of the one used in Smalltalk-80. The execution stack
is built from linked frame objects, which are also called context objects. Each
frame object corresponds to a method or block activation. Lst. 4.4 illustrates
this with the basic definition of SOMFrame, including its instance variables. The
field previousFrame is used to refer to the frame one level lower in the execu-
tion stack. If a block is executed, the outer frame, i. e., the blockContextFrame

94

4.2. SOM: Simple Object Machine

needs to be set as well. This field refers to the frame that was active when
the block object was created, and thus, constitutes the lexical environment of
the block. Frames are the operand stacks for the execution of a method/block.
They are initialized on activation, holding the arguments of the method/block
at the bottom of the operand stack. #bootstrapFrameWithArguments: illus-
trates the calling convention with its creation of a bootstrap frame for the
interpretation. The first element is always the receiver, in this case the global
object for #system, and the following elements on the stack are the arguments
to the activated method. In this case it is a single argument args, the array of
arguments given to the initial program.

1 SOMObject = (

2 | hash class |

3 postAllocate = ()

4 "...")

5

6 SOMFrame = SOMArray (

7 | previousFrame blockContextFrame

8 method

9 bytecodeIndex stackPointer localsOffset |

10

11 currentObject = (^ self at: 1) "the receiver object"

12 "...")

13

14 SOMUniverse = (

15 | globals symbolTable interpreter |

16

17 bootstrapFrameWithArguments: args = (

18 (interpreter pushNewFrameWithMethod: self bootstrapMethod)

19 push: (self globalAt: #system);

20 push: args;

21 yourself))

Listing 4.4: SOM Implementation of stack frames and the initial bootstrap frame.

This section briefly goes over the implementation of essential bytecodes,
because the discussion of the executable semantics for the solution in Sec. 5.4
relies on the basics described here.

The SOMInterpreter sketched in Lst. 4.5 manages three relevant instance
variables. The frame instance variable refers to the currently active context
object, universe refers to the object holding references to global and sym-
bols table, and currentBytecode references the currently executing bytecode
for convenience. The currentObject always represents the receiver, i. e., self

95

4. Experimentation Platform

for the currently executing method and block. The POP_FIELD bytecode imple-
mented by #doPopField in line 6, modifies the current object at the field index
indicated by the bytecode. It stores the current top element of the stack into
that field, and pops the top off the stack. The reverse operation is realized in
line 11 by the PUSH_FIELD bytecode, which reads the field of an object and
pushes the result onto the operand stack. The implementations of the SEND

and SUPER_SEND bytecode given in lines 16 and 24 first determine the object
that receives the message send, based on the number of arguments on the
stack, and will then determine the class where the lookup starts to eventually
delegate to the #performSend:to:lookupCls: method.

How the invocation is implemented depends on whether the message leads
to an application of a SOM method representing bytecodes, or a primitive
that is implemented in the implementation language. The application of a
method, as shown in line 6 of Lst. 4.6, will result in the creation of a new
frame (cf. line 29) that will be initialized with the receiver and the arguments.
The invocation of a primitive on the other hand, is performed in AweSOM by
taking arguments from the operand stack, executing the primitive with these
arguments and pushing the result value back onto the stack. In other SOM
implementations, and in typical Smalltalk VMs like the CogVM or RoarVM,
primitives will obtain a reference to the context object, i. e., frame instead
and will manipulate it directly, because it gives primitives more freedom and
power in terms of what they can implement. AweSOM optimizes for the com-
mon case, reducing the burden on the primitive implementer.

The remaining bytecodes of SOM complement the ones already discussed.
Since their details are beyond the scope of this dissertation, this section only
gives a brief description of the operation each bytecode represents. Note how-
ever that bytecodes represent access to object fields and local variables with
indexes. This is a typical optimization known as lexical addressing [Abelson
et al., 1996].

96

4.2. SOM: Simple Object Machine

1 SOMInterpreter = (

2 | frame universe currentBytecode |

3

4 currentObject = (^ (frame outerContext) currentObject)

5

6 doPopField = (

7 self currentObject

8 fieldAtIndex: currentBytecode fieldIndex

9 put: frame pop)

10

11 doPushField = (

12 frame push:

13 (self currentObject

14 fieldAtIndex: currentBytecode fieldIndex))

15

16 doSend = (

17 | receiver |

18 receiver := frame stackElementAtIndex:

19 currentBytecode selector numArgs + 1.

20 ^ self performSend: currentBytecode selector

21 to: receiver

22 lookupCls: receiver class)

23

24 doSuperSend = (

25 | receiver superClass |

26 receiver := frame stackElementAtIndex:

27 currentBytecode selector numArgs + 1.

28 "Determine super in the context of the correct method."

29 superClass := frame outerContext method holder superClass.

30 ^ self performSend: currentBytecode selector

31 to: receiver

32 lookupCls: superClass)

33

34 performSend: selector to: receiver lookupCls: cls = (

35 ^ self send: selector toClass: cls)

36

37 send: selector toClass: cls = (

38 (cls lookupInvokable: selector)

39 ifNotNilDo: [: invokable | invokable invokeInFrame: frame]

40 ifNil: [self sendDoesNotUnderstand: selector])

41 "...")

Listing 4.5: Basics of the SOM Interpreter

97

4. Experimentation Platform

1 SOMInvokable = (| signature holder numArgs |)

2

3 SOMMethod = SOMInvokable (

4 | numLocals bytecodes |

5

6 invokeInFrame: frame (

7 | newFrame |

8 newFrame := self universe

9 interpreter pushNewFrameWithMethod: self.

10 newFrame copyArgumentsFrom: frame.

11 ^ newFrame))

12

13 SOMPrimitive = SOMInvokable (

14 | realSignature |

15 invokeInFrame: frame (

16 ^ self invokePrimitiveInPlace: frame)

17

18 invokePrimitiveInPlace: frame (

19 | theSelf arguments result |

20 "without self , self is first argument"

21 arguments := frame popN: numArgs - 1.

22 theSelf := frame pop.

23 frame push: (theSelf

24 performPrimitive: realSignature

25 withArguments: arguments)))

26

27 SOMInterpreter = ("..."

28 pushNewFrameWithMethod: method = (

29 ^ frame := SOMFrame new

30 method: method;

31 previousFrame: frame;

32 resetStackPointerAndBytecodeIndex;

33 yourself))

Listing 4.6: SOM Method and Primitive invocation.

98

4.2. SOM: Simple Object Machine

HALT return from the interpreter loop, without changing the interpreter’s
state.

DUP duplicates the element at the top of the operand stack.

POP removes the element from the top of the operand stack.

RETURN_LOCAL performs a return from the current method. The top of the
current frame’s operand stack is saved as return value, the current stack
frame is removed from the interpreter’s stack, and the return value is
then pushed onto the operand stack of the calling method.

RETURN_NON_LOCAL performs a return from a block activation. The top of the
current frame’s operand stack is saved as return value, then all stack
frames from the interpreter’s stack are removed until the end of the
context frame chain is reached, named the target frame; the target frame is
removed, too, and the return value is then pushed onto the top frame’s
operand stack.

PUSH_LOCAL and POP_LOCAL either push or pop the value of a local variable
onto or from the operand stack.

PUSH_ARGUMENT and POP_ARGUMENT either push or pop the value of a method
argument onto or from the operand stack.

PUSH_FIELD and POP_FIELD either push or pop the value of an object’s field
onto or from the operand stack.

PUSH_BLOCK pushes a new block object onto the operand stack. The block
object is initialized to point to the stack frame of the currently-executing
method, so that the block method can access its arguments and locals.

PUSH_CONSTANT pushes a constant value object onto the operand stack.

PUSH_GLOBAL pushes the value of an entry from the global symbol table onto
the operand stack.

SEND and SUPER_SEND send a message to the class or superclass of an object.
The name of the message specifies how many arguments are consumed
from the operand stack. For example, the #ifNil:ifNotNil: message
uses 3 elements: the receiver object and two explicit arguments. Each
send leads to the creation of a new frame, which takes the arguments
and is used for the execution of the corresponding method. Arguments
are popped from the operand stack of the original frame.

99

4. Experimentation Platform

4.3. Squeak and Pharo Smalltalk

Squeak and Pharo are open source Smalltalk implementations in the tradition
of Smalltalk-80 [Goldberg and Robson, 1983]. They provide an image-based
development environment that offers good support for the prototyping of
language and VM ideas. Both rely on the same VM for execution.

CogVM The CogVM3 is primarily a VM with a just-in-time (JIT) compiler.
It also includes a bytecode-based interpreter. Interpreter and JIT compiler are
based on a bytecode set that differs only marginally from Smalltalk-80. One
noticeable difference is the support for closures, which goes beyond Smalltalk-
80 in that closure activation is legal even after the closure escaped from the
dynamic extent in which it was created. Furthermore, the implementation ap-
plies a moderate number of optimizations for interpreters such as immediate
integers based on tagged pointers, context-to-stack mapping to optimize rep-
resentation of stack frames [Miranda, 1999], and threaded interpretation [Bell,
1973] to reduce the overhead of bytecode interpretation when the JIT is not
yet warmed up, i. e., before a method was compiled to native code.

Rationale The OMOP needs to be evaluated against the state of require-
ments and its applicability needs to be demonstrated. For this dissertation,
the use of Smalltalk is an advantage, since the available tools enable develop-
ers to implement experiments with a high level of productivity. Furthermore,
while the language and its tools are somewhat different from mainstream en-
vironments like Java, Python, etc., it provides a concurrency model based on
shared memory and threads, which reflects the most common approach to
concurrent and parallel programming. One difference with other languages
using threads is that Smalltalk’s threads, i. e., processes, are green threads
and scheduling is performed by the VM without relying on the operating sys-
tem. In addition to that, Smalltalk has a strong track record of being used
for research in concurrent programming models and VM implementation
techniques [Briot, 1988, 1989; Gao and Yuen, 1993; Pallas and Ungar, 1988;
Renggli and Nierstrasz, 2007; Thomas et al., 1988; Ungar and Adams, 2009;
Yokote, 1990]. The high productivity of the development tools and the ade-
quate performance of the underlying VM implementation make Squeak and
Pharo based on the CogVM good candidates for experimentation.

3Teleplace Cog VMs are now available, Eliot Miranda, 20 June 2010

http://ftp.squeak.org/Cog/README

100

http://ftp.squeak.org/Cog/README

4.4. RoarVM

Used Software and Libraries Squeak and Pharo were used as development
platforms for specifying the operational semantics of the OMOP using Awe-
SOM and to develop the AST-transformation-based prototype (cf. Sec. 7.1).
While Smalltalk typically uses a bytecode-based representation of the com-
piled code, transforming it is low-level and error-prone. To avoid the associ-
ated complexity, the first prototype implementation of the OMOP uses code
transformations based on the AST (abstract syntax tree) instead. The main
benefit is that the AST will be used to generate bytecode that corresponds to
the expectations of the whole Smalltalk toolchain. Using direct bytecode trans-
formation can result in perhaps more optimal bytecode, however, the used
tools, i. e., the debugger and decompiler, accept only a subset of the legal byte-
code sequences, rendering some correct bytecode sequences non-debuggable.
The AST transformations uses the Refactoring Engine,4 which generates ASTs
from Smalltalk code and provides a transformation framework implementing
the classic visitor pattern. With these tools it became possible to implement
AST transformations and produce bytecode that was executable and debug-
gable.

4.4. RoarVM

The RoarVM is a Squeak and Pharo-compatible Smalltalk VM designed and
initially implemented by Ungar and Adams [2009]. It is a platform for exper-
imenting with parallel programming on the Tilera TILE64 manycore proces-
sor [Wentzlaff et al., 2007]. Building on top of the work of Ungar and Adams,
we ported it to commodity multicore systems. It enables the parallel execu-
tion of Smalltalk code in a shared memory environment. Thus, Smalltalk pro-
cesses, i. e., threads, of a given image can be scheduled and executed simulta-
neously depending on the available hardware parallelism.

Rationale for Choosing the RoarVM The RoarVM was chosen to experi-
ment with VM implementations for several reasons. On the one hand, the
complexity of the RoarVM is significantly lower than that of the CogVM, facil-
itating experiments with different implementation approaches. Furthermore,
the RoarVM has a parallel execution model, which preserves the opportunity
to investigate support for parallel programming as part of future work (cf.
Sec. 9.5.1).

4Refactoring Engine, Don Roberts, John Brant, Lukas Renggli, access date: 17 July 2012

http://www.squeaksource.com/rb.html

101

http://www.squeaksource.com/rb.html

4. Experimentation Platform

Another reason for its choice are the experiments that were performed in
addition to the work on this dissertation. Examples are the implementation
of a pauseless garbage collector [Click et al., 2005] to avoid stop-the-world
garbage collection pauses,5 as well as a work-stealing scheduler to improve
the performance of fine-grained parallelism.6 Especially relevant for the work
presented here was an experiment to use operating system processes instead
of threads as the underlying abstraction to use multiple cores (cf. Sec. 4.4.3).7

These extensions to the RoarVM promise to be a good foundation to exper-
iment with different optimizations (cf. Sec. 9.5.3).

4.4.1. Execution Model, Primitives, and Bytecodes

This section discusses technical details that are relevant for the implementa-
tion of the OMOP and its performance evaluation.

Execution Stack Representation Similarly to the execution model of SOM,
the RoarVM uses the classic Smalltalk-80 model of context objects that rep-
resent stack frames. Each frame, i. e., context object is a standard Smalltalk
object allocated on the heap and subject to garbage collection. They represent
the method activation, the operand stack, and temporary variables. A context
object also encapsulates the corresponding instruction and stack pointer. To
reduce the pressure on the garbage collector (GC), context objects are cached
and reused if possible, instead of leaving them for the GC.

While using objects to represent the execution state enables for instance
metaprogramming, it comes with a performance cost. To reduce that cost by
avoiding frequent indirections on the context objects, part of the execution
state such as instruction pointer and stack pointer are replicated in the inter-
preter object and maintained there. The context object is only updated with
the execution state when necessary. Thus, the execution state is written to the
actual context object before garbage collection starts, before scheduling oper-
ations, such as resuming a processes or yielding execution, might change the
currently active context, and before a message send activates the new context
for its execution.

Primitives and Quick Methods Primitives are used to implement function-
ality that cannot be implemented directly in Smalltalk or for functionality

5https://github.com/smarr/RoarVM/tree/features/parallel-garbage-collection
6https://github.com/smarr/RoarVM/tree/features/scheduler-per-interpreter
7https://github.com/smarr/RoarVM/tree/features/processes-on-x86

102

https://github.com/smarr/RoarVM/tree/features/parallel-garbage-collection
https://github.com/smarr/RoarVM/tree/features/scheduler-per-interpreter
https://github.com/smarr/RoarVM/tree/features/processes-on-x86

4.4. RoarVM

that is performance critical and benefits from avoiding the interpretation over-
head.

The RoarVM and CogVM are derived from the same original code base and
share the implementation of primitives. While the implementations diverged
over time, the RoarVM supports the same primitives and collections of prim-
itives in the form of plugins to be compatible with the CogVM. Thus, on the
language level the provided mechanism are identical.

Smalltalk has access to primitives via an encoding in the method header of
a method object. If the primitive part of the method header is set to a value
different from zero, the VM is asked to execute the primitive referenced by
this method instead of executing the bytecodes encoded in the method. For
the execution of a primitive the current context object is used, instead of creat-
ing a new one, as is done for standard message sends. This gives the primitive
access to the current operand stack, the VM, and perhaps the underlying sys-
tem. A number of primitive identifiers is however reserved for so-called quick

methods. Quick methods do not encode bytecodes, but instead use the prim-
itive identifier to encode presumably common short methods. This includes
return of self, true, false, and nil. Furthermore, quick methods encode
accessors, i. e., methods that only return the object stored in a field.

Tab. 4.1 shows the encoding of the method header in the RoarVM. It uses
the same encoding as the CogVM for compatibility. To avoid issues with the
garbage collector, and because the method header is a normal field in the
method object, it is encoded using a SmallInt, which is indicated by the
least significant bit set to one. The header encodes the number of arguments
(#args) the method expects, the number of slots the context object should pro-
vide for temporary variables (#temporaries), whether a small or large context
object should be allocated for the operand stack (FS: frame size), and the num-
ber of literals encoded in the method. For historical reasons, the primitive is
encoded with 10 non-consecutive bits. Bit 29 was presumably added when
the need arose. The 30th bit (F) is a flag bit that is reserved for custom use at
the language side, and bit 31 remains unused.

Table 4.1.: RoarVM Method Header

F P. #args #temporaries FS #literals Primitive 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

103

4. Experimentation Platform

Bytecodes The bytecode set used by the RoarVM is very similar to the
Smalltalk-80 bytecode set depicted in Tab. 4.2. It encodes common operations
with single bytes, directly encoding a small range of parameters. Supposedly,
this encoding was chosen to keep the code size of Smalltalk methods small
and enable efficient implementation based on C’s switch/case statement that
will be mapped on a dispatch table by most compilers. The RoarVM also still
uses switch/case instead of direct or indirect threading. While the RoarVM
supports the closure extension that was introduced by the CogVM, it is not
considered in this dissertation. Another difference in the used bytecode set is
the changed meaning of bytecode 132. It has been changed to the unequivocal
name: doubleExtendedDoAnythingBytecode. Three bits of the second byte are
used to encode the operation, and the remaining 5 bits encode an argument.
The third byte encodes a literal to be used.

The bytecodes for arithmetic and special methods are essentially shortcut

bytecodes that reduce the number of bytes needed to encode presumably
common message sends. Besides arithmetic operations such as add, subtract,
and multiply, this includes comparisons such as less than, greater or equal, and
equal. The special methods include for instance #at:, #at:put:, and class.
The implementation of these bytecodes will first set the corresponding sym-
bol for the message send, and then issue the actual message send. However,
if possible the addition is executed directly without doing an actual message
send, for instance if the receiver and the argument of the #+ message are
integers.

4.4.2. Memory Systems Design

The memory system of the RoarVM has been designed with simplicity in
mind, facilitating the experimentation on manycore platforms like the Tilera
TILE64 [Wentzlaff et al., 2007]. Therefore, the RoarVM uses a simple compact-
ing mark-and-sweep GC that relies on a stop-the-world mechanism for safe
memory reclamation. Beside the SmallInt immediate tagged integers, all ob-
jects are garbage collected.

One important artifact of Ungar and Adams’ research that became part of
the RoarVM is an additional memory word that is prepended to every object.
For their implementation of the Ly and Sly language prototypes [Ungar and
Adams, 2010], they changed the semantics of message dispatching. In Sly, an
object can be part of an ensemble, i. e., a collection. If a message is sent to such
an object, the message is reified and sent to the ensemble instead. This tech-
nique allows Ungar and Adams to unify to a certain degree the treatment of

104

4.4. RoarVM

Table 4.2.: The Smalltalk-80 Bytecodes [Goldberg and Robson, 1983, p. 596]

Range Bits Function

0-15 0000iiii Push Receiver Variable #iiii

16-31 0001iiii Push Temporary Location #iiii

32-63 001iiiii Push Literal Constant #iiiii
64-95 010iiiii Push Literal Variable #iiiii

96-103 01100iii Pop and Store Receiver Variable #iii

104-111 01101iii Pop and Store Temporary Location #iii

112-119 01110iii Push (receiver, true, false, nil, -1, 0, 1, 2) [iii]
120-123 011110ii Return (receiver, true, false, nil) [ii] From Message
124-125 0111110i Return Stack Top From (Message, Block) [i]
126-127 0111111i unused
128 10000000 Push (Receiver Variable, Temporary Location,

jjkkkkkk Literal Constant, Literal Variable) [jj] #kkkkkk
129 10000001 Store (Receiver Variable, Temporary Location,

jjkkkkkk Illegal, Literal Variable) [jj] #kkkkkk
130 10000010 Pop and Store (Receiver Variable, Temporary Location,

jjkkkkkk Illegal, Literal Variable) [jj] #kkkkkk
131 10000011 Send Literal Selector #kkkkk

jjjkkkkk With jjj Arguments
132 10000100 Send Literal Selector #kkkkkkkk

jjjjjjjj With jjjjjjjj Arguments
kkkkkkkk

133 10000101 Send Literal Selector #kkkkk To Superclass
jjjkkkkk With jjj Arguments

134 10000110 Send Literal Selector #kkkkkkkk To Superclass
jjjjjjjj With jjjjjjjj Arguments
kkkkkkkk

135 10000111 Pop Stack Top
136 10001000 Duplicate Stack Top
137 10001001 Push Active Context
138-143 unused
144-151 10010iii Jump iii + 1 (i. e., 1 through 8)
152-159 10011iii Pop and Jump On False iii +1 (i. e., 1 through 8)
160-167 10100iii Jump (iii - 4) * 256 + jjjjjjjj

jjjjjjjj

168-171 101010ii Pop and Jump On True ii * 256 + jjjjjjjj

jjjjjjjj

172-175 101011ii Pop and Jump On False ii * 256 + jjjjjjjj

jjjjjjjj

176-191 1011iiii Send Arithmetic Message #iiii

192-207 1100iiii Send Special Message #iiii

208-223 1101iiii Send Literal Selector #iiii With No Arguments
224-239 1110iiii Send Literal Selector #iiii With 1 Argument
240-255 1111iiii Send Literal Selector #iiii With 2 Arguments

105

4. Experimentation Platform

ensembles and their elements. The technique of prepending additional words
to objects is also useful for the experiments of this dissertation and will be
detailed in later chapters (cf. Sec. 7.2.1).

Object Table for Manycore Architectures Since cache locality and the non-
uniform memory access properties of the TILE64 were one of the fields of
interest for Ungar and Adams, they decided to use an object table in the VM
to reduce the necessary effort for moving objects between different parts of
the heap.

As the number of cores grows, it becomes increasingly difficult for caches
to provide the illusion of a single coherent memory with uniformly short ac-
cess time. Consequently an application or VM seeking good performance on
a manycore system may be required to dynamically move objects between dif-
ferent parts of the heap for the sake of improved locality. The TILE64, Ungar
and Adams targeted, has only restricted support for cache coherency. Mem-
ory pages are homed to a certain core which means that only this core is able
to cache memory from that page in its local cache. This means that it is desir-
able to be able to move objects easily between memory pages to allow them
to be cached by a core that actually needs them.

When an object needs to be moved, a naive solution would require a full
scan of the heap to adjust all references to it as well. While the cost is of-
ten amortized by moving multiple objects, it remains significant. Other ap-
proaches employ a read-barrier, which however can itself add overhead and
complexity. An object table on the other hand allows an immediate update of
the object’s location. Using the infrastructure for flexible additional words for
each object, it is possible to include a backpointer in each object to identify
the object table entry directly and thus make lookups trivial. With this design,
moving an object reduces to adjusting a single reference, which can be found
via the backpointer starting from the object itself.

Drawback of Object Tables The use of an object table also has a number
of disadvantages. For the standard case of accessing an object, the address-
lookup in the table has a performance penalty. Furthermore, it also brings
additional complexity to the system, since the move operation of an object
needs to be atomic to prevent any other core to write to an object that is cur-
rently being moved. Moreover, storing the object table itself is an issue with
such restricted caching schemes. Object table entries need to be reclaimed af-
ter an object got garbage collected and the implied compaction of the table

106

4.4. RoarVM

is a problematic operation, too. Another detail that needs to be considered is
the approximately 10% space penalty imposed by the extra header word we
use as a backpointer from the object to the object table entry. In addition to
assertion-checking for debugging, this backpointer is required for the sweep
phase of the garbage collector.

As discussed in Sec. 8.1.3, the object table is disabled for the performance
evaluation in order to avoid the performance overhead.

4.4.3. Process-based Parallel VM

Ungar and Adams implemented the VM for the TILE64 and used libraries
that relied on operating system processes instead of threads to utilize the
64 processor cores. When we ported the RoarVM to commodity multicore
systems, we decided to use traditional threads instead of the process-based
variant. The main driver for this decision was the absence of sufficient de-
bugging tools and that the initially used libraries were only available for the
TILE64.

However, the thread-based implementation is significantly slower than the
process-based implementation. The performance cost for using thread-local
variables instead of static globals is significant. Therefore, the decision was
revisited and a version using processes instead of threads was also imple-
mented on classic Linux and Mac OS X systems.8

For this dissertation, the ability to use multiple operating system processes
is relevant in the context of future work (cf. Sec. 9.5.3). It enables the VM to
use different memory protection settings as an implementation technique for
managed state (cf. Sec. 3.4). A similar approach has been used for instance
by Hoffman et al. [2011].

4.4.4. Final Remarks

While the RoarVM is an interpreter and performance evaluation yields results
that are not generalizable to high-performance VMs with JIT compilers,9 the
RoarVM as a research platform has a number of relevant features that facili-
tate experiments and opens opportunities for future research.

The support for arbitrary additional words in front of objects greatly sim-
plifies experiments that need to adapt the notion of objects and extend it with

8https://github.com/smarr/RoarVM/tree/features/processes-on-x86
9An addition of a JIT compiler to the RoarVM would be possible and it would improve the

generalizability of the results, but it is outside of the scope of this dissertation.

107

https://github.com/smarr/RoarVM/tree/features/processes-on-x86

4. Experimentation Platform

custom features. The process-based parallel execution model can be the foun-
dation for optimizations that utilize techniques such as the operating systems
memory protection of memory pages.

Furthermore, the RoarVM compared to the CogVM is significantly less com-
plex, which reduce the implementation effort and enables a wider range of
experiments. Its support for parallel execution also preserves the opportunity
to experiment on multicore systems, while the CogVM would also restrict
future experiments to sequential execution.

4.5. Summary

This chapter presented SOM (Simple Object Machine), a Smalltalk that is in-
tended for teaching. Its minimalistic approach and concise implementation
allows the definition of an executable semantics of the OMOP in terms of a
bytecode interpreter that is similar to the actually used VMs.

Furthermore, this section presented Squeak and Pharo Smalltalk as a foun-
dation for the implementation of the evaluation case studies. Both Smalltalks
are mature platforms that have been used in other research projects before
and provide a stable foundation for the experiments in this dissertation.

Finally, this section discusses the RoarVM, which is used for experiments
with VM support. It describes the main implementation features, i. e., the
execution model, primitives, and the bytecode set as a foundation for the
explanation of the implementation in Chapter 7.

108

5
A N O W N E R S H I P - B A S E D M O P F O R E X P R E S S I N G
C O N C U R R E N C Y A B S T R A C T I O N S

This chapter introduces the main contribution of this dissertation: the design
of an ownership-based metaobject protocol (OMOP), which is meant to facili-
tate the implementation of concurrent programming concepts. To this end, it
first introduces open implementations and metaobject protocols (MOP) [Kiczales
et al., 1991] to motivate the choice of using such a mechanism as the foun-
dation for the OMOP. Second, it details the design and properties of the
ownership-based MOP. Third, its demonstrates how to apply the OMOP to en-
force the notion of immutability and the semantics of Clojure agents. Fourth,
this chapter describes the OMOP’s semantics based on a bytecode-based in-
terpreter that implements the OMOP. And finally, it situates the OMOP into
the context of related work.

109

5. An Ownership-based MOP for Expressing Concurrency Abstractions

5.1. Open Implementations and Metaobject Protocols

Considering the requirements identified in Sec. 3.4 and that the contempo-
rary multi-language VMs are object-oriented programming environments (cf.
Sec. 3.1.1.2), reflective programming techniques provide the natural founda-
tion for a program to interface with a VM, i. e., its runtime environment. Thus,
this section briefly reviews the notion of open implementations and metaobject

protocols, because they are commonly used to provide properties similar to the
ones required for a unifying substrate for concurrent programming concepts.

The notion of open implementations described by Kiczales [1996] provides
a general design strategy for increasing the control that client code has over
a software component it is using. The general motivation is that client code
often needs to adapt or work around the concrete software component it is
using, to change semantics or performance characteristics to the context it is
used in. Thus, open implementations are designed to facilitate the adaptation
of implementation strategies [Kiczales et al., 1997]. This notion can also be
used to enable adaptive language guarantees and semantics based on a meta
interface. Meta interfaces for this purpose are commonly known as metaobject

protocols:

Metaobject protocols are interfaces to the language that give users the

ability to incrementally modify the language’s behavior and implementa-

tion, as well as the ability to write programs within the language.

[Kiczales et al., 1991, p. 1]

Introduction Today, metaobject protocols (MOPs) can be found in a num-
ber of languages, for instance in the Common Lisp Object System (CLOS),
Smalltalk-80 [Goldberg and Robson, 1983], Groovy,1 and Perl’s Moose object
system.2 While not all of them offer the full functionality of the MOP dis-
cussed by Kiczales et al. [1991], they provide capabilities to reflect on the
executing program and adapt the language’s behavior.

To start from the beginning, important foundations for MOPs are the no-
tions of reflection and reification [Friedman and Wand, 1984]. Reflection builds
on introspection and intercession. Introspection is the notion of having a pro-
gram querying itself for information. This information is then reified in terms
of program structures which can be processed. Based on these reified pro-
gram structures, intercession enables the program to interfere with its own

1http://groovy.codehaus.org/
2http://search.cpan.org/~flora/Class-MOP/

110

http://groovy.codehaus.org/
http://search.cpan.org/~flora/Class-MOP/

5.1. Open Implementations and Metaobject Protocols

execution. This means it can change state, adapt program structures, or trap
certain operations to refine their behavior. The reified program structures are
referred to as metaobjects. In order to explain MOPs, Kiczales et al. [1991]
state that in general, a protocol is formed by “a set of object types and operations

on them, which can support not just a single behavior, but a space or region of behav-

iors”. Therefore, they conclude that a MOP enables the encoding of individual
decisions about language behavior via the operations of metaobjects.

Categories of MOPs Tanter [2009, p. 12] distinguishes metaobject protocols
(MOPs) for object-oriented reflection by the correspondence of the meta rela-
tion to other aspects of the system. He identifies a number of common ideas:
metaclass-based models, metaobject-based models, group-based models, and
message-reification-based models.

Metaclass-based Metaclass-based models such as in CLOS, Perl’s Moose,
or Smalltalk enable for instance the customization of method dispatch or
object fields semantics. The metaclass of a class therefore describes the se-
mantics of this class, i. e., the metaclass’ instance. The meta relation in this
case is the instantiation relationship between a class and its metaclass. This
technique has been used, e. g., to implement persistent objects, which are au-
tomatically mapped to a database [Paepcke, 1993], or even to parallelize pro-
grams [Rodriguez Jr., 1991].

Metaobject-based Metaobject-based models decouple meta interfaces from
the class hierarchy. One example for a language using this model is the
prototype-based language 3-KRS [Maes, 1987]. Since 3-KRS does not have the
notion of classes, it is designed with a one-to-one relation between a base-level
object and a metaobject. However, the model can be applied to class-based lan-
guages, for instance as is the case in Albedo, a Smalltalk system [Ressia et al.,
2010]. The independence from the class hierarchy enables modifications that
are orthogonal to the class hierarchy and results in a model with greater flex-
ibility.

Instead of having a one-to-one mapping, other variations of the model are
possible as well. One common example is proxy-based MOPs, for instance
as the one proposed for the next version of ECMAScript [Van Cutsem and
Miller, 2010].3 Metaobjects are defined in the form of proxy objects that reify

3Direct Proxies, Tom Van Cutsem, access date: 4 July 2012

http://wiki.ecmascript.org/doku.php?id=harmony:direct_proxies

111

http://wiki.ecmascript.org/doku.php?id=harmony:direct_proxies

5. An Ownership-based MOP for Expressing Concurrency Abstractions

the operations on the target object and thus, allow developers to adapt the
language’s behavior as necessary. It is different from 3-KRS in that a target
object can have multiple metaobjects associated with it. Furthermore, the se-
mantics defined by the proxy are only applied if a client interacts with the
target object through the proxy, which can be a significant drawback. On the
other hand, this design gives a large degree of flexibility, since every target
object can be adapted by arbitrarily many customizations as long as the client
uses the proxy instead of the target object.

Group-based Tanter further discusses the variation of group-based MOPs.
Instead of having a distinct metaobject for every base-level object, for instance
Mitchell et al. [1997] and Vallejos [2011] argue that it can be an advantage to
enable a metaobject to describe the semantics of a set of objects. Mitchell et al.
[1997] use meta-groups to control scheduling decisions for base and metaob-
jects. Describing these semantics based on groups of objects instead of sepa-
rate objects avoids the need for synchronization between multiple metaobjects,
when scheduling decisions have to be made.

Message-based The message-reification-based models Tanter discusses pro-
vide a meta interface to specify the semantics of message sends, for instance
by taking sender and receiver into account. For example, Ancona et al. [1998]
propose a model they call channel reification, which is based on message-
reification. However, since the model is based purely on communication and
does not reify, e. g., object field access, it is too restrictive for our purposes.

Conclusions Overall, metaobject protocols seem to be a good fit with the
requirements identified for a unifying substrate in multi-language VMs (cf.
Sec. 3.4). However, some of the approaches do not provide sufficient support
to satisfy all of the requirements.

The metaclass-based model is too restrictive, because it is not orthogonal to
application and library code. Sec. 2.5 describes the vision of using the appro-
priate concurrent programming concepts for different challenges in a Mail
application. It argues that event-loop-based actors are a good fit for imple-
menting the user interface, while an STM is a good fit to interact with the
database and to ensure data consistency. Considering that such an applica-
tion would rely on a number of third-party libraries for email protocols and
user interface components, these libraries need to be usable in the context
of event-loop actors as well as in the context of the STM. When using a

112

5.2. Design of the OMOP

metaclass-based model as foundation for the implementation of these con-
current programming concepts, the used library would only be usable for a
single concurrent programming concept, because it typically has one fixed
metaclass.

Message-reification-based models can be more powerful than metaclass-
based models, but are best applied to languages designed with an everything-

is-a-message-send approach. This is however an impractical constraint for multi-
language VMs.

Hence, a better foundation for a meta interface is a metaobject-based model
that fulfills all requirements identified in Sec. 3.4. For the problems considered
in this dissertation, a proxy approach adds undesired complexity. Specifically,
the constraint that every client needs to use the correct proxy imposes a high
burden on the correct construction of the system, since the actual object ref-
erence can easily leak. Furthermore, the added flexibility is not necessary to
satisfy the identified requirements, and the added overhead of an additional
proxy per object might provoke an undesirable performance impact.

To conclude, a metaobject-based approach that allows one metaobject to de-
scribe the semantics for a set of objects similar to the group-based approaches
provides an suitable foundation.

5.2. Design of the OMOP

Following the stated requirements (cf. Tab. 3.7) for the support of concurrent
programming concepts, a unifying substrate needs to support the interces-
sion of state access and execution, provide the notion of ownership at the
level of objects,4 and enable control over when the desired guarantees are en-
forced. As argued in the previous section, metaobject-based models for MOPs
provide a promising foundation to design a minimal meta interface for the
purpose of this dissertation. Note that the goal of this chapter is to design
a unifying substrate for a multi-language VM. The main focus is to improve
support for language semantics of concurrent programming concepts. There-
fore, aspects such as security, reliability, distribution, and fault-tolerance are
outside the scope for the design of this substrate.

To satisfy the requirement of representing ownership at the granularity
of objects, the major element of the OMOP is the notion of a concurrency

domain. This domain enables the definition of language behavior similar to
metaobjects or metaclasses in other MOPs. The language behavior it defines

4Our notion of ownership does not refer to the concept of ownership types (cf. Sec. 5.6).

113

5. An Ownership-based MOP for Expressing Concurrency Abstractions

is applied to all objects the domain owns. A domain is similar to a meta-group
in group-based MOPs (cf. Sec. 5.1) and the notion of object ownership realizes
the meta relation in this MOP. However, compared to group-based MOPs, the
OMOP requires every object to be owned by exactly one domain. Therefore the
MOP proposed here is called an ownership-based metaobject protocol (OMOP). A
visual representation of the OMOP is given in Fig. 5.1.

Object

10..*

o
w

n
e

d
 b

y

1
0..*

ru
n

s
 in

enforced : bool
Thread

readField:of:(idx, obj) : Object
write:toField:of:(val, idx, obj) : Object

requestExecOf:on:with:lkup:(sel, obj, args, cls): Object

requestThreadResume:(thread) : Thread

initialDomainForNewObjects() : Domain

primCopy:(obj) : Object
prim*(...) : Object

readGlobal:(global) : Object
write:toGlobal:(val, global) : Object

adopt:(obj) : Object
evaluateEnforced:(block) : Object
spawnHere:(block) : Thread

Domain B
a

s
ic

 In
te

rfa
c
e

V
M

 s
p

e
c
ifi

c
H

e
lp

e
r

unenforced : bool
Method

Figure 5.1.: Ownership-based Metaobject Protocol. The domain is the metaobject
providing the intercession handlers that can be customized to adapt the lan-
guage’s behavior. Each object is owned by exactly one domain. Every thread ex-
ecutes in one domain. Execution is either enforced, i. e., operations on an object
trigger intercession handlers, or it is unenforced and intercession handlers are
not triggered. The handlers enable the customization of field reads and writes,
method invocation, thread resumption, and initial owner of an object. If the VM
offers primitives and globals, they are reified as well, but these handlers are VM-
specific. Methods can be marked as unenforced to execute them always without
triggering the intercession handlers.

Fig. 5.2 depicts a simple object configuration during the execution of an
application that uses the OMOP. The example consists of two domains, rep-
resented by the dashed circles at the meta level, with interconnected object
graphs on the base level. Note that the pointers between domains do not
need special semantics. Instead, the concurrency properties of a base-level ob-
ject are defined by the domain object that owns the base-level object. Thus,
the owned-by relation is the meta relation of the OMOP.

The remainder of this section discusses in more detail the semantics asso-
ciated with the OMOP and establishes the connection of its elements to the
requirements.

Basic Interface The first compartment of the Domain class depicted in Fig. 5.1
contains the basic intercession handlers provided by the OMOP. This basic

114

5.2. Design of the OMOP

Object reference

Object owned-by

B
a

s
e
 L

e
v
e
l

M
e

ta
 L

e
v
e
l

Object

Domain object

Figure 5.2.: Possible object configuration during runtime. Objects are owned by the
domain, i. e., their corresponding metaobject. The owned-by relation is depicted
with a dashed arrow. Object references remain unaffected.

part is universal, while the second compartment contains intercession han-
dlers that depend on the target VM and can require variations for proper VM
integration.

The basic intercession handlers constitute a meta interface to intercept read-

ing of object fields, writing of object fields, and invocation of methods on ob-
jects. Also part of this basic interface is the notion of a thread that is executing
in a domain. A thread indicates with an enforced state whether during its
execution the semantics of the domain are to be realized to satisfy the require-
ment for controllable enforceability and to avoid infinite meta-recursion. Thus,
in enforced execution mode, operations on an object are delegated to the in-
tercession handlers of the owning domain. The enforced execution mode con-
forms to the program execution at the base level. The unenforced execution
mode conforms to the execution at the meta level and does not trigger inter-
cession handlers.

Since the unit of execution, i. e., a thread, is typically subject to restrictions
of a concrete concurrent programming concept, the basic interface includes
an additional intercession handler to respond to threads trying to resume
execution inside a domain. Therefore, a domain can decide whether a thread
is allowed to resume execution or whether any other actions have to be taken.

To determine the initial owner of a newly created object, the OMOP pro-
vides the #initialDomainForNewObject intercession handler, which is trig-
gered on the domain the current thread is executing in when an object is
created.

VM-specific Interface Depending on the VM, a domain also needs to man-
age globally accessible resources that may lie beyond its scope but that can

115

5. An Ownership-based MOP for Expressing Concurrency Abstractions

have an impact on the execution. This typically includes lexical globals and
primitive operations of a VM. The corresponding meta interface is sketched in
the second compartment of the Domain class. In addition to these operations,
the VM-specific part can also include an unenforced bit for each method. If
this unenforced bit is set, the corresponding method is always executed in
the unenforced execution mode. If the bit is not set, the method will execute
either enforced or unenforced depending on the current execution mode of
the thread. In general, the bit is used to mark operations that should execute
always at the meta level. This includes for instance the intercession handlers
of a domain themselves to guarantee that their execution is performed unen-
forced. Other examples are methods that implement general language behav-
ior, for instance in Sec. 5.3.2, it is used in the agent example to mark the #read

method unenforced to represent the notion that the agent’s state is readable
without any restrictions.

Helper Methods The third compartment of the Domain class in Fig. 5.1 con-
tains a set of helper methods. These methods sketch functionality that is
merely convenient to have, but is not a fundamental part of the OMOP. Thus,
the operations offered here are not strictly orthogonal to the other mecha-
nisms offered by the OMOP. For instance, in the theoretical model depicted
by Fig. 5.1, the owner of an object is represented directly by the owned by rela-
tion, and thus, can be modified directly. The helper methods offer the #adopt:

method which requests a domain to take over ownership for the given ob-
ject. This abstracts from the low-level details of how the owned by relation
is realized. For instance, it could be just another object field, or it could be
represented by arranging the objects of different domains in separate heaps.
The #evaluateEnforced: method also provides a high-level interface to the
execution mode by evaluating a block of code in the enforced execution mode.
This is convenient for the implementation of concurrency policies, as is the
spawning of new threads in a given domain via #spawnHere:.

Elements of the OMOP The remainder of this section gives a brief brief
summary of the elements of the OMOP and relates them to the requirements.

Domains own objects, and every object has one owner. They define the con-
currency semantics for owned objects by refining field read, field write,
method execution, and thread resumption. Newly created objects be-
long to the domain specified by #initialDomainForNewObjects. With
#adopt:, the owner of an object can be changed during execution. This

116

5.2. Design of the OMOP

set of mechanisms satisfies the ownership requirement and provides
a way to adapt language behavior on an object level.

By requiring that all objects have an owner it becomes possible to adapt
language behavior in a uniform way for all objects in the system. For
instance, domain objects themselves are owned by a domain. In the nor-
mal case it is a standard domain that represents the language behavior
of the language implemented by the VM.

Thread is the unit of execution. The enforced bit indicates whether it exe-
cutes enforcing the semantics of domains, i. e., whether the intercession
handlers are triggered or not. Each thread is said to run in the context
of one specific domain. If a thread attempts to resume execution in a do-
main, the corresponding #requestThreadResume: intercession handler
can be used to implement custom policies, for instance to prevent exe-
cution of more than one thread at a time. #evaluateEnforced: enables
an existing thread to change the execution domain for the duration of
the execution of the block. During the evaluation, guarantees are en-
forced, i. e., the corresponding flag in the thread is set. #spawnHere:

creates a new thread in the given domain and starts its execution, iff
#requestThreadResume has not specified a contradicting policy. These
mechanisms are necessary to satisfy the managed execution require-
ment.

Method representations can contain an additional bit to indicate that a par-
ticular method is always to be executed in the unenforced mode. This
gives more flexibility to control enforcement. If the bit is set, the
thread executing the method will switch to execute in unenforced mode,
i. e., at the meta level. If the bit is not set, the thread will maintain the
current execution mode.

Read/Write operations of object fields are delegated to the #readField:of:

and #write:toField:of: intercession handlers of the owning domain.
The domain can then decide based on the given object and the field
index, as well as other execution state, what action needs to be taken.
This satisfies the managed state requirement. Note, the intercession
handlers are only triggered while the thread executes in the enforced
execution mode.

Method Execution is represented by the #requestExecOf:on:with:lkup: in-
tercession handler. It enables the domain to specify language behavior

117

5. An Ownership-based MOP for Expressing Concurrency Abstractions

for all method invocations based on the given object, the method to
be executed, its arguments, and other execution state. This satisfies, to-
gether with the execution context of a thread, the managed execu-
tion requirement.

External Resources i. e., globally shared variables and primitives need to be
handled by the domain if otherwise they break semantics. To that end,
the domain includes #readGlobal/#write:toGlobal:, which allows for
instance to give globals a value local to the domain. Furthermore, it in-
cludes #prim* intercession handlers, such as #primCopy: to override the
semantics of VM primitives. This is necessary, because unintercepted
access to #primCopy: would enable copying of arbitrary objects without
regard for domain semantics. Thus, depending on a specific VM, this
extension to the basic meta interface is necessary to complete the sup-
port for managed state and managed execution. Furthermore,
depending on a specific VM, all the primitives offered by the VM need
to be supported by the domain. For the RoarVM, this extended meta in-
terface includes in addition to #primCopy: for instance #primNext: and
#primNext:put: to handle the support for stream data structures of the
VM properly.

5.3. The OMOP By Example

This section informally illustrates the semantics of the OMOP by demonstrat-
ing how it can be used to enforce immutability as well as how it can be used
to implement Clojure agents and enforce their intended semantics.

5.3.1. Enforcing Immutability

Immutability significantly simplifies reasoning over program behavior, not
only in concurrent systems, and thus, it is a useful subject to study as an
example. Using the OMOP, immutability can be realized by changing the
owner of an object to a domain that forbids any kind of mutation. A domain
such as the ImmutableDomain can be defined so that it throws an error on
every attempt to mutate state. The definition of such a domain is discussed
below.

Fig. 5.3 provides a sequence diagram showing how immutability can be
enforced based on the OMOP. The example uses a simple mutable cell object
and shows how it becomes owned by a domain guaranteeing immutability.

118

5.3. The OMOP By Example

main()

enforced

set: #bar

set: #bar → reqExecOf: #set on: cell with: #bar

write: #bar toField: 1 of: cell

ImmutabilityError

new cell:
Cell

set: #foo

ImmutableDomain

adopt: cell

current :
Domain

evaluateEnforced: [cell set: #bar]

initialDomainForNewObjects

Figure 5.3.: Enforcing Immutability with the OMOP. This sequence diagram depicts
a typical interaction between the application and a domain. The main program
starts in unenforced execution mode and creates a cell object. Since it has not
specified any domain as yet, it executes in the context of the standard, i. e., un-
customized domain. During the creation of the cell object the current domain is
used to determine its initial owner. The main program continues to set an initial
value for the cell (#foo) and then requests the immutable domain to adopt the
cell object. This completes the initialization of the program and it enables the en-
forced execution mode. When the main program now attempts to execute the set-
ter method on the cell, the immutable domain will reify the execution. However,
immutability does not interfere with method execution and thus, the request is
granted and the setter is executed. Eventually, the setter will attempt to write the
object field of the cell, which the immutable domain specifies a custom policies
for. Thus, the write attempt results in an invocation of the #write:toField:of:

intercession handler, which signals a violation of immutability and does not per-
form the state change.

119

5. An Ownership-based MOP for Expressing Concurrency Abstractions

The main() procedure of the program executes in the context of the current

domain, which can be assumed to be a default that does not enforce any
specific semantics. Furthermore, note that main() starts executing without
enforcement enabled.

The first action of the program is the creation of a new cell object. To de-
termine the initial owner of the new object, the VM queries the current do-
main via a call to #initialDomainForNewObject. Thus, the owner of a newly
created object is determined by the domain in which the current thread is ex-
ecuting. Afterwards, still in the unenforced execution mode, the cell is set to
the value #foo and then adopted by the immutable domain. After adopting
the cell object, the intercession handlers of the domain define the semantics
for all operations on the cell. They will be triggered during the enforced exe-
cution mode, which is enabled by requesting the domain to evaluate a block:
current evaluateEnforced: [cell set: #bar].

When the VM reaches the point of executing cell set: #bar during en-
forced execution, it will not apply the method directly, but it will request
the execution of the method by using the OMOP. The owner of the cell
is identified and the intercession handler #requestExecOf:on:with: is trig-
gered on it. The intercession handler itself executes in unenforced mode to
avoid meta recursion. In this example, #requestExecOf:on:with: implements
standard semantics of method execution, since immutability does not require
any changes to it. Hence, the method #set: is executed with the enforce-
ment enabled. At some point, the implementation of #set: tries to perform
a write to the object field of the cell. Here, the VM triggers the OMOP’s
#write:toField:of: intercession handler of the owner of the cell, instead of
performing the write directly. Thereby, the immutable domain is able to sig-
nal a violation of the requested immutability by throwing the corresponding
exception.

To cover other reflective capabilities properly as well, an implementation
of the OMOP requires that for instance reflective writes to fields obey the
enforcement flag. For example, in case the setter would have used Java’s
reflect.Field.set() to write the value, the implementation of Field.set()
would be required to determine the owner domain of the cell, and use the
MOP to request the actual memory write.

After demonstrating how a program would execute in the presence of
enforcement, Lst. 5.1 sketches of how such an immutability enforcing do-
main can be implemented. Note that the example uses the SOM syntax (cf.
Sec. 4.2.1). The given ImmutableDomain overrides all intercession handlers that
are related to state mutation. These are the intercession handlers for han-

120

5.3. The OMOP By Example

dling writing to fields as well as all primitives of the VM that can cause
state changes. This example only shows the primitive for array access and
the primitive for reflective access to object fields. Note that the primitive
#priminstVarAt:put:on: corresponds to Java’s reflect.Field.set().

1 ImmutableDomain = Domain (

2

3 raiseImmutabilityError = (

4 ImmutabilityError signal: ’Modification of object denied.’)

5

6 write: val toField: idx of: obj = unenforced (

7 self raiseImmutabilityError.)

8

9 primat: idx put: aVal on: anObj = unenforced (

10 self raiseImmutabilityError.)

11

12 priminstVarAt: idx put: aVal on: anObj = unenforced (

13 self raiseImmutabilityError.)

14

15 "... and all other mutating operations"

16)

Listing 5.1: Definition of a Domain for Immutable Objects

While the OMOP provides the capabilities to ensure immutability with
such a domain definition, it is important to note that the semantics of im-
mutability are only ensured during enforced execution, i. e., at the base level.
As soon as execution moves to the unenforced mode, i. e., to the meta level,
immutability is no longer guaranteed. Thus, a language implementer has to
ensure that the language implementation, i. e., the meta-level code is correct.
Furthermore, properties such as immutability or isolation that are enforced
using the OMOP are not meant as a mechanism to enforce security policies
of some sort. At this time, security has not been a design concern for the
development of the OMOP.

5.3.2. Clojure Agents

Introduction Clojure agents, as introduced in Sec. 2.4.3, are the second ex-
ample for demonstrating how the OMOP works. An agent represents a re-
source, i. e., a mutable cell, which can be read synchronously. However, state
updates are only performed asynchronously by a single thread. Lst. 5.2 shows
the implementation in SOM.

121

5. An Ownership-based MOP for Expressing Concurrency Abstractions

1 Agent = (

2 | state mailbox immutDomain |

3

4 read = unenforced (^ state)

5

6 "update blocks are of the form:

7 [: oldState | oldState produceNewState]"

8 send: anUpdateBlock = unenforced (

9 mailbox nextPut: anUpdateBlock)

10

11 initialize = unenforced (

12 | domain |

13 mailbox := SharedQueue new.

14 immutDomain := ImmutableDomain new.

15 domain := AgentDomain new agent: self.

16 domain spawnHere: [

17 true whileTrue: [self processUpdateBlock]].)

18

19 processUpdateBlock = (

20 | updateBlock newState |

21 updateBlock := mailbox waitForFirst.

22 newState := domain evaluateEnforced: [

23 updateBlock value: state].

24 state := immutDomain adopt: newState.

25 mailbox removeFirst.))

Listing 5.2: Clojure agents implemented in SOM Smalltalk

For the purpose of this discussion, agents are represented by an object that
has the field state to represent the state of the agent and the field mailbox,
which holds incoming update requests. In addition to the object itself, an
agent has an associated Process, i. e., thread, which evaluates the incom-
ing update requests one by one. The mailbox is a SharedQueue object, i. e.,
a concurrent queue data structure. The queue implements #waitForFirst to
block the current thread until the queue has at least one element and then
return the element without removing it. This operation is complemented by
#removeFirst, which removes the first element of the queue.

The example uses these operations to implement the basic methods of the
agent. Thus, #read returns the current state and #send: enqueues an update
request for the agent’s state. The request is represented by anUpdateBlock,
which is a lambda, i. e., a block, with a single argument. The argument is the
old state, which is going to be replaced by the result the block returns.

122

5.3. The OMOP By Example

The process that has been spawned during the initialization of the agent ob-
ject tries indefinitely to process these update blocks in #processUpdateBlock.
It waits for the next update block, evaluates it with the current state as argu-
ment, and sets the result value as new state.

This implementation is simplified but represents the essence of Clojure
agents. The differences with the Clojure implementation sketched in Sec. 2.4.3
originate from language differences between SOM and Clojure. For instance,
SOM does not have the notion of private methods, which leaves the implemen-
tation methods #initialize and #processUpdateBlock exposed to arbitrary
use. Thus, these methods could be called from another thread and violate
the assumption that only one update function is executed at a time. The re-
maining differences originate from the use of the OMOP. Note that the #read,
#initialize, and #send: method are annotated with unenforced. They are
by themselves not subject to the OMOP’s enforcement, guaranteeing that it
does not come to meta recursion during their execution.

Providing extended Guarantees based on the OMOP While Clojure guides
developers to use agents in conjunction with immutable data structures, at the
same time it makes the pragmatic decision not to enforce any such guarantees
on top of the JVM. One reason for this is the anticipated performance impact.
Another issue is the integration with Java itself, which makes it impossible
to provide such guarantees consistently. This section uses this example to
demonstrate how the OMOP can be used to express and in return enforce
such guarantees concisely.

To this end, Lst. 5.3 defines the AgentDomain. The domain implements the
intercession handler #requestExecOf:on:with: to ensure that only a single
thread of execution modifies the agent and that the agent is not reinitialized.
In this simple example, this is done by using a list of selectors that are allowed
to be executed. In case any other selector is sent to an agent, an error is raised
to report the violation.5

As the ImmutableDomain in Sec. 5.3.1 shows, adding the guarantee of im-
mutability is also possible in a concise manner. Using the ImmutableDomain

of Lst. 5.1 in this example, the agent ensures in #processUpdateBlock that the
state is an immutable object. This is done by requiring the immutable domain
to #adopt: the return value of an update block.6

5Our actual implementation of agents goes beyond what is presented here. For brevity, the
example leaves out operations such as #await and #send:with:.

6In the current implementation #adopt: performs a shallow adopt only and thus, only the
root object of the object graph is made immutable.

123

5. An Ownership-based MOP for Expressing Concurrency Abstractions

1 AgentDomain = Domain (

2 | agent |

3 "Use #agent: to set the agent that is protected by this domain"

4 agent: anAgent = (agent := self adopt: anAgent)

5

6 requestExecOf: selector on: obj with: args = unenforced (

7 "Semantics are only enforced on the agent itself ,

8 not on other objects created in its scope."

9 obj = agent ifFalse: [^ obj perform: selector with: args].

10

11 "Only allow execution of white -listed selectors"

12 (#read = selector or: [#send: = selector]) ifTrue: [

13 ^ agent perform: selector with: args].

14

15 Error signal: ’Exec. of method ’ + selector + ’ is denied.’))

Listing 5.3: Domain definition for an Agent, enforcing the expected guarantees.

5.4. Semantics of the MOP

Sec. 4.2 introduced the SOM language and the interpreter’s execution model.
Building on that foundation, this section describes the semantics of the OMOP
by discussing its implementation in the SOM interpreter.

Derived from Fig. 5.1, Lst. 5.4 shows how the basic elements of the OMOP
map onto the SOM interpreter. Every SOMObject has a field to refer to the
owner domain. The domain field is initialized in the #postAllocate method
after allocation is completed. The initial value, i. e., the owner domain is de-
termined by the domain the thread is currently executing in. Since SOM is
implemented as a stack-based interpreter, the current domain is derived from
the current stack frame. The enforcement flag is realized as part of the inter-
preter’s stack frames as well. Thus, every frame maintains an enforced flag
and the current domain.
SOMInvokable, the superclass for methods and primitives, maintains the

attribute that indicates to the interpreter that execution has to continue un-
enforced. Methods are annotated with unenforced instead of enforced, be-
cause applications and libraries need to execute in the enforced mode most of
the time to benefit from the OMOP. Only the domain’s intercession handlers
and methods implementing language behavior require unenforced execution.
Thus, it is a pragmatic decision to annotate the smaller set of methods that
require unenforced execution.

124

5.4. Semantics of the MOP

1 SOMObject = (| "..." domain | "..."

2 postAllocate = (

3 domain := interpreter frame domain

4 initialDomainForNewObjects))

5

6 SOMFrame = SOMArray (| "..." enforced | "..."

7 enforced = (^ enforced)

8 enforced: aBool = (enforced := aBool))

9

10 SOMInvokable = SOMObject (| "..." attribute | "..."

11 unenforced = (^ attribute == #unenforced))

12

13 SOMUniverse = (| globals symbolTable interpreter | "..."

14 bootstrapFrameWithArguments: args = (

15 (interpreter pushNewFrameWithMethod: self bootstrapMethod)

16 push: (self globalAt: #system);

17 push: args;

18 enforced: false))

Listing 5.4: Structural Changes to support the OMOP in SOM

The execution of a program starts from a bootstrap frame created by the
#bootstrapFrameWithArguments: method in SOMUniverse. The initialization
of the bootstrap frame sets the execution mode to unenforced. This gives an
application the freedom to set up the runtime environment properly before
it continues with its normal execution in enforced mode. However, this also
implies that a language implementation on top of the OMOP needs to opt-in

to the enforced execution mode, which can make it prone to incorrect use by
a language implementer.

Lst. 5.5 shows the adapted implementation of the POP_FIELD bytecode. Dur-
ing unenforced execution, the value that was on the top of the stack is stored
directly into the receiver. When the OMOP’s semantics are enforced however,
it triggers the intercession handler by sending #write:toField:of: to the
receiver’s domain to reify the store operation. Note that the operations of
the OMOP are executed with enforcement disabled. As shown in previous
domain definitions such as Lst. 5.1 and Lst. 5.3, the OMOP operations are an-
notated with unenforced. The implementation of #pushNewFrameWithMethod
will make sure that in these cases the unenforced flag overrides normal prop-
agation of the enforcement flag of the frame.

Lst. 5.6 shows the corresponding read operation. It pushes the value of an
object field onto the operand stack. The main difference between POP_FIELD

125

5. An Ownership-based MOP for Expressing Concurrency Abstractions

1 SOMInterpreter = (

2 | frame universe currentBytecode |

3

4 doPopField = (

5 | omopWriteField args oldFrame value |

6 value := frame pop.

7 frame enforced ifFalse: [

8 ^ self currentObject

9 fieldAtIndex: currentBytecode fieldIndex

10 put: value].

11

12 omopWriteField := self currentObject domain class

13 lookupInvokable: #write:toField:of:.

14 oldFrame := frame.

15 oldFrame pushAll: { self currentObject domain.

16 value.

17 currentBytecode fieldIndex.

18 self currentObject }.

19 frame := interpreter pushNewFrameWithMethod: omopWriteField.

20 frame copyArgumentsFrom: oldFrame)

21

22 pushNewFrameWithMethod: method = (

23 ^ frame := SOMFrame new

24 method: method;

25 previousFrame: frame;

26 resetStackPointerAndBytecodeIndex;

27 domain: frame domain;

28 enforced: (frame enforced and: [method unenforced not]);

29 yourself)

30 "...")

Listing 5.5: Reifying mutation of object fields

and PUSH_FIELD bytecode is that the latter uses its own OMOP intercession
handler #readField:of:.

The bytecodes for sends and super sends themselves remain unchanged
(cf. Sec. 4.2.2, Lst. 4.5). However, both bytecodes rely on adaptation of the ac-
tual send in the #performSend:to:lookupCls: method. Lst. 5.7 shows that
#performSend:to:lookupCls: will send the message directly during unen-
forced execution, and it will rearrange the operand stack during enforced
execution to be able to trigger the #requestExecOf:with:on:lookup: inter-
cession handler on the receiver’s domain instead.

While handling message sends implicitly covers the methods that represent
the VM’s primitives, they still need to be treated explicitly to redefine them

126

5.4. Semantics of the MOP

1 SOMInterpreter = (doPushField = (

2 | omopReadField args oldFrame |

3 frame unenforced ifTrue: [

4 ^ frame push: (self currentObject fieldAtIndex:

5 currentBytecode fieldIndex)].

6

7 omopReadField := self currentObject domain class

8 lookupInvokable: #readField:of:.

9 oldFrame := frame.

10 oldFrame pushAll: {self currentObject domain.

11 currentBytecode fieldIndex.

12 self currentObject }.

13 frame := interpreter pushNewFrameWithMethod: omopReadField.

14 frame copyArgumentsFrom: oldFrame)

15 "...")

Listing 5.6: Reifying reading of object fields

1 SOMInterpreter = (

2 performSend: selector to: receiver lookupCls: cls = (

3 | result args |

4 frame unenforced ifTrue: [

5 ^ self send: selector toClass: cls].

6

7 "Redirect to domain"

8 args := frame popN: selector numArgs.

9 frame pop; "pops the old receiver"

10 pushAll: {receiver domain. selector. args. receiver. cls}.

11 result := self send: #requestExecOf:with:on:lookup:

12 toClass: receiver domain class.

13 ^ result)

14 "...")

Listing 5.7: Perform reified message send

when necessary as part of the domain definitions. Hence, #invokeInFrame: is
changed in Lst. 5.8 to trigger the intercession handler that corresponds to the
primitive on the receiver’s domain.

Note that globals need not be treated separately in SOM. The bytecode
set does not include operations to change them, instead this functionality is
provided via a primitive, and is thus already covered. Other VMs, such as the
RoarVM require separate treatment of globals.

127

5. An Ownership-based MOP for Expressing Concurrency Abstractions

1 SOMPrimitive = SOMInvokable (

2 invokeInFrame: frame = (

3 | receiver omopPrim oldFrame |

4 (self unenforced or: [frame unenforced]) ifTrue: [

5 ^ self invokePrimitiveInPlace: frame].

6

7 receiver := frame stackElementAtIndex: numArgs.

8 omopPrim := receiver domain class

9 lookupInvokable: #prim , signature , #on:.

10 frame stackElementAtIndex: numArgs

11 put: receiver domain;

12 push: receiver.

13 oldFrame := frame.

14 frame := interpreter pushNewFrameWithMethod: omopPrim.

15 frame copyArgumentsFrom: oldFrame)

16 "...")

Listing 5.8: Reifying primitive invocations

5.5. Customizations and VM-specific Design Choices

This section discusses a number of design choices that need to be considered
when the OMOP is adapted for a concrete use case or a specific VM. Note
that the design presented in Sec. 5.2 is a minimal representation of the key
elements of the OMOP. Therefore, different interpretations of the OMOP are
possible and can be desirable depending on the use case. This dissertation
concentrates on the key elements with their minimal representation to evalu-
ate the main idea and its applicability in the general case.

Representation of Ownership The proposed OMOP design uses a mini-
mal set of intercession handlers, i. e., #readField:of:, #write:toField:of:,
#requestExecOf:on:with:lkup:, as well as primitive handlers #prim*. An al-
ternative design of the OMOP could for instance use the notion of ownership
and project it onto the intercession handlers as well. Currently, the notion of
ownership is only represented as a property of the object. By introducing it
into the intercession handlers, an interpreter can perform the most common
operations directly and potentially improve the performance for concurrency
abstractions that define different rules based on ownership.

For example, a common use case is to guarantee properties such as isola-
tion. To guarantee isolation, the OMOP needs to distinguish between an object
being accessed by a thread executing inside the same domain and by a thread

128

5.5. Customizations and VM-specific Design Choices

executing in another domain. Consequently, an instantiation of the OMOP
taking this use case into account could provide special intercession handlers
for both cases. For reading fields, it could provide #readFieldFromWithin:of:

and #readFieldFromOutside:of:. Similarly, the other intercession handlers
could be provided in these two variants, as well. While the resulting OMOP
would no longer be minimal, an implementation of isolation on top of it
would not require testing for ownership but could rely on the VM, which
might provide better performance.

In future work (cf. Sec. 9.5.6), the different properties of supported concur-
rent programming concepts can be studied and formalized, which could yield
similar variation points and a declarative representation of possible language
policies. Such a representation would again allow a different representation
of key elements of the OMOP and allow more efficient implementation of
common use cases.

Opt-In for Enforced Execution Mode Another design decision made in the
presented OMOP is that execution starts out in unenforced mode. With the
semantics discussed in Sec. 5.3.1 and Sec. 5.4 (cf. Lst. 5.4), a language imple-
menter needs to opt-in explicitly to enforced execution. This design was cho-
sen to provide predictable behavior and the ability to set up all relevant li-
braries and system parts before enforced execution mode is activated. This
choice is partially motivated by the fact that the OMOP has been developed
for an existing system with existing infrastructure. Thus, starting in unen-
forced execution mode provides more flexibility. However, in a system that is
designed from the ground up as a multi-language VM with support for the
OMOP, it might be desirable to execute code in the enforced execution mode
from the beginning. The benefits of this choice would be that a language
implementer does not need to opt-in to enforced execution and thus, the stan-
dard case will ensure that language semantics are ensured at all times.

Handling of Primitives Primitives, i. e., built-in functionality provided by
the VM needs to be covered by the OMOP to guarantee that the semantics
of a concurrent programming concept can be enforced in their entirety. Thus,
if primitives are not covered correctly, they could be used, for instance to
circumvent the isolation required between processes in CSP.

The presented OMOP design includes every single primitive as a separate
intercession handler on the OMOP. This choice works well as part of the
presentation in this dissertation and for VMs that have only a small number

129

5. An Ownership-based MOP for Expressing Concurrency Abstractions

of primitives that need to be covered. However, if the number of primitives
grows too large, this design can become cumbersome.

An alternative solution to list all primitives in the form of prim* is to use a
generic intercession handler similar to the one provided to handle all methods
in a uniform way. Such a handler needs to encode the primitive as a parameter,
for instance like #requestPrim: prim on: obj with: arguments.

Handling of Reified Execution State Since the presented implementations
are based on Smalltalk, they have direct access to runtime state for instance
to stack frames, i. e., context objects that are used for execution (cf. Sec. 4.2.2).

Context objects, and similar objects relevant for execution semantics, need
to be treated carefully. For each of them, it has to be determined whether
the notion of ownership should be provided or whether that would lead to
unexpected consequences.

In the case of some context object it is conceivable that it has an arbitrary
owner and that it is treated like any other object. As long as it is merely
used for introspection, it is feasible to allow arbitrary ownership changes and
the enforcement of arbitrary domain semantics. However, if a context object
is used by the VM for its purpose as a stack frame, neither the notion of
ownership nor the enforcement of arbitrary domain semantics are viable. The
VM needs direct access to them, for instance to perform the necessary stack
operations during execution.

Therefore, the implementations discussed in Chapter 7 regard context ob-
jects as metaobjects that are not subject to the OMOP.

5.6. Related Work

This section contrasts the proposed OMOP with other MOPs that cover closely
related concerns or MOPs that have been used in the field of concurrent and
parallel programming. As in Sec. 5.1, this section relies on the categoriza-
tion of Tanter [2009] discussing metaclass-based, metaobject-based, as well
as group-based hybrid approaches.

Metaclass-based Approaches The C++ extensions Open C++ [Chiba and
Masuda, 1993] and PC++ [Stroud and Wu, 1995], which is built on top of
Open C++, both use metaclass-based MOPs. Open C++ is used in the context
of distributed programming and Chiba and Masuda [1993] give examples on

130

5.6. Related Work

how to use it to implement synchronization semantics. Furthermore, they dis-
cuss its use for remote function calls. PC++ explores the implementation of
transaction semantics on top of the same foundations.

They differ in two main points compared to the OMOP proposed here. On
the one hand, Open C++ and PC++ exclusively rely on capturing method
execution with the MOP. The OMOP exceeds this by including the notion of
state access and the necessary extensions for VM-based implementations to
cover global state and primitives. On the other hand, Open C++ and PC++
use a class-based meta relation. By relying on a meta relation that is built on
ownership, the OMOP is more flexible and enables the use of classes in the
context of different domains, i. e., with different meta semantics.

Another example of a metaclass-based MOP was proposed by Verwaest
et al. [2011]. They enable the customization of memory layouts and object field
accesses by reified object-layout elements. Using their approach the memory
representation of instance fields can be adapted and for instance fields can
be mapped to single bits in memory. The MOP’s capabilities for refining the
semantics of field accesses are similar to the OMOP. The main differences are
that their MOP focuses on object layout and uses a different meta relation.
While their meta relation is class-based, they introduce a new meta relation
in addition to the existing metaclass. Each class has a specific layout meta-
object, which describes the layout and field access semantics. However, while
this approach decouples the metaclass from layout information, it remains
coupled with a class and thus, it cannot be adapted based on the context an
object is used in.

Metaobject-based Approaches One case of a metaobject-based approach
that comes close to the OMOP is Albedo [Ressia et al., 2010]. Albedo enables
structural and behavioral changes of objects via metaobjects. This approach
provides the flexibility to change the structure of specific objects only, and also
reifies events such as reading or writing of object fields and message sends
to give a metaprogram the chance to respond to actions in the base program.
Compared to the OMOP, Albedo does not provide conventional intercession,
instead, it only provides events, to which a metaprogram can react. It does
not provide the ability for instance to suppress the action that triggered the
event. Changing Albedo to offer conventional intercession would enable it
to provide a MOP that can satisfy the requirements for the OMOP. Albedo’s
approach of composed metaobjects could be used to implement the notion
of ownership by providing a metaobject that applies to a set of objects. Thus,

131

5. An Ownership-based MOP for Expressing Concurrency Abstractions

while Albedo comes close, it would require changes to fulfill the requirements
identified in Sec. 3.4.

The proxy-based metaobject protocol for ECMAScript [Van Cutsem and
Miller, 2010] comes close to satisfying these requirements as well. It reifies all
relevant intercession operations, however, since it is proxy-based, it does not
provide the same guarantees the ownership-based approach provides. The
use of proxies requires careful handling of references to avoid leaking the ac-
tual objects, which would then not be subject to an enforcement of language
guarantees. On the other hand, the proxy approach provides a natural way
to combine semantics of multiple metaobjects, since proxies can be chained.
While the proxy-based approach has this advantage, the ownership-based ap-
proach simplifies the intended standard use cases. On the one hand, it does
require only one metaobject, i. e., the domain object, to define the concurrency
semantics for a group of objects, and on the other hand, it does not require dis-
tinguishing between proxies and target objects, which could be leaked, since
the ownership property establishes the meta relation.

Grouping and Ownership-based Approaches The notion of meta-groups

proposed by Mitchell et al. [1997] is close to the notion of ownership used
by the OMOP. They use their meta-groups MOP to define real-time proper-
ties by providing the ability to reflect over timing-related information and
to customize scheduling-related behavior. Their intention is to describe the
semantics for groups of objects conveniently and to avoid the need for syn-
chronization between multiple metaobjects, when scheduling decisions have
to be made.

Similar notions have been used in ACT/R [Watanabe and Yonezawa, 1991]
and ABCL/R2 [Masuhara et al., 1992]. The focus is on group communica-
tion and maintaining constraints among groups of objects. To this end, the
MOP reifies message sends as tasks, the creation of new actors, the state
change of existing actors via become, and the execution of a method body.
In contrast to the OMOP, ACT/R supports infinite meta-regression in terms
of an infinite reflective tower, while the OMOP uses the notion of enforced

and unenforced execution to be able to terminate meta-regression explicitly.
Another consequence of this design is the absence of ACT/R’s inter-level
communication, which requires special addressing modes when sending mes-
sages between the base and meta level. Instead, the unenforced flag and the
#evaluateEnforce: method make the switch between the execution levels,
i. e., enforcement mode explicit.

132

5.6. Related Work

In ABCL/R2, meta-groups coordinate for the management of system re-
sources, including scheduling. To overcome limitations of the metaobject and
the meta-group approaches, both are combined in ABCL/R2. Similarly to
the OMOP, ABCL/R2 also restricts each object to be member of one specific
group, and thus has a strong similarity with the notion of domains. How-
ever, since the purpose of these metaobject protocols is different, they do not
offer the same intercession handlers the OMOP provides. Hence, neither of
the discussed group-based approaches fulfills the requirements identified in
Sec. 3.4.

Terminology While the notion of meta-groups is very close to the notion
of domains, this dissertation differentiates between both terms to make it
more explicit that objects have a single owner, i. e., a domain. For groups,
this is not necessarily the case. Other differences in the MOPs stem from the
differences in the intended use case. The MOPs could be extended to include
the intercession points provided by the OMOP, however the OMOP design
minimizes the MOP to provide the necessary intercession points only.

Distinguishing Properties of the OMOP The main distinguishing charac-
teristics of the OMOP are the combination of the specific set of intercession
handlers, the notion of ownership, and the integration with the notion of con-
current execution, i. e., the inclusion of threads as a relevant concern for the
metaobject protocol. This combination is to our knowledge novel and based
on the previously identified requirements (cf. Sec. 3.4).

For example, it would be possible to achieve similar results by using the
meta-group-based MOPs of ABCL/R2 or Mitchell et al. [1997] and combine
them with the proposed intercession handlers for state access, execution, and
primitives. Since Mitchell et al. [1997] also include the notion of threads in
the MOP, all key elements of the OMOP are present and it could satisfy the
requirements. However, on their own, without the proposed intercession han-
dlers, neither of the two MOPs would cover all the required aspects for a
multi-language environment, since for instance ABCL/R2 focuses on mes-
sage sends between objects.

Unrelated Work: Ownership Types Clarke et al. [1998] proposed the notion
of ownership types to tackle the problem of encapsulation in object-oriented
programming languages by enabling a developer to describe rules on how
and when pointers to objects can escape or be changed from an object that

133

5. An Ownership-based MOP for Expressing Concurrency Abstractions

is supposed to provide encapsulation. The proposed type system, and type
systems extending this work, provide means to describe and restrict the struc-
ture of object graphs with types or annotations. These rules are typically de-
fined with respect to an owning object, i. e., the encapsulating entity. The no-
tion of ownership domains introduced by Aldrich and Chambers [2004] refines
these mechanisms to decouple the notion of encapsulation and ownership for
finer-grained control. Furthermore, a common topic of discussion is how im-
mutability can be realized in such a setting [Leino et al., 2008; Östlund et al.,
2008; Zibin et al., 2010].

However, while this dissertation also discusses the example of how to re-
alize immutability, the solution proposed here is only related to ownership
types and ownership domains by an overlap in terminology. Ownership types
restrict the structure of object graphs, while the OMOP provides mechanisms
for changing the semantics of state access and method execution in a concur-
rent context. The OMOP is a conventional MOP following the definition of
Kiczales et al. [1991]. Thus, it provides “the ability to incrementally modify the

language’s behavior and implementation”. Ownership types on the other hand
provide a static system to verify the correctness of aliasing operations.

Recent work proposed using a MOP as the foundation for a reflective im-
plementation for an ownership type system [De Cooman, 2012]. The proposed
MOP is different from the OMOP, because it captures aliasing related events
instead of operations on objects. Thus, it captures the creation of an alias
when parameters are passed, object references are returned from a function,
or object fields are read and written. While there are similarities, the intended
use case and the provided means are different and do not match the require-
ments identified in Sec. 3.4 for the OMOP.

5.7. Summary

This chapter introduced the design of an ownership-based metaobject protocol

(OMOP) and situated it into the context of the related work.
First, it gave an overview of open implementations and different approaches

to metaobject protocols to conclude that MOPs allow an incremental modifica-
tion of language behavior and therefore are a good foundation to satisfy the
requirements identified in Sec. 3.4.

Second, this chapter presented the design and properties of the OMOP.
It uses the notion of ownership to determine how operations on objects and
global resources are defined. The ownership notion is represented by a domain,

134

5.7. Summary

which owns a set of objects. The domain defines for its objects how field access
and method execution are to be executed. This definition also includes thread
resumption, primitives, and global state access to cover all aspects required
to implement the semantics of concurrent programming concepts.

Third, it details the design of the OMOP by implementing two concurrent
programming concepts: immutability and Clojure agents. It shows how the
intercession handlers of the OMOP can be customized to provide the desired
language behavior.

Fourth, it documents the semantics of the OMOP in the form of a bytecode-
based interpreter. The interpreter is changed so as to check for every relevant
operation whether it executes in the enforce mode. If this is the case, the
interpreter triggers intercession handlers instead of performing the operation
directly.

Finally, the differences between the OMOP and the related work are dis-
cussed to argue that the OMOP is novel but based on existing work.

135

6
E VA L U AT I O N : T H E O M O P A S A U N I F Y I N G S U B S T R AT E

The goal of this chapter is to show that the proposed OMOP constitutes a uni-
fying substrate for the implementation of concurrent programming concepts.
To this end, it derives the evaluation criteria from the thesis statement and the
research goal. These criteria assess the benefits of implementing concurrent
programming concepts, the fulfillment of the requirements stated in Sec. 3.4,
applicability, novelty, and the unifying properties of the OMOP. This chapter
demonstrates the implementation benefits and fulfillment of the requirements
based on three case studies and an evaluation of how the OMOP facilitates the
implementation of programming concepts that require VM support to guar-
antee their semantics (cf. Sec. 3.2). The three case studies cover OMOP-based
as well as ad hoc implementations of Clojure agents, software transactional
memory, and event-loop actors. Based on this evaluation, the chapter demon-
strates that the OMOP provides the necessary flexibility to host a wide range
of concepts and enables a concise implementation of the case studies. Fur-
thermore, it discusses the limitations of the OMOP. Overall, it concludes that
the OMOP enables the flexible definition of language semantics as required by the
thesis statement (cf. Sec. 1.3), i. e., it facilitates the implementation of concur-
rent programming concepts and thereby constitutes a unifying substrate for
multi-language VMs.

137

6. Evaluation: The OMOP as a Unifying Substrate

6.1. Evaluation Criteria

In order to prepare the evaluation, this chapter first discusses the criteria
used.

6.1.1. Evaluation Goal

The goal of this evaluation is to support the first two parts of the thesis state-
ment (cf. Sec. 1.3). The last part of the thesis statement, i. e., the performance
of the OMOP is evaluated in Chapter 8.

Consequently, this chapter needs to support the first part of the thesis state-
ment, i. e., that “there exists a relevant and significant subset of concurrent and

parallel programming concepts that can be realized on top of a unifying substrate”.
To evaluate all parts of this statement, this chapter needs to argue that the sub-
set of concurrent programming concepts supported by the OMOP is relevant,
i. e., that it covers concepts that are used today, that these concepts are today
not widely supported in VMs, and that these concepts benefit from VM sup-
port. Furthermore, it needs to argue that this set of concepts is significant, i. e.,
the supported set of concepts needs to be sufficiently large. Finally, it needs
to argue that the OMOP is a unifying substrate, i. e., it makes an abstraction
of the supported concrete programming concepts and provides a minimal set
of elements to support them.

The second part of the thesis statement requires the evaluation to show that
“this substrate [i. e., the OMOP] enables the flexible definition of language semantics

that build on the identified set of semantics”. This means, this chapter needs to
argue that the provided abstractions are powerful enough to allow variation
over the supported concurrent programming concepts.

In the research goal, it is stated more concretely that the solution, i. e., the
OMOP is to be designed based on a to-be-determined set of requirements (cf.
Sec. 3.4). Therefore, this chapter needs to discuss how the OMOP fulfills these
requirements. Furthermore, the research goal states that the evaluation needs
to show applicability, i. e., it needs to demonstrate that the implementation
of concurrent programming concepts on top of the OMOP does not have a
negative impact on the implementation of these concepts.

6.1.2. Evaluation Criteria and Rationale

This section discusses the evaluation criteria for the identified goals. Further-
more, it discusses the rationale for each chosen criterion. Note that the order
of this section reflects the overall order of the chapter.

138

6.1. Evaluation Criteria

Concurrent Programming Concepts benefit from the OMOP To demon-
strate the benefits of the OMOP, this chapter argues that it simplifies the
implementation of supported concurrent programming concepts by solving
the problems implementers face when they use common ad hoc approaches.
This discussion relies on the problems identified in Sec. 3.3. For each of the
problems, it illustrates how it is solved using the OMOP and shows the im-
provements over existing ad hoc solutions. This comparison shows the ben-
efits of the OMOP by showing that it solved the implementation challenges
language implementers are facing when they target today’s VMs.

The evaluation discusses how the OMOP addresses these problems as part
of three case studies in Sec. 6.2. These case studies are the implementation
of Clojure agents, an STM system, and event-loop actors. They are chosen
to cover all of the identified problems and all mechanisms provided by the
OMOP. Furthermore, the characteristics of the three implemented concurrent
programming concepts are sufficiently different from each other to discuss
the OMOP and the problems it addresses from different angles. Therefore,
the case studies provide the necessary foundation to fully evaluate the OMOP
and its benefits.

Fulfillment of Requirements Sec. 3.4 identified concrete requirements as a
foundation for the design of the OMOP. This evaluation discusses these re-
quirements as part of the three case studies in Sec. 6.2. For each case study
the section evaluates which mechanisms the case study requires and how it
maps onto the OMOP. Furthermore, to demonstrate the fulfillment of the re-
quirements the discussion includes the evaluation criteria Sec. 3.4 stated for
each of the requirements.

To complete the discussion of how the OMOP fulfills its requirements,
Sec. 6.3 discusses the concepts from which the requirements were initially
derived. For each of these concepts, it evaluates the degree to which it is sup-
ported by the OMOP. The evaluation differentiates between concepts where
the main aspects are covered and concepts where only some aspects are sup-
ported by the OMOP to assess the extent to which the concepts benefit. Even if
only some of the concept’s aspects are supported, the benefits are substantial,
since the OMOP addresses common implementation challenges.

Applicability Sec. 6.4 assesses the applicability of the OMOP by showing
that its use does not increase the implementation size for the supported con-
current programming concepts.

139

6. Evaluation: The OMOP as a Unifying Substrate

Implementation size is often assumed to be an indication for implementa-
tion complexity, however, this assessment has an inherently social and subjec-
tive component. Therefore, the evaluation here considers only directly mea-
surable aspects. It uses implementation size in terms of lines of code (LOC)
as a surrogate measure for implementation complexity. As pointed out by a
number of studies, size seems to correlate with other metrics to such a de-
gree that it is not clear whether there is value in these additional metrics
to assess complexity. Jay et al. [2009] found a strong correlation between cy-
clomatic complexity [McCabe, 1976] and lines of code. For their experiments,
they go so far as to conclude that cyclomatic complexity has no explanatory
power on its own. van der Meulen and Revilla [2007] found that Halstead Vol-
ume [Halstead, 1977] and cyclomatic complexity correlate directly with LOC
on small programs. Emam et al. [2001] studied object oriented metrics and
their relation to class size, i. e., LOC. They find that previous evaluations of
metrics did not account for class size and that the effects predicted by these
metrics can be explained based on size alone. They conclude that the value of
these metrics needs to be reevaluated.

Since these indications cast doubt on the value of metrics other than size
for assessing complexity, this evaluation uses only size-based metrics as a
surrogate for measuring complexity to compare the ad hoc and OMOP-based
implementations.

The second aspect of applicability is the ability to vary language guaran-
tees. Sec. 6.5.1 discusses how the OMOP can be used to vary the semantics of
concurrent programming concepts. The goal is to argue that it enables a wide
range of variations covering a significant part of the design space spanned by
the supported concurrent programming concepts. Based on the agents case
study, the section argues that the additional semantic guarantees provided
over Clojure agents are the kind of variations that are desirable and a good
indication for the variability of the OMOP. The range of supported concepts
is an other indication that supports the conclusion that the OMOP provides
sufficient flexibility for the definition of language semantics for concurrent
programming.

Relevance of supported Concepts To evaluate the relevance, Sec. 6.5.1 ar-
gues that the supported concepts are used today. It gives for each of the
supported concepts an example of either recent research in the correspond-
ing area, or a programming language that is respected and used in industry.
Based on these indications for actual use, it argues that each of the supported

140

6.2. Case Studies

concepts has practical relevance. Consequently, the concepts supported by the
OMOP are relevant.

Absence of wide Support in Today’s VMs In order to evaluate the nov-
elty of the OMOP, i. e., to assess whether these concepts are not yet widely
supported in VMs, Sec. 6.5.1 relies on the VM survey in Sec. 3.1. For each con-
cept, this analysis assesses whether the concept is supported. Furthermore,
the analysis considers the whole set of concepts and its support by a single
VM to validate the initial premise that today’s VMs support is insufficient. By
showing based on the VM survey that this is the case, it supports the claim
that the OMOP can add relevant support to today’s VMs.

Significance In order to evaluate the significance of the support the OMOP
provides, Sec. 6.5.1 argues that the OMOP facilitates the implementation of
all concepts that were identified as benefiting from VM support for semantic
enforcement. Since the OMOP covers all concepts, there is an indication that
the supported set is sufficiently large to warrant interest.

Unifying Substrate Finally, Sec. 6.5.1 discusses the unifying properties of
the OMOP. The goal is to argue that the OMOP makes an abstraction of con-
crete programming concepts. The section shows this by relating the concepts
to the mechanisms the OMOP exposes and by demonstrating that it is not a
one-to-one relationship between mechanisms and concepts. Furthermore, it
argues that the OMOP provides a minimal set of elements to fulfill the re-
quirements. It demonstrates that the proposed design in its current form is
minimal by arguing that none of the parts can be removed without reducing
the number of concurrent programming concepts that can benefit from it, and
that removing any part would also result in unsatisfied requirements.

6.2. Case Studies

This section discusses the case studies covering Clojure agents, software trans-
actional memory, and event-loop actors.

In order to show that the OMOP simplifies the implementation of these
concurrent programming concepts, it demonstrates how the OMOP is used
to solve common implementation challenges. Tab. 6.1 recapitulates these chal-
lenges, which Sec. 3.3 discussed in more depth.

141

6. Evaluation: The OMOP as a Unifying Substrate

Furthermore, this section shows that the OMOP satisfies the requirements
stated in Sec. 3.4. Tab. 6.2 recapitulates these requirements and the concrete
properties an implementation needs to facilitate. Based on this table, this sec-
tion demonstrates that the OMOP satisfies the requirements for managed

state, managed execution, a notion of ownership, and control-
lable enforcement.

For each case study, this section gives a brief introduction to the implemen-
tation and then details the ad hoc as well as the OMOP-based implementation.
In order to evaluate the OMOP, it summarizes for each case study how the
OMOP supported the solution of common implementation challenges.

Table 6.1.: Common Challenges for the Implementation of Concurrent Programming
Concepts on top of Multi-language VMs.

Enforcement of

Isolation • challenge to guarantee state encapsulation and safe message passing

• by-value semantics problematic without proper ownership transfer

Scheduling Policies • custom scheduler needs control over executed code
• computational and primitive operations are problematic

Immutability • used as as workaround to track mutation
• reflection should obey it, when required

Execution Policies • reflection should obey them, when required
• implementation can be challenging without notion of ownership

State Access Policies • reflection should obey them, when required
• primitives need to be manageable to cover all state access
• implementation can be challenging without notion of ownership

6.2.1. Clojure Agents

Introduction The main idea of Clojure agents (cf. Sec. 2.4.3) is to ensure that
only a single process, the process executing the agent’s event-loop, can write
the agent’s state and to enforce immutability of all data structures referenced
by an agent. To that end, an agent asynchronously receives update functions
and processes them one by one. Note that Sec. 5.3.2 used agents earlier as an
example to introduce the OMOP.

In Clojure, the implementation is constructed in a way such that it is not
possible to change the state by other means than by sending asynchronous

142

6.2. Case Studies

Table 6.2.: Requirements for a Unifying Substrate for Concurrent Programming, and
the concrete concepts an implementation needs to facilitate.

Requirement Implementation needs to facilitate

Managed State isolation, immutability, reified access to object fields and globals

Managed Execution asynchronous invocation, scheduling policies, interception of
primitives

Ownership definition of policies based on ownership

Controlled Enforcement flexible switching between enforced and unenforced execution

update functions to the agent. However, if reflection is used the agent’s state
field can be changed, which violates the assumption of asynchronous updates.
Furthermore, Clojure does not provide guarantees that the object graph that
forms the agent’s state is immutable. Thus, data races can occur even though
it is generally suggested to rely on immutable data structures for the agent’s
state, in order to form an immutable object graph.

This implementation and the one in Sec. 5.3.2 use the OMOP to extend
Clojure’s notion of agents and provide the expected guarantees. First, this
section briefly recapitulates the agent implementation, and then discusses the
enforcement of asynchronous updates and immutability in the context of im-
plementation challenges and the OMOP’s requirements.

General Implementation Lst. 6.1 repeats the implementation of agents in
SOM from Sec. 5.3.2. The main elements are the state field, the field for the
mailbox, the #read method, and the #send: method for update blocks, i. e.,
anonymous functions. These methods are the interface to be used by a de-
veloper. In addition, the implementation has an #initialize method, which
for instance creates the mailbox object for incoming update requests, and the
#processUpdateBlock method, which processes the update requests one by
one in its own thread, i. e., Smalltalk process.

Note that Lst. 6.1 already includes the code to use the OMOP domains to
ensure the desired guarantees. If these operations are imagined to be with-
out any effect, the implementation corresponds to an agent implementation
without guarantees.

143

6. Evaluation: The OMOP as a Unifying Substrate

1 Agent = (

2 | state mailbox immutDomain |

3

4 read = unenforced (^ state)

5

6 "update blocks are of the form:

7 [: oldState | oldState produceNewState]"

8 send: anUpdateBlock = unenforced (

9 mailbox nextPut: anUpdateBlock)

10

11 initialize = unenforced (

12 | domain |

13 mailbox := SharedQueue new.

14 immutDomain := ImmutableDomain new.

15 domain := AgentDomain new agent: self.

16 domain spawnHere: [

17 true whileTrue: [self processUpdateBlock]].)

18

19 processUpdateBlock = (

20 | updateBlock newState |

21 updateBlock := mailbox waitForFirst.

22 newState := domain evaluateEnforced: [

23 updateBlock value: state].

24 state := immutDomain adopt: newState.

25 mailbox removeFirst.))

Listing 6.1: Clojure agents implemented in SOM Smalltalk

Basic Guarantees The agent implementation of Clojure 1.4 uses an Agent

class implemented in Java. This class has a private1 field and setter for the
agent’s state. Thus, in normal circumstances the state of an agent is protected
from race conditions. However, Java’s reflection API enables modification of
the Agent’s state and thus, it could come to race conditions. Therefore, Java’s
agent implementation is reasonably protected as long as neither reflection is
used, nor the object graph representing the state is modified arbitrarily.

The Smalltalk-based agent implementation has slightly different character-
istics. While Smalltalk fields are only accessible from methods of the same
object and thus protected, methods are public and modifiers to restrict access
are not supported. It is therefore possible to invoke the #processUpdateBlock

method directly, which could result in a corruption of the agent’s state, be-
cause two threads can update it at the same time.

1In Clojure 1.4 the state field and the setState(Object) method of the Agent class have
default visibility, but we will assume that they are private to simplify the argument.

144

6.2. Case Studies

Ad Hoc Solutions An ad hoc solution to prevent such issues would be to
use a mutex inside #processUpdateBlock, which ensures that the body of the
method, and thus the update is done only by one thread at a time. While
this solution is straightforward and also covers reflective invocations of the
method, it has an inherent performance overhead. Furthermore, reflective up-
dates of the state field would still be possible. To make reflective updates
safe, the Agent class could override the reflective methods #instVarAt: and
#instVarAt:put: to use the mutex that also protects #processUpdateBlock.

A Java solution would require more elaborate approaches. One possible
approach could utilize a custom SecurityManager,2 however, because of its
design with setAccessible() (cf. Sec. 3.3.5) a solution could not completely
prevent race conditions, when reflection is used.

OMOP-based Solution Compared to ad hoc approaches, an OMOP-based
solution can provide stronger guarantees. Lst. 6.2 repeats the implementation
of the AgentDomain from Sec. 5.3.2. This domain is used in Lst. 6.1 on line 15.
This leads to the agent object being adopted by the AgentDomain and thus,
all operations on this object become subject to the adapted semantics of the
domain. In this case it means that all method invocations on the object are
reified and handled by the #requestExecOf:on:with: handler. For the agent
object, this handler enforces that only #read and #send: can be performed
directly. For a Smalltalk-based implementation, this approach handles all of
the issues of the ad hoc solution. Thus, #processUpdateBlock can only be
invoked by the agent’s process and reflection is not possible on the agent
either.

The agent’s process executes in unenforced mode, and thus, is not subject
to the restrictions of the domain. However, note that the domain evaluates the
update block in enforced mode at line 22. Thus, the application-level update
operations are performed with semantics enforced.

When applying the OMOP in a Java context, the primitives that realize the
reflective capabilities would need to be handled as well. Since Java’s reflection
API is not part of the object, these operations are not covered by handling
method invocations on the object.

To conclude, using the OMOP a domain such as the AgentDomain can pro-
vide the basic guarantees for Smalltalk as well as a Java-like languages.

2http://docs.oracle.com/javase/7/docs/api/java/lang/SecurityManager.html

145

http://docs.oracle.com/javase/7/docs/api/java/lang/SecurityManager.html

6. Evaluation: The OMOP as a Unifying Substrate

1 AgentDomain = Domain (

2 | agent |

3 "Use #agent: to set the agent that is protected by this domain"

4 agent: anAgent = (agent := self adopt: anAgent)

5

6 requestExecOf: selector on: obj with: args = unenforced (

7 "Semantics are only enforced on the agent itself ,

8 not on other objects created in its scope."

9 obj = agent ifFalse: [^ obj perform: selector with: args].

10

11 "Only allow execution of white -listed selectors"

12 (#read = selector or: [#send: = selector]) ifTrue: [

13 ^ agent perform: selector with: args].

14

15 Error signal: ’Exec. of method ’ + selector + ’ is denied.’))

Listing 6.2: Domain definition for an Agent, enforcing the expected guarantees.

Handled Challenges In order to provide the basic guarantees of Clojure
agents, the implementation solves the challenge to define custom execution

policies. It relies on the intercession handling of methods to restrict the set of
methods that can be invoked on the agent object. This includes also reflective
operations, as long as they are performed during enforced execution.

The intercession handler #requestExecOf:on:with:lkup: in conjunction
with handlers for primitives satisfies the managed execution requirement,
because all execution of methods and primitives can be intercepted and cus-
tomized. Note that by enabling inception of all operations, the OMOP avoids
the restrictions in expressiveness that for instance Java’s SecurityManager is
subject to.

Furthermore, the flexibility provided by distinguishing between enforced
and unenforced execution allows a language implementer to define precisely
when semantics are enforced. One example is given in Lst. 6.1. The implemen-
tation of #processUpdateBlock uses the #evaluateEnforced: method of the
domain to ensure that application-level update functions are evaluated with
semantic enforcement enabled. In addition, with the unenforced attribute of
methods, it is possible to restrict enforced execution flexibly. Thus, with the
AgentDomain this case study demonstrates that the OMOP also satisfies the
requirement for controllable enforcement.

146

6.2. Case Studies

Immutability In an attempt to go beyond the guarantees provided by Clo-
jure’s agent implementation, Sec. 5.3.2 discussed how immutability can be
guaranteed.

Ad Hoc Solution Enforcing immutability on top of a VM that neither sup-
ports it directly nor provides mechanisms for managing mutation is a chal-
lenge. While Java’s SecurityManager can provide a partial solution, it cannot
be used to enforce immutability for public object fields (cf. Sec. 3.3.5). Thus,
an ad hoc solution would require implementing managed mutation including
support for handling primitives. This could potentially be done using AOP
for instance with AspectJ,3 or program transformation as it is used for the im-
plementation of the OMOP (cf. Sec. 7.1). Thus, it takes additional mechanisms
to realize immutability on top of a JVM or Smalltalk for instance.

OMOP-based Solution With the OMOP’s support for managed state,
the foundation is already available, and an ImmutableDomain such as given
in Lst. 6.3 can be defined. The ImmutableDomain adapts field access opera-
tions by customizing #write:toField:of:. This prevents any mutation from
succeeding for any object, i. e., any object that is owned by the immutable
domain. Note that on line 24 of Lst. 6.1, the ImmutableDomain adopts the re-
turn value of an update function. Furthermore, note that it handles the is-
sue of reflection by customizing not only the writing of fields but also all
primitive operations, which includes the primitives used for reflection, e. g.,
#priminstVarAt:put:on:.

Handled Challenges With this case study, the evaluation showed solutions
for two of the common implementation challenges (cf. Tab. 6.1). It uses the
OMOP’s mechanisms to intercept all mutating operations, i. e., writing to ob-
ject fields and primitives performing mutation. This is an example of a solu-
tion to provide immutability also against reflective operations when desired,
and it shows how the problems of defining state access policies can be solved.

Furthermore, this case study demonstrates that the OMOP satisfies the re-
quirements for managed state, because it reifies all state access and enables
its customization.

3http://www.eclipse.org/aspectj/

147

http://www.eclipse.org/aspectj/

6. Evaluation: The OMOP as a Unifying Substrate

1 ImmutableDomain = Domain (

2

3 raiseImmutabilityError = (

4 ImmutabilityError signal: ’Modification of object denied.’)

5

6 write: val toField: idx of: obj = unenforced (

7 self raiseImmutabilityError.)

8

9 primat: idx put: aVal on: anObj = unenforced (

10 self raiseImmutabilityError.)

11

12 priminstVarAt: idx put: aVal on: anObj = unenforced (

13 self raiseImmutabilityError.)

14

15 "... and all other mutating operations"

16)

Listing 6.3: Definition of a Domain for Immutable Objects

6.2.2. Software Transactional Memory

Introduction Software Transactional Memory (STM) (cf. Sec. 2.4.3) promises
a solution to the engineering problems of threads and locks. This program-
ming model enables a programmer to reason about all code as if it were exe-
cuted in some sequential order. The runtime tries however to execute threads
in parallel while giving the strong correctness guarantees implied by ensuring
sequential semantics. While common consensus [Cascaval et al., 2008] seems
to be that the performance overhead of STM systems is too high for many
practical applications, the idea continues to be appealing.4 Thus, it is used as
one of the case studies.

This evaluation uses LRSTM (Lukas Renggli’s STM), which is based on
the implementation described by Renggli and Nierstrasz [2007] (cf. Sec. 7.1.3).
The ad hoc version of LRSTM is a port of the original implementation to the
current version of Squeak and Pharo. It uses the original approach, i. e., it
uses abstract syntax tree (AST) transformation to add the tracking of state
access and to adapt the use of primitives to enable full state access tracking.
The implementation details are discussed below.

4The performance of an STM depends also on the programming language it is applied to.
Languages such as Haskell and Clojure restrict mutation and thereby experience lower
overhead from an STM than imperative languages with unrestricted mutation, where the
STM needs to track all state access.

148

6.2. Case Studies

Important for this evaluation is that both, the ad hoc as well as the OMOP-
based implementation provide the same guarantees.

General Implementation The general idea behind the implemented STM is
the same in both cases. To be precise, both of our implementations share the
main code parts, only the code that realizes the capturing of field accesses is
different.

For the sake of brevity, the evaluation disregards LRSTM’s support for
nested transactions, error handling, and other advanced features. The imple-
mentation discussed here is a sketch of a minimal STM system that enables
atomic execution of transactions.

The implementation sketch is given in Lst. 6.4. It builds on top of the ability
to change all state access operations to work on a workingCopy of an object,
instead of working on the object directly. To this end, in the context of a trans-
action each object can obtain a working copy for itself. A transaction main-
tains a set of changes, represented by Change objects. These change objects
maintain the connection between the working copy and the original object,
as well as a copy of the original object. Thus, all operations in the scope of
a transaction result in read and write operations to the working copy of an
object instead of changing the original.

When a transaction is to be committed, all threads are stopped and the
#commit operation checks for conflicting operations. #hasConflict checks
whether the original object has changed compared to when the current trans-
action accessed it the first time. If no conflicts are found, the changes made
during the transaction are applied, and the commit succeeds.

Managing State Access The main mechanism both implementations need to
provide is an interception of all state access operations. Thus, all field reads
and writes need to be adapted to operate on a working copy instead of the
original object. Furthermore, all primitives that read from or write to objects
need to be adapted in a similar way.

Ad Hoc Solutions Renggli and Nierstrasz [2007] proposed to use program
transformation to weave in the necessary operations. Instead of using an
AST transformation as done here (cf. Sec. 7.1), such adaptions could be ap-
plied with higher-level approaches such as aspect-oriented programming (cf.
Sec. 7.1.3). The main requirement is that all field accesses are adaptable.

149

6. Evaluation: The OMOP as a Unifying Substrate

1 Object = (| transaction | "..."

2 workingCopy = (

3 "Answer a surrogate for use within current transaction."

4 | transaction |

5 transaction := Processor activeProcess currentTransaction

6 ifNil: [self error: ’No active transaction ’].

7 ^ (transaction changeFor: self) working))

8

9 Change = (

10 | original working previous |

11 initializeOn: obj = (

12 original := obj.

13 previous := obj shallowCopy.

14 working := obj shallowCopy)

15

16 apply = (original copyFrom: working "copies all fields")

17

18 "compares all field pointers"

19 hasConflict = ((original isIdentical: previous) not)

20

21 ---- "class side initializer"

22 on: obj = (^ self new initializeOn: obj))

23

24 Transaction = (

25 | changes domain | "Transactions run in a give domain"

26 "..."

27 begin = (changes := IdentityDictionary new)

28 changeFor: obj = (^ changes at: obj

29 ifAbsentPut: [Change on: obj])

30

31 commit = unenforced (

32 "Commit a transaction atomically"

33 domain stopTheWorldExcept: Processor activeProcess.

34

35 changes do: [:each |

36 each hasConflict ifTrue: [

37 Error signal: ’Transaction aborted ’]].

38

39 "No conflicts , do commit"

40 changes do: [:each | each apply].

41

42 domain resumeTheWorldExcept: Processor activeProcess))

Listing 6.4: Sketch of the STM Implementation

150

6.2. Case Studies

The primitives require two different solutions for simple and for more com-
plex functionality. For simple primitives, it is sufficient to ensure that the
object they are applied to is the working copy. For more complex primitives
that for instance modify collections and their elements, this solution is not
sufficient, because they could obtain object references to the original objects
and access those. Therefore, a solution needs to be able to provide substi-
tutes for primitives. Renggli and Nierstrasz use Smalltalk reimplementations
that emulate the primitives and thus were subject to the changes that adapt
state access. Note that this approach works for primitives that are solely used
for performance reasons. It does not work for functionality that can not be
expressed in Smalltalk.

OMOP-base Solution The implementation of LRSTM on top of the OMOP
defines the STMDomain in Lst. 6.5. It customizes the domain’s intercession han-
dlers #readField:of: and #write:toField:of: to redirect state access to the
working copy. Furthermore, it intercepts all primitives that access state, in-
cluding reflection primitives, to redirect them to the working copy as well.

As mentioned some primitives require a reimplementation because they
perform complex operations on the given object. One example is the primi-
tive for #nextPut:, which operates on writeable streams, i. e., collections that
store sequences of elements and can grow if required. Lst. 6.5 implements the
intercession handler for this primitive at line 20. Instead of merely obtaining
the working copy of the stream, as is done by the other primitives, it uses a
reimplementation of the primitive and executes it with enforcement enabled.
Lst. 6.6 shows the reimplementation of the primitive in Smalltalk. This reim-
plementation enables the OMOP to track all state access as required for the
STM.

A minor difference with the ad hoc version is that the OMOP-based im-
plementation customizes #requestThreadResume: to register all threads that
start executing inside the STM domain. Lst. 6.5 shows at line 25 how it is
used to add threads to a set. The ad hoc implementation just assume that
all threads are required to be stopped and iterates over all instances of the
Smalltalk Process class.

Handled Challenges The main challenges handled by the OMOP are to pro-
vide custom execution policies for primitives, which allows them to be reimple-
mented, and to provide custom state access policies. Both need to be enforced
against reflective operations to enable safe use of reflective field updates as

151

6. Evaluation: The OMOP as a Unifying Substrate

1 STMDomain = Domain (| processes |

2 readField: idx of: obj = unenforced (

3 ^ obj workingCopy instVarAt: idx)

4

5 write: val toField: idx of: obj = unenforced (

6 ^ obj workingCopy instVarAt: idx put: val)

7

8 primat: idx on: obj = unenforced (

9 ^ obj workingCopy at: idx)

10

11 primat: idx put: val on: obj = unenforced (

12 ^ obj workingCopy at: idx put: val)

13

14 priminstVarAt: idx on: obj = unenforced (

15 ^ obj workingCopy instVarAt: idx)

16

17 priminstVarAt: idx put: val on: obj = unenforced (

18 ^ obj workingCopy instVarAt: idx put: val)

19

20 primNext: stream put: val = unenforced (

21 ^ self evaluateEnforced: [stream noprimNextPut: val])

22

23 "... and all other primitives that access state ..."

24

25 requestThreadResume: process = unenforced (

26 processes add: process.

27 ^ process resume)

28

29 initialize = (processes := WeakIdentitySet new)

30

31 stopTheWorldExcept: proc = (

32 (processes copyWithout: proc) do: [:each | proc suspend])

33

34 resumeTheWorldExcept: proc = (

35 (processes copyWithout: proc) do: [:each | proc resume]))

Listing 6.5: Definition of a Domain for an STM

152

6.2. Case Studies

1 WriteStream = Stream (| position writeLimit collection |

2 noprimNextPut: obj = (

3 position >= writeLimit

4 ifTrue: [^ self pastEndPut: obj]

5 ifFalse: [position := position + 1.

6 ^ collection at: position put: anObject]))

Listing 6.6: Primitive Reimplemented in Smalltalk to enable State Access Tracking
for STM

part of a transaction. The OMOP provides the corresponding intercession han-
dlers to enable the necessary customization without the need for using for
instance AST transformations directly. The intercession handlers used for the
STM satisfy the requirements for managed state and managed execu-
tion. In addition, the mechanisms to satisfy controlled enforcement

provide the necessary flexibility to reimplement primitives in Smalltalk for
instance.

6.2.3. Event-Loop Actors: AmbientTalkST

Introduction The third case study implements event-loop actors5 once with
an ad hoc approach similar to the one used by JCoBox [Schäfer and Poetzsch-
Heffter, 2010] and once based on the OMOP. The concurrency model is in-
spired by AmbientTalk [Van Cutsem et al., 2007], but this implementation
provides only isolation properties and asynchronous message send semantics
between actors (cf. Sec. 2.4.4). Other aspects such as complete libraries and
support for non-blocking interactions are disregarded.

Basic Guarantees The case study implements the notion of event-loop ac-
tors that are containers for an object graph. An actor provides a number of
guarantees for all objects it contains. Essential to the notion of an event-loop is
that only the actor performs operations on the objects it owns. This eliminates
low-level data races. All other actors in the system have to communicate with
the actor via asynchronous messages to affect its objects.

Thus, an implementation needs to enforce that no direct operations are
performed on objects owned by other actors. The operations have to be reified
and added to the event queue of the actor. The actor processes events one

5The implementation is referred to as AmbientTalkST despite its lack of many of the essential
features of AmbientTalk, because the name is a convenient metaphor to describe its main
semantics of event-loop actors with proper isolation.

153

6. Evaluation: The OMOP as a Unifying Substrate

by one. Both of the presented implementations guarantee this basic aspect.
Furthermore, both implementations guarantee the notion of safe messaging (cf.
Sec. 3.3.2). Thus, messages exchanged between actors are guaranteed not to
introduce shared state.

State encapsulation on the other hand is not supported by either of the im-
plementation, even though it would be straightforward with the OMOP.

Ad Hoc Solution The ad hoc implementation strategy is similar to the one
described by Schäfer and Poetzsch-Heffter [2010], but kept much simpler. Sim-
ilar to their approach of wrapping objects, we use stratified [Bracha and Un-
gar, 2004] proxies [Van Cutsem and Miller, 2010] to represent far references,
i. e., references between objects residing in different actors. The proxy wraps
actual objects and reifies all operations on them to enforce safe messaging and
asynchronous execution. This approach also provides coverage for Smalltalk’s
reflection, because it is based on message sends to the object.

Safe messaging is realized by wrapping all objects in parameters and return
values. Thus, this implementation comes with the performance drawbacks
described in Sec. 3.3.2. Each object needs to be wrapped with another object.
However, it avoids the need for copying the entire object graph.

While not implemented, this approach can be extended to provide owner-
ship transfer semantics upon message send. With Smalltalk’s #become: it is
possible to ensure that the original actor does not hold on to the object it sent
via a message. However, the #become: operation is expensive. It scans the
whole heap to exchange object references of the receiver with the reference
given as an argument. Furthermore, the #become: operation is not supported
by VMs such as the JVM and CLI, and, it cannot be used as a general imple-
mentation strategy.

Unfortunately, the approach of using proxies, i. e., wrapper objects does
not account for global state. Thus, class variables are shared between actors
and introduce undesired shared state. In Java, this could be avoided by using
different class loaders for each actor. However, in Squeak/Pharo there are no
facilities which could provide such functionality. Since the implementation
with the described features is already larger than the OMOP-based imple-
mentation, we decided to accept the limitation of partial state encapsulation
only.

OMOP-based Solution The OMOP-based implementation uses the ATActor

domain as the actor itself. Thus, a domain instance corresponds to an execut-

154

6.2. Case Studies

ing actor. Upon creation, #initialize is invoked, which starts the actor’s
thread, i. e., Smalltalk process, to execute inside itself by using #spawnHere.

The implementation realizes safe messaging by adapting the semantics of
method executions. All requests from outside the domain, i. e., from out-
side the actor, are served asynchronously (line 32). The result of such asyn-
chronous sends is represented by a Promise (line 23). In this simple imple-
mentation, the sending actor blocks on the promise if it requires the result of
the message, and continues once the promise is resolved, i. e., once the result
is delivered when the event-loop processes the message (line 7).

All requests inside the actor are performed directly (line 29). Note that
this listing does not include definitions for field accesses, because Smalltalk
offers object-based encapsulation (cf. Sec. 4.2.1). This object-based encapsula-
tion guarantees that object fields can be accessed synchronously from within
an actor only. In languages like Java, we would also need to take care of fields,
since Java’s encapsulation is class-based. Thus, we would need to customize
#readField:of: and #write:toField:of as well.

Wrapping of the objects sent via messages is unnecessary, because the own-
ership notion and the corresponding domain of an object guarantee the ac-
tor properties implicitly. The OMOP’s #adopt: method can also be used to
change the owner of an object as part of the message send, if desired. By
changing the owner, it becomes unnecessary to scan the full heap to ensure
that other references to the object are no longer valid, because isolation is
ensured by the new owner domain, i. e., actor. For the moment, ownership
transfer needs to be used manually by asking the receiver domain to #adopt:

the received object, and therefore it is in the application code but not part of
the definition in Lst. 6.7.

Note that Lst. 6.7 contains only a sketch and does not take care of state

encapsulation in terms of global state, however, the ATActor domain can cus-
tomize #readGlobal: and #write:toGlobal: to make sure that full isolation
is guaranteed between actors. Thus, global state of classes could be replaced
with domain local copies by customizing these two intercession handlers. This
would be very similar to the working copies used in the STM implementation
(cf. Sec. 6.2.2).

While Sec. 3.3.3 discussed the issue of scheduling guarantees, Lst. 6.7 does
not include a corresponding solution. As summarized in Tab. 6.1, the main
issue is the missing control over the execution of code. Specifically, custom
schedulers built on top of a VM typically do not have the ability to reschedule
an actor when it is executing computationally expensive code or primitives.
With the OMOP, the reification of method invocations and primitives pro-

155

6. Evaluation: The OMOP as a Unifying Substrate

1 ATActor = Domain (

2 | process mailbox terminate |

3

4 processIncomingMessages = unenforced (

5 | msg |

6 msg := mailbox next.

7 msg deliverPromise: msg send)

8

9 initialize = (

10 mailbox := SharedQueue new.

11 terminate := false.

12 process := self spawnHere: [

13 [terminate] whileFalse: [

14 self processIncomingMessages]])

15

16 sendAsAsyncMessage: aSelector to: anObj

17 with: anArgArray inLookupClass: cls = (

18 | msg |

19 msg := ATMessage new.

20 msg setSelector: aSelector arguments: anArgArray.

21 msg receiver: anObj lookupClass: cls.

22 mailbox nextPut: msg.

23 ^ msg promise)

24

25 requestExecOf: aSelector with: args

26 on: anObj lookup: cls = unenforced (

27 | msg |

28 self == Domain currentDomain ifTrue: [

29 ^ anObj performEnforced: aSelector

30 withArguments: args inSuperclass: cls].

31

32 ^ self sendAsAsyncMessage: aSelector

33 to: anObj with: args inLookupClass: cls)

34

35 requestThreadResume: process = unenforced (

36 ThreadResumptionDenied signal))

Listing 6.7: Definition of the ATActor Domain for Event-Loop Actors

156

6.2. Case Studies

vide additional points where a scheduler can hook in to enforce scheduling
semantics. While it is beyond the scope of this dissertation to compare this
approach with the approach of using a monitoring thread as proposed by
Karmani et al. [2009] (cf. Sec. 3.3.3), additional intercession points provided
by the OMOP provide additional control that can ease the enforcement of
desired scheduling properties.

Handled Challenges The implementation of complete isolation, i. e., state

encapsulation and safe messaging are commonly the most challenging aspects
as Sec. 3.3 argues.

The OMOP-based implementation required all of the offered mechanisms.
It uses ownership to distinguish local method executions and state accesses
from remote ones. In conjunction with the intercession handlers to managed

execution, the domain definition enforces that remote message sends are ex-
ecuted using the actor’s event-loop only. This also covers reflective operations.
The mechanisms provided to satisfy the requirements for managed state

enable a domain to ensure that in languages that do not provide object-based
encapsulation only the owning actor can access state. An example where the
domain uses the mechanisms for controllable enforcement is the mes-
sage queue of an actor. Since it is owned by the domain representing the actor,
direct access to the message queue is not possible. Any kind of access while
the actor semantics are enforced would lead to a recursion in the access han-
dler. However, the domain can disable enforcement by executing the code at
the meta level, and modify the message queue as desired.

As described, this case study relies on the notion of ownership to imple-
ment custom execution policies and state access policies. Arguably, the explicitly
available notion simplified the definition of these policies. Furthermore, it
enables ownership transfer, which is a challenge on other platforms.

6.2.4. Conclusion

This section shows that Clojure agents, software transactional memory, and
AmbientTalk’s actors can be implemented on top of the OMOP. Furthermore,
it demonstrates how the case study implementations map onto the OMOP
and how they relate to common problems in Tab. 6.1 and the requirements in
Tab. 6.2.

The agent case study shows how problems related to immutability can be
solved and how the OMOP helps to customize execution policies. The STM case
study shows how state access policies are customized and how primitives can

157

6. Evaluation: The OMOP as a Unifying Substrate

be adapted. The actor case study covers the remaining challenges of isolation,
scheduling policies, and ownership. For each of these, this section either pro-
vides an example implementation or discusses strategies on how the OMOP
can be used to solve the issues.

Furthermore, the case studies demonstrate how the intercession handlers
of the OMOP satisfies the requirements for managed state and managed

execution. The evaluation shows how the OMOP’s support for ownership
and object adoption can be used to define policies and therefore satisfy the
ownership requirement. Finally, it demonstrates how unenforced methods
and the #evaluateEnforced: of the OMOP can be used to control precisely
when its semantics are enforced. Thus, the OMOP also satisfies the last of the
requirements, i. e., it provides controlled enforcement.

6.3. Supported Concepts

The goal of this section is to evaluate to which degree the various concepts
for concurrent programming are supported. This evaluation focuses on the
concepts for which Sec. 3.2 states that they benefit from VM support for their
semantics. Thus, this section concentrates on the set of concepts that are the
focus of this dissertation.

For each of the concepts, the evaluation distinguishes whether all major
aspects of a concept are covered or whether only some aspects are supported
by the OMOP. This differentiation allows the evaluation to assess the extent
to which the concepts benefit. The benefits are the result of the OMOP’s facil-
ities that enable language implementers to address common implementation
challenges. Therefore, the benefits the OMOP provides are substantial even if
not always all of the concept’s aspects are supported.

The survey in Sec. 3.2 identified 18 concepts that could benefit from VM
support to enforce semantics (Sem). Tab. 6.3 shows these concepts (cf. Tab. 3.4)
with the assessment of the degree to which the OMOP facilitates the imple-
mentation of a concept. An X indicates that the major semantics of a concept
can be directly expressed using the OMOP, while a + indicates that it is only
partially supported. The remainder of this section discusses the results in
more detail.

6.3.1. Supported Concepts

The first nine concepts listed in Tab. 6.3 as supported are the concepts Sec. 3.4
identified as benefiting most from extended VM support. Previously, Sec. 6.2

158

6.3. Supported Concepts

Table 6.3.: Concepts Supported by the OMOP: Supported by OMOP (X), Partial Sup-
port by OMOP (+)

Supported Sem OMOP Supported Sem OMOP

Active Objects X X No-Intercession X X
Actors X X Side-Effect Free X X
Asynchronous Invocation X X Transactions X X
Axum-Domains X X Vats X X
Isolation X X

Partial Support Sem OMOP Partial Support Sem OMOP

By-Value X + Persistent Data Structures X +
Channels X + Replication X +
Data Streams X + Speculative Execution X +
Map/Reduce X + Tuple Spaces X +
Message sends X +

referred to most of them, and thus, this section discusses them only briefly.
The structure of the discussion roughly mirrors the structure of Sec. 3.2.2.

Asynchronous Invocation, Active Objects Active objects and other con-
cepts that rely on the guarantee that an object’s methods are invoked asyn-
chronously are directly supported by the OMOP. The provided intercession
handler #requestExecOf:on:with:lkup: can be used to customize invocation
constraints. As previously discussed in Sec. 6.2.1, intercession handlers can be
used for instance to implement Clojure agents. Its flexibility enables the imple-
mentation of a wide range of different policies and asynchronous invocation
is one of them.

Actors, Axum-Domains, Isolation, Vats The required support for proper
state encapsulation, i. e., isolation, can be realized by combining support for
ownership, intercession handlers for reading and writing of object fields and
globals, as well as intercession handlers for primitives. By customizing these,
as demonstrated in Sec. 6.2.3, it becomes possible to support concurrent pro-
gramming concepts such as actors, axum-domains, and vats.

No-intercession, Side-effect Freedom The notion of disallowing interces-
sion, i. e., reflective operations is often used to increase control over state
changes. Similarly, the requirement of some concepts that operations be side-
effect free stems from the desire to simplify reasoning over code. Both no-

159

6. Evaluation: The OMOP as a Unifying Substrate

tions can be enforced by the OMOP. Reflective operations can be completely
forbidden by customizing intercession handlers for method and primitive in-
vocation. Mutation can be forbidden by customizing the handing of writes to
object fields, globals, and the semantics of primitives. Sec. 6.2.1 demonstrated
this by defining a ImmutableDomain.

Transactions As demonstrated with the implementation of a domain for
STM in Sec. 6.2.2, the semantics of transactions can easily be supported by
customizing the intercession handlers for reading and writing of object fields
and globals. Support for customizing the semantics of primitives completes
this support and enables full tracking of all state access and mutation opera-
tions.

6.3.2. Partially Supported Concepts

The bottom part of Tab. 6.3 covers another set of nine concepts. Their imple-
mentation is partially facilitated by the OMOP. While they require additional
mechanisms, their implementation is simplified when they can rely on the
OMOP as a foundation.

Immutability The concepts of data streams, map/reduce, persistent data struc-

tures, and tuple spaces all come with the implicit assumption of being used
with immutable entities. For instance, Google’s MapReduce [Lämmel, 2008]
is designed for side-effect free operators in a distributed setting. Thus, it as-
sumes that the data entities it operates on are immutable. The OMOP can
provide such a guarantee based on an appropriate domain definition. How-
ever, the OMOP itself does not facilitate the execution, data handling, and
scheduling that needs to be performed by a MapReduce implementation. The
other three concepts benefit from the ability to enforce immutability in a sim-
ilar way, but a significant part of these concepts is orthogonal to the OMOP.
Thus, the OMOP provides partial support for the concept by facilitating the
implementation of a key aspect.

Ownership When it comes to the implementation of message sends, the re-
lated concept of channels, and the general notion of by-value semantics, the
OMOP can be used to realize part of the desired guarantees. The notion of
ownership enables the distinction between sender and receiver, and for in-
stance enables a domain to restrict mutability, or perhaps even realize a copy-
on-write notion for entities that are shared by-value. However, since message

160

6.4. Comparing Implementation Size

sends and channels entail more than these semantics, the OMOP supports
only one important aspect, and thus, these concepts are partially supported.

Managed State and Managed Execution The remaining three concepts of
replication, and speculative execution could benefit from the available tracking
of state mutation and method invocation. For instance, the implementation
of replication with a certain consistency guarantee needs reliable tracking of
all state changes, which can be realized similarly to how the OMOP is used
for an STM implementation. Speculative execution has similar requirements
and can be realized with some variation of STM semantics to enable a clean
abort of a speculatively executed computational branch. However, the OMOP
provides support for only one of the important aspects of these concepts and
beyond that the concepts are largely orthogonal to the concerns handled by
the OMOP.

6.3.3. Conclusion

This section discussed how the OMOP facilitates the implementation of the
concepts identified in Sec. 3.2. For all 18 concepts that require VM support
to enforce their semantics, the OMOP either provides full support or simpli-
fies the implementation substantially. It does that by providing flexible mech-
anisms to realize managed state, managed execution, ownership,
and controlled enforcement.

Language implementers benefit substantially from this support, because for
all evaluated concepts it addresses challenges such as immutability, isolation,
custom execution policies, and custom state access policies (cf. Tab. 6.1).

6.4. Comparing Implementation Size

This section argues that the OMOP provides an abstraction that has a positive
impact on the implementation size for concurrent programming concepts. It
demonstrates this by showing that the OMOP-based implementations of Am-
bientTalkST and LRSTM are smaller than their ad hoc counterparts. In addi-
tion, it argues that the OMOP-based implementations of active objects, and
CSP are sufficiently concise, i. e., have small implementations as well. This
section first details the used metrics and then discusses the three case studies,
i. e., the implementation of Clojure agents, LRSTM, and AmbientTalkST.

161

6. Evaluation: The OMOP as a Unifying Substrate

6.4.1. Metrics

This evaluation restricts itself to implementation size as a directly measur-
able aspect. Thus, an evaluation of complexity, which has an inherently social
and subjective component, as well as the assessment of debuggability and
bug probability are outside the scope of this evaluation. Furthermore, based
on the studies of Jay et al. [2009], van der Meulen and Revilla [2007], and
Emam et al. [2001] Sec. 6.1.2 argues that it is not clear that other metrics than
implementation size have significant value to assess overall implementation
complexity. Therefore, this evaluation measures implementation size as a sur-
rogate for complexity based on number of classes, number of methods, lines of

code, and number of bytecodes.

Number of classes (#Classes) is the count of classes added to the system.

Number of methods (#Methods, #M) is the count of methods added or
changed in the system. This includes methods added and changed in
preexisting classes.

Lines of code (LOC) refers to the length of a method including comments
but excluding blank lines.

Number of bytecodes (#Bytecodes, #BC) is the count of all bytecodes in
all counted methods.

Since the LOC metric is not robust to trivial changes, i. e., it varies based on
coding conventions and comments, the evaluation also assesses the number
of bytecodes of all added or changed methods. The number of bytecodes is
the metric which is most oblivious to coding styles, indentation, and com-
ments. Since the size of the implementations is small, the evaluation relies on
the number of bytecodes as the main metric to avoid a significant impact of
superfluous differences in the implementations.

The missing support for variadic methods in Smalltalk leads to the dupli-
cation of methods to handle the cases of 0 to n parameters. Since the imple-
mentation uses code duplication for an improved debugging experience and
better performance, the code itself does not add benefits on its own, and to
avoid maintenance overhead it could be generated by a simple templating
mechanism. In order to mitigate the significant effect of this code duplica-
tion, the evaluation collects the metrics with and without counting such code
duplication.

162

6.4. Comparing Implementation Size

6.4.2. Clojure Agents

This dissertation uses Clojure agents to introduce the OMOP and as a case
study to demonstrate how the OMOP can be used to guarantee stronger prop-
erties than the original Clojure implementation. This section briefly examines
the metrics for the three different variants with their increasingly stronger
semantic guarantees. It reports the measurements for the implementation
in Squeak/Pharo Smalltalk. It is marginally more elaborate than the simpli-
fied implementation given in Lst. 5.2 in SOM syntax. The results are given in
Tab. 6.4.

Without Guarantees The first variant of the Agent class comes without any
guarantees. It implements a feature set similar to the one of the Clojure im-
plementation. However, since the used Smalltalk does not have the notion of
private methods, it requires the programmer to be aware of the correct us-
age. For instance, the method that processes the message queue of the agent
should be invoked only from the agent’s process. However, since it is public,
it can be invoked from any process, which could lead to data races. This im-
plementation without any guarantees takes 8 methods with 36 lines of code
and 85 bytecodes in total.

Basic Guarantees The second variant of the Agent uses the AgentDomain to
enforce the basic guarantees private methods would provide. Thus, it enforces
that only the public interface of the class be used, ensuring that the agent’s
process, i. e., its event-loop is the only activity updating its state. This imple-
mentation is approximately double the size of the simple implementation. It
takes two classes with a total of 11 methods, 81 LOC and 193 bytecodes.

Table 6.4.: Agent Implementation Metrics

Class (w/o guarantees) #M LOC #BC

Agent 8 36 85

Basic Guarantees

Agent 8 48 98

AgentDomain 3 33 95

= 11 81 193

With Immutability #M LOC #BC

Agent 10 55 115

AgentDomain 3 33 95

ImmutableDomain 8 25 33

= 21 113 243

Clojure 1.4

Agent 22 243 280

163

6. Evaluation: The OMOP as a Unifying Substrate

With Immutability The third variant additionally guarantees the immutabil-
ity for the object graph referenced by the agent. It uses the ImmutableDomain,
which prevents the mutation of all objects owned by it. The agent uses it by
changing the owner of the result of the update functions to the immutable
domain, before setting the result as the new agent state. See Sec. 2.4.3 and
Sec. 5.3.2 for details. This implementation adds to 21 methods, 113 LOC and
243 bytecodes. Overall, with 113 LOC it provides significantly stronger guar-
antees than the original Clojure agents. While this is three times the size of
the implementation without any guarantees, these 113 LOC implement con-
cepts as general as immutability and provide the guarantees in a concise and
maintainable form.

Conclusion As a comparison, Clojure 1.46 implements agents entirely in
Java. The implementation consists of 22 methods, 243 LOC, and the main
class file for the agent class contains 280 bytecodes. The implementation
strategy is very similar to the one presented here, thus, it is comparably
straightforward without complex optimizations. Still, these measurements are
not directly comparable because of language differences between Java and
Smalltalk. However, the OMOP-based implementation has a similar if not
smaller size, while providing stronger guarantees. This result is an indica-
tion that the OMOP’s abstractions are appropriate to implement the desired
guarantees for the agent concept.

6.4.3. LRSTM: Lukas Renggli’s STM

As mentioned in Sec. 6.2.2, the LRSTM implementations are based on the
work of Renggli and Nierstrasz [2007]. We ported the original implementation
to recent versions of Squeak and Pharo and reimplemented the AST transfor-
mations in the process. The core parts of the STM system remain identical for
the ad hoc and OMOP-based implementation. This section briefly restates dif-
ferences in the two implementations, outlines supported features, and then
discusses implementation sizes. Sec. 6.2.2 discusses the implementations in
more detail.

Ad hoc Implementation Closely following the implementation of Renggli
and Nierstrasz, this implementation uses AST transformations to reify all
state access, redirect them to the active transaction object, and thereby pre-

6https://github.com/clojure/clojure/tree/clojure-1.4.0

164

https://github.com/clojure/clojure/tree/clojure-1.4.0

6.4. Comparing Implementation Size

cisely track all read and write operations of object fields and globals. Conse-
quently, this implementation includes the necessary AST transformations and
compiler adaptations.

OMOP-based Implementation The implementation of LRSTM based on the
OMOP customizes the relevant intercession handlers on the domain object to
track all state access. Lst. 6.5 in Sec. 6.2.2 shows the simplified STM domain
definition. Even though the implementation approaches are different, both
implementations have the same features and guarantees. Thus, the ad hoc
and the OMOP-based implementation are functionally equivalent.

General Comparison Note that comparing the ad hoc LRSTM implementa-
tion and the one based on the OMOP is not necessarily fair, since this compar-
ison does not consider the complexity of realizing the OMOP itself. Sec. 7.1
discusses an AST-transformation-based implementation of the OMOP. Since
both AST-transformation-based implementations are very similar, this evalu-
ation also compares them to give a better impression of how the implementa-
tion sizes differ between the ad hoc and the OMOP-based implementation.

Direct comparison of the ad hoc and OMOP-based LRSTM implementation
demonstrates the expected benefit of relying on the underlying abstraction.
The ad hoc implementation consists of 8 classes and 148 methods, which
account for 990 LOC and 2688 bytecodes. The OMOP-based implementation
consists of 7 classes and 71 methods, which accounts for 262 LOC and 619

bytecodes. Thus, it is roughly a quarter the size of the ad hoc implementation.
However, these results are to be expected because the ad hoc implementation
needs to replicate the same functionality the OMOP offers for managed

state and managed execution of primitives.

Detailed Comparision Tab. 6.5 details the code size of the different parts of
the LRSTM implementation to paint a more detailed picture of the size of the
involved components. While these numbers indicate a significant benefit for
the OMOP-based implementation, the detailed numbers point out a number
of differences.

The STM core routines implement the basic STM functionality and data
structures. For the OMOP-based implementation, this includes the STM do-
main class, which implements state access tracking. The STM domain class
accounts for a significant part of the additional methods. Besides minor adap-
tations, the remaining core routines remain unchanged.

165

6. Evaluation: The OMOP as a Unifying Substrate

Table 6.5.: Detailed Comparison of the ad hoc and OMOP-based LRSTM Implemen-
tations

#Classes #Methods LOC #Bytecodes

LRSTM (ad hoc) 8 148 990 2688

LRSTM (OMOP) 7 71 262 619

STM Core Routines ad hoc 6 48 170 386

STM Core Routines OMOP-based 7 71 262 619

Compiler ad hoc 2 64 507 1698

Compiler AST-OMOP base system 2 80 650 2017

Runtime Support ad hoc 0 36 313 604

Runtime Support AST-OMOP base system 2 78 471 871

Runtime Support AST-OMOP base system∗ 2 112 639 1244

Complete ad hoc 8 148 990 2688

Complete incl. AST-OMOP base system 14 241 1448 3632

Complete incl. AST-OMOP base system∗ 14 313 1891 4471

Complete incl. RoarVM+OMOP base system 14 145 854 2049

Complete incl. RoarVM+OMOP base system∗ 14 175 1016 2467
∗ including duplicated code for variadic argument emulation

The different sizes of the compiler, i. e., bytecode transformation compo-
nent originate with the additional support for managing method execution
and ownership in the OMOP. Support for it was not necessary in the ad hoc
LRSTM, since an STM only regards state access and requires only basic sup-
port for handling primitives.

The size increase of the runtime support in the OMOP runtime comes from
additional features. The OMOP brings a minimal mirror-based reflection li-
brary, to facilitate the implementation of ownership transfer, ownership test-
ing, and switching between enforced and unenforced execution, among oth-
ers.

Taking the additional features of the OMOP into account, the complete

OMOP-based implementation is about 35% larger in terms of the number
of bytecodes than the ad hoc implementation. Comparing the ad hoc imple-
mentation to the one using VM support and the corresponding base system
shows that the OMOP implementation is approximately 24% smaller.

Conclusion While direct comparison of the LRSTM implementations shows
trivial benefits for the OMOP-based approach, the picture is less clear when
the OMOP runtime support is considered. However, the OMOP implementa-
tion is generic and facilitates the implementation of a wide range of different
concepts beyond STM. Therefore, an OMOP-based implementation can be
more concise. On the other hand, even if the full OMOP-implementation is

166

6.4. Comparing Implementation Size

taken into account, the additional implementation size remains reasonable
and requires only a 35% larger implementation accounting for the added
genericity.

6.4.4. Event-Loop Actors: AmbientTalkST

This section examines the ad hoc as well as the OMOP-based implementation
of event-loop actors. It briefly restates the two implementation strategies (cf.
Sec. 6.2.3 for details), outlines the supported features, and then discusses the
implementation sizes.

Ad hoc Implementation The ad hoc implementation realizes the notion of
safe messaging by implementing AmbientTalk’s far references with stratified
proxies. Thus, actors do not exchange object references directly when message
are sent. Instead, all object references to remote objects are wrapped in a
proxy, i. e., the far reference.

While this implementation achieves a good degree of isolation with low
implementation effort, it does not ensure complete state encapsulation. For
instance, it does neither handle global state, introduced by class variables,
nor potential isolation breaches via primitives. This choice was made to keep
the implementation minimal, accepting the restrictions discussed in Sec. 3.3.2.

OMOP-based Implementation As discussed in Sec. 6.2.3 and as sketched
in Lst. 6.7, the OMOP-based implementation relies on the full feature set pro-
vided by the OMOP.

While it offers the same APIs and features as the ad hoc implementation,
its semantic guarantees are stronger. By utilizing the OMOP, it can provide
the full degree of isolation, i. e., state encapsulation and safe message passing.
Thus, access to global state and use of primitives are properly handled and
do not lead to breaches of isolation between actors. Note that this implemen-
tation does not use proxies to realize far references. Instead, it relies on the
notion of ownership to enforce the desired semantics.

Results and Conclusion As listed in Tab. 6.6, the ad hoc implementation of
AmbientTalkST uses 5 classes with 38 methods. These account for 183 LOC
and have a total of 428 bytecodes. The OMOP-based implementation on the
other hand has 2 classes, which have in total 18 methods with 83 LOC and
190 bytecodes.

167

6. Evaluation: The OMOP as a Unifying Substrate

Thus, the OMOP-based implementation is more concise than the ad hoc
implementation and provides stronger guarantees. Furthermore, the imple-
mentation expresses its intent more directly. While Lst. 6.7 is simplistic and
benefits largely from the object-based encapsulation of Smalltalk, such a do-
main definition uses the ownership notion to makes it explicit that only the
owning actor is able to access the state of an object. The ad hoc implementa-
tion on the other hand needs to use stratified proxies to realize encapsulation
by wrapping objects with far references to avoid shared state. Using the own-
ership notion expresses the original intent of the concurrency model directly,
and has the practical benefit of avoiding the creation of far-reference objects.

6.4.5. Summary and Conclusion

In addition to the discussed case studies, active objects and communicating
sequential processes with channels (CSP+π) were implemented based on the
OMOP. These prototypes implement the basic functionality, including the en-
forcement of the desired semantics in about 50-70 LOC each. The OMOP
significantly facilitates these implementations with the provided mechanisms.
The OMOP enables the implementation to formulate the semantics in a con-
cise and uniform way. While these two concepts have only been implemented
using the OMOP, the effort for the ad hoc implementation of CSP+π would
be comparable to the effort for the ad hoc implementation of AmbientTalkST.
Furthermore, using the same implementation strategy would result in the
same weaknesses. An implementation of active objects would be simpler.
However, such an implementation would most likely have weaker guaran-
tees than with the OMOP, because primitives and reflection would need to be
handled properly.

Tab. 6.6 gives an overview over the metrics measured for all experiments.
Overall, the use of the OMOP does have a positive impact on the imple-

mentation size. There are indications that it can significantly reduce imple-
mentation size. Furthermore, the case studies showed that approaches such
as Clojure agents, CSP+π, active objects, and event-loop actors can be imple-
mented in 53 to 113 LOC each, which includes the enforcement of semantics
and can exceed standard guarantees. Thus, the OMOP is applicable to the
implementation of the discussed concurrent programming concepts.

168

6.5. Discussion

Table 6.6.: Metrics for Ad hoc and OMOP-based Implementations

#Classes #Methods LOC #Bytecodes

Agents (ad hoc, without enforcement) 1 8 36 85

Agents (OMOP, with enforcement) 3 21 113 243

AmbientTalkST (ad hoc) 5 38 183 428

AmbientTalkST (OMOP) 2 18 83 190

LRSTM (ad hoc) 8 148 990 2688

LRSTM (OMOP) 7 71 262 619

Active Objects (OMOP) 3 15 68 130

CSP+π (OMOP) 5 16 53 110

AST-OMOP base system 7 176 1216 3079

RoarVM+OMOP base system 7 74 592 1433

AmbientTalkST (OMOP)∗ 2 28 152 451

Active Objects (OMOP)∗ 3 19 97 237

CSP+π (OMOP)∗ 5 19 71 149

AST-OMOP base system∗ 7 248 1659 3918

RoarVM+OMOP base system∗ 7 104 754 1851
∗ including duplicated code for variadic argument emulation

6.5. Discussion

This section discusses the OMOP with regard to the remaining evaluation cri-
teria of Sec. 6.1.2 and limitations of the presented approach. It discusses the
applicability of the OMOP, the relevance and significance of the concepts it
supports, its novelty, and whether it is a unifying substrate. The discussed
limitations are restrictions with respect to deadlock freedom, interaction se-
mantics of domains, granularity of ownership, and enforcement of scheduling
policies.

6.5.1. Remaining Evaluation Criteria

Applicability To assess the applicability of the OMOP, this section assesses
its ability to provide different language guarantees in order to enable the
implementation of a wide range of concurrent programming concepts.

The first indication is given in Sec. 6.3. It shows that the OMOP supports
all the concepts that require VM support for their semantics. Thus, it is flex-
ible enough to provide either full or partial support for these concepts by
addressing the common implementation challenges.

The second indication is the flexibility Sec. 6.2 demonstrated with the case
studies. It shows that agents can be implemented including guarantees that
exceed what is typically provided. Furthermore, it demonstrates that the

169

6. Evaluation: The OMOP as a Unifying Substrate

OMOP is sufficiently flexible to express language guarantees for event-loop
actors and a software transactional memory system. Sec. 6.4.5 briefly men-
tions the implementation of CSP+π and active objects, which are variations
in the same design space as event-loop actors and agents.

Hence, there are significant indications that the OMOP provides the ability
to implement a variety of language guarantees and enables a wide range of
concurrent programming concepts.

Relevance of supported Concepts To evaluate the relevance of the OMOP,
this section provides an example of either recent research in the correspond-
ing area, or a programming language that is used in industry for each of the
supported concepts (cf. Tab. 6.3). The list of examples is not intended to be
complete. Instead, it gives a limited number of impressions to support the
claim of relevance. The discussion of the concepts is grouped by the degree
of support. The concepts are highlighted in the text below.

Full Support Active objects, which are an example for the use of asynchronous

invocation, are a pattern discussed in the literature [Schmidt, 2000], but also an
area of active research [Clarke et al., 2008; Nobakht et al., 2012].

Actors are supported in popular languages such as Erlang7 or Scala,8 and
in libraries such as Akka.9 Actors rely on message sends that have by-value se-
mantics to ensure safe messaging. Thus, all three concepts are relevant today.

Sec. 3.3.5 discusses the notion of restricted or no intercession. While many
languages rely on this notion to guarantee concurrency properties, JVM10

and CLI11 offer it to handle security issues only.
Languages such as Haskell12 advocate side-effect free functional program-

ming for its engineering benefits. However, knowledge of a function being
side-effect free is also useful for compiler optimization or automatic paral-
lelization. The OMOP enables a language implementer to guarantee that a
function executed in an immutable domain does not suffer from side effects.

Transactions and STM are part of Clojure13 and Haskell. Furthermore, recent
versions of the GNU GCC14 provide support for it.

7http://www.erlang.org/
8http://www.scala-lang.org/
9http://akka.io/

10http://docs.oracle.com/javase/7/docs/api/java/lang/SecurityManager.html
11http://msdn.microsoft.com/en-us/library/stfy7tfc.aspx
12http://www.haskell.org/
13http://clojure.org/
14http://gcc.gnu.org/wiki/TransactionalMemory

170

http://www.erlang.org/
http://www.scala-lang.org/
http://akka.io/
http://docs.oracle.com/javase/7/docs/api/java/lang/SecurityManager.html
http://msdn.microsoft.com/en-us/library/stfy7tfc.aspx
http://www.haskell.org/
http://clojure.org/
http://gcc.gnu.org/wiki/TransactionalMemory

6.5. Discussion

Vats, as prosed by the E language [Miller et al., 2005], are becoming popu-
lar for instance with JavaScript WebWorkers15 or isolates in Dart.16 Vats and
their isolation property are also an important aspect of AmbientTalk’s event-
loop actors [Van Cutsem et al., 2007]. Axum’s domain17 concept is a variation
of the vats concept. It enables sharing of data between actors. It is relevant
because traditional pure actor languages do not provide means for data par-
allelism [De Koster et al., 2012; Scholliers et al., 2010].

Partial Support The notion of channels has been used, e. g., in CSP [Hoare,
1978] and is offered today in languages such as Go18 and XC.19

Data streams are used for instance in stream-based programing languages
such as StreamIt [Thies et al., 2002], but are also relevant for event process-
ing [Renaux et al., 2012].

Map/Reduce as implemented by Google’s MapReduce [Lämmel, 2008] or or
Apache Hadoop20 is relevant to process large amounts of data.

Persistent data structures are used for side-effect free programs in Clojure
and Scala for instance. Supporting them by guaranteeing immutability sim-
plifies interaction across languages and libraries.

Replication is used for instance in Mozart [Mehl, 1999]. More recently it is
used in Orleans [Bykov et al., 2011], a framework for cloud computing, which
exploits notions such as immutability to enable state replication. While both
examples are intended for use in distributed systems, such techniques are
relevant [Chen et al., 2008] for modern parallel processors such as the Cell
B.E. processor [Johns and Brokenshire, 2007] as well.

Speculative execution is commonly used to improve the performance of se-
quential programs at the hardware level of processors [Hennessy and Patter-
son, 2007], but has also shown potential for parallelizing sequential programs
on multiple cores [Herzeel and Costanza, 2010; Vajda and Stenstrom, 2010].

Conclusion This section gave one or more examples of support in program-
ming languages or recent research for each of the supported concepts. These

15http://www.whatwg.org/specs/web-apps/current-work/multipage/workers.html
16http://www.dartlang.org/
17http://download.microsoft.com/download/B/D/5/BD51FFB2-C777-43B0-AC24-

BDE3C88E231F/Axum%20Language%20Spec.pdf
18http://golang.org/
19http://www.xmos.com/technology/xc
20http://hadoop.apache.org/

171

http://www.whatwg.org/specs/web-apps/current-work/multipage/workers.html
http://www.dartlang.org/
http://download.microsoft.com/download/B/D/5/BD51FFB2-C777-43B0-AC24-BDE3C88E231F/Axum%20Language%20Spec.pdf
http://download.microsoft.com/download/B/D/5/BD51FFB2-C777-43B0-AC24-BDE3C88E231F/Axum%20Language%20Spec.pdf
http://golang.org/
http://www.xmos.com/technology/xc
http://hadoop.apache.org/

6. Evaluation: The OMOP as a Unifying Substrate

Table 6.7.: Subset of concepts the OMOP supports, which are already supported in
today’s VMs.

Supported VMs

Actors Erlang
Transactions GHC

Partial Support

By-Value Mozart
Channels DisVM, ECMAScript+HTML5, Mozart, Perl, Python
Message sends Erlang
Replication Mozart

examples indicate that the supported concepts have practical relevance, and
thus, their support is worthwhile.

Absence of wide Support in Today’s VMs This section evaluates the nov-
elty of the OMOP by assessing whether the concurrent programming con-
cepts that are supported by the OMOP are widely supported in today’s VMs.
This assessment relies on the VM survey in Sec. 3.1.

Tab. 6.7 combines the survey and Tab. 6.3, which contains all concepts that
benefit from an enforcement of their semantics by the VM. As a result, Tab. 6.7
shows the subset of supported concepts and the VMs that support the given
concept. A concept is included in the table, if the VM supports it with im-

plicit semantics, as part of the instruction set architecture (ISA), or primitives (cf.
Sec. 3.1.1.1).21

The first observation based on Tab. 6.3 is that the surveyed VMs support 6

out of 18 concepts only.
Furthermore, only communication via channels has found widespread VM

support. Most importantly, none of the surveyed VMs supports all of the
concepts the OMOP supports.

In addition, none of the VMs provides a mechanism satisfying all the re-
quirements of the OMOP. Lua and ECMAScript+HTML5 provide MOPs that
provide the flexibility of metaobject-based or proxy-based MOPs, but neither
offers the notion of ownership nor do their runtimes support parallel execu-
tion on shared memory, which significantly restricts the flexibility and the
number of supported concurrent programming concepts.

21Appendix A.1 gives a full overview of the VM survey, including how these concepts are
supported.

172

6.5. Discussion

Based on these observations, the OMOP and its support for concurrent
programming concepts can be considered novel.

Significance The support provided by the OMOP is significant, because it
facilitates the implementation of all 18 concepts that require VM support to
enforce their semantics. These 18 concepts are the full set of concepts identi-
fied by the survey in Sec. 3.2, which is designed to cover the whole field of
concurrent and parallel programming concepts. 9 of these concepts are fully
supported, while the OMOP address common implementation challenges for
a key aspect of the other 9 concepts.

This means that if a VM such as the JVM or the CLI were to add support
for the OMOP, languages built on top of these VMs could use any of the
97 identified concurrent and parallel programming concepts (cf. Sec. 3.2.2)
without compromises on the enforcement of semantics. In addition to the
concepts that are already supported by JVM and CLI, and in addition to the
concepts that can be implemented as libraries without drawbacks, the OMOP
completes VM support for concurrent programming.

Therefore, the set of concepts supported by the OMOP is significant.

Unifying Substrate Finally, this section discusses the unifying properties
of the OMOP. The goal is to argue that the OMOP makes an abstraction of
concrete programming concepts and that the set of provided mechanisms is
minimal.

The claim that the OMOP makes an abstraction of concrete concepts is
supported by the fact that the 18 supported concepts are not realized with a
one-to-one relationship between the OMOP’s mechanisms and the concepts.
Tab. 6.3 lists the supported concepts: active objects, actors, asynchronous in-
vocation, Axum-domains, isolation, no-intercession, side-effect free, transac-
tions, and vats. The concepts supported by the OMOP are ownership, enforce-
ment status, reading and writing of object fields and globals, method execu-
tion, thread resumption, and handling of primitives (cf. Sec. 5.2). Therefore,
the OMOP’s concepts need to be combined to build the higher-level concepts.
Furthermore, to build different concepts multiple parts of the OMOP have to
be combined. The OMOP does not possess the notion of actors or isolation
and therefore, it makes an abstraction of these concepts.

The OMOP provides a minimal set of elements to satisfy the requirements
of Sec. 3.4. The proposed design in its form is minimal because none of the
parts can be removed without reducing the number of concurrent program-

173

6. Evaluation: The OMOP as a Unifying Substrate

ming concepts that can benefit from it, and removing any part would also
result in unsatisfied requirements. The remainder of this sections supports
this claim by discussing the basic interface of the OMOP. The VM-specific as-
pects and helper functionality are excluded, because they are not completely
orthogonal to the basic interface (cf. Sec. 5.2).

Ownership Sec. 5.1 argues that a MOP needs a connection between base level,
i. e., application and the meta level, i. e., the language implementation.
The OMOP uses ownership as this meta relation. Other options could
have been instantiation for metaclass-based approaches or a direct con-
nection between object and metaobject in metaobject-based approaches.
Without such a meta relation, it would not be possible to define more
than one set of policies, i. e., a domain, because it would need to be
applied implicitly by the runtime instead of being based on the meta
relation. Thus, a meta relation is required and the choice of ownership
combines with the requirements of concurrent programming concepts
to represent the notion of owning entities.

Enforcement Status The OMOP needs a mechanism to distinguish between
base-level and meta-level execution. The OMOP represents this differ-
ence by a simple bit. Other representations could allow for more flexi-
bility, for instance to enable reflective towers [Smith, 1984]. However, in
either case, it requires a representation of the execution levels to distin-
guish them. Otherwise every operation would trigger an intercession
handler, which itself would again trigger an intercession handler, lead-
ing to infinite meta regress without base case. The OMOP uses the min-
imal required solution by only distinguishing base and meta level.

State Access Reification With #readField: and #write:toField:to: two in-
tercession handlers are provided by the OMOP to capture reading and
writing of object fields, enabling a customization of all state access. Con-
current state access is one of the fundamental issues that concurrent
programming tackles by providing means to coordinate the use of state,
i. e., resources. As this chapter demonstrates, customizing state access
policies is required to implement an STM or immutability for instance.
Without it, the OMOP would not be able to support these concepts and
it could not provide the same guarantees for concepts such as actors,
vats, and isolation it gives now. In conclusion, state access reification is
a required mechanism and the OMOP’s capabilities would be reduced
significantly without it.

174

6.5. Discussion

Method Invocation Reification The ability to manage execution is essential
for active objects, actors, CSP, vats, and others. To this end, the OMOP
provides the #requestExecOf:on:with:lkup: intercession handler. The
case studies in Sec. 6.2 demonstrate how it can be used to customize
method execution policies, to enforce asynchronous execution for in-
stance. Removing this intercession handler from the OMOP would re-
move its ability to facilitate different policies for method invocation, and
as a consequence significantly reduce the number of supported concepts
for which it can enforce guarantees.

Thread Resumption Event-loop actors and CSP require that only a single
thread executes the event loop or the program on shared mutable state.
Based on the notion of ownership and domains, these concepts require
control over the number of active threads. Since the thread itself is not
necessarily owned by a domain when it attempts to execute in that do-
main, the resumption cannot be customized via custom method invo-
cation policies. Thus, the OMOP needs the #requestThreadResume: in-
tercession handler to capture this operation. Without it it would not be
possible to guarantee that the number of threads executing in a domain
be restricted.

Primitives Concrete primitives are specific to a VM. However, the notion of
primitives is available in all VMs. Primitives either make functional-
ity of the underlying platform available or they implement function-
ality that cannot be expressed in the language that the VM implements.
Since such primitives are free to access object state, execute methods, or
change internal state of the VM, language implementers need to adapt
them in case they conflict with the semantics of a concurrent program-
ming concept. For instance, reflection is implemented via primitives and
needs to be subjected to concurrency semantics (cf. Sec. 3.3.5). To this
end, the OMOP provides the #prim* intercession handlers. It is required
because the primitives would otherwise void the desired semantics.

This section shows that the OMOP abstracts makes abstractions of concrete
concepts by providing mechanisms that enable their implementation. Further-
more, for each mechanism of the OMOP it argues that it is required to satisfy
the purpose of a substrate for concurrent programming concepts. Thus, the
OMOP is minimal, because removing any of its parts would significantly de-
crease its functionality and it would not be able to satisfy its requirements (cf.
Sec. 3.4).

175

6. Evaluation: The OMOP as a Unifying Substrate

Therefore, the OMOP can be considered to be a unifying substrate for the
implementation of concurrent programming concepts.

6.5.2. Limitations

General deadlock freedom can not be guaranteed in the presence of block-

ing operations. Deadlock freedom is another guarantee that is given by a num-
ber of approaches for concurrent programming. However, it is a guarantee
that cannot be given in a system which enables the arbitrary use of blocking
operations. Since the OMOP is conceived to be used as an extension to exist-
ing VMs, it depends on the specific VM whether deadlock freedom can be
guaranteed. Only if the VM provides access to a set of disciplined blocking
mechanisms, i. e., it guarantees that any possible graph of wait-for-relations is
cycle free, can the guarantee of deadlock freedom be given. However, since the
OMOP targets multi-language VMs such a guarantee is impractical because
it implies restrictions on what synchronization mechanisms are allowed.

While this is a conceptual limitation, using the ability to customize primi-
tives, it is possible to manage the calls to blocking operations and adapt them
as necessary. Thus, it is possible to work around this restriction.

Interaction semantics between domains need to be implemented explicitly.

A second aspect that is currently not directly facilitated by the OMOP is
the definition of interaction semantics for different concurrency abstractions.
While an application can use multiple distinct concurrency domains for in-
stance with STM or actor semantics, the implementations of these semantics
need to be prepared to interact with each other to handle corner cases well.
Thus, the STM implementation needs to have a specific strategy to handle
interactions with the actor domain to ensure transactional semantics in the
presence of asynchronous message sends. In the proposed OMOP, it is up to
the language implementer to define these semantics and it requires them to
anticipate which kind of concurrency domains might be used in combination.

Object-based ownership notion has tradeoffs. A third restriction is the use
of object-based ownership as distinguishing criterion to enforce concurrency se-
mantics. Arguably, the object-level is fine-grained enough and constitutes a
good tradeoff in terms of engineering effort. However, since an object can
only have a single owner, the design space is restricted and precludes ab-
stractions such as partitioned objects. Partitioning is common in distributed
systems, but outside the scope of this dissertation (cf. Sec. 1.3).

176

6.5. Discussion

Limited support for guaranteeing scheduling policies. As part of the case
study of event-loop actors Sec. 6.2.3 argues that the intercession handlers of
the OMOP give additional opportunities to custom schedulers on top of the
VM’s threading facilities to enforce their policies. However, this support is still
restricted, because as soon as a primitive operation is started, the VM yields
complete control to the native code. Thus, the operating system’s scheduler
could enforce scheduling guarantees, but the VM typically cannot. It would
therefore be beneficial if VM and operating system could interact more di-
rectly to enable the customization of scheduling policies for instance to en-
sure fairness or locality. Locality becomes a major performance consideration
for non-uniform memory access (NUMA) architectures. While this question
is outside of the scope of this dissertation, it as an issue that can be discussed
independently from the presented OMOP to enable an additional set of con-
cepts to benefit from performance improvements or semantic guarantees.

6.5.3. Conclusion

This section argues that the OMOP provides the required flexibility to enable
the implementation of a wide range of concurrent programming concepts,
and thereby shows that the OMOP is applicable to the problem. Furthermore,
for each of the supported concepts it provides examples to support the claim
that they are relevant. The discussion based on the VM survey supports the
claim that none of the investigated VMs provide support for concurrent pro-
gramming concepts to the same degree as the OMOP. The complete support
for concepts that require semantic enforcement further supports the claim
of significance for the set of supported concepts. Finally, the OMOP makes
abstractions of concrete concurrent programming concepts and provides a
minimal substrate for their implementation, and therefore has unifying prop-
erties. Thus, the OMOP fulfills all requirements for a unifying substrate for
the support of concurrent programming in VMs.

However, the design of the OMOP currently has a number of limitations
when it comes to guaranteeing deadlock freedom, defining interactions be-
tween domains, the granularity of ownership, and customizability of schedul-
ing guarantees. While there are conceptual limitations, the OMOP already
supports a wide range of concepts and facilitates their implementation.

177

6. Evaluation: The OMOP as a Unifying Substrate

6.6. Conclusion

The goal of this chapter was to assess to what extent the OMOP satisfies its
requirements to support the thesis statement, and to discuss how the research
goal is reached.

Case studies of Clojure agents, STM, and event-loop actors demonstrate

how common implementation challenges are solved and how the OMOP

fulfills its requirements. Sec. 6.2 demonstrates how Clojure agents, software
transactional memory, and AmbientTalk’s actors can be implemented on top
of the OMOP. Furthermore, it showes how the parts of their implementation
map to the OMOP and how they relate to the stated requirements of Tab. 3.7.
The case studies also demonstrate how common implementation challenges
such as isolation, scheduling guarantees, immutability, and reflection can be
approached with the OMOP.

OMOP facilitates the implementation of all 18 concepts that require seman-

tic enforcement from the VM. Sec. 6.3 shows that the OMOP facilitates the
implementation of all 18 concepts. It provides full support for 9 concepts and
solves implementation challenges for the remaining 9 concepts. It does so
by providing flexible mechanisms to customize state access and method exe-
cution policies. Therefore, language implementers benefit substantially from
this support provided by the OMOP.

The OMOP can lead to more concise implementations with full guaran-

tee enforcement. Sec. 6.4 demonstrates that the use of the OMOP does not
have a negative impact on implementation size. On the contrary, it indicates
that the OMOP can facilitate the implementation of concurrency concepts in
such a way that their implementation size is reduced. In conclusion, the ab-
stractions provided by the OMOP are appropriate for the implementation of
Clojure agents, active objects, actors, CSP, and STM.

The OMOP is applicable, supports relevant concepts, is novel, the support

set of concepts is significant, and it is a unifying and minimal substrate.

Sec. 6.5 discusses the remaining evaluation criteria. The case studies indicate
the flexibility of the OMOP in solving common implementation challenges
and show its applicability. To conclude, the OMOP provides the flexibility to
reach beyond today’s concurrent programming concepts, because guarantees

178

6.6. Conclusion

can be varied as demonstrated with the agents implementation. The relevance
of the supported concepts is shown by examples of recent research or by its
support for each of them in a programming language. The novelty of the
OMOP is shown based on the VM survey, because the concepts the OMOP
supports are not supported in VMs and none of the VMs provide a mech-
anism that satisfies all requirements for the OMOP. Derived from the set of
supported concepts, it can be concluded that the OMOP’s support is signifi-
cant, because it facilitates the implementation of all concepts that require VM
support for their semantics. Finally, the OMOP makes abstractions of concrete
concepts and provides a minimal set of mechanisms to support them. Over-
all, the OMOP is a unifying substrate for the implementation of concurrent
programming concepts on top of VMs.

Wide range of concepts supported despite current limitations. Sec. 6.5.2
identifies a number of limitations of the current OMOP design, such as miss-
ing support for general deadlock freedom, missing support for interaction
semantics, the tradeoffs of the object-based and single ownership design, and
limitations for enforcing scheduling guarantees. However, while there are con-
ceptual limitations, the OMOP provides workarounds for these limitations,
and thus, reduces their practical impact.

The OMOP can be used as a uniform substrate for the implementation of

concurrent programming concepts. The conclusion of this chapter is that
the OMOP enables the implementation of a wide range of concurrent pro-
gramming concepts in a concise manner. With the abstractions it provides, it
allows language implementers to implement language guarantees in a more
direct way than with comparable ad hoc approaches. Furthermore, the OMOP
enables new opportunities for experimenting with language guarantees and
concepts. The implementation of Clojure agents demonstrates the ease of
strengthening the provided guarantees. Beyond that, the OMOP provides a
platform for experiments and variation of concepts based on its small number
of abstractions.

179

7
I M P L E M E N TAT I O N A P P R O A C H E S

This chapter presents two implementation strategies for the OMOP. For each
implementation strategy, it discusses how the OMOP’s mechanisms are real-
ized, how the requirements for the OMOP are satisfied, and what the limita-
tions of the implementation are.

The first implementation uses program transformation at the level of the ab-
stract syntax tree (AST). This approach avoids the need to change the VM and
thus, facilitates experiments with the OMOP in new environments. The sec-
ond implementation integrates the OMOP into a bytecode-based interpreter,
going beyond the approach presented in Sec. 5.4, and adding an optimization
to avoid triggering uncustomized intercession handlers.

181

7. Implementation Approaches

7.1. AST Transformation

This implementation transforms the abstract syntax tree (AST) of Smalltalk
methods to provide the OMOP’s functionality. This dissertation refers to it as
the AST-OMOP. As discussed in Sec. 4.3, it is itself implemented in Smalltalk.
Since the implementation strategy is based on AST transformations, it has ca-
pabilities similar to common bytecode-transformation-based implementation
strategies, e. g., for Java [Hilsdale and Hugunin, 2004]. The VM can remain un-
changed with this approach and the OMOP can be applied in settings where
modifying the VM is not an option.

Rationale The first OMOP implementation was the AST-OMOP. With its
comparably low implementation effort, it facilitated the exploration of the no-
tion of a MOP as unifying substrate for concurrent programming concepts.
It was chosen as the first implementation strategy in order to be able to ex-
periment in a productive environment and to focus on the implementation of
the case studies. The results were the implementation of AmbientTalkST and
LRSTM on top of the AST-OMOP [Marr and D’Hondt, 2012].

The remainder of this section details how the semantics of the OMOP are
realized, and how the arising implementation problems have been solved.
Since the implementation is performed in Smalltalk, it did not need to cope
with the complexity that for instance a Java-like type system would introduce.
This section discusses this and other issues to argue that the approach is
transferable to other systems than Smalltalk.

7.1.1. Implementation Strategy

Since this implementation relies solely on AST transformation, it needs to take
special measures to realize controlled enforcement and managed ex-
ecution for primitives. Achieving managed state and managed execu-
tion for normal Smalltalk methods is comparatively simple. The implemen-
tation strategy used was first proposed by Renggli and Nierstrasz [2007] for
the implementation of an STM system for Smalltalk. The AST-OMOP uses the
same general ideas, but extends Renggli and Nierstrasz’s approach to cover
all aspects of the OMOP.

OMOP Representation The owner of an object is expressed by a new object
field for the domain in all classes that support it. For some classes Smalltalk

182

7.1. AST Transformation

VMs makes special assumptions and does not allow adding fields. One exam-
ple is the Array class. Here a subclass that has the domain field should be used
whenever possible. In cases where this approach is not feasible, the implemen-
tation uses a map to keep a record of these objects and to associate them with
the owner domain. The map is a WeakIdentityKeyDictionary and thus al-
lows objects to be garbage collected normally. The combination of these three
strategies results in a acceptable tradeoff between performance overhead of
maintaining the ownership relation and the complexity of changing existing
code.

The Domain itself is provided as a class, implementing the methods de-
picted in Fig. 5.1. Threads of execution are the Smalltalk processes. Each pro-
cess relies on a stack of ContextPart objects. However, we can not modify
ContextPart to include a field representing the domain it executes in, be-
cause it is one of the classes that have a fixed layout that is expected by
Smalltalk VMs. The AST-OMOP works around this restriction by using a
field in the Process object itself to represent the notion of the currently ex-
ecuting domain. The previous domain, the process was executing in, is kept
on the runtime stack. Lst. 7.1 shows the corresponding implementation of
#evaluateEnforced:. This approach is sufficient for the AST-OMOP, since a
process can only change the domain it is executing in via an explicit request
to another domain to evaluate a block in its context. For the dynamic extent
of the block, the process will execute in that domain.

1 Domain = (

2 "..."

3 evaluateEnforced: aBlock = unenforced (

4 | oldDomain proc result |

5 proc := Processor activeProcess.

6 oldDomain := proc currentDomain.

7

8 proc currentDomain: self.

9 result := aBlock value.

10 proc currentDomain: oldDomain.

11

12 ^ result))

Listing 7.1: Maintaining the domain a Process executes in.

Basic Transformations The AST-OMOP enforces the OMOP’s semantics by
transforming message sends, the accesses to object fields, and access to glob-
als. For Squeak/Pharo Smalltalk, globals also include literals, because they
are technically the same. Lst. 7.2 gives an example for these transformations.

183

7. Implementation Approaches

The method #readSendWrite is transformed into its enforced variant with the
prefix #__enforced__.

1 Object = (| "..." domain |

2 requestExecOf: selector with: arg = unenforced (

3 domain requestExecOf: selector on: self with: arg)

4 "...")

5

6 Example = Object (

7 | field | "index of ‘field ’ is 2"

8

9 readSendWrite = (

10 | valOfField result |

11 valOfField := field. "for illustration only"

12 result := self doSomethingWith: valOfField.

13 field := result)

14

15 __enforced__readSendWrite = ("transformed version"

16 | valOfField result |

17 valOfField := domain readField: 2 of: self.

18 result := self requestExecOf: #doSomethingWith:

19 with: valOfField.

20 domain write: result toField: 2 of: self)

21

22 run: args = unenforced (

23 | domain |

24 domain := Domain new.

25 [Example new readSendWrite] enter: domain))

Listing 7.2: Applying transformation to #readSendWrite.

The read of an object field is transformed into a message send to the do-
main of the object. Line 17, corresponding to the original line 11, shows the
transformation result of the field read, resulting in the send of #readField:of:
with the corresponding parameters. During compilation it is known whether
the class has a field for the domain, as in the given example. However, if this
is not the case for instance for arrays, the transformation generates a message
send to look up the domain object instead. The look up will then use the map
introduced in the preceding section.

Message sends are treated differently. Instead of determining the domain
to which the execution request needs to be redirected directly, the implemen-
tation uses an indirection defined on Object (cf. line 3). With this indirec-
tion, the implementation can handle Smalltalk’s cascaded message sends uni-
formly with normal message sends. Cascaded message sends (cf. Sec. 4.2.1)

184

7.1. AST Transformation

all have the same receiver object, which might be the result of an expression.
However, the object may change its owner. This indirection, to determine the
domain for every execution request directly, avoids a complete restructuring
of the code as part of the transformation. With that, it also avoids the need of
complex transformations and the use of additional temporary variables. The
latter is a problem when a naive1 transformation is used. The transformed
method could require more temporary variables than what is supported by
the bytecode set and VM. Furthermore, besides keeping the transformation
simple, the approach has another benefit. It preserves the structure of the
original code, which is beneficial while debugging the transformed code.

In Squeak/Pharo, globals such as classes and class variables are realized by
mutable associations of a symbol with a value. These accesses are rewritten by
sending either #readGlobal: or #write:toGlobal: to the current execution
domain. Note that the current execution domain does not need to be the
receiver’s owner domain. Certain shared memory concurrency models might
want to enable access from processes from multiple domains on the same
object.

Strategy for Controlled Enforcement The AST-OMOP realizes the notion of
controlled enforcement by applying the approach Renggli and Nier-
strasz utilized to differentiate between normal and transactional execution.
As illustrated in Lst. 7.2, every method implementation needs to be available
in two versions: the normal unchanged version, which corresponds to unen-
forced execution, and the transformed method. Enforced, i. e., transformed
methods are made available with a name prefixed with __enforced__. The
prefix is used to have the enforced methods side by side with the unenforced
ones in the same Smalltalk method dictionary.

Switching to enforced execution is done by sending the #enter: message to
a block. The parameter to #enter: is the domain which #evaluateEnforced:

is going to be sent to with the block as argument. This double dispatch is
used for idiomatic/esthetic reasons. However, it also simplifies the correct
implementation of enforced execution. The example block given in line 25

needs to be transformed in the same way normal methods are transformed
into their enforced equivalents. The current restriction of this implementation
is that only blocks that directly receive the #enter: message statically in the

1Other approaches would require analysis of the transformed code to minimize the number
of temporary variables required.

185

7. Implementation Approaches

code can be executed in enforced mode. Other blocks will not be transformed
as part of a the unenforced method version.

Switching back to unenforced execution is done based on an attribute, sim-
ilarly to the approach discussed for SOM and used by Renggli and Nier-
strasz. However, in Squeak and Pharo, the syntax for method definitions is
slightly different from the SOM syntax used here. Therefore, instead of us-
ing an attribute, the method body of an unenforced method needs to contain
the <unenforced> pragma. Methods marked with this pragma are not trans-
formed, and thus, do not enforce the semantics of the OMOP. However, to
be able to switch back to enforced execution, blocks that receive the #enter:

message are still transformed correctly.

Handling of Primitives Since the AST-OMOP does not change the VM, it
needs another approach to handle primitives. The approach of Renggli and
Nierstrasz to solve the issue was again chosen. All Squeak/Pharo methods
that rely on primitives are marked with a pragma: <primitive: #id>. The
AST-OMOP adds the <replacement: #selector> pragma to each of these
methods. The method identified by the selector is then used as the enforced
version of the primitive method. This replacement method simply redirects
the execution of the primitive to the corresponding intercession handler in
the domain.

Integration with Smalltalk’s Interactive Environment The image-based de-
velopment tools of Squeak and Pharo require minor adaptations to accom-
modate the AST-OMOP. As a cosmetic change, the class browser does not
show the enforced methods, because they are generated automatically and
do not need to be changed manually. Suppressing them in the browser avoids
problems and clutter in the IDE.

The generation of transformed methods is performed on demand. To avoid
the memory overhead of keeping all methods in two versions, method trans-
formation is only triggered when an existing method is changed, which had
an enforced version, or when an enforced version could not be found and
#doesNotUnderstand: got triggered.

To capture changes of existing methods, additions, or removals, the system
offers corresponding events on which the AST-OMOP registers the appropri-
ate handlers to generate transformed methods when necessary.

Problematic for this approach are the semantics of class hierarchies and
method lookup. Thus, it is not sufficient to generate only the missing method,

186

7.1. AST Transformation

because this could lead to a change in the semantics of the program. A send
could accidentally chose an implementation in the wrong super class. To
avoid inconsistencies and problems with inheritance and overridden meth-
ods in subclasses, the used mechanism compiles all required methods in the
relevant part of the class tree with the same selector.

7.1.2. Discussion

Applicability The main benefit of the implementation approach for the AST-
OMOP is its wide applicability to existing systems. By relying on AST trans-
formation, it avoids the need for a customization of the underlying VM. While
Smalltalk bytecodes are untyped, the approach can be applied to other VMs
such as the JVM and CLI as well. The OMOP would need to be extended
by appropriately typed variants for the intercession handlers. A JVM would
require additional handlers for the reading and writing of fields of primitive
types and arrays. Method invocation could be handled in the same way as
java.lang.reflect.Proxy and java.lang.reflect.InvocationHandler pro-
vide intercession of method invocations. Another approach would be to use
the invokedynamic infrastructure [Thalinger and Rose, 2010]. While the
CLI does not provide the same notion of proxies, the DLR (Dynamic Lan-
guage Runtime) adds infrastructure such as DynamicObject, which could be
used as a foundation for an OMOP implementation on top of the CLI.

One drawback of this approach is consequently its dependency on the ca-
pabilities of the underlying platform. While for instance the CLI provides
infrastructure in form of the DLR that can be used to achieve similar results,
not all platforms provide these and an OMOP implementation can come with
either high implementation complexity, or severe limitations.

Performance and Potential Optimizations Another drawback is the com-
paratively high performance impact of this solution. As Chapter 8 will show,
a naive implementation results in a significant performance loss. While there
is potential for optimization, it might come with a significant complexity
penalty.

One potential optimization idea is to statically specialize code for certain
concurrent programming concepts, i. e., domain definitions. While this disser-
tation envisions the OMOP as a foundation for applications that simultane-
ously use a number of concurrent programming concepts to address prob-
lems with appropriate abstractions, performance might require compromises.
Therefore, the idea would be to statically generate code with for instance sup-

187

7. Implementation Approaches

port for only the STM domain. Code that is specialized that way would only
need to trigger the state access intercession handlers instead of triggering all
handlers unconditionally. Thus, the generate code based on such a optimiza-
tion could be similar to the code generated by the ad hoc implementation of
the STM. The main drawback would be that it would not be possible to use
the specialized code together with any other domain.

While the transformation-based approach might come with limitations im-
posed by the underlying platform, and restrictions in terms of the achievable
performance, it is a viable option in scenarios where VM changes are not
feasible.

7.1.3. Related Work and Implementation Approaches

As pointed out throughout this section, the proposed implementation strategy
for the AST-OMOP is closely related to the STM implementation of Renggli
and Nierstrasz [2007]. The main difference with their implementation is that
the OMOP needs to cover a wider range of aspects such as message sends,
which do not need to be considered for an STM. Furthermore, their imple-
mentation is based on Geppetto [Röthlisberger et al., 2008], a framework for
sub-method reflection. Since Geppetto is not available for the current versions
of Squeak and Pharo, their implementation is also only available2 for an out-
dated version of Squeak.

To ease development, we ported their implementation to recent versions
of Squeak and Pharo3 and implemented the necessary code transformations
without the use of Geppetto. Instead, the AST-OMOP relies on an AST rep-
resentation of the Smalltalk code and applies transformations on the AST by
using a custom visitor (cf. Sec. 4.3). The ad hoc implementation of the STM
uses the same AST transformation techniques that are used in this implemen-
tation of the OMOP.

While sub-method reflection as offered by Geppetto and custom code trans-
formation are viable options and are used for instance also by Ziarek et al.
[2008] based on the Polyglot compiler framework [Nystrom et al., 2003], the
required transformation have strong similarities with the capabilities offered
by common aspect-oriented programming (AOP) languages. The pointcut lan-
guages as offered by AspectJ4 are often powerful enough to satisfy the require-

2http://source.lukas-renggli.ch/transactional.html
3Our port of the STM, now name LRSTM for Squeak 4.3 and Pharo 1.4 is available at
http://ss3.gemstone.com/ss/LRSTM.html

4http://www.eclipse.org/aspectj/

188

http://source.lukas-renggli.ch/transactional.html
http://ss3.gemstone.com/ss/LRSTM.html
http://www.eclipse.org/aspectj/

7.2. Virtual Machine Support

ments for the implementation of the OMOP. However, the AOP frameworks
available for Smalltalk are typically designed around the notion of message
sends between objects and do not provide the necessary capabilities.

Examples are AspectS [Hirschfeld, 2002] and PHANtom [Fabry and Gal-
dames, 2012]. Both offer only pointcut definitions that expose join points for
message sends. Phase [Marot, 2011], a third AOP framework for Smalltalk,
goes beyond that by also offering pointcut definitions to capture field accesses,
and thus, exposes the necessary join points to intercept the reading and writ-
ing of fields. However, it does not offer pointcut definitions that enable an
interception of access to globals. Thus, while more powerful AOP languages
for instance for Java would provide alternative implementation approaches
similar to the ones used here, such frameworks currently do not exist for
Smalltalk and a custom code transformation remains the simplest solution
available.

7.2. Virtual Machine Support

Rationale The AST-OMOP was conceived to implement case studies to as-
sess the value of the general idea. However, its use is limited to performance
insensitive applications. In general, the AST-OMOP implementation is inap-
propriate for evaluating the last part of the thesis statement, i. e., whether the
OMOP lends itself to an efficient implementation (cf. Sec. 1.3).

Therefore, this dissertation investigates direct VM support for the OMOP
as well. In order to evaluate the overall performance potential, it was decided
to start out with a prototype implementation that adapts a simple interpreter.
The RoarVM is a sufficiently flexible platform for such experiments. Further-
more, as Sec. 4.4 details, the RoarVM also provides support for a number
of techniques such as parallel execution that is implemented with operat-
ing system processes, which could facilitate future work on optimizations
(cf. Sec. 4.4.3). Thus, this section discusses the OMOP implementation called
RoarVM+OMOP.

While interpreters do not provide the same performance as highly opti-
mized just-in-time compiling VMs, they remain widely used and are valued
for their flexibility and portability. Therefore, the OMOP could be applied to
interpreters to facilitate concurrent programming where a performance trade-
off compared to a highly optimized VM is acceptable. However, even in such
a setting a significant slowdown from using the OMOP is to be avoided. A
performance evaluation with an interpreter provides indications for the feasi-

189

7. Implementation Approaches

bility of efficient implementation, without having to manage the significantly
higher complexity of just-in-time compiling VMs.

This section discusses the design decisions and implementation challenges
of the RoarVM+OMOP. The implementation changes the behavior of byte-
codes and primitives to expose the OMOP’s intercession points, reify reading
and writing of fields and globals, as well as message sends and primitive in-
vocations. Furthermore, it uses a simple optimization based on a bit mask in
the domain objects. This bit mask, called the customization constant, encodes
the intercession points that are customized and require reification.

7.2.1. Implementation Strategy

OMOP Representation For the implementation of object ownership, the
RoarVM+OMOP relies on the infrastructure in the RoarVM to add another
header word to every object (cf. Sec. 4.4.2). This additional header word is
a reference to the owner of the object. This solution corresponds to adding
a field to every object in AST-OMOP. However, the header word is not part
of the actual object, and thus, does not conflict with the Smalltalk image be-
cause it does not violate assumptions about object structure and field layout.
Instead, the implementation needs to make sure that the garbage collector
(GC) is aware of the extra header word and that it is to be treated as an object
reference.

Domains are represented in the same way as in the AST-OMOP. A sub-
class of Domain can customize the intercession handlers with its own policies.
In fact, both implementations are compatible and share implementation and
unit tests as well as benchmarks and case study implementations. This code
sharing greatly reduces the implementation effort, and it facilitates testing of
both implementations ensuring that they behave identically.

The domain which a Process is executing in, is represented by the owner
domain of the context object, i. e., the stack frame. This is different from
the AST-OMOP, which maintains this information in the process object (cf.
Sec. 7.1.1). Sec. 5.5 argues that the context objects can be considered to be
metaobjects, and thus, are not subject to the OMOP. Their extra header field
for the owner domain can therefore be used to indicate the domain in which
the process with its context object executes.

The execution mode, i. e., whether the frame is executed in enforced or
unenforced mode is encoded in a spare bit of the reference (Oop) referring

190

7.2. Virtual Machine Support

to the domain object.5 This provides part of the support for controlled

enforcement.
The initial ownership of newly created objects is deduced from a special

field in each domain object. During initialization of a domain, the domain
can predetermine the owner domain for objects newly created during execu-
tion in the domain’s context. The standard owner domain is the domain the
Process is currently executing in. However, it can be useful to create objects
with a domain different from their initial owner. For example, objects created
by an update function in the context of a Clojure agent should be owned
by the immutable domain (cf. Sec. 2.4.3). The RoarVM+OMOP represents the
initial owner via a field in the domain because it avoids executing another
Smalltalk method on every object creation, while giving some flexibility with
regard to the initial owner. For more complex use cases, it is always possible
to change the owner of an object during the course of the execution. Further-
more, setting the owner during object initialization avoids race conditions on
the object owner as compared to when it is set afterwards.

Changed Bytecode Semantics and Customization Constant To expose the
OMOP’s intercession points, i. e., to support managed state and man-
aged execution, the RoarVM+OMOP adapts most bytecodes and primi-
tives. The general idea is to check first, whether currently an enforced execu-
tion is required, and if that is the case, the target object’s domain is inspected
to determine whether a relevant intercession handler has been customized
based on the customization constant. If this is the case, the intercession handler
is invoked instead of executing the bytecode’s or primitive’s operation.

During enforced execution, bytecodes reify their operations and delegate

them to the intercession handlers. Most of the bytecodes have trivial se-
mantics, in terms of the stack operations they perform. Thus, a Smalltalk
method, such as the intercession handlers can stand in for the actual bytecode
operation without loss of flexibility. During enforced execution, the bytecode
implementations can therefore perform message sends, similarly to the stan-
dard behavior of the send bytecode, instead of performing their operations
directly. This approach corresponds directly to the one describing the overall
semantics of the OMOP in Sec. 5.4.

5On a 32-bit architecture with 4 byte alignment, the first bit of an Oop is used to indicate
whether an Oop is an immediate integer, or a references. The second bit remains unused,
and is used to encode the enforcement.

191

7. Implementation Approaches

The most important aspect here is that the intercession handlers that stand
in for the original bytecode operations preserve the required stack semantics.
Bytecodes that for instance push the value of a receiver’s field or a global
literal will just result in a message send instead. The return value of the mes-
sage send will then reflect the result of the read operation. Message sends and
simple bytecodes that store into an object’s field are handled very similarly.

The delegation of bytecodes with store and pop behavior requires an addi-

tional intercession handler. The store and pop bytecodes from the Smalltalk-
80 bytecode set are problematic. These are more complex to handle because
they require that the top element of the stack be removed after the oper-
ation. However, this demands care, because all Smalltalk methods return
a value, which gets pushed onto the stack after the method returns. The
RoarVM+OMOP solved this problem by adding a special intercession handler
#write:toField:of:return: in addition to the normal #write:toField:of:
handler. It takes an additional parameter, the predetermined return value for
the handler.

The code implementing this adaptation is given in Lst. 7.3. It shows the C++
code of the RoarVM+OMOP for the store and pop bytecode. As line 6 shows,
two values are popped from the stack, instead of only the value that is to
be stored into the receiver. The second value, which corresponds to what the
top value of the stack should be after the store and pop bytecode, is given to
the intercession handler as a last parameter, and will be restored when the
handler returns. The calling conventions and the current compiler in Squeak
and Pharo guarantee that this approach is safe. Theoretically, it is problematic
to assume that there are always two elements on the stack that can be removed
by the pop operation. However, in this situation it is guaranteed that there is
the original element to be popped and in addition, there is at least the receiver
object at the bottom of the stack, which is never subject to a store and pop

bytecode. Thus, it is safe to pop the second element, which might be the
receiver, and restore it when the message send returns.

The send special message bytecodes and the quick methods require proper
adaptation as well (cf. Sec. 4.4.1). For message bytecodes, the RoarVM+OMOP
needs to force the intercession point for an actual message send when the
domain customizes the request execution intercession points. While the quick
methods need to force the intercession point for the reading of the receiver’s
fields to be able to intercept them as any other field read with the intercession
handler.

192

7.2. Virtual Machine Support

1 void storeAndPopReceiverVariableBytecode () {

2 if (requires_delegation(roots.rcvr ,

3 Domain :: WriteToFieldMask)) {

4 Oop value = stackTop ();

5 Oop newTop = stackValue (1);

6 pop (2);

7 redirect_write_field(roots.rcvr ,

8 currentBytecode & 7,

9 value , newTop);

10 }

11 else {

12 fetchNextBytecode ();

13 receiver_obj()->storePointer(prevBytecode & 7, stackTop ());

14 pop (1);

15 }

16 }

17

18 bool requires_delegation(Oop rcvr , oop_int_t selector_mask) {

19 if (executes_unenforced ())

20 return false;

21

22 Oop rcvr_domain = rcvr.as_object()->domain_oop ();

23 Oop customization = rcvr_domain.customization_encoding ();

24 return The_Domain.customizes_selectors(customization ,

25 selector_mask);

26 }

27

28 void redirect_write_field(Oop obj_oop , int idx ,

29 Oop value , Oop newTop) {

30 Oop domain = obj_oop.as_object()->domain_oop ();

31 set_argumentCount (4);

32 roots.lkupClass = domain.fetchClass ();

33 roots.messageSelector = The_Domain.write_field_with_return ();

34 create_context_and_activate(domain , value ,

35 Oop:: from_int(idx + 1), obj_oop , newTop);

36 }

Listing 7.3: Implementation of store and pop bytecodes.

193

7. Implementation Approaches

Customization Constant In addition to showing the implementation of the
store and pop bytecode, Lst. 7.3 also contains the specifics of the customization

constant implementation. On line 2, the bytecode implementation calls the
method requires_delegation(..) with the receiver (rcvr) object and a bit
mask, which indicates a write operation. Line 18 defines the called method.
It first looks up the domain owning the given receiver. Then, it looks up the
customization constant in the domain object and uses another helper method
that checks whether the constant has the corresponding bits of the bit mask
set. If that is not the case, the bytecode implementation will continue execut-
ing at line 11 and directly perform the operation, as if the code was executed
in the unenforced execution mode. This avoids the overhead of reifying the
operation and performing it later reflectively. In case a delegation is required,
the bytecode implementation will call redirect_write_field(..) instead of
performing the write directly.

Handling of Primitives Primitives are handled similarly to bytecodes. Once
the primitive code is reached it is already clear that the message send that
led to it succeeded and does not need to be considered anymore. However,
the primitive itself might still need to be intercepted by the domain. Thus,
it needs to check whether the domain customizes the corresponding inter-
cession handler. Lst. 7.4 provides an example of the adapted primitive for
shallow copying of objects. As described, the receiver is first checked whether
it customizes the corresponding handler, and if this is the case, the handler is
invoked instead. As request_primitive_clone() demonstrates, we rely for
that operation on the standard method invocation, i. e., commonSend().

Strategy for Controlled Enforcement As mentioned before, each context ob-
ject keeps track of whether the VM is supposed to execute the corresponding
code in enforced or unenforced mode.

The VM offers two ways to switch to enforced execution. The first one is
the #evaluateEnforced: primitive, which takes a block that is going to be
evaluated with enforcement enabled. The second way is enabled by the vari-
ants of the #performEnforced: primitives, which take a selector, arguments,
and optionally a lookup class for super sends. Both approaches cause either
blocks or methods to be executed in enforced mode.

To leave enforced execution, methods are marked similarly to the solution
for SOM and the AST-OMOP. The RoarVM+OMOP implementation uses bit
30 (UN) in the method header (cf. Tab. 7.1) to indicate to the VM that the

194

7.2. Virtual Machine Support

1 void primitiveClone () {

2 Oop x = stackTop ();

3

4 if (requires_delegation(x, Domain :: PrimShallowCopy__Mask)) {

5 request_primitive_clone ();

6 return;

7 }

8

9 if (x.is_int ()) // is immediate value , no copying necessary

10 return;

11

12 Oop nc = x.as_object()->clone ();

13 popThenPush (1, nc);

14 }

15

16 void request_primitive_clone () {

17 Oop value = stackTop ();

18 Oop domain = value.as_object()->domain_oop ();

19

20 popThenPush (1, domain);

21 push(value);

22

23 set_argumentCount (1);

24

25 roots.messageSelector = The_Domain.prim_shallow_copy ();

26 roots.lkupClass = domain.fetchClass ();

27

28 commonSend(roots.lkupClass);

29 }

Listing 7.4: Adapted primitive for shallow object copies.

195

7. Implementation Approaches

method and its dynamic extent have to be executed in unenforced mode. If
the bit is not set, the execution mode of enforced or unenforced execution
remains unchanged on method activation.

Table 7.1.: RoarVM+OMOP Method Header: bit 30 is used to force unenforced
method execution.

UN P. #args #temporaries FS #literals Primitive 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VM Interface Since part of the functionality is represented in the VM, and
part is represented in the Smalltalk image, both have to agree on a common
interface.

Intercession Handlers To enable the VM to invoke the intercession handlers,
it requires knowledge about the corresponding selectors. A common strategy
for such a case in Smalltalk VMs is the use of the specialObjectsArray. All
objects or classes the VM needs to be aware of are registered in this array
at a predetermined index. Similarly, the selectors for the intercession han-
dlers are encoded as an array that is referenced from a fixed index of this
specialObjectsArray.

The indices into the selector array are encoded in a header file of the VM.
This header file is generated by the image together with the array, but the VM
needs to be recompiled whenever the header and the array change.

Customization Constant The generated VM header file also encodes the bit
masks corresponding to the intercession points, which enable a decoding of
the customization constant of a domain to determine whether the domain
requires the intercession point to be taken. The image itself uses a consistency
check to verify that decoding of the customization is done correctly by both
VM and image. The customization constant itself is encoded in each domain
object in the field: domainCustomizations.

Initial Owner of Objects The domain objects have also a field to denote the
initial owner for newly created objects (initialDomainForNewObjects). Thus,
the VM can directly determine the new owner without the need for executing

196

7.2. Virtual Machine Support

Table 7.2.: VM Primitives for the OMOP

#performEnforced: Invoke selector with the enforced ex-
ecution mode. Arguments are passed
on the stack.

#performEnforced:args: Invoke selector with the enforced ex-
ecution mode. Arguments are passed
as an array.

#performEnforced:args:lkupCls: Invoke selector with the enforced ex-
ecution mode. Arguments are passed
as an array and lookup starts in a
given class.

#evaluateEnforced: Evaluate the given block with the en-
forced execution mode.

#executesEnforced Query whether current execution is
enforced or unenforced.

#getDomainOf: Get the owner domain of an object.

#setDomainOf:to: Set the owner domain of an object to
the given domain.

a Smalltalk method. The RoarVM+OMOP uses this approach to avoid the
otherwise significant overhead for ever object creation.

Unenforced Methods Methods encode in their header the unenforced bit,
which is set during method compilation when the <unenforced> pragma is
present in the method body.

The primitives provided as part of the VM interface are listed in Tab. 7.2.

7.2.2. Discussions

Customization Constant for Debugging The use of a customization con-
stant, which for every domain object encodes the set of intercession handlers
that have been customized, greatly reduces the amount of Smalltalk code that
is processed during enforced execution. Sec. 8.5.3 evaluates the performance
benefits of using this customization constant. However, the main reason for

197

7. Implementation Approaches

introducing it was not performance, but the system’s debuggability needed
to be improved.

Since most domains customize only a subset of all intercession handlers, it
becomes a major problem to have all intercession handlers be invoked. While
the standard intercession handlers only encode the semantics of unenforced
Smalltalk execution, they significantly increase the amount of code that is
executed for each operation with a corresponding intercession handler. For
the purpose of debugging, the execution of this code only adds noise and
results in additional code execution that one needs to step through, without
relevance to the semantics.

During debugging at the VM bytecode level as well as during debugging
at the Smalltalk source level, it was essential to avoid such noise in order
to be able to focus on the problem at hand. The customization constant re-
duced unnecessarily executed code significantly and consequently improved
the debugging experience for code executed in the enforced mode.

Representation of Ownership The RoarVM+OMOP represents object own-
ership by using an extra header word for every object. While this direct ap-
proach enables the VM to obtain the owner simply by object inspection, it
comes with a significant memory overhead for small objects. In the field of
garbage collection, different solutions have been proposed to track similar
metadata for various purposes. One possible approach that is common for
GCs is to partition the heap [Jones et al., 2011, chap. 8] based on certain cri-
teria to avoid the direct encoding of related properties. For the OMOP, the
ownership of an object could be encoded by it being located in a partition
that belongs to a specific domain. Such an approach would avoid the space
overhead of keeping track of ownership. While partitioning might add com-
plexity to the memory subsystem of the VM, it might also open up oppor-
tunities for other optimizations. Depending on the use of the domains, and
the concurrency concepts expressed with them, a GC could take advantage of
additional partitioning. For instance, in an actor-like domain, additional par-
titioning could have benefits for generational collectors. In such a system, the
nursery partition would be local to a single actor, which could have a positive
impact on GC times.

Limitations of Primitives A final semantic issue is the handling of prim-
itives. By reifying their execution and requiring the indirection to the do-
main object, the execution context changes when the primitive is applied. In

198

7.3. Summary

the RoarVM, primitives are executed on the current context object, which
is different from normal method activations, which are done in their own
context object. When primitive execution is intercepted by the domain, the
RoarVM+OMOP cannot provide the same semantics. An intercession handler
executes in its own context object, i. e., stack frame, and consequently if it
invokes the primitive, it executes on the handler’s stack frame instead of the
stack frame it has originally been invoked in. One example where that mat-
ters is a primitive that implements loops in SOM. It resets the instruction
pointer in the context object to achieve looping. In the RoarVM+OMOP, this
is not possible. However, while this design restricts what primitives can im-
plement, it is not a practical issue for the RoarVM codebase. The codebase
does not contain primitives that use the context objects in problematic ways,
even though the codebase includes the plugins reused from Squeak and the
CogVM (cf. Sec. 4.4). The primitives merely work on the parameters provided
to them and restrict access to the context object to the corresponding stack
operations. Thus, the RoarVM+OMOP did not need to solve this limitation
and it is assumed that it does not pose a problem in practice.

7.3. Summary

This chapter presented two implementation approaches for the OMOP. It de-
tails for each of the approaches how the mechanisms of the OMOP are real-
ized and how the requirements are fulfilled.

The AST-OMOP is based on AST transformation and operates on top of the
VM without requiring changes to it. The transformations add the necessary
operations to trigger the OMOP’s intercession handlers, e. g., on method exe-
cution, access to object fields or globals, or to intercept primitives. The AST-
OMOP was the first prototype to investigate the ideas of using a metaobject
protocol and to build the case studies on top, i. e., the AmbientTalkST and the
LRSTM implementation. Thus, the AST-OMOP facilitated the evaluation of
part of the thesis statement without requiring changes to the VM.

The RoarVM+OMOP is the implementation that is used to evaluate the
performance part of the thesis statement. It adapts a bytecode interpreter to
directly support the OMOP. The bytecode and primitive implementations are
changed to trigger the OMOP’s intercession handlers instead of performing
their original operations if execution is performed enforced, and if the corre-
sponding intercession handler has been customized. The check whether the
intercession handler is customized is a simple optimization that facilitates
debugging.

199

8
E VA L U AT I O N : P E R F O R M A N C E

The goal of this chapter is to evaluate the performance of the AST-OMOP
and the RoarVM+OMOP, by comparing the OMOP-based and ad hoc imple-
mentations of LRSTM and AmbientTalkST. This assessment is based on the
assumption that application developers already use concurrent programming
based on systems similar to LRSTM or AmbientTalkST. Therefore, this eval-
uation needs to show that applications can reach on par performance when
LRSTM and AmbientTalkST are implemented on top of the OMOP compared
to being implemented with ad hoc strategies.

This chapter first details the evaluation methodology and the generalizabil-
ity of the results. These results allow conclusions for other bytecode inter-
preters. However, they preclude conclusions for high-performance VMs.

Subsequently, the performance comparison of the ad hoc and OMOP-based
implementations of AmbientTalkST and LRSTM shows that the OMOP can be
used to implement concurrent programming concepts efficiently. Currently,
the OMOP provides a sweet spot for implementations that rely on the cus-
tomization of state access policies as used in LRSTM. The evaluation further
shows that the overhead of the AST-OMOP is high, while the overhead of the
RoarVM+OMOP is significantly lower. The customization constant optimiza-
tion introduces inherent overhead, but offers performance benefits when only
a small number of intercession handlers are customized. Overall, the compar-
ison of AST-OMOP and RoarVM+OMOP indicates the need of VM support
for the OMOP to obtain performance on par with ad hoc implementations.

201

8. Evaluation: Performance

8.1. Evaluation Strategy

This section details the goals of the performance evaluation, outlines the ex-
periments and their rationale, and the generalizability of the results.

8.1.1. Evaluation Goal

The goal of this chapter is to evaluate the last part of the thesis statement
(cf. Sec. 1.3). Thus, it needs to evaluate whether the OMOP “lends itself to an

efficient implementation”.
This evaluation is based on the assumption that application developers rely

on concurrent programming concepts to trade off performance and engineer-
ing properties in order to build applications that satisfy their requirements.
Thus, this evaluation is not required to assess the absolute performance of
all of the concurrent programming concepts. Instead, it needs to show that
OMOP-based implementations can perform on par with ad hoc implementa-
tions. Therefore, this evaluation compares the performance between individ-
ual ad hoc and OMOP-based implementations. Furthermore, it assesses the
performance impact of the different implementation strategies for the OMOP.

8.1.2. Experiments and Rationale

Before detailing the experiments, this section briefly recapitulates the motiva-
tion for using the RoarVM as platform for these experiments. Furthermore,
it argues the choice of LRSTM and AmbientTalkST as case studies. Finally, it
outlines the experiments and describes which aspect they assess.

Motivation for AST-OMOP and RoarVM+OMOP The experiments with
the AST-OMOP indicated that its performance is not on par with ad hoc solu-
tions [Marr and D’Hondt, 2012]. Therefore, this dissertation also needs to eval-
uate whether VM support can improve on these results. The available VMs
for this experiment are CogVM and RoarVM (cf. Sec. 4.4). The CogVM uses a
just-in-time compiler that provides good performance (cf. Sec. 8.3). Compared
to it, the RoarVM is a research interpreter, which is not optimized for perfor-
mance. However, we used the RoarVM in earlier experiments and had ported
it from the Tilera manycore processor to commodity multicore systems (cf.
Sec. 4.4), and thus were familiar with its implementation.

202

8.1. Evaluation Strategy

The RoarVM was chosen over the CogVM for its significantly lower imple-
mentation complexity,1 enabling the evaluation of the benefits of VM support
with a significantly lower implementation effort.

Motivation for using LRSTM and AmbientTalkST The performance eval-
uation relies on the AmbientTalkST and LRSTM case studies to compare the
performance of ad hoc implementations with OMOP-based implementations.
The evaluation restricts itself to these two case studies, because the seman-
tic differences between the ad hoc implementation of Clojure agents and the
OMOP-based implementation are significant (cf. Sec. 6.2.1) rendering any per-
formance result incomparable.

However, AmbientTalkST and LRSTM yield two relevant data points that
represent two major concurrent programming concepts. As argued in Sec. 2.5,
event-loop actors are a natural fit for the implementation of event-driven user-
interfaces. JCoBox [Schäfer and Poetzsch-Heffter, 2010] and AmbientTalk [Van
Cutsem et al., 2007] show that these ideas are explored in research. Further-
more, WebWorker5 and Dart6 demonstrate the adoption in industry. Soft-
ware transactional memory found adoption in languages such as Clojure7

or Haskell8 and as a compiler extension for GNU GCC 4.7.9

Furthermore, these two case studies customize distinct intercession han-
dlers of the OMOP, and thus are subject to different performance effects.
AmbientTalkST primarily customizes method execution (cf. Sec. 6.2.3), while
LRSTM customizes state access and primitives execution (cf. Sec. 6.2.2).

In order to have comparable results, both AmbientTalkST implementations
observe the same semantics, i. e., neither implementation enforces state en-
capsulation for global state. While Sec. 6.2.3 discussed a solution for state
encapsulation based on the OMOP, providing the same degree of encapsu-
lation for the ad hoc implementation would have required significant addi-

1Our discussions with Eliot Miranda, author of the CogVM, at the Deep into Smalltalk school,2

the VMIL’11 workshop,3 and as a co-mentor for the 2012 Google Summer of Code project to
port the CogVM to ARM,4 made it clear that the CogVM would requires engineering and
research effort that goes beyond the scope of this dissertation (cf. Sec. 9.5.2).

2http://www.inria.fr/en/centre/lille/calendar/smalltalk
3http://www.cs.iastate.edu/~design/vmil/2011/program.shtml
4http://gsoc2012.esug.org/projects/arm-jitter
5http://www.whatwg.org/specs/web-apps/current-work/multipage/workers.html
6http://api.dartlang.org/docs/continuous/dart_isolate.html
7http://clojure.org
8http://www.haskell.org
9http://gcc.gnu.org/wiki/TransactionalMemory

203

http://www.inria.fr/en/centre/lille/calendar/smalltalk
http://www.cs.iastate.edu/~design/vmil/2011/program.shtml
http://gsoc2012.esug.org/projects/arm-jitter
http://www.whatwg.org/specs/web-apps/current-work/multipage/workers.html
http://api.dartlang.org/docs/continuous/dart_isolate.html
http://clojure.org
http://www.haskell.org
http://gcc.gnu.org/wiki/TransactionalMemory

8. Evaluation: Performance

tional complexity. Instead, both implementations accept a common compro-
mise [Karmani et al., 2009] and weaken state encapsulation. This compromises
on the semantics, but makes both implementations semantically equivalent
and provides performance results that can be meaningfully compared.

Choice of Experiments The performance comparison of the ad hoc and
the OMOP-based implementations in Sec. 8.4 relies on a set of custom mi-
crobenchmarks that assess the performance of specific parts of the Ambi-
entTalkST and LRSTM implementations. A characterization of these bench-
marks is given in Appendix B.1.

Additionally, the evaluation uses kernel benchmarks chosen from the Com-

puter Language Benchmarks Game10 and other sources. These benchmarks have
been chosen based on their characteristics as well as their availability. Ker-
nel benchmarks exercise different parts of the runtime as part of small-sized
programs. They cover aspects such as object graph traversal, a compilation,
string manipulation, and different computational workloads. Appendix B.1
characterizes them and shows where they have been used in the literature to
support their validity.

With the selected benchmarks, the evaluation can assess specific parts of
the implementations and the performance for higher-level workloads. How-
ever, since these benchmarks are on a small scale, they can only give weak
indications for the performance of concrete applications.

With these benchmarks Sec. 8.5 assesses the implementation characteristics
of AST-OMOP and RoarVM+OMOP in more detail. In a first step, the evalu-
ation measures the overall enforcement overhead of both OMOP implemen-
tations. Thus, it measures the cost of triggering intercession handlers instead
of directly performing the corresponding operations in unenforced execution
mode. The goal here is to assess and compare the absolute overhead of the
OMOP while comparing implementations with equal semantic properties.

The RoarVM+OMOP implementation adapts the semantics of bytecodes
and introduces additional operations on the critical path of the bytecode
interpreter (cf. Sec. 7.2.1. Sec. 8.5.2 evaluates the inherent overhead of these
changes. This overhead can have a significant impact on overall application
performance, because it is independent from OMOP usage.

Sec. 7.2.1 discusses an optimization proposed for the RoarVM+OMOP im-
plementation that avoids the cost of triggering intercession handlers for un-
customized operations. To determine the benefit of this optimization, the pro-

10http://shootout.alioth.debian.org/

204

http://shootout.alioth.debian.org/

8.1. Evaluation Strategy

posed evaluation measures its inherent overhead and its gains. It measures its
overhead on unenforced execution, and uses LRSTM and AmbientTalkST to
measure its performance benefit.

The evaluation is completed by measuring the absolute performance of
AST-OMOP and RoarVM+OMOP. While these absolute numbers do not con-
tribute to the evaluation goal, they are a relevant data points for the assess-
ment of whether the OMOP can be applied in its current form.

8.1.3. Virtual Machines

The evaluation uses the CogVM and the RoarVM. This section briefly lists the
basic information required to recreate the setup. Furthermore, it describes the
characteristics of the RoarVM variants used in the experiments.

CogVM The used CogVM (cf. Sec. 4.3) is the official and unmodified VM
for the Squeak and Pharo projects. It has been obtained from the continuous

integration server of the Pharo project.11 It was compiled on Aug. 13th, 2012,
and identifies itself as a 6.0-pre release.

RoarVM The RoarVM used in these experiments is based on the official
sources,12 but contains a number of customizations. In total, three variants
of the RoarVM without OMOP support are used. RoarVM (std) is the variant
that uses the standard settings of the VM and supports parallel execution. It is
compiled with Clang 3.0,13 since Clang is the compiler used during develop-
ment. In order to assess whether the performance differences are significant
between Clang 3.0 and the standard compiler of OS X 10.6, i. e., the GNU
GCC 4.2,14 the RoarVM (GCC 4.2) is included in the experiments. The only
difference with RoarVM (std) is the use of the GNU GCC 4.2 compiler. Inde-
pendent of the compiler, all RoarVM variants are compiled with maximum
optimizations, i. e., with the -O3 compiler flag.

Parallel Execution vs. Overhead Assessment For improved performance
and to expose the introduced overhead of the OMOP more clearly, this eval-
uation uses RoarVM (opt), which is configured with non-standard settings.

11https://ci.lille.inria.fr/pharo/view/Cog/job/Cog-VM/
12https://github.com/smarr/RoarVM
13http://clang.llvm.org/
14To be precise, the compiler identification is: (GCC) 4.2.1 (Based on Apple Inc. build 5658)

(LLVM build 2336.1.00).

205

https://ci.lille.inria.fr/pharo/view/Cog/job/Cog-VM/
https://github.com/smarr/RoarVM
http://clang.llvm.org/

8. Evaluation: Performance

The goal of the applied optimizations is to ensure that the performance over-
head introduced by the OMOP is not hidden by the interpretation overhead
and other performance reducing factors. The main assumption here is that
the OMOP introduces a constant amount of time as overhead for each of the
adapted operations. Therefore, a reduction of the overall execution time more
clearly exposes the introduced constant overhead per operation.

The RoarVM (opt) configuration does not support parallel execution, drops
the use of the object table, comes without garbage collection, and uses direct
access to important globals such as the interpreter object, and the memory
system object. While these settings might sound like a strong restriction and
an artificial setup, they are close to the settings for a experimental version of
the RoarVM that supports parallel execution. One insight during the work
on the RoarVM was that access to thread-local variables carries a significant
performance penalty compared to direct access to global variables in a se-
quential version. Hence, we implemented a variant of the RoarVM that uses
processes instead of threads to enable the utilization of multiple cores. This
variant does not pay the penalty of thread-local variables and can benefit from
compiler optimizations for statically known global variables. Thus, using di-
rect access to global variables is one optimization applied to the RoarVM (opt).
By avoiding the overhead of the object table, it gains additional performance.
While the current GC implementation is not adapted to work without an ob-
ject table, supporting this setting is relatively straightforward and common
in other VMs. Therefore, the configuration of RoarVM (opt) is not an artificial
one, but is based on reasonable assumptions and can be made to support
parallel execution. Furthermore, by improving overall performance any addi-
tional constant overhead introduced by the OMOP can be determined more
clearly.

8.1.4. Generalizability and Restrictions of Results

Generalizability to Application Performance Benchmarks model only cer-
tain sets of behaviors and do not necessarily correspond to actual applications.
Thus, their generalizability is typically restricted. For these reasons Blackburn
et al. [2006] propose a suite of actual applications as benchmarks for JVMs.
Since no such benchmark suite exists for Smalltalk, the evaluation relies on
microbenchmarks and kernel benchmarks. Therefore, benchmarks can only
give an indication of the order of magnitude of performance of applications,
precluding predictions about the performance of concrete applications.

206

8.2. Methodology

Generalizability beyond Interpreters The low performance of the RoarVM
precludes any generalization beyond interpreters. Since its implementation
is comparatively inefficient, it can hide performance effects that are caused
by the OMOP implementation. In any highly optimized VM implementation,
newly introduced overhead will have a higher impact than in an implementa-
tion that is already slow to begin with.

Consequently, it is not possible to generalize the results to highly optimized
VMs that use JIT compilers. This is a serious limitation, but addressing it is
outside the scope of this dissertation and part of future work (cf. Sec. 9.5.2).
However, the results are transferable to common bytecode-based interpreters,
e. g., Lua 5.2, Python 3.3, Ruby 1.9, because they have similar execution char-
acteristics.

8.2. Methodology

This section gives an overview of the methodology used for the execution of
the experiments as well as for the reporting in this dissertation.

8.2.1. Precautions for Reliable Results

The benchmarking methodology is derived from the advice of Georges et al.
[2007] for a practical statistically rigorous performance evaluation. Conse-
quently, it takes the following precautions for setting up the experiments:

• Measure steady-state performance: bytecode-interpreter VMs do not
have a warmup phase, however the CogVM (cf. Sec. 4.3) with its baseline
JIT compiler needs proper warmup to reach its steady-state. Currently,
it is sufficient for the CogVM to execute the benchmark twice before
the effectively measured run to ensure that the code is compiled and
ready. Since the CogVM does not support adaptive compilation, steady
state is reached and performance will remain unchanged for subsequent
execution.

• Minimize nondeterminism incurred by concurrently executing threads:
Since the performance evaluation focuses on the general performance
impact (cf. Sec. 8.1.3) and since the OMOP itself does not affect the char-
acteristics of parallel execution,15 this evaluation focuses on sequential

15As shown with the case studies (cf. Sec. 6.2), the OMOP does not change execution seman-
tics, but enables language implementers to enforce desired semantics more directly. It does

207

8. Evaluation: Performance

benchmarks, i. e., benchmarks that are executed on a single processor
core. This removes a strong source of noise in the results and improves
the quality of our measurements.

• Minimize nondeterminism incurred by Intel’s TurboBoost: Modern pro-
cessors often support dynamic frequency changes for processor cores to
manage power consumption and heat dissipation. To avoid an influence
of such techniques on measurements, they need to be disabled.16

• Minimize nondeterminism incurred by garbage collection: To avoid mea-
surement noise coming from different GC strategies in the different
VMs, the heap size are adjusted to a large enough value of 1024MB,
and thus, GC operations are avoided.

• Problem sizes: The problem size of all benchmarks is adjusted to yield
runtimes in the order of hundreds of milliseconds, ideally between
300ms to 1000ms. In some experiments, the runtimes go well beyond
this range, because of the different performance characteristics of the
VMs used. However, fixing the lower bound to an appropriate value
avoids influence of potentially imprecise timer resolutions provided by
the different VMs.

Execution With these precautions in place, systematic bias in the experi-
ments is reduced. However, there remain other nondeterministic influences.
For instance, operating system features such as virtual memory and schedul-
ing of other processes cannot completely be disabled. Adjusting process pri-
ority helps partially, but other techniques such as caching in the processors
remain. The remaining influences are handled by executing each benchmark
100 times to obtain statistically significant results.

Hardware And Software Setup The machine used for these experiments is
a MacPro (version 4,1) with two quad-core Intel Xeon E5520 processors at
2.26 GHz with 8 GB of memory. Note that since the benchmarks are purely
sequential, the number of cores is not relevant. The operating system is OS
X 10.6.7 (10K549). The benchmarks are implemented using the SMark bench-

not provide mechanisms that interfere with parallel execution: it facilitates concurrent pro-
gramming in contrast to parallel programming (cf. Sec. 2.3.2).

16On Mac OS X this is possible by using a kernel module:
https://github.com/nanoant/DisableTurboBoost.kext

208

https://github.com/nanoant/DisableTurboBoost.kext

8.3. Baseline Assessment

marking framework17. The benchmarks are executed based on a configuration
that consists of the lists of benchmarks and their parameters, as well as the
VMs and the necessary command-line arguments. ReBench18 uses this config-
uration to execute the benchmarks accordingly. The configuration is given in
Appendix B.2.

For the CogVM, an official 32-bit binary is used (cf. Sec. 8.1.3). The RoarVM
is equally compiled as a 32-bit binary. The compiler used is either Clang
3.0 or GNU GCC 4.2 with full compiler optimization enabled, i. e., using the
compiler switch -O3.

8.2.2. Presentation

Beanplots Most of the following diagrams use beanplots [Kampstra, 2008].
Beanplots are similar to violin and box plots. They show the distribution of
measurements, and thus, enable an visual comparison of benchmark results,
including an assessment of the significance of the observed differences (cf.
Fig. 8.1). Note that the beanplots are directly based on the measured data
points, i. e., they depict the distribution of the actual measurements and are
not synthesized from aggregated values. Asymmetric beanplots such as in
Fig. 8.3 are a variant that facilitates direct comparison of two data sets by
depicting both data sets for each criterion side-by-side. The first example in
the following section discusses the semantics of these diagrams in more detail.

Geometric Mean Note that all averages reported in this dissertation are
based on the geometric mean. For most experiments normalized measure-
ments are reported, and thus, the geometric mean needs to be used because
the arithmetic mean would be meaningless (cf. Fleming and Wallace [1986]).

8.3. Baseline Assessment

This section discusses baseline performance of the VMs used for the exper-
iments. The goal of this discussion is to provide an intuition of the perfor-
mance characteristics of the individual VMs before discussing the impact of
the modifications for the OMOP. This evaluation uses the kernel benchmarks
described in Appendix B.1.2. As discussed in Sec. 8.2, every benchmark is ex-
ecuted 100 times for each of the VMs. All benchmarks have been executed
with identical parameters.
17http://www.squeaksource.com/SMark.html
18http://github.com/smarr/ReBench

209

http://www.squeaksource.com/SMark.html
http://github.com/smarr/ReBench

8. Evaluation: Performance

General Performance Ratios The beanplot in Fig. 8.1 is a visualization of
the distribution of the kernel benchmark results for three RoarVM variants,
as well as the results for the CogVM.

Note that Fig. 8.1 uses an unconventional approach to represent overall per-
formance of the VMs. The presented data have not been aggregated to pro-
duce the plot. Instead, it is an overview of all measurements, which Fig. 8.2
presents in more detail. The goal of this plot is to combine all measurements
and present them so as to compare performance effects of different VMs
within a single representation.

The experiment uses eight kernel benchmarks for the measurements and
the bean plot for the RoarVM (opt) shows these eight benchmarks as eight
distinct accumulations of measurements. Each of the benchmarks has a dis-
tinct average around which the measurements are concentrated. This becomes
visible in this representation as pearls on a necklace. For each of the VMs, the
plot is generated from 800 distinct measurements, which are depicted as dis-
tributions.

Comparing the RoarVM (opt) and the RoarVM (std) shows that there are two
benchmarks that are affected less by the differences in VMs than the other six
benchmarks, i. e., the two pearls at the bottom move barely visible, while the
other six pearls move up and also differ in their distance between each other.
This representation visualizes the impact on the execution of the correspond-
ing benchmarks, but only provides a rough overview without detail.

The only aggregation in this representation is the black average line, which
averages over all measurements for a VM, and provides an additional intu-
ition of the overall performance compared to each other.

Since the overall performance of the CogVM is a magnitude better, results
are closer together and the individual benchmarks become indistinguishable
for the scale chosen for the plot. A plot with a scale from 0 to 500 would
reveal a similar pattern as is visible for the RoarVM variants.

The main insight to be derived from this plot is that the CogVM is signif-
icantly faster than any of the RoarVM variants. Furthermore, the differences
between the RoarVM variants have a different impact on the benchmarks.

Consider all benchmarks separately as depicted in Fig. 8.2, the CogVM is on
average 11.0x19 faster than the RoarVM (opt).20 Depending on the benchmark,
the difference is between 7.1x and 14.4x. These performance variations for the
different benchmarks are a result of their specific characteristics and their

19The reported averages in this chapter consistently refer to the geometric mean.
20A speedup or slowdown reported as nx refers to the ratio VM1/VMbaseline. In this case it is:

CogVM/RoarVM (opt).

210

8.3. Baseline Assessment

0

500

1000

1500

2000

2500

3000

3500

R
oa

rV
M

(o
p
t)

R
oa

rV
M

(s
td

)

R
oa

rV
M

(G
C
C

4.
2)

C
og

V
M

R
u
n
ti
m

e
(i
n

m
s)

,
lo

w
er

is
b
et

te
r

Figure 8.1.: Baseline Performance: Runtime measures of all kernel benchmarks for
the different VMs. The beanplot (cf. Sec. 8.2) shows the direct, unaggregated
distribution of the measured data points. The black horizontal line for each VM
is the average over all data points for the VM. The pearls correspond to the
different benchmarks, and show the accumulation of multiple measurements.
The plot indicates the relative performance of the different VMs. The CogVM is
on average 11.0x faster than the RoarVM (opt). The RoarVM (opt) is on average
23% faster than RoarVM (std).

211

8. Evaluation: Performance

0.1

0.2

0.5

1.0

B
in

ar
y

T
re

es
C
h
am

en
eo

s
F
an

n
ku

ch
F
as

ta
N

B
o
d
y

C
om

p
ile

r
S
lo

p
st

on
e

S
m

op
st

on
e

R
u
n
ti
m

e
R
at

io
,
n
or

m
al

iz
ed

R
oa

rV
M

(o
p
t)

,
lo

w
er

is
b
et

te
r

RoarVM (opt)

0.1

0.2

0.5

1.0

B
in

ar
y

T
re

es
C
h
am

en
eo

s
F
an

n
ku

ch
F
as

ta
N

B
o
d
y

C
om

p
ile

r
S
lo

p
st

on
e

S
m

op
st

on
e

RoarVM (std)

0.1

0.2

0.5

1.0

B
in

ar
y

T
re

es
C
h
am

en
eo

s
F
an

n
ku

ch
F
as

ta
N

B
o
d
y

C
om

p
ile

r
S
lo

p
st

on
e

S
m

op
st

on
e

CogVM

Figure 8.2.: Baseline Performance: Runtime ratio normalized to the RoarVM (opt) for
the kernel benchmarks. This beanplot gives an overview of the relative perfor-
mance of each of the VMs separately for each benchmark. The plot, as well as
all other plots depicting ratios, uses a logarithmic scale for the y-axis.

different use of primitives, allocation, arithmetic, and stack operations. See
Appendix B.1 for a characterization of the benchmarks.

RoarVM Variants Differences between the RoarVM variants are significant
as well, but less pronounced. The RoarVM (opt) is about 23%21 faster than
the RoarVM (std). Here the performance difference ranges from a minimal
speedup of 6% to a maximum speedup of 43% for the kernel benchmarks. In
view of this significant difference, the RoarVM (opt) is used as baseline for
the remaining benchmarks. As argued in Sec. 8.1.3, the optimizations applied
to the RoarVM are realistic. Therefore, any constant overhead introduced by

21A speedup or slowdown reported as n% refers to VM1/VMbaseline ∗ 100 − 100. In this case
it is: (RoarVM (opt)/RoarVM (std)∗100)− 100

212

8.3. Baseline Assessment

the OMOP is likely to show up more significantly in the RoarVM (opt) with
its improved performance.

Since the Clang 3.0 compiler is used for development and experiments, its
performance is compared to OS X’s standard compiler GCC 4.2. Both compil-
ers were instructed to apply full optimizations using the -O3 compiler switch
(cf. Sec. 8.2).

The results are depicted in Fig. 8.3. This beanplot uses asymmetric beans to
allow an intuitive comparison between the results for Clang and GCC. The
results are normalized with respect to the mean runtime of the RoarVM com-
piled with Clang 3.0. Thus, the black line indicating the mean is directly on
the 1.0 line, i. e., the baseline. The resulting distributions for GCC are depicted
in gray and indicate that the Clang compiler produces a slightly better result.
The RoarVM compiled with GCC is on average 3% slower and the results vary
over the different benchmarks between 1% and 5%. Since this difference is in-
significant compared to the overall performance differences between RoarVM
and CogVM, the evaluation proceeds with the Clang 3.0 compiler.

Another important aspect depicted in Fig. 8.322 is the relatively wide range
of measurement errors. The measurements show outliers up to 10%, even
though, the setup eliminates a range of common causes for nondeterminism
(cf. Sec. 8.2), others such as optimizations in the operating system, and caching
remain and need to be considered as potential measurement bias. For the
given results however, the distribution of measurements is visible in the graph
and indicates that the measured results are statistically significant.

Conclusion The measurements of the baseline performance of the RoarVM
and the CogVM indicate that the CogVM is about 11.0x faster on the kernel
benchmarks than the RoarVM (opt) (min 7.1x, max 14.4x). Consequently, the
CogVM is used as execution platform for the AST-OMOP, so as to provide it
with the best possible execution performance available.

The RoarVM (opt) is about 23% faster on the kernel benchmarks than the
RoarVM (std) (min 6%, max 43%). This evaluation therefore relies on these
optimizations to have an optimal baseline performance in order to assess the
overhead that the changes for the OMOP introduce.

22The beanplot library of R enforced a linear scale for this graph.

213

8. Evaluation: Performance

0.95

1.00

1.05

1.10

B
in

ar
y

T
re

es

C
h
am

en
eo

s

F
an

n
ku

ch

F
as

ta

N
B
o
d
y

C
om

p
ile

r

S
lo

p
st

on
e

S
m

op
st

on
e

R
u
n
ti
m

e
R
at

io
,
n
or

m
al

iz
ed

to
R
oa

rV
M

(C
la

n
g

3.
0)

,
lo

w
er

is
b
et

te
r

RoarVM (Clang 3.0)
RoarVM (GCC 4.2)

Figure 8.3.: Baseline Performance: Comparing RoarVM compiled with Clang 3.0 and
GCC 4.2. All results are normalized to the mean of the measurement for Clang.
The beanplot shows the distribution of measurements and indicates that GCC
4.2 produces a binary that is about 3% slower, which is not significant in view of
the differences measured between the other VMs.

8.4. Ad hoc vs. OMOP Performance

When assessing the practicality of the OMOP compared to ad hoc approaches
for implementing concurrent programming concepts, the main question is
whether an implementation based on the OMOP will be required to accept
performance penalties for using the extra level of abstraction. In short, the
experiments discussed in this section indicate that this is not necessarily the
case and OMOP-based implementations can be on par with ad hoc implemen-
tations.

Setup To compare the performance between OMOP-based and ad hoc im-
plementations, the proposed experiments use the LRSTM and AmbientTalkST
variants of the benchmarks and measure the runtime for the following eight
configurations:

With this setup, on the one hand the performance of ad hoc implementa-
tions can be compared to OMOP-based implementations, and on the other
hand, the efficiency of the AST-transformation-based (AST-OMOP) and the

214

8.4. Ad hoc vs. OMOP Performance

Table 8.1.: Experiments for Evaluation of Ad Hoc vs. OMOP-based Performance

Ad Hoc vs OMOP-based

AmbientTalkST CogVM vs CogVM with AST-OMOP
RoarVM (opt) vs RoarVM+OMOP (opt)

LRSTM CogVM vs CogVM with AST-OMOP
RoarVM (opt) vs RoarVM+OMOP (opt)

VM-based implementation (RoarVM+OMOP) can be compared. Ad hoc im-
plementations are executed on top of the RoarVM (opt) without OMOP sup-
port to reflect the most plausible use case. Since VM-support for the OMOP
introduces an inherent performance overhead (cf. Sec. 8.5.2), it would put the
ad hoc implementations at a disadvantage if they were to execute on top of
RoarVM+OMOP (opt).

The proposed evaluation only measures minimal variation and uses a sim-
ple bar chart with error bars indicating the 0.95% confidence interval. Since
measurement errors are insignificant, the error bars are barely visible and the
resulting Fig. 8.4 is more readable than a beanplot would have been. Fig. 8.4
only shows microbenchmarks. The runtime has been normalized to the mean
of the ad hoc implementation’s runtime measured for a specific benchmark.
The y-axis shows this runtime ratio with a logarithmic scale, and thus, the
ideal result is at the 1.0 line or below, which would indicate a speedup. All
values above 1.0 indicate a slowdown, i. e., the benchmark running on top
of the OMOP-based implementation took more time to complete than the
benchmark on top of the ad hoc implementation.

Results for Microbenchmarks The first conclusion from Fig. 8.4 is that most
LRSTM benchmarks on RoarVM+OMOP show on par or better performance
(gray bars). Only Array Access (STM) (28%), Class Var Binding (STM) (14%),
and InstVar Access (STM) (18%) show slowdowns. This slowdown can be ex-
plained by the general overhead of about 17% for OMOP support in the VM
(cf. Sec. 8.5.2).

The AmbientTalkST benchmarks on the other hand experience slowdowns
throughout. These benchmarks indicate that the differences in how message
sends and primitives are handled in the ad hoc and the RoarVM+OMOP
implementation, have a significant impact on performance.

The results for the AST-OMOP implementation show more significant slow-
downs. The main reason for slowdown is that the implementation has to reify

215

8. Evaluation: Performance

all OMOP operations and does not benefit from an optimization similar to
the customization check that is done by the RoarVM+OMOP implementation
(cf. Sec. 7.2.1 and Sec. 8.5.3). In this case, the ad hoc implementations are more
precisely tailored to the needs of the actor or STM system and do not show
the same overhead.

Results for Kernel Benchmarks The kernel benchmarks depicted in Fig. 8.5
show a very similar result, even though the results are less extreme than for
the microbenchmarks. The VM-based implementation comes very close to
the ideal performance of the ad hoc implementations. The average overhead
is about 28% on the given benchmarks. However, the overhead ranges from as
low as 2% up to a slowdown of 2.6x. The overhead greatly depends on the re-
quirements of AmbientTalkST and LRSTM with respect to which intercession
handlers of the OMOP have to be customized. Considering only the LRSTM
benchmarks, they have an average slowdown of 11% (min 2%, max 17%),
which is lower than the inherent overhead of 17% caused by the VM changes
that add the OMOP (cf. Sec. 8.5.2). Thus, the OMOP provides a suitable uni-
fying substrate that can facilitate efficient implementation of abstractions for
concurrent programming.

However, the AmbientTalkST implementation is about 48% (min 20%, max
2.6x) slower on the RoarVM+OMOP. Sec. 5.5 and Sec. 9.5.3 discuss potential
optimizations that could reduce this overhead for all concurrency concepts
that are similar to actors, Clojure agents, and CSP.

While the RoarVM+OMOP exhibits good performance characteristics com-
pared to the ad hoc implementations, the AST-OMOP performs significantly
worse. While the Fannkuch (AT) benchmark shows 5% speedup, the average
runtime is 2.8x higher than the runtime of corresponding ad hoc implementa-
tions. For the NBody (AT) benchmark it is even 17.4x higher.

Conclusion The experiments show that OMOP-based implementations can
reach performance that is on par with ad hoc implementations. Thus, the
OMOP is a viable platform for the implementation of concurrent program-
ming concepts. The results indicate that a VM-based implementation can lead
to the ideal case of performance neutral behavior while providing a common
abstraction. However, there is currently a sweet spot for abstractions similar
to an STM that customize state accesses.

Furthermore, results show that an AST-transformation-based implementa-
tion can show a significant performance overhead. However, this may be ac-

216

8.4. Ad hoc vs. OMOP Performance

0.32

1.00

3.16

10.00

31.62

100.00

A
rr

ay
A
cc

es
s

C
la

ss
V
ar

B
in

d
in

g

F
lo

at
L
o
op

In
st

an
ce

V
ar

.

In
t

L
o
op

S
en

d
s

L
o
ca

l
S
en

d
s

w
it
h

10
ar

gu
m

en
ts

L
o
ca

l
S
en

d
s

R
em

ot
e

S
en

d
s

R
em

ot
e

S
en

d
s

w
it
h

10
ar

gu
m

en
ts

R
u
n
ti
m

e,
n
or

m
al

iz
ed

to
co

rr
es

p
on

d
in

g
A
d

H
o
c

im
p
le

m
en

ta
ti
on

,
lo

w
er

is
b
et

te
r

AST-OMOP on CogVM

RoarVM+OMOP (opt)

AmbientTalkST

0.32

1.00

3.16

10.00

31.62

100.00

A
rr

ay
A
cc

es
s

C
la

ss
V
ar

B
in

d
in

g

F
lo

at
L
o
op

In
st

an
ce

V
ar

.

In
t

L
o
op

S
en

d
s

S
en

d
s

w
it
h

10
ar

gu
m

en
ts

AST-OMOP on CogVM

RoarVM+OMOP (opt)

LRSTM

Figure 8.4.: Ad hoc vs. OMOP Microbenchmarks: Runtime normalized to Ad hoc
implementations, logarithmic scale. The AST-OMOP implementation on top of
the CogVM shows significant slowdowns especially for the AmbientTalkST mi-
crobenchmarks because more operations are reified. However, some benchmarks
show speedups. The overhead for the VM-based implementation is generally
lower and outperforms the ad hoc implementation of the STM on a number of
benchmarks.

217

8. Evaluation: Performance

1.00

3.16

10.00

31.62

B
in

ar
y

T
re

es

F
an

n
ku

ch

F
as

ta

N
B
o
d
y

R
u
n
ti
m

e,
n
or

m
al

iz
ed

to
co

rr
es

p
on

d
in

g
A
d

H
o
c

im
p
le

m
en

ta
ti
on

,
lo

w
er

is
b
et

te
r

AST-OMOP on CogVM

RoarVM+OMOP (opt)

AmbientTalkST

1.00

3.16

10.00

31.62

B
in

ar
y

T
re

es

F
an

n
ku

ch

F
as

ta

N
B
o
d
y

AST-OMOP on CogVM

RoarVM+OMOP (opt)

LRSTM

Figure 8.5.: Ad hoc vs. OMOP Kernel Benchmarks, logarithmic scale: For the ker-
nel benchmarks, RoarVM+OMOP (opt) implementations show an average slow-
down of 28% (min 2%, max 2.6x), which is close to the 17% general overhead
for VM support. AST-OMOP on CogVM shows a significantly higher slowdown
of 2.8x compared to ad hoc implementations. The RoarVM+OMOP (opt) imple-
mentation comes close to the ideal performance of the ad hoc implementations
while providing a unifying abstraction. This shows that the OMOP can deliver
on par performance when implemented efficiently.

218

8.5. Assessment of Performance Characteristics

ceptable in situations where the OMOP significantly simplifies the implemen-
tation of concurrent programming concepts or a VM-based solution is not yet
available.

8.5. Assessment of Performance Characteristics

In order to understand the performance characteristics of the OMOP imple-
mentations, different aspects of the changed execution model need to be eval-
uated. Thus, the overhead of executing a program in the context of the OMOP
is evaluated by measuring the cost of reifying operations, i. e., executing them
reflectively. Furthermore, the experiments measure the inherent overhead that
is introduced by the chosen implementation approach for the OMOP. Finally,
the performance impact of the customization constant (cf. Sec. 8.5.3) for the
RoarVM+OMOP is measured to determine the cost and benefit of this opti-
mization.

8.5.1. OMOP Enforcement Overhead

Context and Rationale In the worst case customizing language behavior by
using a MOP has the overhead of performing operations reflectively instead
of directly. The OMOP in combination with Smalltalk represents this worst
case, because the available metaprogramming facilities require that interces-
sion handlers use reflective operations, which have an inherent overhead.

The evaluation needs to determine in which order of magnitude the over-
head for these reflective operation lies to assess the practicality. Knowledge
of this overhead can guide the implementation of concurrent programming
concepts on top of the OMOP and helps explaining their performance.

Setup To measure the enforcement overhead, the kernel benchmarks are
executed unchanged with enforcement enabled. The code executes within
the standard Domain (cf. Fig. 5.1). Thus, the intercession handler only im-
plements standard semantics of the operation they represent. For example,
#requestExecOf:on:with:lkup: merely invokes the requested method reflec-
tively, and #readField:of: as well as #write:toField:of: perform the cor-
responding read or write on the object field.

The overhead that is measured by this benchmark is the minimal overhead
for a fully customized domain. Domains that customize only subsets of the
intercession handler might have lower overhead, especially if the OMOP im-
plementation checks the customization constant (cf. Sec. 7.2.1).

219

8. Evaluation: Performance

1.00

3.16

10.00

31.62

100.00

316.23

1000.00

3162.28

B
in

ar
y

T
re

es

F
an

n
ku

ch

F
as

ta

N
B
o
d
y

S
lo

p
st

on
e

R
u
n
ti
m

e,
n
or

m
al

iz
ed

to
u
n
en

fo
rc

ed
ex

ec
u
ti
on

lo
w
er

is
b
et

te
r

AST-OMOP on CogVM

RoarVM+OMOP (opt)

Figure 8.6.: Enforcement Overhead, logarithmic scale: Comparing unenforced exe-
cution of kernel benchmarks with enforced execution on RoarVM+OMOP (opt)
and CogVM with AST-OMOP. The reified operations implement the standard
semantics and on the RoarVM+OMOP (opt) lead to an average overhead of 3.4x
(min 1.9x, max 5.4x). On the CogVM with the AST-OMOP, this overhead is on
average 254.4x (min 42.1x, max 5346.0x).

Results Fig. 8.6 depicts the measured results. The performance overhead for
enforced execution on CogVM with the AST-OMOP is very high. It reaches a
slowdown of up to several thousand times (max 5346.0x). The minimal mea-
sured overhead on the given benchmarks is 42.1x while the average overhead
is about 254.4x. For the RoarVM+OMOP (opt) the numbers are significantly
better. The average overhead is 3.4x (min 1.9x, max 5.4x).

220

8.5. Assessment of Performance Characteristics

The high overhead on the CogVM can be explained by the differences in
implementations. On the one hand, the AST transformation adds a significant
number of bytecodes to each method that need to be executed, and on the
other hand, the reflective operations preclude some of the optimizations of
the CogVM. For instance the basic benefit of the JIT compiler to compiling
bytecodes for field access to inline machine code cannot be realized, since
these operations have to go through the domain object’s intercession handler.
Other optimizations, such as polymorphic inline caches [Hölzle et al., 1991]
cannot yield any benefit either, because method invocations are performed
reflectively inside the intercession handler, where polymorphic inline caches
are not applied.

In the RoarVM+OMOP the overhead is comparatively lower, because it only
performs a number of additional checks and then executes the actual reflec-
tive code (cf. Sec. 7.2.1). Thus, initial performance loss is significantly lower.

Speculating on how the CogVM could benefit from similar adaptations,
there are indications that the JIT compiler could be adapted to deliver im-
proved performance for code that uses the OMOP. However, because of the
restricted generalizability of these results, it is not clear whether the CogVM
could reach efficiency to the same degree as the RoarVM+OMOP implemen-
tation. However, this question is out of the scope of this dissertation and will
be part of future work (cf. Sec. 9.5.2).

8.5.2. Inherent Overhead

Context and Rationale Sec. 7.2.1 outlined the implementation strategy for
the RoarVM+OMOP. One performance relevant aspect of it is the modifica-
tion of bytecodes and primitives to perform additional checks. If the check
finds that execution is performed in enforced mode, the VM triggers the in-
tercession handlers of the OMOP. However, since these checks are on the per-
formance critical execution path, they prompted the question of how much
they impact overall performance. This section assesses the inherent overhead
on unenforced execution for both OMOP implementation strategies.

AST-OMOP The AST-OMOP has only an overhead in terms of memory us-
age but does not have a direct impact on execution performance. The memory
overhead comes from the need of keeping methods for both execution modes,
the enforced as well as the unenforced, in the image (cf. Sec. 7.1.1). Further-
more, since in most classes the AST-OMOP represents the owner of an object
as an extra object field, there is also a per-object memory overhead. The per-

221

8. Evaluation: Performance

1.0

1.1

1.2

1.3

1.4

B
in

ar
y

T
re

es

C
h
am

en
eo

s

F
an

n
ku

ch

F
as

ta

N
B
o
d
y

C
om

p
ile

r

S
lo

p
st

on
e

S
m

op
st

on
e

R
u
n
ti
m

e
R
at

io
,
n
or

m
al

iz
ed

to
R
oa

rV
M

(o
p
t)

lo
w
er

is
b
et

te
r

RoarVM+OMOP (opt)
RoarVM (opt)

Figure 8.7.: Inherent Overhead: Comparing RoarVM (opt) with RoarVM+OMOP
(opt) to assess the inherent overhead of OMOP support on the execution per-
formance. The benchmarks do not utilize the OMOP, and thus, they expose that
changes to the interpreter cause an average overhead of 17% on interpretation.

formance impact of the memory overhead has not been measured, but it is
likely that the overhead significantly depends on average object size, and has
an impact on GC times.

RoarVM+OMOP For the RoarVM implementation of the OMOP, the situa-
tion is different. While it also suffers from memory overhead per object for
the additional object header that represents the owner (cf. Sec. 7.2.1), it also in-
troduces changes that have a direct effect on the execution performance. The
code path for unenforced execution through the interpreter now contains ad-
ditional checks, which have an inherent impact on overall performance, also
for unenforced execution.

Fig. 8.723 shows that the overhead ranges from minimal 7% up to 31%. The
average runtime overhead of the OMOP support is about 17%. The overhead
is explained by the additional code on the fast path of the code. All bytecodes
that perform operations relevant for the OMOP apply an additional test to the
interpreter object which checks whether execution is performed with enforce-

23The beanplot library of R forced a linear scale for this graph.

222

8.5. Assessment of Performance Characteristics

ment of the OMOP enabled. Only if that is the case, are additional checks and
a potential invocation of the corresponding intercession handler performed.
Thus, for the given benchmarks, the overhead consists of the additional check
and the consequence of the additional code, which may cause cache misses.

8.5.3. Customization Constant Assessment

Context and Rationale As discussed in Sec. 7.2.1, the RoarVM+OMOP uses
an optimization to avoid invoking a domain’s intercession handler when it
has not been customized. Originally, the optimization was added to ease
debugging and reduce noise introduced by executing standard intercession
handlers, which only implement standard language semantics. However, this
optimization is not without drawbacks because it introduces a number of
memory accesses and tests for all bytecodes that require modifications for
the OMOP. The code that runs unenforced most likely incurs only a minor
performance penalty. However, the effect on enforced execution is likely to
be more pronounced. Specifically, code that runs in the context of domains
that customize a majority of the intercession handlers is likely to experience
overhead caused by additional checks. On the other hand, this optimization
should yield performance benefits for code that runs in the context of do-
mains that customize only a limited subset of the intercession handlers.

In order to assess the performance impact, a variant of RoarVM+OMOP
(opt) is used that performs no additional tests but invokes the intercession
handlers unconditionally. This variant with full intercession activation is re-
ferred to as RoarVM+OMOP (full).

Overhead during Unenforced Execution Fig. 8.824 depicts the results mea-
sured for the kernel benchmarks for unenforced execution. Results vary from
small performance benefits of ca. 3% to slowdowns of up to 4%. The average
slowdown is 1%. Changes in performance are solely caused by the existence
of additional code in the bytecode’s implementation. Since the experiment
used unenforced execution, this additional code was not executed. In conclu-
sion, all measured effects are either caused by increased code size, triggering
certain compiler heuristics, or other similar effects. Since the results are mixed
and on average only show a difference of 1%, the overall effect on unenforced
execution is negligible.

24The beanplot library of R forced a linear scale for this graph.

223

8. Evaluation: Performance

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

B
in

ar
y

T
re

es

C
h
am

en
eo

s

F
an

n
ku

ch

F
as

ta

N
B
o
d
y

C
om

p
ile

r

S
lo

p
st

on
e

S
m

op
st

on
e

R
u
n
ti
m

e
R
at

io
,
n
or

m
al

iz
ed

to
R
oa

rV
M

+
O

M
O

P
(f

u
ll)

,
lo

w
er

is
b
et

te
r RoarVM+OMOP (full)

RoarVM+OMOP (opt)

Figure 8.8.: Customization Constant, Unenforced Execution: Comparing
RoarVM+OMOP (opt) with RoarVM+OMOP (full) to assess the inherent
overhead of customization constant changes. The benchmarks do not utilize
the OMOP, and thus, they expose that this check leads to an average runtime
overhead of 1%. Since the impact is varying for the benchmarks and in some
cases even reduces the runtime, the overall conclusion is that changes that
introduce the check of the customization constant have a negligible impact on
unenforced execution.

Overhead during Enforced Execution Fig. 8.925 shows the results for the
enforced execution of the kernel benchmarks. Here the overhead comes from
the additional check, which only confirms that all intercession handlers have
to be used. The slowdown ranges from 2% to 4%, and average slowdown is
3%. Thus, there is a measurable, but minor overhead.

Speedup for AmbientTalkST and LRSTM Finally, the performance gains of
using the customization constant for the AmbientTalkST and LRSTM bench-
marks are measured. AmbientTalkST customizes all intercession handlers and
should therefore show no gain or a minimal overhead for using the customiza-
tion constant. LRSTM on the other hand only customizes state access while
message sends are not customized. Consequently, it is expected to benefit
significantly from avoiding overhead on every message send.

25The beanplot library of R forced a linear scale for this graph.

224

8.5. Assessment of Performance Characteristics

0.96

0.98

1.00

1.02

1.04

1.06

1.08

B
in

ar
y

T
re

es

F
an

n
ku

ch

F
as

ta

N
B
o
d
y

S
lo

p
st

on
e

R
u
n
ti
m

e
R
at

io
,
n
or

m
al

iz
ed

to
R
oa

rV
M

+
O

M
O

P
(f

u
ll)

,
lo

w
er

is
b
et

te
r RoarVM+OMOP (full)

RoarVM+OMOP (opt)

Figure 8.9.: Customization Constant, Enforced Execution: Comparing
RoarVM+OMOP (opt) with RoarVM+OMOP (full) to assess the inherent
overhead of checking the customization constant during fully enforced execu-
tion. The benchmarks utilize the OMOP but all intercession handlers implement
standard semantics. The results show that the additional check leads to an
average runtime overhead of 3%.

Fig. 8.10 depicts the results in the form of beanplots. The microbenchmarks
show a significant benefit of avoiding reification for uncustomized interces-
sion handlers. Especially the microbenchmarks for message sends for LRSTM
show the benefit. Since the LRSTM system does not require message sends to
be customized, they are between 2x and 2.5x faster, depending on the number
of arguments.

The kernel benchmarks on the other hand show more realistically what
the benefit of this optimization could be for application code. The average
measured gain is 5%. For the Fannkuch benchmark on AmbientTalkST, the
overhead of the additional check is higher and performance is not improved,
because all intercession handlers have to be triggered. Thus, this benchmark
shows a slowdown of 2%. The average 5% gain for the given benchmarks and
concurrency models is rather modest. For other concurrency models, such
as Clojure actors, higher benefits can be expected, because for instance the
reading of object fields does not need to be reified.

225

8. Evaluation: Performance

0.4

0.6

0.8

1.0

1.2

A
rr

ay
A
cc

es
s

C
la

ss
V
ar

B
in

d
in

g

F
lo

at
L
o
op

In
st

an
ce

V
ar

.

In
t

L
o
op

S
en

d
s

L
o
ca

l
S
en

d
s

w
it
h

10
ar

gu
m

en
ts

L
o
ca

l
S
en

d
s

R
em

ot
e

S
en

d
s

R
em

ot
e

S
en

d
s

w
it
h

10
ar

gu
m

en
ts

R
u
n
ti
m

e,
n
or

m
al

iz
ed

to
m

ea
n

of
R
oa

rV
M

+
O

M
O

P
(f

u
ll)

,
lo

w
er

is
b
et

te
r AmbientTalkST

0.4

0.6

0.8

1.0

1.2

A
rr

ay
A
cc

es
s

C
la

ss
V
ar

B
in

d
in

g

F
lo

at
L
o
op

In
st

an
ce

V
ar

.

In
t

L
o
op

S
en

d
s

S
en

d
s

w
it
h

10
ar

gu
m

en
ts

LRSTM

0.8

0.9

1.0

1.1

B
in

ar
y

T
re

es

F
an

n
ku

ch

F
as

ta

N
B
o
d
y

R
u
n
ti
m

e,
n
or

m
al

iz
ed

to
m

ea
n

of
R
oa

rV
M

+
O

M
O

P
(f

u
ll)

,
lo

w
er

is
b
et

te
r AmbientTalkST

0.8

0.9

1.0

1.1

B
in

ar
y

T
re

es

F
an

n
ku

ch

F
as

ta

N
B
o
d
y

LRSTM

Figure 8.10.: Customization Constant, AmbientTalkST and LRSTM, logarithmic
scale: Comparing RoarVM+OMOP (opt) with RoarVM+OMOP (full) on Ambi-
entTalkST and LRSTM benchmarks. The microbenchmarks show the reduced
runtime when checking the customization constant avoided reifying an uncus-
tomized operation. However, they also show the overhead of the added check of
the constant. The kernel benchmarks show an overall benefit from this optimiza-
tion of about 5%. The AmbientTalkST Fannkuch benchmark ends up 2% slower
because it does not benefit from the optimization but is exposed to the overhead
of the additional check.

226

8.6. Absolute Performance

To conclude, direct performance gains depend to a large extent on the ap-
plication and the concurrency model implemented on top of the OMOP. Thus,
the modest overall performance gain might not justify the inherent overhead
for other applications. However, the original motivation was to improve the
debugging experience during the VM implementation by avoiding unneces-
sary reification. For this purpose, this optimization still provides the desired
benefits so that debugging can focus on the relevant reified operations.

8.6. Absolute Performance

The final question for this performance evaluation is about which of the im-
plementation strategies yields better performance in practice. Sec. 8.4 showed
that direct VM-support brings the OMOP-based implementation of LRSTM
on par with its ad hoc implementation on top of the RoarVM. However,
Sec. 8.3 showed that the CogVM is about 11.0x faster than the RoarVM (opt),
but the AST-transformation-based implementation (AST-OMOP) brings a per-
formance penalty of 254.4x for enforced execution, which translates to a slow-
down of 2.8x compared to the ad hoc implementations. This experiment com-
pares the absolute performance of the benchmarks running on top of the
CogVM and the AST-OMOP implementation with their performance on top
of the RoarVM+OMOP (opt).

Fig. 8.11 shows the results of the AmbientTalkST and LRSTM being ex-
ecuted with identical parameters on CogVM with AST-OMOP and on the
RoarVM+OMOP (opt). The benchmark results have been normalized to the
mean of the corresponding result for the RoarVM+OMOP (opt). To improve
the plot’s readability, only the results for the CogVM are depicted.

They show that six of the microbenchmarks and one of the kernel bench-
marks achieve higher absolute performance on the RoarVM+OMOP (opt).
However, the majority maintains its higher absolute performance on top of
the CogVM. For the kernel benchmarks, the benchmarks require on average a
5.7x higher runtime on the RoarVM+OMOP (opt). The AmbientTalkST NBody
benchmark is about 21% slower, while the AmbientTalkST Fannkuch bench-
mark is about 14.3x faster.

To conclude, the AST-transformation-based implementation is currently the
faster implementation because it can benefit from the overall higher perfor-
mance of the CogVM. The results for RoarVM+OMOP (opt) are not optimal
but an integration into the CogVM or other VMs with JIT compilation might
result in better overall performance. This assumption is further supported by

227

8. Evaluation: Performance

0.05

0.10

0.20

0.50

1.00

2.00

A
rr

ay
A
cc

es
s

C
la

ss
V
ar

B
in

d
in

g

F
lo

at
L
o
op

In
st

an
ce

V
ar

.

In
t

L
o
op

S
en

d
s

L
o
ca

l
S
en

d
s

w
it
h

10
ar

gu
m

en
ts

L
o
ca

l
S
en

d
s

R
em

ot
e

S
en

d
s

R
em

ot
e

S
en

d
s

w
it
h

10
ar

gu
m

en
ts

R
u
n
ti
m

e,
n
or

m
al

iz
ed

to
m

ea
n

of
R
oa

rV
M

+
O

M
O

P
(o

p
t)

,
lo

w
er

is
b
et

te
r AmbientTalkST

0.05

0.10

0.20

0.50

1.00

2.00

A
rr

ay
A
cc

es
s

C
la

ss
V
ar

B
in

d
in

g

F
lo

at
L
o
op

In
st

an
ce

V
ar

.

In
t

L
o
op

S
en

d
s

S
en

d
s

w
it
h

10
ar

gu
m

en
ts

LRSTM

0.05

0.10

0.20

0.50

1.00

B
in

ar
y

T
re

es

F
an

n
ku

ch

F
as

ta

N
B
o
d
y

R
u
n
ti
m

e,
n
or

m
al

iz
ed

to
m

ea
n

of
R
oa

rV
M

+
O

M
O

P
(o

p
t)

,
lo

w
er

is
b
et

te
r

AmbientTalkST

0.05

0.10

0.20

0.50

1.00

B
in

ar
y

T
re

es

F
an

n
ku

ch

F
as

ta

N
B
o
d
y

LRSTM

Figure 8.11.: Absolute Performance, CogVM and AST-OMOP vs. RoarVM+OMOP
(opt), logarithmic scale: Although, the CogVM is 11.0x faster than the RoarVM
(opt), the microbenchmarks indicate a significantly smaller difference. While
most of them remain faster, the Int and Float Loop benchmarks show signifi-
cant slowdowns. They are up to 2x slower on the CogVM with AST-OMOP than
on the RoarVM+OMOP (opt). The kernel benchmarks maintain their higher ab-
solute performance on CogVM with AST-OMOP and execute 5.7x faster than
on the RoarVM+OMOP (opt). The AmbientTalkST NBody benchmarks shows a
minor slowdown of 21%. The AmbientTalkST Fannkuch benchmark on the other
hand is about 14.3x faster.

228

8.7. Discussion and Threats to Validity

the observation that some of the microbenchmarks on the RoarVM+OMOP
(opt) have higher absolute performance, which enforces the importance of
VM level support.

8.7. Discussion and Threats to Validity

Threats to Validity Sec. 8.2 outlines approach to reduce structural bias as
reported by Georges et al. [2007]. Thus, the experiments are set up to avoid
sources of measurement errors and nondeterminism. However, today’s com-
puter systems have such a high complexity that measurement bias is a severe
problem that cannot completely be excluded [Hennessy and Patterson, 2007;
Mytkowicz et al., 2009]. However, while the chosen setup does not account
for measurement variations caused by changes in order and size of the bi-
naries, the used benchmark tools ensure that the environment, in which the
benchmarks are executed, stays as constant as possible. This is achieved for
instance by reducing influence from the operating system by increasing the
process priority to the maximum. Thus, it is very probably that the measured
performance differences between the VMs can be attributed to a significant
degree to the changes in the VMs.

In order to ensure that the measured results are statistically significant,
every benchmark executes 100 times. While no formal tests for statistic signif-
icance were applied, visual inspection of the results in form of beanplots and
bar charts with error indications are sufficient to determine the significance
of the results.

Furthermore, averages use the geometric mean to avoid bias in the reported
results [Fleming and Wallace, 1986].

Thus, the confidence in the correctness of the reported results in this chap-
ter is high. However, the chosen microbenchmarks and kernel benchmarks
preclude generalization of the results to actual applications [Blackburn et al.,
2006; Vitek and Kalibera, 2011]. The common point of view is that only an ap-
plication itself can be used to obtain a reliable performance assessment. Thus,
the results are merely an indication. They points out tendencies in the per-
formance effects that result form the compared implementation approaches.
However, the concrete numbers are unlikely to hold for any given concrete
application.

Finally, the choice of using the RoarVM as experimentation platform for
the implementation of VM support also restricts the generalizability of the
benefits of this approach. Since the general overhead of interpretation could

229

8. Evaluation: Performance

hide inherent overhead of the OMOP implementation, the results cannot be
generalize beyond interpreters with similar execution mechanisms. Thus, the
indicated performance benefits will most likely transfer to other bytecode
interpreters, but cannot be used to predict the performance of VMs that use
JIT compilation such as HotSpot,26 or the CogVM.

Discussion The thesis statement, i. e., whether the OMOP “lends itself to an

efficient implementation”, needs to be evaluated with these restrictions in mind.
The main criterion for assessing this part of the thesis statement is the ques-
tion of whether OMOP-based implementations of concurrent programming
concepts can have on par performance with ad hoc implementations that use
other implementation strategies.

Thus, the main question is whether the results of Sec. 8.4 provide suffi-
ciently reliable indications to support the claim that OMOP-based implemen-
tations can be on par with ad hoc implementations.

Measured Overhead AmbientTalkST and LRSTM are on average 28% slower
than their ad hoc implementations. However, performance ranges from an
overhead as low as 2% up to 2.6x on the kernel benchmarks. If only the
results for LRSTM are considered, the average slowdown is 11%. Thus, the
OMOP-based implementation is very close to the performance of the ad hoc
implementation.

Overhead in Perspective To put these 11% into perspective, Mytkowicz et al.
[2009] report on their experience with measuring the benefit of compiler op-
timizations and they find that simple changes such as link order or changes
in environment size of their shell can cause variations that are as high as
30%. Furthermore, modern operating systems typically execute multiple ap-
plications at the same time, which can lead for instance to memory pressure
and paging that has a significant negative effect on the application’s perfor-
mance [Silberschatz et al., 2002]. Thus, these 11% or even 28% slowdown are
undesirable but might not have a significant consequence in practice, espe-
cially when the overall comparatively low performance of the interpreter is
considered.

Potential Optimizations to Reduce Overhead Sec. 8.5.2 measured for the
RoarVM+OMOP (opt) an inherent overhead of 17% (min 7%, max 31%). As-

26http://openjdk.java.net/groups/hotspot/

230

http://openjdk.java.net/groups/hotspot/

8.7. Discussion and Threats to Validity

suming that the implementation of RoarVM+OMOP could be optimized to
reduce this inherent overhead, it seems possible to achieve on par or better
performance.

Sec. 9.5.7 discusses the possibility to use an alternative bytecode set for en-
forced execution. The interpreter would execute different bytecode routines
based on whether it is executing in enforced or unenforced mode. Such an
optimization has the potential to avoid the overhead of the additional checks
at the cost of duplicating code in the interpreter. Assuming that the measured
17% overhead is solely attributed to the additional checks, such an optimiza-
tion could improve performance in the best case to the point that the average
slowdown would come down from about 28% to 11%. However, since ex-
periments are not yet performed, the performance impact of these changes
remains speculation.

Sec. 9.5.3 discusses another possible optimization. In order to avoid the
need to check for accesses to object fields, the operating systems’s memory
protection support could be used [Silberschatz et al., 2002]. Thus, instead of
performing active checks, the operating system could utilize the processor’s
hardware support for memory protection and trigger a software interrupt that
can be handled if an actual memory access happens. However, while such an
optimization avoids active checks, it is only applicable to memory accesses.

Performance Sweet Spot Overall, it remains to be noted that abstractions
and optimizations typically have a certain performance sweet spot. To give just
a single example, Self used maps, i. e., hidden classes to optimize performance,
because in practice, the prototype-based object system was used preferably
in a way that facilitated this particular optimization [Chambers et al., 1989].
However, when an application uses the object system in a different way, it
will not benefit from this optimization. The situation is similar with other
optimizations. Typically, certain usage patterns are preferred to gain optimal
performance.

The performance evaluation of this dissertation shows that LRSTM uses the
OMOP in a way that it has merely an overhead of 11%, while the overhead
for AmbientTalkST is higher. The main difference between the two imple-
mentations is that LRSTM customizes the state access policies, which is an
indication that concurrent programming concepts that rely on such policies
could exhibit similar performance characteristics.

231

8. Evaluation: Performance

Conclusion To conclude, the average measured overhead of 28% for the ker-
nel benchmarks for AmbientTalkST and LRSTM are undesirable. However,
the 11% overhead measured for the LRSTM is a positive indication that the
OMOP allows efficient implementation. Arguably, with merely 11% overhead,
the OMOP-based implementation of LRSTM is on par with the ad hoc imple-
mentation. Furthermore, these results are based on a first RoarVM+OMOP
implementation that does not include any extensive optimizations.

However, these 11% overhead are no prediction for actual application per-
formance. Thus, only a performance evaluation with a concrete application
can determine whether this slowdown is acceptable.

8.8. Conclusions

This chapter compared the performance of the two proposed implementation
approaches for the OMOP. Furthermore, it analyzed how the OMOP-based
implementations of AmbientTalkST and LRSTM compare to the correspond-
ing ad hoc implementations.

CogVM can be 11.0x faster than RoarVM (opt). The experiments started
by measuring the relative performance between CogVM and the RoarVM
variants. Measurements indicate that the CogVM is about 11.0x faster (min
7.1x, max 14.4x) than the RoarVM (opt) on the kernel benchmarks. Therefore,
it is used for assessing the performance of the AST-OMOP on top of a VM
with JIT compiler, which gives it the best possible performance.

Measurements indicate that OMOP-based implementations can have on

par performance with ad hoc implementations. The comparison of the
ad hoc implementations with the OMOP-based implementations of Ambi-
entTalkST and LRSTM used the CogVM with AST-OMOP as well as the
RoarVM+OMOP (opt). While kernel benchmarks on top of the AST-OMOP
show an average slowdown of 2.8x, the results for the RoarVM+OMOP (opt)
are significantly better. VM support for the OMOP results in an average over-
head of 28% (max 2.6x) over the ad hoc implementation. However, some
benchmarks show overhead as low as 2%, being on par with the ad hoc
implementations. Furthermore, the current implementation has an inherent
performance overhead of 17% (min 7%, max 31%), which is part of these per-
formance numbers.

232

8.8. Conclusions

Important to note is that LRSTM shows only an average slowdown of 11%,
which is lower than the inherent overhead introduced by RoarVM+OMOP
(opt). This seems to indicate that there is a performance sweet spot for ap-
proaches that use the OMOP in a way similar to LRSTM. Thus, there are
confirmations for the claim that OMOP-based implementations can have on
par performance with ad hoc implementations, even though it might be re-
stricted to certain types of approaches. An important prerequisite for good
overall performance however, is that the inherent overhead of the OMOP im-
plementation can be reduced.

The overhead of the AST-OMOP on the CogVM is two magnitudes higher

than the overhead on the RoarVM+OMOP. The comparison of the enforce-
ment overhead of the two OMOP implementations shows that full enforce-
ment on the CogVM with AST-OMOP causes an average overhead of 254.4x
(min 42.1x, max 5346.0x) on the kernel benchmarks, while the overhead on
the RoarVM+OMOP (opt) is significantly lower with 3.4x (min 1.9x, max
5.4x). However different factors, such as the initially lower performance of the
RoarVM, have a significant impact on these results. Furthermore, the CogVM
uses a comparably simple JIT compiler. Thus, more advanced VMs such as
HotSpot that include techniques such as invokedynamic and related infras-
tructure [Thalinger and Rose, 2010] might yield significantly different results.

However, the extreme difference in relative performance indicates that VM
support in a JIT compiled system such as the CogVM can yield significant
performance improvements, bringing the resulting performance for OMOP-
based implementations of LRSTM and AmbientTalkST closer to their ad hoc
implementations.

The RoarVM+OMOP implementation comes with performance tradeoffs.

The VM support built into the RoarVM+OMOP (opt) has a number of draw-
backs. First, it has an inherent overhead of about 17% (min 7%, max 31%)
on the kernel benchmarks because it requires an additional test on the fast-
path of most bytecodes, which leads to a slowdown, also for the unenforced
execution. The use of a customization constant to avoid unnecessary invoca-
tion of intercession handlers also comes with a number of tradeoffs. In cases
where all intercession handlers need to be triggered, the additional check in-
troduces 3% overhead (min 2%, max 4%) on the kernel benchmarks. On the
mixed AmbientTalkST and LRSTM benchmarks it shows however that it can

233

8. Evaluation: Performance

improve performance. The average measured speedup is 5% for the kernel
benchmarks.

The absolute performance of the AST-OMOP on CogVM is currently higher

than the performance of the RoarVM+OMOP. Finally, assessing the ab-
solute performance of the implementations, the higher performance of the
CogVM leads to an absolute performance for the AST-OMOP that is about
5.7x better on the kernel benchmarks than the current RoarVM+OMOP (opt)
implementation. Thus, when experimenting with the versatility of the pro-
posed abstraction, the CogVM in combination with the AST-OMOP is a good
option. For on par performance with ad hoc implementations, VM support
remains indispensable however.

Overall Conclusions The goal of this chapter is to evaluate whether the
OMOP “lends itself to an efficient implementation”. The main criterion for assess-
ing this part of the thesis statement is the question of whether OMOP-based
implementations of concurrent programming concepts can have on par perfor-
mance with ad hoc implementations that use other implementation strategies.

As argued in this section, results indicate that OMOP-based implementa-
tions can indeed be on par with ad hoc implementations. The measured over-
head on the interpreter-based VM is on average 28%. While the overhead is
as high as a 2.6x slowdown, it can also be as low as 2%. Specifically for the
LRSTM implementation, the measured overhead is merely 11%, which points
to a performance sweet spot of the RoarVM+OMOP implementation.

Thus, there are concurrent programming abstractions, which can be imple-
mented efficiently on top of an OMOP for interpreters. Currently, the experi-
ments indicate that the performance sweet spot includes LRSTM-like usages
of the OMOP that customize state access policies.

However, there are a number of potential optimizations to that could im-
prove the current performance (cf. Sec. 5.5, Sec. 9.5.2, Sec. 9.5.3, Sec. 9.5.7). In
case these optimizations prove to be successful, a wide range of concurrent
programming concepts can benefit from them on top of the OMOP. The bene-
fit of a unifying substrate in such a situation becomes relevant, because opti-
mizations facilitate not only to a single programming concept.

To conclude, there are strong indications that the OMOP lends itself to
an efficient implementation for a certain set of concurrent programming ab-
stractions, for which it can enable performance that is on par with ad hoc
implementations.

234

9
C O N C L U S I O N A N D F U T U R E W O R K

This dissertation presents a novel metaobject protocol that provides pervi-
ously missing abstractions to language and library implementers for building
a wide range of concurrent programming concepts on top of multi-language
virtual machines (VMs) such as Java Virtual Machine (JVM) and Common
Language Infrastructure (CLI).

This chapter reexamines the problem statement, the research goals, and the
thesis statement in the context of the proposed solution, i. e., the ownership-

based metaobject protocol (OMOP). It restates the contributions, discusses the
current limitations of the OMOP, and highlights avenues for future research.

235

9. Conclusion and Future Work

9.1. Problem and Thesis Statement Revisited

This dissertation set out to address the problem of today’s virtual machines
not reconciling the trend for increased hardware parallelism, which is the
result of the multicore revolution, with the trend of using VMs as general
purpose platforms with a wide variety of languages. Today, language and
library implementers struggle to build concurrent programming concepts on
top of multi-language VMs, because these VMs do not provide the necessary
abstractions. Hence, the objective of this dissertation is to find a solution for
the insufficient support for concurrent and parallel programming in VMs.

Since today’s VMs support only a limited range of concurrent and parallel
programming concepts, first needed to be identified the concepts that would
benefit from VM support for improved performance or enforcement of seman-
tics. Initially the problem was that the set of abstractions required from a VM was

unknown.
With these problems in mind, the following thesis statement was formu-

lated:

There exists a relevant and significant subset of concurrent and parallel

programming concepts that can be realized on top of a unifying substrate.

This substrate enables the flexible definition of language semantics, which

build on the identified set of concepts, and this substrate lends itself to an

efficient implementation.

Three concrete research goals were derived from the thesis statement:

Identify a Set of Requirements The first goal of this research was to under-
stand how concurrent and parallel programming are supported in to-
day’s VMs and how the underlying programming concepts relate to
each other. Chapter 3 approached this goal with a survey and concluded
that concepts for parallel programming benefit mainly from support for
optimization in a VM, and that concepts for concurrent programming
require support for their semantics. Since these two concerns are largely
orthogonal, this dissertation chose to focus on concepts for concurrent
programming. Chapter 3 further discussed a number of problems lan-
guage implementers face today and derived a set of requirements for
their support in multi-language VMs.

Define a Unifying Substrate The second research goal was to identify a uni-
fying substrate to support concurrent programming concepts. Based on

236

9.2. Contributions

the identified requirements, this dissertation proposes an ownership-
based metaobject protocol (OMOP) in Chapter 5.

Demonstrate Applicability The third and final research goal was to demon-
strate the applicability of the proposed OMOP. On the one hand, Chap-
ter 6 needed to evaluate the OMOP’s capabilities as a unifying substrate.
Thus, it needed to demonstrate that the OMOP facilitates the implemen-
tation of a wide range of concepts for concurrent programming. On the
other hand, in Chapter 8 it was the goal to show that the OMOP gives
rise to an efficient implementation. Thus, the evaluation needed to show
that by using the OMOP it is possible to implement concepts for con-
current programming in a way that their performance is on par with
conventional implementations.

Two prototypes of the OMOP were implemented to support the thesis
statement and to achieve the research goals. The first implementation uses
AST transformation on top of an unchanged VM. The second implementa-
tion adapts the bytecode semantics of an existing VM. Based on these imple-
mentations, Chapter 6 evaluated the OMOP and Chapter 8 demonstrated its
applicability.

9.2. Contributions

This section recapitulates the main chapters of this dissertation so as to iden-
tify the individual contributions of each of them.

• Chapter 2 discusses the widespread use of VMs as general purpose
platforms and identifies the need for a unifying abstractions to avoid
complex feature interaction in VMs that hinder extensibility and main-
tainability.

Furthermore, it revisits the reasons for the multicore revolution and con-
cludes that software developers need to pursue parallelism to achieve
the performance required for their applications. The vision of this dis-
sertation is that applications are built using the appropriate concurrent
and parallel programming techniques for, e. g., user interface and data
processing.

Moreover, the chapter defines the notions of concurrent programming and
parallel programming to enable a categorization of the corresponding pro-
gramming concepts based on their intent.

237

9. Conclusion and Future Work

• Chapter 3 surveys the state of the art in VMs and determines the re-
quirements for a unifying substrate to support concurrent programming.
The survey shows that today’s VMs relegate support for parallel pro-
gramming to libraries, whereas they do provide support for concurrent
programming at the VM level. The survey of the wide field of concur-
rent and parallel programming resulted in an understanding that par-
allel programming requires VM support mainly for optimized perfor-
mance. Concurrent programming on the other hand requires VM sup-
port to guarantee its semantics. Sec. 3.2.4.1 concludes with a general set
of requirements. Both sets of programming concepts require orthogo-
nal mechanisms from a VM, and this dissertation chooses to focus on
concurrent programming.

With this focus in mind, common problems for the implementation of
concurrent programming concepts on top of today’s VMs are discussed.
Based on the surveys and the identified problems, Chapter 3 concludes
that a multi-language VM needs to support notions of managed state,
managed execution, ownership, and controlled enforcement to provide a uni-
fying abstraction for concurrent programming.

• Chapter 4 motivates the choice of Smalltalk and its different implemen-
tations as the foundation for the experiments. It introduces Smalltalk,
SOM (Simple Object Machine), Squeak, Pharo, and the RoarVM.

• Chapter 5 introduces the ownership-based metaobject protocol (OMOP)
as a unifying substrate for the support of concurrent programming in a
multi-language VM. First, it motivates the choice of a metaobject proto-
col (MOP) by giving an overview of open implementations and MOPs
and their capabilities to enable incremental modifications of language
behavior. Second, it presents the design of the OMOP, details its based
on examples, and describes the semantics based on a bytecode inter-
preter. Finally to emphasize its novelty, it discusses the OMOP in the
context of related work.

• Chapter 6 evaluates the OMOP’s applicability to the implementation of
concurrent programming and it evaluates how the OMOP satisfies the
stated requirements. The case studies demonstrate that Clojure agents,
software transactional memory, and event-loop actors can directly be
mapped onto the OMOP. Furthermore, the evaluation shows that the
OMOP facilitates the implementation of concurrent programming con-
cepts that require VM support for their semantics. Consequently, the

238

9.3. Limitations

OMOP addresses common implementation challenges language imple-
menters face today by providing abstractions for instance to customize
state access and execution policies. Furthermore, the case studies re-
quired less code when implemented on top of the OMOP then when
implemented with ad hoc approaches. Chapter 6 concludes with a dis-
cussion of the current limitations of the OMOP’s design.

• Chapter 7 presents the two proposed implementation strategies for the
OMOP. First, it details an implementation based on AST transformation
on top of standard VMs. Second, it describes a VM-based implementa-
tion that adapts bytecode semantics for the OMOP. In addition to outlin-
ing the implementation, it proposes an optimization that avoids runtime
overhead when parts of the OMOP remain uncustomized.

• Chapter 8 evaluates the performance of the OMOP implementations.
The results that indicate a certain set of OMOP-based implementations
can reach performance on par with ad hoc implementations. While the
AST-transformation-based implementation has significant performance
overhead, the VM-based implementation shows the potential of direct
VM support. The evaluation further details the performance tradeoffs
for instance by evaluating the impact of the proposed optimization.

9.3. Limitations

While the OMOP satisfies its requirements and the evaluation provides sup-
port for the thesis statement, its design has a number of limitations and gives
rise to a number of research questions. This section briefly restates the limita-
tions, which have been discussed in greater detail throughout the dissertation.

The limitations of the current implementation, as discussed in Sec. 7.2.2,
are:

Restricted power of primitives. By reifying the execution of primitives their
execution context is changed compared to when they are applied di-
rectly. Instead of being applied to the caller’s context, they are applied in
a dedicated context. Therefore, they cannot directly change the caller’s
context, and their power is limited. However, this restriction has no prac-
tical consequences: all primitives that were encountered in the RoarVM
operate on the operand stack of the context only.

239

9. Conclusion and Future Work

A solution to the problem could either be to change the primitives to be
aware of the changed situation, or to ensure that the reflective invocation
of primitives is performed with the correct context.

Conceptual limitations, as discussed in Sec. 6.5.2, are:

Deadlock freedom is a guarantee that cannot be given if a language or VM
enables arbitrary and unconstrained use of blocking operations. How-
ever, restricting the use of blocking operations seems impractical in
multi-language VMs where some languages might require blocking se-
mantics.

However, the OMOP provides the ability to customize all primitives,
and thus, enables a domain to manage calls to blocking operations and
adapt them as necessary, which could be used to facilitate the guarantee
of deadlock freedom.

Domain interaction requires explicit handling. A language or library imple-
menter has to anticipate and adapt domain implementations to account
for the semantics of other domains and ensure that interactions have
reasonable semantics.

Currently, there is no mechanism that enables the specification of de-
sired interactions in a general way, since the OMOP only takes the
owner of an object into account for determining which intercession han-
dler implements the desired semantics.

Object-based ownership notion has tradeoffs. The granularity of ownership
per object might preclude relevant designs, especially when it comes to
large arrays or objects that need to be shared. Together with the notion
of having a single owner per object, the OMOP restricts the design space
within which concurrent programming concepts can be expressed.

Limited support for guaranteeing scheduling policies. During the execution
of primitives, complete control is yielded to the underlying platform by
the VM, and thus, its ability to enforce scheduling policies is restricted.
While intercession handlers for primitives enable customization, they
do not provide a full solution.

To gain full control, the language implementer would need to be able to
express policies which are communicated to the underlying platform as
well. This is currently not concidered in the design of the OMOP.

240

9.4. Overall Conclusions

The limitations of the performance evaluation, as discussed in Sec. 8.1.4,
are:

Performance results are not generalizable to applications. The use of mi-
crobenchmarks and kernel benchmarks precludes a generalization of
the performance results to applications. Thus, for fully generalizable
results, a performance evaluation with application benchmarks would
be required.

Performance results provide indications for interpreter-based VMs only. The
low performance of the RoarVM precludes generalization beyond sim-
ilar bytecode interpreters. Thus, the obtained results cannot be used to
predict the performance for highly optimized VMs.

9.4. Overall Conclusions

This dissertation is the first to explore how a wide range of concurrent and
parallel programming concepts can be supported by a multi-language VM.
Until now, the research focus was often limited to one specific language or
concept without considering the need for a unifying substrate. However, with
the JVM and CLI being used as multi-language VMs, this is no longer suffi-
cient.

Consequently, it surveys the field of VMs as well as the field of concurrent
and parallel programming and concludes with a set of five general require-
ments for VM support. In order to host a wide range of different concepts
efficiently and with correct semantics, a VM needs to provide a flexible op-

timization infrastructure, flexible runtime monitoring facilities, a powerful VM in-

terface, customizable semantics for execution and state access, as well as semantic

enforcement against reflection.
This dissertation focuses on concurrent programming concepts. They ben-

efit foremost from guaranteeing their semantics in the presence of reflection,
mutable state, and interaction with other languages and libraries. The main
problem with today’s VMs is that contemporary implementation approaches
for concurrent programming concepts have to balance implementation sim-
plicity, correctly implemented language semantics, and performance. The con-
clusion based on these observations is that VMs have to support the notions of
managed state, managed execution, ownership, and controlled

enforcement in order to facilitate the implementation of concurrent pro-
gramming concepts.

241

9. Conclusion and Future Work

The proposed solution is an ownership-based metaobject protocol. The
OMOP offers intercession handlers to customize state access and method ex-
ecution policies. Building on the notion of ownership, objects are grouped
into concurrency domains for which the intercession handlers to customize
the language’s behavior can be specified. In addition to the OMOP itself, two
implementation strategies are proposed. One is based on AST transformation
and the another one on changes to the bytecode semantics of the RoarVM.

The evaluation of the OMOP shows that it directly facilitates the imple-
mentation of Clojure agents, event-loop actors, software transactional mem-
ory, active objects, and communicating sequential processes. Furthermore, it
supports the concurrent programming concepts that require VM support to
guarantee their semantics. The case studies demonstrate that the OMOP pro-
vides solutions to the common challenges language and library implementers
are facing today. Thus, its abstractions facilitate the correct implementation of
isolation, immutability, execution policies, and state access policies.

The performance is evaluated based on the two OMOP implementations.
The measurements indicate that on par performance with ad hoc implemen-
tations can be reached when interpreters provide direct support. However,
currently the results indicate that the performance sweet spot is restricted
to concurrent programming concepts that feature custom state access poli-
cies. Furthermore, it remains open what the performance outlook is for VMs
featuring optimizing just-in-time compilers. This question will be pursued to-
gether with others in future work, for instance to address limitations such as
the required explicit handling of interactions between concurrency domains.

To conclude, the OMOP is the first metaobject protocol designed and eval-
uated with the goal to support a wide range of concurrent programming
concepts in a multi-language VM. Furthermore, it is based on the analysis
of the broader field of concurrent and parallel programming concepts, which
has not been explored to this extent before. The OMOP provides a flexible
mechanism to adapt language behavior with respect to concurrency issues
and is the first promising unifying substrate that is meant to be integrated
into multi-language VMs to solve common implementation challenges.

9.5. Future Work

This section an outlook on future research perspectives and point out open
research questions that go beyond the discussed limitations of the OMOP.

242

9.5. Future Work

9.5.1. Support for Parallel Programming

Sec. 3.2.4.1 identified requirements for the support of parallel programming in
multi-language VMs. While this dissertation did not pursue the correspond-
ing research questions, they are relevant for the future. The required mecha-
nisms for adaptive optimization and monitoring are not yet widely supported
in VMs and could be beneficial to parallel programming and beyond. Thus,
future work will investigate how the optimization infrastructure, typically
related to just-in-time compilation, can be exposed to language and library
implementers. Related work in that direction is for instance the Graal project
of Oracle for the JVM [Würthinger, 2011]. Furthermore, future work needs to
investigate how runtime monitoring can be realized to enable flexible mon-
itoring of execution and instrumentation of code by language and library
implementers to gather the relevant information to perform adaptive opti-
mizations for a wide range of parallel programming techniques.

There is strong potential for such techniques to facilitate language imple-
mentation on top of multi-language VMs to enable them to utilize the avail-
able optimization infrastructure to gain optimal performance.

9.5.2. Support for Just-in-Time Compilation

Future work needs to develop a strategy to support the OMOP in just-in-time
(JIT) compiling VMs to enable its adoption in high-performance JVMs or CLI
runtimes.

One challenge with the OMOP is the notion of ownership. One of the de-
sign goals was to enable the use of libraries in different domains. Thus, in-
stead of using a metaclass-based approach where the meta relation is based
on a predetermined relation with the metaclass, the OMOP uses a dynamic
solution based on object ownership.

However, for highly efficient native code, this flexibility is a problem, be-
cause the code needs to account for changing owners of objects which could
preclude operations such as inlining that are necessary to achieve the desired
performance.

Nevertheless, it may be assumed that in common applications object graphs
and computations will be less dynamic than they potentially could be. Thus,
a JIT compiler could optimistically compile a method based on the currently
known object and ownership configuration. Standard compiler optimizations
could then be applied to inline the intercession handlers and remove the over-
head of reflective operations to obtain optimal code. Instead of performing

243

9. Conclusion and Future Work

the actual dispatch to the intercession handler, a simple guard could then
protect the code path and ensure that execution either exits into the inter-
preter or performs the required invocation of the intercession handler in case
the ownership condition does not hold. Such techniques are known in the
context of optimistic optimizations and use deoptimization for cases where
the optimistic assumptions do not hold or are not desired. Examples are de-
optimization for debugging purposes [Hölzle et al., 1992], trace guards for
tracing JIT compilers [Gal et al., 2006], handling of exceptional cases for in-
stance for array bounds checks [Würthinger et al., 2009], or for techniques
that only compile the fast path of code and rely on deoptimization for the
less common slow path [Würthinger et al., 2012].

9.5.3. Relying on the CPU’s Memory Management Unit

As the performance evaluation in Sec. 8.5 showed, it is costly to check actively
so as to tell apart enforced from unenforced execution mode. While this over-
head could be reduced and might to a large extent be eliminated by a JIT com-
piler, some concurrent programming concepts such as CSP and event-loop
actors rely on the notion of ownership and require customization of memory
access operations depending on whether the access was done from within or
from outside an actor or process. While optimistic optimization might reduce
the necessary overhead for such checks, a different potential solution to the
problem exists.

Hoffman et al. [2011] use hardware memory protection support of proces-
sors to enable the isolation of program components in an otherwise shared
memory model. This memory protection could be used in a similar way to
delegate the necessary access checks to the hardware. The idea would be to
protect memory from access by other entities, which would trigger a software
interrupt that would then be used to invoke the intercession handler for read-
ing or writing of fields. The entity, i. e., the actor itself, could freely operate on
its own memory without interference, and without the need for active checks
on every memory operation.

Such an approach would be beneficial to all concurrent programming con-
cepts that utilize the notion of ownership to define different memory access
policies for the owner and for other entities.

244

9.5. Future Work

9.5.4. Representation of Ownership

The proposed implementations use an extra header word for every object
to represent object ownership. While this direct approach avoids complex
changes in the VM, it comes with a significant memory overhead for small
objects. In the field of garbage collection, different solutions have been pro-
posed to track similar metadata for various purposes. One possible approach
that is common for GCs is to partition the heap [Jones et al., 2011, chap. 8]
based on certain criteria to avoid the direct encoding of related properties.
Future work needs to investigate these possibilities.

The ownership of an object could be encoded by it being located in a par-
tition that belongs to a domain. Such an approach would avoid the space
overhead for keeping track of ownership. While partitioning might add com-
plexity to the memory subsystem of the VM, it might also open up oppor-
tunities for other optimizations. Depending on the use of the domains, and
the concurrency concepts expressed with it, a GC could take advantage of
additional partitioning. For instance, in an actor-like domain, additional par-
titioning could have benefits for generational collectors. In such a system, the
nursery partition would be local to a single actor, which could have a positive
impact on GC times. Furthermore, this representation would most likely be
a prerequisite for using the memory management unit to avoid active state
access checks (cf. Sec. 9.5.3).

9.5.5. Applying the OMOP to JVM or CLI

The experiments presented here are performed on top of Smalltalk. Major
differences between the Smalltalk VMs used and JVM and CLI are the signif-
icantly larger feature sets of JVM and CLI. The main problems for applying
the OMOP to either of these VMs are feature interactions between the OMOP
and existing functionality.

Differences such as the typed instruction sets of those two VMs are not
necessarily a problem. The JVM’s invokedynamic infrastructure [Thalinger
and Rose, 2010] and its dynamic proxies1 demonstrate how metaobject proto-
cols can be applied to such VMs. Thus, solutions for basic design questions
of a MOP have already been solved for these VMs. Therefore, the OMOP
mostly needs customizations to the VM specific parts. An integration with
the memory model of these VMs might also require few adaptations when

1http://docs.oracle.com/javase/7/docs/api/java/lang/reflect/Proxy.html

245

http://docs.oracle.com/javase/7/docs/api/java/lang/reflect/Proxy.html

9. Conclusion and Future Work

all reflective operations are able to follow strictly the existing semantics of the
memory model, it might integrate well with the OMOP.

A more complex challenge is the integration with the security mechanisms
of the platforms (cf. Sec. 3.3.5). These and similarly involved features will
require careful engineering to preserve the existing semantics and integrate
them with the flexibility of an OMOP.

9.5.6. Formalization

A different research direction is opened up by the unifying characteristics of
the OMOP. Using it as a target for a wide range of concurrent programming
concepts enables their representation in one common framework.

Such a research effort could yield valuable understanding of the concrete
design space of these concepts. On the one hand, this would open up op-
portunities to engineer libraries of these concepts that can then be used to
build domain-specific abstractions. On the other hand, it would help under-
stand the commonalities and variabilities of the concepts, yielding a common
vocabulary. Currently, a major issue in the field of concurrent and parallel
research is the lack of a sufficiently clear distinction between concepts and a
missing common vocabulary, making it hard to relate research from different
eras and research domains to each other. Building these concurrent program-
ming concepts on top of the OMOP would yield a practically usable collection
of artifacts and might result in the discovery of relevant points in the design
space of concurrent programming concepts that have not yet been explored.

Furthermore, describing all concepts in a common framework could help in
identifying fully declarative representations. Currently, the OMOP is a classic
MOP and the customization of intercession handlers is prescriptive, while a
declarative approach could yield a more descriptive representation. Descrip-
tive representations could be valuable to synthesize interaction semantics,
which is one of the current limitations. Furthermore, they could become the
foundation for compiler optimizations to improve performance.

9.5.7. Additional Bytecode Set for Enforced Execution

Currently the inherent overhead of the RoarVM+OMOP implementation is
significant enough to prompt the desire for optimization. One possible opti-
mization would be a separate bytecode set for use during enforced execution.
Thus, instead of checking for the enforcement mode during execution, the

246

9.6. Closing Statement

bytecode dispatch could be adapted to separate the semantics of both execu-
tion modes.

Examples for such an approach can be found for instance in the CogVM2

or LuaJIT2.3 Dynamic patching of the interpreter’s dispatch table as used by
LuaJIT2 might remove the actual overhead during the bytecode dispatch com-
pletely and thus promises to eliminate the inherent overhead of the current
approach.

9.6. Closing Statement

This dissertation proposes a novel approach to the support of concurrent pro-
gramming concepts in VMs. It proposes an ownership-based metaobject pro-
tocol to facilitate the implementation of such concepts. It is designed to enable
a language and library implementer to build domain-specific abstractions,
and thus, to facilitate the exploration of concurrent programming in order to
solve the problems of the multicore and manycore era.

The OMOP needs to be supported by a VM to provide the necessary per-
formance. It is geared towards multi-language VMs where the complexity of
the VM implementation is a concern. The OMOP’s unifying properties help
avoid the complexity that comes from direct support of an arbitrary number
of concurrent programming concepts inside a VM, because it avoids complex
feature interactions between them. Instead, it allows language implementers
to build these concepts on top of the VM, and thus, avoids the need for direct
VM support. This is beneficial, because concurrent programming concepts
come with a wide range of variations which are useful for different purposes.
Here the OMOP provides the necessary unifying substrate to keep VM com-
plexity manageable and empower language implementers to provide these
variations, and thus, to facilitate concurrent programming.

2Communication with Eliot Miranda:
http://forum.world.st/Multiple-Bytecode-Sets-tp4651555p4651569.html

3LuaJIT 2.0.0-beta11, in lj_dispatch_update, http://luajit.org/

247

http://forum.world.st/Multiple-Bytecode-Sets-tp4651555p4651569.html
http://luajit.org/

A
A P P E N D I X : S U RV E Y M AT E R I A L

This appendix lists the templates used for the surveys in Chapter 3 and pro-
vides tables with additional material to complement the discussion.

The survey results have been recorded in a semi-structured textual format
relying on YAML, a “human-friendly data serialization language”. In this semi-
structured form, it was possible check certain consistency properties and pro-
cess the structural and interconnection informations (cf. Sec. 3.2.3). The results
have been processed with a Python script that is available online together with
the other technical artifacts of this dissertation.1

A.1. VM Support for Concurrent and Parallel

Programming

The first survey, presented in Sec. 3.1, is based on the survey template shown
in Lst. A.1. For each subject, we recored a number of required information
such as a brief description, a list of concepts supported, and our conclusion
of the supported model. For each concept we state the way it is exposed as
well. Concept exposure and the supported models have to be one from the
given lists.

1 Survey:

2 description:

3 Which concepts are exposed by a VM ,

4 and how are they exposed?

5 required information:

6 - description

1http://www.stefan-marr.de/research/omop/

249

http://www.stefan-marr.de/research/omop/

Appendix A. Appendix: Survey Material

7 - concepts

8 - spec: bool

9 - source: bool

10 - version

11 - supported models

12 - references

13 concept exposure:

14 - implicit semantics

15 - ISA

16 - primitives

17 - library

18 supported models:

19 - threads and locks

20 - data parallelism

21 - communicating isolates

22 - communicating threads

23 - none

Listing A.1: Survey structure to assess support for concurrent and parallel program-
ming in VMs

The resulting entry for each survey subject looks similar to the one for the
DisVM given in Lst. A.2. Depending on the VM, the description highlights
specific characteristics such as the documented design intent and details on
the technical realization, for instance the relevant concepts provided as op-
codes.

1 DisVM:

2 description:

3 It is inspired by CSP , but does not give the expected

4 guarantees. It is a VM for the Limbo language , which

5 supports threads and channels. Channels are the only

6 means for synchronization. Channels are use for

7 coordination , instead of being used to communicate all

8 data. Threads actually share their heap memory. The

9 Limbo manual shows how to build a monitor out of

10 channels. Something like a memory model is not

11 discussed in the specification.

12

13 == DisVM opcodes

14 alt , nbalt # non -blocking , picks a ready channel

15 # from a list of send/receive channels

16 spawn mspawn # intra and inter module spawn

17

18 newcb , newcw , # new channel with type

19 newcf , newcp , newcm , newcmp , newcl

20

21 send # on channel , with rendezvous semantics

250

A.1. VM Support for Concurrent and Parallel Programming

22 recv

23 concepts:

24 - shared memory: implicit semantics

25 - channels: ISA

26 - threads: ISA

27 spec: yes

28 source: no

29 references: http ://doc.cat -v.org/inferno/

30 4th_edition/dis_VM_specification

31 version: 4th edition

32 supported models:

33 - communicating threads

Listing A.2: Example: Information recorded for the DisVM

Tab. A.1 complements the discussion of Sec. 3.1 by listing the full set of
information gathered with regard to how VMs expose concepts for concurrent
and parallel programming to their users. For reference, the table includes the
basic data such as version, and supported models as well.

Table A.1.: Virtual Machines: Details and Concept Exposure

CLI Concept Exposure

Based on: spec asynchronous operations library
Version: 5th edition atomic operations primitives
Supported fences primitives
Models: threads and locks locks primitives

communicating isolates memory model implicit semantics
monitors primitives
parallel loops library
processes primitives
shared memory implicit semantics
synchronized methods ISA
threads primitives
volatile variables ISA

Dalvik Concept Exposure

Based on: source atomic operations primitives
Version: Android 4.0 barriers library
Supported concurrent objects library
Models: threads and locks condition variables primitives

fork/join library
futures library
locks library
memory model implicit semantics
monitors ISA
reflection primitives
semaphore library
shared memory implicit semantics
synchronized methods ISA

251

Appendix A. Appendix: Survey Material

thread pools library
threads primitives
volatile fields ISA

DisVM Concept Exposure

Based on: spec channels ISA
Version: 4th edition shared memory implicit semantics
Supported threads ISA
Models: communicating threads

ECMAScript+HTML5 Concept Exposure

Based on: spec, source channels primitives
Version: ECMAScript5.1, HTML5 processes primitives
Supported
Models: communicating isolates

Erlang Concept Exposure

Based on: source actors ISA
Version: Erlang/OTP R15B01 far-references primitives
Supported message queue ISA
Models: communicating isolates message sends ISA

processes primitives
shared memory primitives

GHC Concept Exposure

Based on: source MVars primitives
Version: GHC 7.5.20120411 channels library
Supported fork/join primitives
Models: communicating threads map/reduce library

parallel bulk operations library
semaphore library
threads primitives
transactions primitives

JVM Concept Exposure

Based on: spec, source atomic operations primitives
Version: Java SE 7 Edition barriers library
Supported concurrent objects library
Models: threads and locks condition variables primitives

fork/join library
futures library
locks primitives
memory model implicit semantics
monitors ISA
reflection primitives
semaphore library
shared memory implicit semantics
synchronized methods ISA
thread pools library
threads primitives
volatile fields ISA

252

A.1. VM Support for Concurrent and Parallel Programming

Mozart Concept Exposure

Based on: source active objects library
Version: 1.4.0.20080704 atomic swap primitives
Supported by-value primitives
Models: threads and locks channels primitives

communicating threads data-flow variables implicit semantics
distribution primitives
far-references primitives
futures primitives
green threads primitives
immutability primitives
locks ISA
monitors library
replication primitives
shared memory implicit semantics
single assignment variables primitives

Perl Concept Exposure

Based on: source channels primitives
Version: 5.14.2 condition variables primitives
Supported locks primitives
Models: communicating isolates processes primitives

semaphore primitives
shared memory primitives

Python Concept Exposure

Based on: source barriers library
Version: 3.2.3 channels primitives
Supported co-routines library
Models: threads and locks condition variables primitives

communicating isolates futures library
global interpreter lock implicit semantics
locks primitives
message queue primitives
processes primitives
semaphore primitives
shared memory primitives
threads primitives

Ruby Concept Exposure

Based on: source co-routines primitives
Version: 1.9.3 condition variables library
Supported global interpreter lock implicit semantics
Models: threads and locks locks primitives

shared memory implicit semantics
threads primitives

Self Concept Exposure

Based on: source green threads library
Version: 4.4 semaphore library
Supported shared memory implicit semantics
Models: threads and locks

253

Appendix A. Appendix: Survey Material

Squeak Concept Exposure

Based on: spec, source green threads primitives
Version: 4.3 semaphore primitives
Supported shared memory implicit semantics
Models: threads and locks

A.2. Concurrent and Parallel Programming Concepts

To complement the survey of concurrent and parallel programming concepts
of Sec. 3.2, we present here the used templates and a list of concepts recorded
for each subject. Furthermore, we include the template used to assess the
concepts themselves.

Lst. A.3 shows the template used to record the informations about all the
survey subjects. Beside a description, we collected a list of concepts for each
subject. Furthermore, we assessed how the various concepts’ semantics are
enforced. For later reference, we also recorded information on the paper the
subject relates to, the online article, or specification describing a language in
detail.

1 Survey:

2 description:

3 Which concepts does the language/paper provide ,

4 and how are guarantees enforced?

5 required information:

6 - description

7 - concepts

8 - enforcement approaches

9 other information:

10 - url

11 - spec

12 - bibkey

13 enforcement approaches:

14 - by-convention

15 - by-compilation

16 - by-construction

Listing A.3: Survey structure to record concepts provided by languages, or discussed
in papers and surveys.

Lst. A.4 demonstrate how the survey template is applied to the Axum pro-
gramming language. A brief description characterizes the main aspects of
the language related to the survey for future reference. The list of concepts

254

A.2. Concurrent and Parallel Programming Concepts

includes all notable mechanisms and ideas exposed by the subject. Note how-
ever that we did not attempt to full completeness for every subject. Instead,
we concentrated on overall completeness. Thus, we did not necessarily record
common recurring concepts.

1 Axum:

2 description:

3 Axum was an experimental language at Microsoft. It

4 provides agents , which are supposed to be proper actors

5 like in Erlang. It makes the communication medium , the

6 channel explicit. Messages are not send to actors , but to

7 channels. Channels have potentially multiple input and

8 output ports , which allows to associate semantics with

9 raw -data values easily. Channels can define

10 state -machines to express the protocol to be used.

11 Further , it supports ’schemas ’ which are immutable value

12 structs. Beyond agents and channels , they offer also the

13 concept of a domain. That is basically a reader/writer

14 lock and distinction of agents. An agent declared with

15 the reader keyword is only allowed to read domain state ,

16 while writer agents can both read and write the state. An

17 agent declared as neither reader nor writer can only read

18 the immutable state of the domain. And they have an

19 ’unsafe ’ keyword which allows to break the abstractions.

20 The ’isolated ’ keyword isolates an object from its class

21 to avoid problems , i.e., race -conditions on shared state.

22 concepts:

23 - actors

24 - channels

25 - isolation

26 - by-value

27 - immutability

28 - Axum -Domains

29 - reader -writer -locks

30 - synchronization

31 enforcement approaches:

32 - by-construction

33 - by-convention

34 spec: http :// download.microsoft.com/download/B/D/5/

35 BD51FFB2 -C777 -43B0 -AC24 -BDE3C88E231F/

36 Axum %20 Language %20 Spec.pdf

37 url: http :// download.microsoft.com/download/B/D/5/

38 BD51FFB2 -C777 -43B0 -AC24 -BDE3C88E231F/

39 Axum %20 Programmers %20 Guide.pdf

Listing A.4: Example: Information recorded for the Axum language.

255

Appendix A. Appendix: Survey Material

Tab. A.2 gives the full list of concepts and the corresponding language or
paper in which they have been identified.

Table A.2.: Concepts provided by languages and proposed in papers.
Language/Paper Concept Concept

Active Objects asynchronous invocation futures
event-loop

Ada guards synchronization
monitors threads

Aida ownership transactions

Alice atomic primitives futures

AmbientTalk actors futures
asynchronous invocation isolates
event-loop mirrors
far-references

Ateji PX channels reducers
fork/join speculative execution
parallel loops

Axum Axum-Domains immutability
actors isolation
by-value reader-writer-locks
channels synchronization

Briot et al. active objects locality
actors locks
asynchronous invocation message sends
atomic operations monitors
concurrent objects reflection
data parallelism replication
event-loop semaphore
events synchronization
futures threads
green threads transactions
guards

C# concurrent objects futures
fork/join parallel loops

C/C++11 asynchronous operations locks
atomic operations memory model
atomic primitives thread-local variables
condition variables threads
fences volatiles

256

A.2. Concurrent and Parallel Programming Concepts

Table A.2 – continued from previous page

Language/Paper Concept Concept

futures

Chapel PGAS parallel loops
channels parallel prefix scans
fork/join reducers
green threads

Charm++ active objects by-value
asynchronous invocation event-loop

Cilk fork/join speculative parallelism
reducers

Clojure atoms persistent data structures
compare-and-swap thread pools
immutability transactions

CoBoxes actors far-references
by-value immutability

Concurrent Haskell channels threads
green threads transactions

Concurrent ML channels threads
synchronization

Concurrent Objects concurrent objects

Concurrent Pascal monitors threads

Concurrent Smalltalk asynchronous invocation promises
monitors

Erlang actors single assignment variables
immutability

Fortran 2008 barriers locks
critical sections parallel loops

Fortress parallel loops
immutability reducers
implicit parallelism threads
memory model transactions

Go channels green threads

Io actors futures
co-routines

257

Appendix A. Appendix: Survey Material

Table A.2 – continued from previous page

Language/Paper Concept Concept

JCSP channels processes

Java 7 atomic primitives memory model
concurrent objects monitors
condition variables thread pools
fork/join thread-local variables
futures threads
locks volatiles

Java Views locks

Join Java message sends threads
synchronization

Linda by-value isolation
coordination processes
immutability

MPI barriers one-sided communication
by-value processes
message sends

MapReduce immutability side-effect free
reducers

MultiLisp atomic primitives locks
futures

Occam-pi by-value processes
channels

OpenCL atomic primitives vector operations
data movement

OpenMP parallel blocks
atomic primitives parallel loops
barriers thread-local variables
monitors threads

Orleans actors state reconciliation
futures transactions
replication vats

Oz active objects locks
channels single assignment variables
futures threads

Parallel Actor Monitors actors reader-writer-locks
message sends

258

A.2. Concurrent and Parallel Programming Concepts

Table A.2 – continued from previous page

Language/Paper Concept Concept

Parallel Prolog data-flow graphs mvars
fork/join parallel bulk operations
futures

Reactive Objects asynchronous invocation encapsulation

SCOOP condition variables ownership
locks threads

STM transactions

Skillicorn and Talia active objects message sends
actors one-sided communication
channels parallel loops
data parallelism processes
data streams side-effect free
implicit parallelism synchronization
isolation threads
join tuple spaces
locality

Sly barriers map/reduce
join race-and-repair

StreamIt data streams message sends

Swing event-loop threads
message sends

UPC PGAS reducers
barriers

X10 APGAS condition variables
atomic primitives far-references
by-value fork/join
clocks message sends

XC channels threads

Each identified concept was briefly characterized and then assessed with re-
gard to the identified survey criteria (cf. Sec. 3.2.1.1). As discussed in Sec. 3.2.2
(cf. Tab. 3.5) certain concepts have not been regarded individually. Instead,
closely related concepts have been surveyed together. This information, and
general relationships between concepts have been recorded for each concept
as well.

259

Appendix A. Appendix: Survey Material

1 Survey:

2 description:

3 Characterize concepts to distinguish and assess them.

4 required information:

5 - description

6 - survey: [PA , Lib , Sem , Perf]

7 other information:

8 - subsumed -by: concept

9 - combines: concepts

10 - related concepts: concepts

Listing A.5: Survey structure for the identified concepts.

Lst. A.6 shows how the template was filled in for Clojure atoms concept. It
gives a brief description of atoms and indicates that they are closely related to
the atomic primitive compare-and-swap. Furthermore, the listing includes the
results for the survey questions.

1 Atoms:

2 description:

3 An atom represents a mutable cell which is updated without

4 coordination with other cells. Updates are expressed in

5 terms of update functionsm , which take the old value as

6 input and compute the new value. One requirement for these

7 update functions is that they are idempotent. This is

8 necessary since atoms are updated concurrently using the

9 basic compare -and -swap concept. Thus , an update can fail

10 if an other updated succeeded concurrently. In that case ,

11 the update is attempted again.

12 related concepts:

13 - compare -and -swap

14 Survey:

15 (PA) Already available in VMs: no

16 (Lib) can be implemented as lib: yes

17 (Sem) requires runtime to enforce guarantees: no

18 (Pef) benefits from runtime support for perf.: no

Listing A.6: Example: Information recorded for Clojure atoms.

260

B
A P P E N D I X : P E R F O R M A N C E E VA L U AT I O N

This appendix characterizes the used benchmarks and gives the configuration
informations used for the benchmarks described in Chapter 8.

B.1. Benchmark Characterizations

This section gives an overview over the different benchmarks used in this
evaluation. This characterization is meant to facilitate the discussion and in-
terpretation of our benchmark results in Chapter 8.

We categorize the benchmarks in microbenchmarks and kernel benchmarks to
distinguish their general characteristics and scope. None of these benchmarks
qualifies as a real world application benchmark, as for instance defined by the
DaCapo benchmarks [Blackburn et al., 2006].

The benchmarks used in this evaluation have either been implemented
specifically for our experiments or are derived from commonly used bench-
marks. While the microbenchmarks are designed to measure a single aspect
of the implementation, the kernel benchmarks are meant to represent a num-
ber of typical performance sensitive work loads that can be found embedded
in applications.

The remainder of this section discusses the used benchmarks, their charac-
teristics, and our expectation of their behavior. Furthermore, we describe the
adaptations to use them in the context of LRSTM and AmbientTalkST, as well
as our expectation of how the benchmark behaves on top of ideal implemen-
tations of these systems.

261

Appendix B. Appendix: Performance Evaluation

B.1.1. Microbenchmarks

We implemented the microbenchmarks specifically for assessing the perfor-
mance of the presented implementations. The changes to the LRSTM and
AmbientTalkST variants of the benchmarks are restricted to the necessary
setup operations to execute the benchmarks in the context of the actor or
STM implementation.

Int Loop This benchmark is a tight while loop that subtracts 1 from an in-
teger and executes until the integer is zero. This loop only executes
basic stack operations and uses a special bytecode to do the subtraction.
Thus, it does neither create context objects for message sends nor allo-
cate other objects, because the integers are represented as immediate
values.

LRSTM: Loop executed in context of the STM, but since no object field
mutation is done, an ideal implementation will not exhibit any slow-
down. An OMOP-based implementation might need to reify the send
of the subtraction operation, which will lead to a significant reduction
of performance.

AmbientTalkST: The loop is executed inside a single actor and thus, an
ideal implementation would not exhibit any slowdown. OMOP-based
implementations might have the same message reification penalty as
for the LRSTM implementation.

Float Loop This benchmark is a tight while loop that subsequently does
two additions of floating point numbers until the floating point value
reaches a predefined limit. The loop results in corresponding stack op-
erations for instance to store and load the float. Similarly to the Int

Loop, the addition is done by a special bytecode that does not require a
message send with context object creation. However, the floating point
numbers are represented as heap objects and lead to high allocation
rates. Note that we do not measure GC time but use a large enough
heap instead, which avoids garbage collection completely.

LRSTM and AmbientTalkST: We expect the same results as for the Int Loop,
because the implementation is nearly identical.

InstVar Access This benchmark is a tight while loop identical to the Int Loop,
with additionally reads and writes an object field. All operations are en-
coded with bytecodes without resulting in message sends. Thus, neither
allocation nor creation of context objects is done.

262

B.1. Benchmark Characterizations

LRSTM: The STM system needs to track the mutation, which will result
in a significant overhead. However, in the context of the OMOP, the
same concerns apply as for the Int Loop with regard to the reification of
the message send for the subtraction of the loop integer.

AmbientTalkST: The loop is executed local to an actor. Thus, an ideal im-
plementation does not have any overhead. For the OMOP-based imple-
mentation, the reification of the message send for the subtraction might
be an issue as well.

Array Access This benchmark is a tight while loop identical to the Int Loop,
with additionally reads and writes of a fixed array index. All operations
are encoded with bytecodes without resulting in message sends. Thus,
neither allocation nor creation of context objects is done.

LRSTM and AmbientTalkST: We expect the same results as for the InstVar

access benchmark, because the implementation is nearly identical.

ClassVar Access This benchmark is a tight while loop identical to the Int

Loop, with additionally reads and writes to a class variable. Class vari-
ables are represented as literal associations. A reference to a pair of the
name and the value of such global is encoded in the compiled method
and the VM uses special bytecodes (popIntoLiteral, pushLiteral) to
operate on them. Similar to the previous benchmarks, this one does nei-
ther message sends nor object allocation.

LRSTM: The STM system will track the mutation of the literal associa-
tion.

AmbientTalkST: A faithful actor implementation needs to regard this
kind of global state properly, and thus, should exhibit a slowdown.

Message Send The Send and SendWithManyArguments benchmarks are iden-
tical to the Int Loop but do a message send in addition. Send will send a
message without any arguments, while SendWithManyArguments sends
a message with ten arguments. Thus, for this benchmark context ob-
jects need to be allocated for the execution of the sends. The invoked
methods return immediately without performing any work.

LRSTM: This benchmark does not perform any mutation and an ideal
STM implementation will not exhibit any slowdown. However, OMOP-
based implementations might take a penalty for the message sends.

AmbientTalkST: All message sends are local to a single actor and thus,
should not exhibit any slowdowns. However, the OMOP might show

263

Appendix B. Appendix: Performance Evaluation

additional overhead and the penalty for the subtraction in the Int Loop

loop.

Local vs. Remote Sends for AmbientTalkST The benchmarks for local and
remote sends between actors are meant to measure cost of asynchronous
message sends for the two AmbientTalkST implementations. The three
benchmarks do local sends to a counter, remote sends to a counter in
another actor, and remote sends with ten arguments. They each execute
a tight loop which sends a message to increase the counter that is kept
in a separate object. In the local version, the send ideally results only
in the creation of a context object in which the counter’s object field is
read and modified, while in the remote version a message object has
to be created that is enqueued in the actor’s message inbox and then
processed as soon as the receiving actor is scheduled.

B.1.2. Kernel Benchmarks

The used kernel benchmarks are collection from different sources, most no-
tably the Computer Language Benchmark Game. We adapted them for our
experiments with LRSTM and AmbientTalkST, but did not change the under-
lying algorithms or functionality.

Compiler We chose the compiler benchmark as a sufficiently complex pro-
cesses, exercising a wide range of aspects of the system. The benchmark
compiles a Smalltalk method of 11 lines of code, which include tests,
loops, and a variety of message sends. The compiler will first construct
an AST from the source code and then produce a CompiledMethod from
this AST, which contains the final bytecode sequence. In the process, it
creates and traverses the AST, uses a variety of collections, does string
processing, and uses the stream facilities.

Slopstone and Smopstone These benchmarks1 are collections of Smalltalk
microbenchmarks and kernel benchmarks. The Slopstone microbench-
mark collection tests integer addition, float addition, character access
on strings, object creation, object cloning, reflective method invocation
with #perform:, and block evaluation. We include this benchmark since
the structure is different from our benchmarks. It does not use a tight
loop but performs a larger number of operations directly in sequence.

1According to the source comment, they have been authored by Bruce Samuelson in 1993.

264

B.1. Benchmark Characterizations

We treat the Slopstone benchmarks as a single kernel benchmark cover-
ing a wider range of aspects with a single result.

The Smopstone benchmarks collections contains kernel benchmarks. It
calculates fractonaccis, which is a similar to a recursive fibonacci, but
uses fractions instead of natural numbers. Furthermore, it generates a
collection of prime numbers, generates and parses streams as well as
strings, creates sets, sorts strings, and has a benchmark called Sorcerer’s

Apprentice, which exercises recursive blocks, integer arithmetic, and col-
lections. Similar to the Slopstone benchmark, only the overall result is
reported.

Binary Trees This benchmark is used from The Computer Language Benchmark

Game (CLBG) and is an adaptation of Hans Boehm’s GCBench.2 It allo-
cates many binary trees. The trees are created and afterwards traversed
once as a consistency check.

LRSTM: The benchmark is executed unchanged in the context of the
STM, which will track all mutations.

AmbientTalkST: The tree factory is represented by a separate actor. It will
create the trees on the request of the main actor, and return a reference
(a far reference in AmbientTalk terminology). Thus, the factory actor
remains the owner and the main actor will send an asynchronous re-
quest for the consistency check, which will be processed by the factor
actor. All overhead should be attributable to this constant number of
asynchronous message sends per created tree.

Chameneos The Chameneos benchmark is used from the CLGB and has been
used by Kaiser and Pradat-Peyre [2003] to study the differences of syn-
chronization constructs in different languages. It repeatedly performs
symmetrical thread rendezvous requests. It uses Smalltalk processes
and semaphores for the synchronization. Thus, the main aspect mea-
sured is the overhead of scheduling, the synchronization, and notifica-
tion operations.

Fannkuch The Fannkuch benchmark is used from the CLBG. It repeatedly
accesses a tiny integer-sequence to generate permutations of it. It has
been used by Anderson and Rettig [1994] to analyze the performance of
Lisp implementations. The CLBG implementation uses a stateful object

2http://www.hpl.hp.com/personal/Hans_Boehm/gc/gc_bench/applet/GCBench.java

265

http://www.hpl.hp.com/personal/Hans_Boehm/gc/gc_bench/applet/GCBench.java

Appendix B. Appendix: Performance Evaluation

to generate the integer-sequence permutations. After the permutations
are generated, they are post processed and checked for correctness.

LRSTM: The benchmark is used unchanged in the context of the STM
and all mutations are tracked.

AmbientTalkST: The object generating the permutations is contained in
a separate actor and the arrays containing the permutations remain
owned by that actor as well. Thus, the message sends for creating the
permutation as well as the ones for checking correctness are done asyn-
chronously, and all overhead in AmbientTalkST implementations should
be attributable to them.

Fasta The Fasta benchmark is used from the CLBG. It generates and writes
random DNA sequences. In the process, it uses a variety of stream op-
erations and a simple random number generator.

LRSTM: We use this benchmark unchanged in the context of LRSTM.
Ideally, all measure overhead would come from the overhead of tracking
mutations. The tracking of mutations is identical for the ad hoc and the
OMOP-based implementations.

AmbientTalkST: We change the set up of the benchmark slightly, and treat
the random number generator as a shared resource that is managed by
a separate actor. Thus, the main actor needs to send asynchronous re-
quests for randomization to the second actor. Ideally, all measured over-
head can be directly attributed to these asynchronous message sends.

NBody The NBody benchmark is used from the CLBG. It performs an N-
body simulation of the Jovian moons and uses a simple symplectic-
integrator. Consequently, it is performing mostly floating point arith-
metic on a fix set of stateful objects.

LRSTM: The benchmark is used unchanged in the context of the STM
and all mutations are tracked.

AmbientTalkST: All objects representing the moons, i. e., bodies are con-
tained in a single actor. In addition, we use the main actor to coordi-
nate the simulation, which consequently sends a fixed number of asyn-
chronous messages to the actor containing the moon objects. In an ideal
implementation, all measured overhead can be attributed to these asyn-
chronous messages.

266

B.2. Benchmark Configurations

B.2. Benchmark Configurations

The benchmark configuration is given in the YAML text format, which is in-
terpreted by ReBench3 to execute the benchmarks. The framework for writing
and executing the benchmarks is SMark.4

1 statistics: {min_runs: 100, max_runs: 100}

2 benchmark_suites:

3 base -benchmarks:

4 performance_reader: LogPerformance

5 command: " %(benchmark)s "

6 input_sizes: pharo -omni.image ReBenchHarness

7 benchmarks:

8 # Classic benchmarks
9 - SMarkLoops.benchFloatLoop: {extra_args: "1 30"}

10 - SMarkLoops.benchIntLoop: {extra_args: "1 200"}

11 - SMarkCompiler: {extra_args: "1 300"}

12 - SMarkSlopstone: {extra_args: "1 1 25000"}

13 - SMarkSmopstone: {extra_args: "1 1 2"}

14 # Computer Language Benchmarks Game
15 - BenchmarkGameSuite.benchFasta: {extra_args: "1 1 50000"}

16 - BenchmarkGameSuite.benchBinaryTrees: {extra_args: "1 1 10"}

17 - BenchmarkGameSuite.benchFannkuchRedux: {extra_args: "1 1 8"}

18 - BenchmarkGameSuite.benchNBody: {extra_args: "1 1 20000"}

19 - BenchmarkGameSuite.benchChameleons: {extra_args: "1 1 70000"}

20

21 LRSTM -adhoc -vs -omop:

22 performance_reader: LogPerformance

23 command: " %(benchmark)s "

24 benchmarks:

25 - LRSTMBenchmarkGameSuite.benchAtomicBinaryTrees:

26 extra_args: "1 1 9"

27 - LRSTMBenchmarkGameSuite.benchAtomicFannkuchRedux:

28 extra_args: "1 1 7"

29 - LRSTMBenchmarkGameSuite.benchAtomicFasta:

30 extra_args: "1 1 2000"

31 - LRSTMBenchmarkGameSuite.benchAtomicNBody:

32 extra_args: "1 1 2000"

33 - LRSTMBenchLoops.benchAtomicFloatLoop :{ extra_args: "1 1 3000000"}

34 - LRSTMBenchLoops.benchAtomicIntLoop: {extra_args: "1 1 12000000"}

35 - LRSTMBenchLoops.benchAtomicArrayAccess:

36 extra_args: "1 1 400000"

37 - LRSTMBenchLoops.benchAtomicClassVarBinding:

38 extra_args: "1 1 500000"

39 - LRSTMBenchLoops.benchAtomicInstVarAccess:

40 extra_args: "1 1 500000"

41 - LRSTMBenchLoops.benchAtomicSend: {extra_args: "1 1 5000000"}

42 - LRSTMBenchLoops.benchAtomicSendWithManyArguments:

43 extra_args: "1 1 6000000"

44

45 AmbientTalkST -adhoc -vs-omop:

3http://github.com/smarr/ReBench
4http://www.squeaksource.com/SMark.html

267

http://github.com/smarr/ReBench
http://www.squeaksource.com/SMark.html

Appendix B. Appendix: Performance Evaluation

46 performance_reader: LogPerformance

47 command: " %(benchmark)s "

48 benchmarks:

49 - ATBenchLoops.benchATFloatLoop: {extra_args: "1 1 3000000"}

50 - ATBenchLoops.benchATIntLoop: {extra_args: "1 1 15000000"}

51 - ATBenchLoops.benchATArrayAccess: {extra_args: "1 1 2000000"}

52 - ATBenchLoops.benchATClassVarBinding :{ extra_args: "1 1 9000000"}

53 - ATBenchLoops.benchATInstVarAccess: {extra_args: "1 1 5500000"}

54 - ATBenchLoops.benchATSend: {extra_args: "1 1 5000000"}

55 - ATBenchLoops.benchATSendWithManyArguments:

56 extra_args: "1 1 6000000"

57 - ATBenchmarkGameSuite.benchATBinaryTrees: {extra_args: "1 1 11"}

58 - ATBenchmarkGameSuite.benchATFannkuchRedux :{ extra_args: "1 1 6"}

59 - ATBenchmarkGameSuite.benchATFasta: {extra_args: "1 1 2000"}

60 - ATBenchmarkGameSuite.benchATNBody: {extra_args: "1 1 12000"}

61 - ATMicroBenchmarks.benchLocalSend: {extra_args: "1 1 5000000"}

62 - ATMicroBenchmarks.benchRemoteSend: {extra_args: "1 1 50000"}

63 - ATMicroBenchmarks.benchRemoteSendWithManyArguments :

64 extra_args: "1 1 50000"

65

66 enforcement -overhead:

67 performance_reader: LogPerformance

68 command: " %(benchmark)s "

69 input_sizes:

70 - pharo -omni.image SMarkHarness

71 - omnist.image SMarkHarness

72 benchmarks:

73 # Computer Language Benchmarks Game
74 - BenchmarkGameSuite.benchBinaryTrees: {extra_args: "1 1 7"}

75 - OstBenchGameSuite.benchBinaryTrees: {extra_args: "1 1 7"}

76 - BenchmarkGameSuite.benchFannkuchRedux :{ extra_args: "1 1 8"}

77 - OstBenchGameSuite.benchFannkuchRedux: {extra_args: "1 1 8"}

78 - BenchmarkGameSuite.benchFasta: {extra_args: "1 1 20000"}

79 - OstBenchGameSuite.benchFasta: {extra_args: "1 1 20000"}

80 - BenchmarkGameSuite.benchNBody: {extra_args: "1 1 4000"}

81 - OstBenchGameSuite.benchNBody: {extra_args: "1 1 4000"}

82 # Classic benchmarks
83 - SMarkLoops.benchFloatLoop: {extra_args: "1 1 1000000"}

84 - OstBenchLoops.benchFloatLoop: {extra_args: "1 1 1000000"}

85 - SMarkLoops.benchIntLoop: {extra_args: "1 1 10000000"}

86 - OstBenchLoops.benchIntLoop: {extra_args: "1 1 10000000"}

87 - SMarkSlopstone: {extra_args: "1 1 800"}

88 - OstBenchSlopstone: {extra_args: "1 1 800"}

89

90 virtual_machines:

91 RoarVM+OMOP:

92 path: ../../ bin/omnivm

93 args: "-min_heap_MB 1024 -num_cores 1 -headless %(input)s "

94 RoarVM+OMOP (full):

95 path: ../../ bin/omnivm -always -trapping

96 args: "-min_heap_MB 1024 -num_cores 1 -headless %(input)s "

97 RoarVM+OMOP (opt):

98 path: ../../ bin/omnivm -opt1core

99 args: "-min_heap_MB 1024 -num_cores 1 -headless %(input)s "

100 RoarVM:

268

B.2. Benchmark Configurations

101 path: ../../ bin/rvm

102 args: "-min_heap_MB 1024 -num_cores 1 -headless %(input)s "

103 RoarVM (opt):

104 path: ../../ bin/rvm -opt1core

105 args: "-min_heap_MB 1024 -num_cores 1 -headless %(input)s "

106 RoarVM (GCC 4.2):

107 path: ../../ bin/rvm -gcc42

108 args: "-min_heap_MB 1024 -num_cores 1 -headless %(input)s "

109 CogVM:

110 path: ../../ CogVM.app/Contents/MacOS/CogVM

111 args: "-memory 1024m -headless %(input)s "

112

113 run_definitions:

114 all -vms:

115 benchmark: base -benchmarks

116 executions: [CogVM , RoarVM , RoarVM (GCC 4.2), RoarVM (opt),

117 RoarVM+OMOP , RoarVM+OMOP (full), RoarVM+OMOP (opt)]

118 enforcement -overhead:

119 benchmark: enforcement -overhead

120 executions: [RoarVM+OMOP (full), RoarVM+OMOP (opt), CogVM]

121 adhoc -vs-omop:

122 executions:

123 - CogVM:

124 benchmark:

125 - LRSTM -adhoc -vs-omop:

126 input_sizes:

127 - omnist.image SMarkHarness

128 - LRSTM.image SMarkHarness

129 - AmbientTalkST -adhoc -vs-omop:

130 input_sizes:

131 - omnist.image SMarkHarness

132 - AmbientTalkST.image SMarkHarness

133 - RoarVM (opt):

134 benchmark: AmbientTalkST -adhoc -vs-omop

135 input_sizes: "AmbientTalkST.image SMarkHarness "

136 - RoarVM (opt):

137 benchmark: LRSTM -adhoc -vs-omop

138 input_sizes: "LRSTM.image SMarkHarness "

139 - RoarVM+OMOP (opt):

140 benchmark:

141 - AmbientTalkST -adhoc -vs-omop

142 - LRSTM -adhoc -vs-omop

143 input_sizes: "pharo -omni.image SMarkHarness "

144 omnist -vs -omnivm:

145 benchmark:

146 - LRSTM -adhoc -vs-omop

147 - AmbientTalkST -adhoc -vs-omop

148 executions:

149 - CogVM: {input_sizes: "omnist.image SMarkHarness "}

150 - RoarVM+OMOP (full):{ input_sizes: "pharo -omni.image SMarkHarness "}

151 - RoarVM+OMOP (opt): {input_sizes: "pharo -omni.image SMarkHarness "}

152 - RoarVM (opt): {input_sizes: "omnist.image SMarkHarness "}

Listing B.1: Benchmark Configuration for Performance Evaluation

269

R E F E R E N C E S

Martín Abadi and Luca Cardelli. A Theory of Objects. Springer, New York,
1996. ISBN 0387947752 9780387947754. 91

Harold Abelson, Gerald Jay Sussman, and with Julie Sussman. Structure and

Interpretation of Computer Programs. MIT Press/McGraw-Hill, Cambridge,
2nd editon edition, 1996. ISBN 0-262-01153-0. 96

Jonathan Aldrich and Craig Chambers. Ownership domains: Separating alias-
ing policy from mechanism. In Martin Odersky, editor, ECOOP 2004 –

Object-Oriented Programming, volume 3086 of Lecture Notes in Computer Sci-

ence, pages 1–25. Springer, Berlin / Heidelberg, 2004. ISBN 978-3-540-22159-
3. doi: 10.1007/978-3-540-24851-4_1. 134

George S. Almasi and Allan Gottlieb. Highly Parallel Computing. Benjamin-
Cummings Publishing Co., Inc., Redwood City, CA, USA, 2nd edition, 1994.
ISBN 0805304436 9780805304435. 25, 35

M. Ancona, W. Cazzola, G. Dodero, and V. Gianuzzi. Channel reification: A
reflective model for distributed computation. In Performance, Computing and

Communications, 1998. IPCCC ’98., IEEE International, pages 32 –36, February
1998. doi: 10.1109/PCCC.1998.659895. 112

Jakob R. Andersen, Lars Bak, Steffen Grarup, Kasper V. Lund, Toke Eskild-
sen, Klaus Marius Hansen, and Mads Torgersen. Design, implementation,
and evaluation of the resilient smalltalk embedded platform. Computer Lan-

guages, Systems & Structures, 31(3–4):127 – 141, 2005. ISSN 1477-8424. doi:
10.1016/j.cl.2005.02.003. Smalltalk. 90

Kenneth R. Anderson and Duane Rettig. Performing lisp analysis of the
fannkuch benchmark. SIGPLAN Lisp Pointers, VII(4):2–12, 1994. ISSN 1045-
3563. doi: 10.1145/382109.382124. 265

271

References

Joe Armstrong. A history of erlang. In HOPL III: Proceedings of the third ACM

SIGPLAN conference on History of programming languages, pages 6–1–6–26,
New York, NY, USA, 2007. ACM. ISBN 978-1-59593-766-X. doi: 10.1145/
1238844.1238850. 42, 51, 59

Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis,
Parry Husbands, Kurt Keutzer, David A. Patterson, William Lester Plishker,
John Shalf, Samuel Webb Williams, and Katherine A. Yelick. The landscape
of parallel computing research: A view from berkeley. Technical Report
UCB/EECS-2006-183, EECS Department, University of California, Berke-
ley, December 2006. URL http://www.eecs.berkeley.edu/Pubs/TechRpts

/2006/EECS-2006-183.html. 3

Edward A. Ashcroft and William W. Wadge. Lucid, a nonprocedural language
with iteration. Commun. ACM, 20(7):519–526, July 1977. ISSN 0001-0782. doi:
10.1145/359636.359715. 35

Tom Axford. Concurrent Programming - Fundamental Techniques for Real-Time

and Parallel Software Design. Series in Parallel Computing. Wiley, Chichester
[u.a.], 1990. ISBN 0471923036. 18

John Aycock. A brief history of just-in-time. ACM Computing Surveys, 35(2):
97–113, 2003. ISSN 0360-0300. doi: 10.1145/857076.857077. 2, 14

Rajkishore Barik, Jisheng Zhao, David P. Grove, Igor Peshansky, Zoran
Budimlic, and Vivek Sarkar. Communication optimizations for distributed-
memory x10 programs. In Parallel Distributed Processing Symposium (IPDPS),

2011 IEEE International, pages 1101 –1113, May 2011. doi: 10.1109/IPDPS.
2011.105. 61

Paul S. Barth, Rishiyur S. Nikhil, and Arvind. M-structures: Extending a paral-
lel, non-strict, functional language with state. In Proceedings of the 5th ACM

Conference on Functional Programming Languages and Computer Architecture,
pages 538–568, London, UK, UK, 1991. Springer-Verlag. ISBN 3-540-54396-
1. 50

Christian Bauer and Gavin King. Hibernate in Action. Manning, Greenwich,
CT, 2005. ISBN 1932394370 9781932394375. 79

James R. Bell. Threaded code. Communications of the ACM, 16(6):370–372, June
1973. ISSN 0001-0782. doi: 10.1145/362248.362270. 100

272

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html

References

Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang,
Kathryn S. McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel
Frampton, Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump,
Han Lee, J. Eliot B. Moss, B. Moss, Aashish Phansalkar, Darko Stefanović,
Thomas VanDrunen, Daniel von Dincklage, and Ben Wiedermann. The da-
capo benchmarks: Java benchmarking development and analysis. In OOP-

SLA ’06: Proceedings of the 21st annual ACM SIGPLAN conference on Object-

oriented programming systems, languages, and applications, pages 169–190, New
York, NY, USA, 2006. ACM. ISBN 1-59593-348-4. doi: 10.1145/1167473.
1167488. 206, 229, 261

Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E.
Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: An efficient multi-
threaded runtime system. SIGPLAN Not., 30(8):207–216, 1995. ISSN 0362-
1340. doi: 10.1145/209937.209958. 19, 22, 34, 59

Jayaram Bobba, Kevin E. Moore, Haris Volos, Luke Yen, Mark D. Hill,
Michael M. Swift, and David A. Wood. Performance pathologies in hard-
ware transactional memory. In Proceedings of the 34th annual international

symposium on Computer architecture, ISCA ’07, pages 81–91, New York, NY,
USA, 2007. ACM. ISBN 978-1-59593-706-3. doi: 10.1145/1250662.1250674.
30

Gilad Bracha and David Ungar. Mirrors: design principles for meta-level fa-
cilities of object-oriented programming languages. In Proc. of OOPSLA’04,
pages 331–344. ACM, 2004. ISBN 1-58113-831-9. doi: 10.1145/1028976.
1029004. 63, 154

Jean-Pierre Briot. From objects to actors: Study of a limited symbiosis in
smalltalk-80. In Proceedings of the 1988 ACM SIGPLAN workshop on Object-

based concurrent programming, pages 69–72, New York, NY, USA, 1988. ACM.
ISBN 0-89791-304-3. doi: 10.1145/67386.67403. 100

Jean-Pierre Briot. Actalk: A testbed for classifying and designing actor lan-
guages in the smalltalk-80 environment. In ECOOP, British Computer So-
ciety Workshop Series, pages 109–129. Cambridge University Press, 1989.
100

Jean-Pierre Briot, Rachid Guerraoui, and Klaus-Peter Lohr. Concurrency and
distribution in object-oriented programming. ACM Computing Surveys, 30

(3):291–329, September 1998. ISSN 0360-0300. doi: 10.1145/292469.292470.
4, 58, 59

273

References

Zoran Budimlic, Aparna Chandramowlishwaran, Kathleen Knobe, Geoff
Lowney, Vivek Sarkar, and Leo Treggiari. Multi-core implementations of
the concurrent collections programming model. In he 14th Workshop on

Compilers for Parallel Computing, January 2009. 37

Sergey Bykov, Alan Geller, Gabriel Kliot, James R. Larus, Ravi Pandya,
and Jorgen Thelin. Orleans: Cloud computing for everyone. In Proc

of SOCC’11, pages 16:1–16:14. ACM, 2011. ISBN 978-1-4503-0976-9. doi:
10.1145/2038916.2038932. 59, 171

Bryan Cantrill and Jeff Bonwick. Real-world concurrency. Commun. ACM, 51

(11):34–39, 2008. ISSN 0001-0782. doi: 10.1145/1400214.1400227. 27, 36

Calin Cascaval, Colin Blundell, Maged Michael, Harold W. Cain, Peng Wu,
Stefanie Chiras, and Siddhartha Chatterjee. Software transactional memory:
Why is it only a research toy? Queue, 6(5):46–58, 2008. ISSN 1542-7730. doi:
10.1145/1454456.1454466. 29, 148

Bryan Catanzaro, Armando Fox, Kurt Keutzer, David Patterson, Bor-Yiing Su,
Marc Snir, Kunle Olukotun, Pat Hanrahan, and Hassan Chafi. Ubiquitous
parallel computing from berkeley, illinois, and stanford. IEEE Micro, 30(2):
41–55, 2010. 2, 36, 37

Vincent Cavé, Jisheng Zhao, Zoran Budimlić, Vivek Sarkar, James Gunning,
and Michael Glinsky. Habanero-java extensions for scientific computing. In
Proceedings of the 9th Workshop on Parallel/High-Performance Object-Oriented

Scientific Computing, POOSC ’10, pages 1:1–1:6, New York, NY, USA, 2010.
ACM. ISBN 978-1-4503-0546-4. doi: 10.1145/2039312.2039313. 33

Hassan Chafi, Zach DeVito, Adriaan Moors, Tiark Rompf, Arvind K. Sujeeth,
Pat Hanrahan, Martin Odersky, and Kunle Olukotun. Language virtualiza-
tion for heterogeneous parallel computing. In Proc. of OOPSLA’10, pages
835–847. ACM, 2010. 2, 36, 37

Craig Chambers, David Ungar, and Elgin Lee. An efficient implementation
of self a dynamically-typed object-oriented language based on prototypes.
SIGPLAN Not., 24(10):49–70, 1989. ISSN 0362-1340. doi: 10.1145/74878.
74884. 42, 48, 231

Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa,
Allan Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar.
X10: An object-oriented approach to non-uniform cluster computing. In

274

References

OOPSLA ’05: Proceedings of the 20th annual ACM SIGPLAN conference on

Object-oriented programming, systems, languages, and applications, pages 519–
538, New York, NY, USA, 2005. ACM. ISBN 1-59593-031-0. doi: 10.1145/
1094811.1094852. 27, 33, 59, 75

Tong Chen, Haibo Lin, and Tao Zhang. Orchestrating data transfer for the
cell/b.e. processor. In Proceedings of the 22nd annual international conference

on Supercomputing, ICS ’08, pages 289–298, New York, NY, USA, 2008. ACM.
ISBN 978-1-60558-158-3. doi: 10.1145/1375527.1375570. 171

Shigeru Chiba and Takashi Masuda. Designing an extensible distributed lan-
guage with a meta-level architecture. In Proceedings of the 7th European Con-

ference on Object-Oriented Programming, ECOOP ’93, pages 482–501, London,
UK, UK, 1993. Springer-Verlag. ISBN 3-540-57120-5. 130

Cincom Systems, Inc. Visualworks 7 white paper. Technical re-
port, 55 Merchant St., Cincinnati, OH 45246, United States, July 2002.
URL http://www.cincomsmalltalk.com/CincomSmalltalkWiki/VisualWor

ks+7+White+Paper. 78

Dave Clarke, Tobias Wrigstad, Johan Östlund, and Einar Johnsen. Minimal
ownership for active objects. In G. Ramalingam, editor, Programming Lan-

guages and Systems, volume 5356 of Lecture Notes in Computer Science, pages
139–154. Springer, Berlin / Heidelberg, 2008. ISBN 978-3-540-89329-5. doi:
10.1007/978-3-540-89330-1_11. 170

David G. Clarke, John M. Potter, and James Noble. Ownership types for
flexible alias protection. SIGPLAN Not., 33(10):48–64, October 1998. ISSN
0362-1340. doi: 10.1145/286942.286947. 133

John Clements and Matthias Felleisen. A tail-recursive machine with stack
inspection. ACM Trans. Program. Lang. Syst., 26(6):1029–1052, November
2004. ISSN 0164-0925. doi: 10.1145/1034774.1034778. 16

Cliff Click, Gil Tene, and Michael Wolf. The pauseless gc algorithm. In VEE

’05: Proceedings of the 1st ACM/USENIX international conference on Virtual ex-

ecution environments, pages 46–56, New York, NY, USA, 2005. ACM. ISBN
1-59593-047-7. doi: 10.1145/1064979.1064988. 102

Iain D. Craig. Virtual Machines. Springer-Verlag, London, 2006. ISBN 978-1-
85233-969-2. 14

275

http://www.cincomsmalltalk.com/CincomSmalltalkWiki/VisualWorks+7+White+Paper
http://www.cincomsmalltalk.com/CincomSmalltalkWiki/VisualWorks+7+White+Paper

References

Koen De Bosschere. Process-based parallel logic programming: A survey of
the basic issues. Journal of Systems and Software, 39(1):71 – 82, 1997. ISSN
0164-1212. doi: 10.1016/S0164-1212(96)00164-1. 4, 58, 59

Nick De Cooman. A type system for organizing the object soup in ambient-
oriented applications. Master thesis, Software Languages Lab, Vrije Univer-
siteit Brussel, August 2012. 134

Joeri De Koster, Stefan Marr, and Theo D’Hondt. Synchronization views for
event-loop actors. In Proceedings of the 17th ACM SIGPLAN symposium on

Principles and Practice of Parallel Programming, PPoPP ’12, pages 317–318,
New York, NY, USA, February 2012. ACM. doi: 10.1145/2145816.2145873.
(Poster). 10, 171

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing
on large clusters. In Proceedings of the 6th conference on Symposium on Opeart-

ing Systems Design & Implementation - Volume 6, OSDI’04, pages 137–149,
Berkeley, CA, USA, 2004. USENIX Association. 35

Brian Demsky and Patrick Lam. Views: object-inspired concurrency control.
In Proc. of ICSE’10, 2010. ISBN 978-1-60558-719-6. doi: 10.1145/1806799.
1806858. 59

ECMA International. Standard ECMA-334 - C# Language Specification. 4 edition,
June 2006. URL http://www.ecma-international.org/publications/st

andards/Ecma-334.htm. 27

ECMA International. Standard ECMA-335 - Common Language Infrastructure

(CLI). Geneva, Switzerland, 5 edition, December 2010. URL http://www.e

cma-international.org/publications/standards/Ecma-335.htm. 42, 45

ECMA International. Standard ECMA-262 - ECMAScript Language Specification.
5.1 edition, June 2011. URL http://www.ecma-international.org/publi

cations/standards/Ecma-262.htm. 42, 51

Tarek A. El-Ghazawi, François Cantonnet, Yiyi Yao, Smita Annareddy, and
Ahmed S. Mohamed. Benchmarking parallel compilers: A upc case study.
Future Generation Computer Systems, 22(7):764 – 775, 2006. ISSN 0167-739X.
doi: 10.1016/j.future.2006.02.002. 61

Khaled El Emam, Saïda Benlarbi, Nishith Goel, and Shesh N. Rai. The con-
founding effect of class size on the validity of object-oriented metrics. IEEE

276

http://www.ecma-international.org/publications/standards/Ecma-334.htm
http://www.ecma-international.org/publications/standards/Ecma-334.htm
http://www.ecma-international.org/publications/standards/Ecma-335.htm
http://www.ecma-international.org/publications/standards/Ecma-335.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm

References

Transactions on Software Engineering, 27(7):630 –650, July 2001. ISSN 0098-
5589. doi: 10.1109/32.935855. 140, 162

Johan Fabry and Daniel Galdames. Phantom: a modern aspect language for
pharo smalltalk. Software: Practice and Experience, pages n/a–n/a, 2012. ISSN
1097-024X. doi: 10.1002/spe.2117. 189

Philip J. Fleming and John J. Wallace. How not to lie with statistics: The
correct way to summarize benchmark results. Commun. ACM, 29:218–221,
March 1986. ISSN 0001-0782. doi: 10.1145/5666.5673. 209, 229

Michael J. Flynn. Very high-speed computing systems. Proceedings of the IEEE,
54(12):1901 – 1909, December 1966. ISSN 0018-9219. doi: 10.1109/PROC.
1966.5273. 24, 25, 35

Bertil Folliot, Ian Piumarta, and Fabio Riccardi. A dynamically configurable,
multi-language execution platform. In Proceedings of the 8th ACM SIGOPS

European workshop on Support for composing distributed applications, EW 8,
pages 175–181, New York, NY, USA, 1998. ACM. doi: 10.1145/319195.
319222. 16

Cédric Fournet and Andrew D. Gordon. Stack inspection: Theory and vari-
ants. ACM Trans. Program. Lang. Syst., 25(3):360–399, May 2003. ISSN 0164-
0925. doi: 10.1145/641909.641912. 16

Daniel P. Friedman and Mitchell Wand. Reification: Reflection without meta-
physics. In Proceedings of the 1984 ACM Symposium on LISP and functional pro-

gramming, LFP ’84, pages 348–355, New York, NY, USA, 1984. ACM. ISBN
0-89791-142-3. doi: 10.1145/800055.802051. 110

Matteo Frigo, Pablo Halpern, Charles E. Leiserson, and Stephen Lewin-Berlin.
Reducers and other cilk++ hyperobjects. In Proceedings of the twenty-first

annual symposium on Parallelism in algorithms and architectures, SPAA ’09,
pages 79–90, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-606-9.
doi: 10.1145/1583991.1584017. 34

Andreas Gal, Christian W. Probst, and Michael Franz. Hotpathvm: An effec-
tive jit compiler for resource-constrained devices. In Proc. of VEE’06, pages
144–153. ACM, 2006. ISBN 1-59593-332-6. doi: 10.1145/1134760.1134780.
244

277

References

Yaoqing Gao and Chung Kwong Yuen. A survey of implementations of con-
current, parallel and distributed smalltalk. SIGPLAN Not., 28(9):29–35, 1993.
ISSN 0362-1340. doi: 10.1145/165364.165375. 100

Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek,
and Vaidy Sunderam. PVM: Parallel Virtual Machine—A Users’ Guide and

Tutorial for Networked Parallel Computing. MIT Press, Cambridge, Mass., 1994.
ISBN 0-262-57108-0. 42

David Gelernter. Generative communication in linda. ACM TOPLAS, 7:80–
112, January 1985. ISSN 0164-0925. doi: 10.1145/2363.2433. 59

Andy Georges, Dries Buytaert, and Lieven Eeckhout. Statistically rigorous
java performance evaluation. SIGPLAN Not., 42(10):57–76, 2007. ISSN 0362-
1340. doi: 10.1145/1297105.1297033. 207, 229

Adele Goldberg and David Robson. Smalltalk-80: The Language and its Im-

plementation. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1983. ISBN 0201113716. 27, 48, 92, 100, 105, 110

James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley. The Java

Language Specification. California, USA, java se 7 edition edition, February
2012. 27, 46, 47, 59, 92

K John Gough. Stacking them up: a comparison of virtual machines. Aust.

Comput. Sci. Commun., 23(4):55–61, January 2001. doi: 10.1145/545615.
545603. 45

John D. Mc Gregor. Ecosystems. Journal of Object Technology, 8(6):7–16,
September-October 2009. 14

Dan Grossman. A sophomoric introduction to shared-memory paral-
lelism and concurrency. Lecture notes, Department of Computer Sci-
ence & Engineering, University of Washington, AC101 Paul G. Allen
Center, Box 352350, 185 Stevens Way, Seattle, WA 98195-2350, December
2012. URL http://homes.cs.washington.edu/~djg/teachingMaterials/s

pac/sophomoricParallelismAndConcurrency.pdf. 22

Dan Grossman and Ruth E. Anderson. Introducing parallelism and con-
currency in the data structures course. In Proceedings of the 43rd ACM

technical symposium on Computer Science Education, SIGCSE ’12, pages 505–
510, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1098-7. doi:
10.1145/2157136.2157285. 22

278

http://homes.cs.washington.edu/~djg/teachingMaterials/spac/sophomoricParallelismAndConcurrency.pdf
http://homes.cs.washington.edu/~djg/teachingMaterials/spac/sophomoricParallelismAndConcurrency.pdf

References

Gopal Gupta, Enrico Pontelli, Khayri A. M. Ali, Mats Carlsson, and Manuel V.
Hermenegildo. Parallel execution of prolog programs: A survey. ACM

Trans. Program. Lang. Syst., 23(4):472–602, July 2001. ISSN 0164-0925. doi:
10.1145/504083.504085. 4, 58, 59

Rajiv Gupta and Charles R. Hill. A scalable implementation of barrier syn-
chronization using an adaptive combining tree. International Journal of Par-

allel Programming, 18(3):161–180, June 1989. 27

Maurice H. Halstead. Elements of Software Science. Elsevier, New York, 1977.
ISBN 0-4440-0205-7. 140

Robert H. Halstead, Jr. Multilisp: a language for concurrent symbolic com-
putation. ACM Trans. Program. Lang. Syst., 7:501–538, October 1985. ISSN
0164-0925. doi: 10.1145/4472.4478. 59

Tim Harris. An extensible virtual machine architecture. In Proceedings of

the OOPSLA’99 Workshop on Simplicity, Performance and Portability in Virtual

Machine Design, November 1999. 16

Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy. Com-
posable memory transactions. In Proceedings of the tenth ACM SIGPLAN

symposium on Principles and practice of parallel programming, PPoPP ’05,
pages 48–60, New York, NY, USA, 2005. ACM. ISBN 1-59593-080-9. doi:
10.1145/1065944.1065952. 50

Michael Haupt, Bram Adams, Stijn Timbermont, Celina Gibbs, Yvonne Coady,
and Robert Hirschfeld. Disentangling virtual machine architecture. IET

Software, Special Issue on Domain-Specific Aspect Languages, 3(3):201–218, June
2009. ISSN 1751-8806. doi: 10.1049/iet-sen.2007.0121. 16

Michael Haupt, Robert Hirschfeld, Tobias Pape, Gregor Gabrysiak, Stefan
Marr, Arne Bergmann, Arvid Heise, Matthias Kleine, and Robert Krahn.
The som family: Virtual machines for teaching and research. In Proceedings

of the 15th Annual Conference on Innovation and Technology in Computer Science

Education (ITiCSE), pages 18–22. ACM Press, June 2010. ISBN 978-1-60558-
729-5. doi: 10.1145/1822090.1822098. 11

Michael Haupt, Stefan Marr, and Robert Hirschfeld. Csom/pl: A virtual ma-
chine product line. Journal of Object Technology, 10(12):1–30, 2011a. ISSN
1660-1769. doi: 10.5381/jot.2011.10.1.a12. 11

279

References

Michael Haupt, Stefan Marr, and Robert Hirschfeld. Csom/pl: A virtual ma-
chine product line. Technical Report 48, Hasso Plattner Institute, Am Neuen
Palais 10, 14469 Potsdam, April 2011b. 11

John L. Hennessy and David A. Patterson. Computer Architecture - A Quan-

titative Approach. Morgan Kaufmann, fourth edition, 2007. 17, 18, 66, 171,
229

Maurice Herlihy. A methodology for implementing highly concurrent data
objects. ACM Trans. Program. Lang. Syst., 15(5):745–770, November 1993.
ISSN 0164-0925. doi: 10.1145/161468.161469. 59

Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Mor-
gan Kaufmann, April 2008. ISBN 0123705916. 30

Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness
condition for concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):
463–492, July 1990. ISSN 0164-0925. doi: 10.1145/78969.78972. 19

Charlotte Herzeel and Pascal Costanza. Dynamic parallelization of recur-
sive code: part 1: managing control flow interactions with the continu-
ator. SIGPLAN Not., 45:377–396, October 2010. ISSN 0362-1340. doi:
10.1145/1932682.1869491. 66, 171

Charlotte Herzeel, Pascal Costanza, and Theo D’Hondt. An extensible inter-
preter framework for software transactional memory. Journal of Universal

Computer Science, 16(2):221–245, January 2010. 29

Carl Hewitt. Actor model of computation: Scalable robust information
systems. Technical Report v24, July 2012. URL http://arxiv.org/abs

/1008.1459v24. 31

Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular actor for-
malism for artificial intelligence. In IJCAI’73: Proceedings of the 3rd Interna-

tional Joint Conference on Artificial Intelligence, pages 235–245, San Francisco,
CA, USA, 1973. Morgan Kaufmann Publishers Inc. 31, 32

Mark D. Hill and Michael R. Marty. Amdahl’s law in the multicore era. Com-

puter, 41(7):33–38, 2008. ISSN 0018-9162. doi: 10.1109/MC.2008.209. 17

Erik Hilsdale and Jim Hugunin. Advice weaving in aspectj. In Proceedings of

the 3rd international conference on Aspect-oriented software development, AOSD

280

http://arxiv.org/abs/1008.1459v24
http://arxiv.org/abs/1008.1459v24

References

’04, pages 26–35, New York, NY, USA, 2004. ACM. ISBN 1-58113-842-3. doi:
10.1145/976270.976276. 182

Robert Hirschfeld. Aspects - aspect-oriented programming with squeak. In
Mehmet Aksit, Mira Mezini, and Rainer Unland, editors, NetObjectDays,
volume 2591 of Lecture Notes in Computer Science, pages 216–232. Springer,
2002. ISBN 3-540-00737-7. doi: 10.1007/3-540-36557-5_17. 189

C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):
666–677, 1978. ISSN 0001-0782. doi: 10.1145/359576.359585. 32, 49, 75, 171

C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall International
Series in Computer Science. Prentice Hall, 1985. ISBN 9780131532892. 32

Kevin J. Hoffman, Harrison Metzger, and Patrick Eugster. Ribbons: A partially
shared memory programming model. SIGPLAN Not., 46:289–306, October
2011. ISSN 0362-1340. doi: 10.1145/2076021.2048091. 107, 244

Urs Hölzle, Craig Chambers, and David Ungar. Optimizing dynamically-
typed object-oriented languages with polymorphic inline caches. In ECOOP

’91: Proceedings of the European Conference on Object-Oriented Programming,
pages 21–38, London, UK, 1991. Springer-Verlag. ISBN 3-540-54262-0. doi:
10.1007/BFb0057013. 221

Urs Hölzle, Craig Chambers, and David Ungar. Debugging optimized code
with dynamic deoptimization. In Proceedings of the ACM SIGPLAN 1992

conference on Programming language design and implementation, PLDI ’92,
pages 32–43, New York, NY, USA, 1992. ACM. ISBN 0-89791-475-9. doi:
10.1145/143095.143114. 244

Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. Back
to the future: The story of squeak, a practical smalltalk written in itself.
SIGPLAN Not., 32(10):318–326, 1997. ISSN 0362-1340. doi: 10.1145/263700.
263754. 42

Intel Corporation. Intel64 and IA-32 Architectures Software Developer Man-
uals. Manual, 2012. URL http://www.intel.com/content/www/us/en/pro

cessors/architectures-software-developer-manuals.html. 20

ISO. ISO/IEC 9899:2011 Information technology — Programming languages —

C. International Organization for Standardization, Geneva, Switzerland,
December 2011. 27, 59

281

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

References

ISO. ISO/IEC 14882:2011 Information technology — Programming languages —

C++. International Organization for Standardization, Geneva, Switzerland,
February 2012. 27, 59

G. Itzstein and Mark Jasiunas. On implementing high level concurrency in
java. In Amos Omondi and Stanislav Sedukhin, editors, Advances in Com-

puter Systems Architecture, volume 2823 of Lecture Notes in Computer Science,
pages 151–165. Springer Berlin / Heidelberg, 2003. ISBN 978-3-540-20122-9.
doi: 10.1007/978-3-540-39864-6_13. 59, 80

Graylin Jay, Joanne E. Hale, Randy K. Smith, David P. Hale, Nicholas A. Kraft,
and Charles Ward. Cyclomatic complexity and lines of code: Empirical
evidence of a stable linear relationship. JSEA, 2(3):137–143, 2009. doi: 10.
4236/jsea.2009.23020. 140, 162

Charles R. Johns and Daniel A. Brokenshire. Introduction to the cell broad-
band engine architecture. IBM Journal of Research and Development, 51(5):
503–519, 2007. ISSN 0018-8646. 171

Richard Jones, Antony Hosking, and Eliot Moss. The Garbage Collection Hand-

book: The Art of Automatic Memory Management. Chapman & Hall/CRC, 1st
edition, 2011. ISBN 1420082795, 9781420082791. 3, 64, 198, 245

Claude Kaiser and Jean-François Pradat-Peyre. Chameneos, a concurrency
game for java, ada and others. In ACS/IEEE International Conference on Com-

puter Systems and Applications, 2003. Book of Abstracts., page 62, January 2003.
doi: 10.1109/AICCSA.2003.1227495. 265

Peter Kampstra. Beanplot: A boxplot alternative for visual comparison of
distributions. Journal of Statistical Software, Code Snippets, 28(1):1–9, October
2008. ISSN 1548-7660. 209

Rajesh K. Karmani, Amin Shali, and Gul Agha. Actor frameworks for the jvm
platform: A comparative analysis. In Proc. of PPPJ’09, pages 11–20. ACM,
2009. ISBN 978-1-60558-598-7. doi: 10.1145/1596655.1596658. 3, 37, 71, 72,
73, 74, 75, 76, 77, 157, 204

Gregor Kiczales. Beyond the black box: Open implementation. IEEE Software,
13(1):8–11, 1996. ISSN 0740-7459. doi: 10.1109/52.476280. 110

Gregor Kiczales, Jim des Rivières, and Daniel G. Bobrow. The Art of the Meta-

object Protocol. MIT, 1991. ISBN 978-0-26261-074-2. 109, 110, 111, 134

282

References

Gregor Kiczales, John Lamping, Christina Videira Lopes, Chris Maeda,
Anurag Mendhekar, and Gail Murphy. Open implementation design guide-
lines. In ICSE ’97: Proceedings of the 19th international conference on Software

engineering, pages 481–490, New York, NY, USA, 1997. ACM. ISBN 0-89791-
914-9. doi: 10.1145/253228.253431. 80, 110

Vivek Kumar, Daniel Frampton, Stephen M Blackburn, David Grove, and
Olivier Tardieu. Work-stealing without the baggage. In Proceedings of the

2012 ACM SIGPLAN Conference on Object-Oriented Programming Systems, Lan-

guages & Applications (OOPSLA 2012), Tucson, AZ, October 19-26, 2012, vol-
ume 47, pages 297–314. ACM, October 2012. doi: 10.1145/2398857.2384639.
20, 63

Ralf Lämmel. Google’s MapReduce Programming Model - Revisited. SCP, 70

(1):1 – 30, 2008. ISSN 0167-6423. doi: 10.1016/j.scico.2007.07.001. 34, 59, 160,
171

R. Greg Lavender and Douglas C. Schmidt. Active object: An object behav-
ioral pattern for concurrent programming. In Pattern Languages of Program

Design 2, pages 483–499. Addison-Wesley Longman Publishing Co., Inc.,
1996. ISBN 0-201-895277. 27, 59

Doug Lea. Concurrent Programming in Java: Design Principles and Patterns. The
Java Series. Addison Wesley, Reading, MA, 1999. ISBN 9780201310092. 18

Doug Lea. A java fork/join framework. In JAVA ’00: Proceedings of the ACM

2000 conference on Java Grande, pages 36–43. ACM, 2000. ISBN 1-58113-288-3.
doi: 10.1145/337449.337465. 34, 37

Edward A. Lee. The problem with threads. Computer, 39(5):33–42, 2006. ISSN
0018-9162. doi: 10.1109/MC.2006.180. 36

K. Leino, Peter Müller, and Angela Wallenburg. Flexible immutability with
frozen objects. In Natarajan Shankar and Jim Woodcock, editors, Verified

Software: Theories, Tools, Experiments, volume 5295 of Lecture Notes in Com-

puter Science, pages 192–208. Springer, Berlin / Heidelberg, 2008. ISBN
978-3-540-87872-8. doi: 10.1007/978-3-540-87873-5_17. 134

Yun Calvin Lin and Lawrence Snyder. Principles of Parallel Programming. Pear-
son/Addison Wesley, Boston, Mass, 2008. ISBN 978-0321487902. 18

283

References

Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The Java™ Vir-

tual Machine Specification. Oracle America, Inc., java se 7 edition edition,
February 2012. 42, 46

Roberto Lublinerman, Jisheng Zhao, Zoran Budimlić, Swarat Chaudhuri, and
Vivek Sarkar. Delegated isolation. SIGPLAN Not., 46:885–902, October 2011.
ISSN 0362-1340. doi: 10.1145/2076021.2048133. 59

Lucent Technologies Inc and Vita Nuova Limited. Dis virtual machine speci-
fication. Technical report, January 2003. URL http://doc.cat-v.org/inf

erno/4th_edition/dis_VM_specification. 32, 42, 49

Ewing L. Lusk and Katherine A. Yelick. Languages for high-productivity
computing: the darpa hpcs language project. Parallel Processing Letters, 17

(1):89–102, 2007. doi: 10.1142/S0129626407002892. 33

Pattie Maes. Concepts and experiments in computational reflection. In Confer-

ence proceedings on Object-oriented programming systems, languages and applica-

tions, OOPSLA ’87, pages 147–155, New York, NY, USA, 1987. ACM. ISBN
0-89791-247-0. doi: 10.1145/38765.38821. 111

Antoine Marot. Preserving the Separation of Concerns while Composing Aspects

with Reflective AOP. Phd thesis, Université Libre De Bruxelles, October 2011.
189

Stefan Marr. Encapsulation and locality: A foundation for concurrency
support in multi-language virtual machines? In SPLASH ’10: Proceed-

ings of the ACM International Conference Companion on Object Oriented Pro-

gramming Systems Languages and Applications Companion, pages 221–222,
New York, NY, USA, October 2010. ACM. ISBN 978-1-4503-0240-1. doi:
10.1145/1869542.1869583. 9

Stefan Marr and Theo D’Hondt. Many-core virtual machines: Decoupling
abstract from concrete concurrency, December 2009. 9

Stefan Marr and Theo D’Hondt. Many-core virtual machines: Decoupling
abstract from concrete concurrency. In SPLASH ’10: Proceedings of the ACM

International Conference Companion on Object Oriented Programming Systems

Languages and Applications Companion, pages 239–240, October 2010. ISBN
978-1-4503-0240-1. doi: 10.1145/1869542.1869593. 9

284

http://doc.cat-v.org/inferno/4th_edition/dis_VM_specification
http://doc.cat-v.org/inferno/4th_edition/dis_VM_specification

References

Stefan Marr and Theo D’Hondt. Identifying a unifying mechanism for the
implementation of concurrency abstractions on multi-language virtual ma-
chines. In Objects, Models, Components, Patterns, 50th International Conference,

TOOLS 2012, volume 7304 of Lecture Notes in Computer Science, pages 171–
186, Berlin / Heidelberg, May 2012. Springer. ISBN 978-3-642-30560-3. doi:
10.1007/978-3-642-30561-0_13. 8, 9, 182, 202

Stefan Marr, Michael Haupt, and Theo D’Hondt. Intermediate language de-
sign of high-level language virtual machines: Towards comprehensive con-
currency support. In Proc. VMIL’09 Workshop, pages 3:1–3:2. ACM, October
2009. ISBN 978-1-60558-874-2. doi: 10.1145/1711506.1711509. (extended
abstract).

Stefan Marr, Michael Haupt, Stijn Timbermont, Bram Adams, Theo D’Hondt,
Pascal Costanza, and Wolfgang De Meuter. Virtual machine support for
many-core architectures: Decoupling abstract from concrete concurrency
models. In Second International Workshop on Programming Languages Ap-

proaches to Concurrency and Communication-cEntric Software, volume 17 of
Electronic Proceedings in Theoretical Computer Science, pages 63–77, York, UK,
February 2010a. 9, 71

Stefan Marr, Stijn Verhaegen, Bruno De Fraine, Theo D’Hondt, and Wolf-
gang De Meuter. Insertion tree phasers: Efficient and scalable barrier syn-
chronization for fine-grained parallelism. In Proceedings of the 12th IEEE

International Conference on High Performance Computing and Communications,
pages 130–137. IEEE Computer Society, September 2010b. ISBN 978-0-7695-
4214-0. doi: 10.1109/HPCC.2010.30. Best Student Paper Award. 9, 22, 62

Stefan Marr, Mattias De Wael, Michael Haupt, and Theo D’Hondt. Which
problems does a multi-language virtual machine need to solve in the mul-
ticore/manycore era? In Proceedings of the 5th Workshop on Virtual Machines

and Intermediate Languages, VMIL ’11, pages 341–348. ACM, October 2011a.
ISBN 978-1-4503-1183-0. doi: 10.1145/2095050.2095104. 71, 72

Stefan Marr, David Ungar, and Theo D’Hondt. Evolving a virtual machine to
execute applications fully in parallel: Approaching the multi- and manycore
challenge with a simplified design. (unpublished), May 2011b. 11, 71

Stefan Marr, Jens Nicolay, Tom Van Cutsem, and Theo D’Hondt. Modularity
and conventions for maintainable concurrent language implementations: A
review of our experiences and practices. In Proceedings of the 2nd Workshop

285

References

on Modularity In Systems Software (MISS’2012), MISS’12. ACM, March 2012.
doi: 10.1145/2162024.2162031. 10, 71

Hidehiko Masuhara, Satoshi Matsuoka, Takuo Watanabe, and Akinori
Yonezawa. Object-oriented concurrent reflective languages can be imple-
mented efficiently. In conference proceedings on Object-oriented programming

systems, languages, and applications, OOPSLA ’92, pages 127–144, New York,
NY, USA, 1992. ACM. ISBN 0-201-53372-3. doi: 10.1145/141936.141948. 132

David May. Occam. SIGPLAN Not., 18(4):69–79, April 1983. ISSN 0362-1340.
doi: 10.1145/948176.948183. 32

Thomas J. McCabe. A complexity measure. Software Engineering, IEEE Trans-

actions on, SE-2(4):308 – 320, dec. 1976. ISSN 0098-5589. doi: 10.1109/TSE.
1976.233837. 140

Michael Mehl. The Oz Virtual Machine - Records, Transients, and Deep Guards.
PhD thesis, Technische Fakultät der Universität des Saarlandes, 1999. 59,
171

Message Passing Interface Forum. Mpi: A message-passing interface stan-
dard, version 2.2. Specification, September 2009. URL http://www.mpi-

forum.org/docs/mpi-2.2/mpi22-report.pdf. 22, 30, 32, 33, 59

Pierre Michaud, André Seznec, and Stéphan Jourdan. An exploration of in-
struction fetch requirement in out-of-order superscalar processors. Interna-

tional Journal of Parallel Programming, 29(1):35–58, 2001. ISSN 0885-7458. doi:
10.1023/A:1026431920605. 17

Mark S. Miller, E. Dean Tribble, and Jonathan Shapiro. Concurrency among
strangers: Programming in e as plan coordination. In R. De Nicola and
D. Sangiorgi, editors, Symposium on Trustworthy Global Computing, volume
3705 of LNCS, pages 195–229. Springer, April 2005. doi: 10.1007/11580850_
12. 31, 171

Eliot Miranda. Context management in visualworks 5i. In OOPSLA’99 Work-

shop on Simplicity, Performance and Portability in Virtual Machine Design, Den-
ver, CO, November 1999. 100

Marcus Mitch and Akera Atsushi. Eniac’s recessive gene. Penn Printout, 12

(4), March 1996. 2

286

http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf
http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf

References

S. E. Mitchell, A. Burns, and A. J. Wellings. Developing a real-time metaobject
protocol. Object-Oriented Real-Time Dependable Systems, IEEE International

Workshop on, 0:323, 1997. doi: 10.1109/WORDS.1997.609974. 112, 132, 133

Benjamin Morandi, Sebastian S. Bauer, and Bertrand Meyer. Scoop - a
contract-based concurrent object-oriented programming model. In Peter
Müller, editor, Advanced Lectures on Software Engineering, LASER Summer

School 2007/2008, volume 6029 of LNCS, pages 41–90. Springer, 2008. ISBN
978-3-642-13009-0. doi: 10.1007/978-3-642-13010-6_3. 59

Michelle J. Moravan, Jayaram Bobba, Kevin E. Moore, Luke Yen, Mark D.
Hill, Ben Liblit, Michael M. Swift, and David A. Wood. Supporting nested
transactional memory in logtm. SIGPLAN Not., 41(11):359–370, October
2006. ISSN 0362-1340. doi: 10.1145/1168918.1168902. 30

Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F. Sweeney.
Producing wrong data without doing anything obviously wrong! SIGPLAN

Not., 44(3):265–276, March 2009. ISSN 0362-1340. doi: 10.1145/1508284.
1508275. 229, 230

Behrooz Nobakht, Frank S. de Boer, Mohammad Mahdi Jaghoori, and Rudolf
Schlatte. Programming and deployment of active objects with application-
level scheduling. In Proceedings of the 27th Annual ACM Symposium on Ap-

plied Computing, SAC ’12, pages 1883–1888, New York, NY, USA, 2012. ACM.
ISBN 978-1-4503-0857-1. doi: 10.1145/2231936.2232086. 170

Johan Nordlander, Mark P. Jones, Magnus Carlsson, Richard B. Kieburtz, and
Andrew P. Black. Reactive objects. In Symposium on Object-Oriented Real-

Time Distributed Computing, pages 155–158, 2002. 59

Robert W. Numrich and John Reid. Co-array fortran for parallel programming.
SIGPLAN Fortran Forum, 17(2):1–31, August 1998. ISSN 1061-7264. doi:
10.1145/289918.289920. 30

Nathaniel Nystrom, Michael Clarkson, and Andrew Myers. Polyglot: An
extensible compiler framework for java. In Görel Hedin, editor, Compiler

Construction, volume 2622 of Lecture Notes in Computer Science, pages 138–
152. Springer, Berlin / Heidelberg, 2003. ISBN 978-3-540-00904-7. doi:
10.1007/3-540-36579-6_11. 188

OpenMP Architecture Review Board. Openmp application program interface.
version 3.1. Specification, 2011. URL http://www.openmp.org/mp-docume

nts/OpenMP3.1.pdf. 22, 59

287

http://www.openmp.org/mp-documents/OpenMP3.1.pdf
http://www.openmp.org/mp-documents/OpenMP3.1.pdf

References

Johan Östlund, Tobias Wrigstad, Dave Clarke, and Beatrice Åkerblom. Own-
ership, uniqueness, and immutability. In Richard F. Paige, Bertrand Meyer,
Wil Aalst, John Mylopoulos, Michael Rosemann, Michael J. Shaw, and
Clemens Szyperski, editors, Objects, Components, Models and Patterns, vol-
ume 11 of Lecture Notes in Business Information Processing, pages 178–197.
Springer, Berlin Heidelberg, 2008. ISBN 978-3-540-69824-1. doi: 10.1007/
978-3-540-69824-1_11. 134

Andreas Paepcke. User-level language crafting: Introducing the clos meta-
object protocol. In Object-Oriented Programming, chapter User-level lan-
guage crafting: introducing the CLOS metaobject protocol, pages 65–99.
MIT Press, Cambridge, MA, USA, 1993. ISBN 0-262-16136-2. 111

Joseph Pallas and David Ungar. Multiprocessor smalltalk: A case study of a
multiprocessor-based programming environment. In PLDI ’88: Proceedings

of the ACM SIGPLAN 1988 conference on Programming Language design and

Implementation, pages 268–277, New York, NY, USA, 1988. ACM. ISBN 0-
89791-269-1. doi: 10.1145/53990.54017. 100

Jonathan Parri, Daniel Shapiro, Miodrag Bolic, and Voicu Groza. Returning
control to the programmer: Simd intrinsics for virtual machines. Queue, 9(2):
30:30–30:37, February 2011. ISSN 1542-7730. doi: 10.1145/1943176.1945954.
64

Simon Peyton Jones, Andrew Gordon, and Sigbjorn Finne. Concurrent haskell.
In Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, POPL ’96, pages 295–308, New York, NY, USA, 1996.
ACM. ISBN 0-89791-769-3. doi: 10.1145/237721.237794. 50

Ravi Rajwar and James R. Goodman. Speculative lock elision: Enabling
highly concurrent multithreaded execution. In Proceedings of the 34th annual

ACM/IEEE international symposium on Microarchitecture, MICRO 34, pages
294–305, Washington, DC, USA, 2001. IEEE Computer Society. ISBN 0-7695-
1369-7. 58

Thierry Renaux, Lode Hoste, Stefan Marr, and Wolfgang De Meuter. Paral-
lel gesture recognition with soft real-time guarantees. In Proceedings of the

2nd edition on Programming Systems, Languages and Applications based on Ac-

tors, Agents, and Decentralized Control Abstractions, SPLASH ’12 Workshops,
pages 35–46, October 2012. ISBN 978-1-4503-1630-9. doi: 10.1145/2414639.
2414646. 10, 171

288

References

Lukas Renggli and Oscar Nierstrasz. Transactional memory for smalltalk. In
ICDL ’07: Proceedings of the 2007 international conference on Dynamic languages,
pages 207–221. ACM, 2007. ISBN 978-1-60558-084-5. doi: 10.1145/1352678.
1352692. 100, 148, 149, 151, 164, 182, 185, 186, 188

John H. Reppy, Claudio V. Russo, and Yingqi Xiao. Parallel concurrent ml. In
Proceedings of the 14th ACM SIGPLAN international conference on Functional

programming, ICFP ’09, pages 257–268, New York, NY, USA, August 2009.
ACM. ISBN 978-1-60558-332-7. doi: 10.1145/1631687.1596588. 59

Jorge Ressia, Lukas Renggli, Tudor Gîrba, and Oscar Nierstrasz. Run-time
evolution through explicit meta-objects. In Proceedings of the 5th Workshop

on Models@run.time at the ACM/IEEE 13th International Conference on Model

Driven Engineering Languages and Systems (MODELS 2010), pages 37–48,
Oslo, Norway, October 2010. 111, 131

Luis Humberto Rodriguez Jr. Coarse-grained parallelism using metaobject
protocols. Master thesis, MIT, September 1991. 111

Raúl Rojas. Konrad zuse’s legacy: The architecture of the z1 and z3. Annals of

the History of Computing, IEEE, 19(2):5 –16, April-June 1997. ISSN 1058-6180.
doi: 10.1109/85.586067. 2

John R. Rose. Bytecodes meet combinators: Invokedynamic on the jvm. In
VMIL ’09: Proceedings of the Third Workshop on Virtual Machines and Inter-

mediate Languages, pages 1–11. ACM, 2009. ISBN 978-1-60558-874-2. doi:
10.1145/1711506.1711508. 3, 15, 42

David Röthlisberger, Marcus Denker, and Éric Tanter. Unanticipated par-
tial behavioral reflection: Adapting applications at runtime. Computer Lan-

guages, Systems & Structures, 34(2–3):46 – 65, 2008. ISSN 1477-8424. doi:
10.1016/j.cl.2007.05.001. Best Papers 2006 International Smalltalk Confer-
ence. 188

Israel J. Mojica Ruiz, Meiyappan Nagappan, Bram Adams, and Ahmed E.
Hassan. Understanding reuse in the android market. In Proceedings of the

20th IEEE International Conference on Program Comprehension (ICPC), pages
113–122, Passau, Germany, June 2012. doi: 10.1109/ICPC.2012.6240477. 14

Vijay Saraswat, George Almasi, Ganesh Bikshandi, Calin Cascaval, David
Cunningham, David Grove, Sreedhar Kodali, Igor Peshansky, and Olivier

289

References

Tardieu. The asynchronous partitioned global address space model. Tech-
nical report, Toronto, Canada, June 2010. 75

Vijay Saraswat, Bard Bloom, Igor Peshansky, Olivier Tardieu, and David
Grove. X10 language specification. Technical report, IBM, January
2012. URL http://x10.sourceforge.net/documentation/languagespec/

x10-222.pdf. 33, 75

Jan Schäfer and Arnd Poetzsch-Heffter. Jcobox: Generalizing active objects
to concurrent components. In Theo D’Hondt, editor, Proc. of ECOOP’10,
volume 6183 of LNCS, pages 275–299. Springer, 2010. ISBN 978-3-642-14106-
5. doi: 10.1007/978-3-642-14107-2_13. 59, 73, 153, 154, 203

Michel Schinz and Martin Odersky. Tail call elimination on the java virtual
machine. In Proc. ACM SIGPLAN BABEL’01 Workshop on Multi-Language

Infrastructure and Interoperability., volume 59 of Electronic Notes in Theoretical

Computer Science, pages 158 – 171, 2001. doi: 10.1016/S1571-0661(05)80459-1.
BABEL’01, First International Workshop on Multi-Language Infrastructure
and Interoperability (Satellite Event of PLI 2001). 16

Hans Schippers, Tom Van Cutsem, Stefan Marr, Michael Haupt, and Robert
Hirschfeld. Towards an actor-based concurrent machine model. In Proceed-

ings of the Fourth Workshop on the Implementation, Compilation, Optimization

of Object-Oriented Languages, Programs and Systems, pages 4–9, New York,
NY, USA, July 2009. ACM. ISBN 978-1-60558-541-3. doi: 10.1145/1565824.
1565825. 10

Douglas C. Schmidt. Pattern-oriented software architecture volume 2: Pat-
terns for concurrent and networked objects, 2000. 170

Christophe Scholliers, Éric Tanter, and Wolfgang De Meuter. Parallel actor
monitors. In 14th Brazilian Symposium on Programming Languages, 2010. 59,
171

Arnold Schwaighofer. Tail call optimization in the java hotspot(tm)
vm. Master thesis, Johannes Kepler Universität Linz, March
2009. URL http://www.ssw.uni-linz.ac.at/Research/Papers/Schwaigh

ofer09Master/schwaighofer09master.pdf. 16

Olivier Serres, Ahmad Anbar, Saumil G. Merchant, Abdullah Kayi, and
Tarek A. El-Ghazawi. Address translation optimization for unified parallel
c multi-dimensional arrays. In Parallel and Distributed Processing Workshops

290

http://x10.sourceforge.net/documentation/languagespec/x10-222.pdf
http://x10.sourceforge.net/documentation/languagespec/x10-222.pdf
http://www.ssw.uni-linz.ac.at/Research/Papers/Schwaighofer09Master/schwaighofer09master.pdf
http://www.ssw.uni-linz.ac.at/Research/Papers/Schwaighofer09Master/schwaighofer09master.pdf

References

and Phd Forum (IPDPSW), 2011 IEEE International Symposium on, pages 1191–
1198, May 2011. doi: 10.1109/IPDPS.2011.279. 62

Amin Shali and William R. Cook. Hybrid partial evaluation. In Proceedings of

the 2011 ACM international conference on Object oriented programming systems

languages and applications, OOPSLA ’11, pages 375–390, New York, NY, USA,
2011. ACM. ISBN 978-1-4503-0940-0. doi: 10.1145/2048066.2048098. 64

Nir Shavit. Data structures in the multicore age. Commun. ACM, 54(3):76–84,
March 2011. ISSN 0001-0782. doi: 10.1145/1897852.1897873. 20

Nir Shavit and Dan Touitou. Software transactional memory. In Proc. of

PODC’95. ACM, 1995a. ISBN 0-89791-710-3. doi: 10.1145/224964.224987.
29, 59

Nir Shavit and Dan Touitou. Elimination trees and the construction of pools
and stacks: Preliminary version. In Proceedings of the seventh annual ACM

symposium on Parallel algorithms and architectures, SPAA ’95, pages 54–63,
New York, NY, USA, 1995b. ACM. ISBN 0-89791-717-0. doi: 10.1145/215399.
215419. 19

Jun Shirako, David M. Peixotto, Vivek Sarkar, and William N. Scherer. Phasers:
A unified deadlock-free construct for collective and point-to-point synchro-
nization. In ICS’08: Proceedings of the 22nd annual international conference on

Supercomputing, page 277—288, New York, NY, USA, 2008. ACM. ISBN
978-1-60558-158-3. doi: 10.1145/1375527.1375568. 22, 27, 62

Abraham Silberschatz, Greg Gagne, and Peter Baer Galvin. Operating System

Concepts. Wiley, 6 edition, 2002. ISBN 0471250600. 230, 231

David B. Skillicorn and Domenico Talia. Models and languages for parallel
computation. ACM CSUR, 30:123–169, June 1998. ISSN 0360-0300. doi:
10.1145/280277.280278. 4, 58, 59

Brian Cantwell Smith. Reflection and semantics in lisp. In Proceedings of

the 11th ACM SIGACT-SIGPLAN symposium on Principles of programming lan-

guages, POPL ’84, pages 23–35, New York, NY, USA, 1984. ACM. ISBN
0-89791-125-3. doi: 10.1145/800017.800513. 174

James E. Smith and Ravi Nair. Virtual Machines: Versatile Platforms for Systems

and Processes. The Morgan Kaufmann Series in Computer Architecture and
Design. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2005.
ISBN 1558609105. 14

291

References

Matthew J. Sottile, Timothy G. Mattson, and Craig E. Rasmussen. Introduction

to Concurrency in Programming Languages. Chapman & Hall/CRC Press,
Boca Raton, 2010. ISBN 9781420072136. 19

Sriram Srinivasan and Alan Mycroft. Kilim: Isolation-typed actors for java.
In ECOOP 2008 – Object-Oriented Programming, pages 104–128, 2008. doi:
10.1007/978-3-540-70592-5_6. 73

Robert J. Stroud and Z. Wu. Using metaobject protocols to implement atomic
data types. In Proceedings of the 9th European Conference on Object-Oriented

Programming, ECOOP ’95, pages 168–189, London, UK, UK, 1995. Springer-
Verlag. ISBN 3-540-60160-0. 130

Venkat Subramaniam. Programming Concurrency on the JVM: Mastering Syn-

chronization, STM, and Actors. Pragmatic Bookshelf, Dallas, Tex., 2011. ISBN
9781934356760 193435676X. 18

Sun Microsystems, Inc. Multithreaded programming guide. Technical report,
4150 Network Circle, Santa Clara, CA 95054 U.S.A., September 2008. URL
http://docs.oracle.com/cd/E19253-01/816-5137/816-5137.pdf. 19

Herb Sutter. The free lunch is over: A fundamental turn toward concurrency
in software. Dr. Dobb’s Journal, 30(3):202–210, 2005. 36

Éric Tanter. Reflection and open implementations. Technical report, DCC,
University of Chile, Avenida Blanco Encalada 2120, Santiago, Chile, 2009.
URL http://www.dcc.uchile.cl/TR/2009/TR_DCC-20091123-013.pdf. 80,
111, 112, 130

Christian Thalinger and John Rose. Optimizing invokedynamic. In Proc. of

PPPJ’10, pages 1–9. ACM, 2010. ISBN 978-1-4503-0269-2. doi: 10.1145/
1852761.1852763. 3, 15, 42, 64, 187, 233, 245

William Thies, Michal Karczmarek, and Saman P. Amarasinghe. Streamit: A
language for streaming applications. In Proceedings of the 11th International

Conference on Compiler Construction, CC ’02, pages 179–196, London, UK,
UK, 2002. Springer-Verlag. ISBN 3-540-43369-4. 35, 59, 171

David A. Thomas, Wilf R. LaLonde, John Duimovich, Michael Wilson, Jeff
McAffer, and Brian Barry. Actra - a multitasking/multiprocessing smalltalk.
In OOPSLA/ECOOP ’88: Proceedings of the 1988 ACM SIGPLAN workshop on

Object-based concurrent programming, pages 87–90, New York, NY, USA, 1988.
ACM. ISBN 0-89791-304-3. doi: 10.1145/67386.67409. 100

292

http://docs.oracle.com/cd/E19253-01/816-5137/816-5137.pdf
http://www.dcc.uchile.cl/TR/2009/TR_DCC-20091123-013.pdf

References

David Ungar. Everything you know (about parallel programming)
is wrong!: A wild screed about the future, October 2011. URL
http://www.dynamic-languages-symposium.org/dls-11/program/me

dia/Ungar_2011_EverythingYouKnowAboutParallelProgrammingIsWrongA

WildScreedAboutTheFuture_Dls.pdf. 20

David Ungar and Sam S. Adams. Hosting an object heap on manycore hard-
ware: An exploration. In DLS ’09: Proceedings of the 5th symposium on Dy-

namic languages, pages 99–110, New York, NY, USA, 2009. ACM. ISBN
978-1-60558-769-1. doi: 10.1145/1640134.1640149. 11, 100, 101, 104, 106, 107

David Ungar and Sam S. Adams. Harnessing emergence for manycore pro-
gramming: Early experience integrating ensembles, adverbs, and object-
based inheritance. In Proceedings of the ACM international conference com-

panion on Object oriented programming systems languages and applications com-

panion, SPLASH ’10, pages 19–26, New York, NY, USA, 2010. ACM. ISBN
978-1-4503-0240-1. doi: 10.1145/1869542.1869546. 59, 104

UPC Consortium. Upc language specifications, v1.2. Tech Report LBNL-
59208, Lawrence Berkeley National Lab, 2005. URL http://www.gwu.edu

/~upc/publications/LBNL-59208.pdf. 30, 59

András Vajda and Per Stenstrom. Semantic information based speculative
parallel execution. In Wei Liu, Scott Mahlke, and Tin fook Ngai, editors,
Pespma 2010 - Workshop on Parallel Execution of Sequential Programs on Multi-

core Architecture, Saint Malo, France, 2010. 171

Jorge Vallejos. Modularising Context Dependency and Group Behaviour in

Ambient-oriented Programming. Phd thesis, Vrije Universiteit Brussel, July
2011. 112

Tom Van Cutsem. Ambient References: Object Designation in Mobile Ad Hoc

Networks. PhD thesis, Vrije Universiteit Brussel, Faculty of Sciences, Pro-
gramming Technology Lab, Pleinlaan 2, 1050 Elsene, Beligum, May 2008.
31

Tom Van Cutsem and Mark S. Miller. Proxies: Design principles for robust
object-oriented intercession apis. In Proc. of DLS’10, pages 59–72. ACM,
October 2010. doi: 10.1145/1899661.1869638. 111, 132, 154

Tom Van Cutsem, Stijn Mostinckx, Elisa Gonzalez Boix, Jessie Dedecker, and
Wolfgang De Meuter. Ambienttalk: Object-oriented event-driven program-

293

http://www.dynamic-languages-symposium.org/dls-11/program/media/Ungar_2011_EverythingYouKnowAboutParallelProgrammingIsWrongAWildScreedAboutTheFuture_Dls.pdf
http://www.dynamic-languages-symposium.org/dls-11/program/media/Ungar_2011_EverythingYouKnowAboutParallelProgrammingIsWrongAWildScreedAboutTheFuture_Dls.pdf
http://www.dynamic-languages-symposium.org/dls-11/program/media/Ungar_2011_EverythingYouKnowAboutParallelProgrammingIsWrongAWildScreedAboutTheFuture_Dls.pdf
http://www.gwu.edu/~upc/publications/LBNL-59208.pdf
http://www.gwu.edu/~upc/publications/LBNL-59208.pdf

References

ming in mobile ad hoc networks. In Proc. of SCCC’07, pages 3–12. IEEE CS,
2007. doi: 10.1109/SCCC.2007.4. 31, 59, 73, 153, 171, 203

Tom Van Cutsem, Stefan Marr, and Wolfgang De Meuter. A language-
oriented approach to teaching concurrency. Presentation at the workshop
on curricula for concurrency and parallelism, SPLASH’10, Reno, Nevada,
USA, 2010. URL http://soft.vub.ac.be/Publications/2010/vub-tr-so

ft-10-12.pdf. 10

Meine J.P. van der Meulen and Miguel A. Revilla. Correlations between in-
ternal software metrics and software dependability in a large population of
small c/c++ programs. IEEE 18th International Symposium on Software Reli-

ability Engineering (ISSRE’07), pages 203–208, November 2007. ISSN 1071-
9458. doi: 10.1109/ISSRE.2007.12. 140, 162

Nalini Vasudevan, Olivier Tardieu, Julian Dolby, and Stephen Edwards.
Compile-time analysis and specialization of clocks in concurrent programs.
volume 5501 of Lecture Notes in Computer Science, pages 48–62. Springer,
March 2009. doi: 10.1007/978-3-642-00722-4_5. 62

Toon Verwaest, Camillo Bruni, Mircea Lungu, and Oscar Nierstrasz. Flexible
object layouts: Enabling lightweight language extensions by intercepting
slot access. In Proc. of OOPSLA’11, pages 959–972, 2011. ISBN 978-1-4503-
0940-0. doi: 10.1145/2048066.2048138. 131

Jan Vitek and Tomas Kalibera. Repeatability, reproducibility, and rigor in
systems research. In Proceedings of the ninth ACM international conference on

Embedded software, EMSOFT ’11, pages 33–38, New York, NY, USA, 2011.
ACM. ISBN 978-1-4503-0714-7. doi: 10.1145/2038642.2038650. 229

Takuo Watanabe and Akinori Yonezawa. An actor-based metalevel architec-
ture for group-wide reflection. In J. de Bakker, W. de Roever, and G. Rozen-
berg, editors, Foundations of Object-Oriented Languages, volume 489 of Lec-

ture Notes in Computer Science, pages 405–425. Springer, Berlin / Heidelberg,
1991. ISBN 978-3-540-53931-5. doi: 10.1007/BFb0019450. 132

Peter H. Welch and Frederick R. M. Barnes. Communicating mobile pro-
cesses: Introducing occam-pi. In Ali Abdallah, Cliff Jones, and Jeff Sanders,
editors, Communicating Sequential Processes. The First 25 Years, volume 3525

of Lecture Notes in Computer Science, pages 712–713. Springer Berlin / Hei-
delberg, April 2005. ISBN 978-3-540-25813-1. doi: 10.1007/11423348_10. 32,
59

294

http://soft.vub.ac.be/Publications/2010/vub-tr-soft-10-12.pdf
http://soft.vub.ac.be/Publications/2010/vub-tr-soft-10-12.pdf

References

Peter H. Welch, Neil Brown, James Moores, Kevin Chalmers, and Bernhard
H. C. Sputh. Integrating and extending jcsp. In Alistair A. McEwan, Steve A.
Schneider, Wilson Ifill, and Peter H. Welch, editors, The 30th Communicating

Process Architectures Conference, CPA 2007, volume 65 of Concurrent Systems

Engineering Series, pages 349–370. IOS Press, 2007. ISBN 978-1-58603-767-3.
32, 59, 75

David Wentzlaff, Patrick Griffin, Henry Hoffmann, Liewei Bao, Bruce Ed-
wards, Carl Ramey, Matthew Mattina, Chyi-Chang Miao, John F. Brown
III, and Anant Agarwal. On-chip interconnection architecture of the tile
processor. IEEE Micro, 27(5):15–31, 2007. ISSN 0272-1732. doi: 10.1109/MM.
2007.89. 101, 104

Thomas Würthinger. Extending the graal compiler to optimize libraries.
In Proceedings of the ACM international conference companion on Object ori-

ented programming systems languages and applications companion, SPLASH ’11,
pages 41–42, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0942-4. doi:
10.1145/2048147.2048168. 64, 243

Thomas Würthinger, Christian Wimmer, and Hanspeter Mössenböck. Ar-
ray bounds check elimination in the context of deoptimization. Science

of Computer Programming, 74(5–6):279 – 295, 2009. ISSN 0167-6423. doi:
10.1016/j.scico.2009.01.002. Special Issue on Principles and Practices of Pro-
gramming in Java (PPPJ 2007). 244

Thomas Würthinger, Andreas Wöß, Lukas Stadler, Gilles Duboscq, Doug Si-
mon, and Christian Wimmer. Self-optimizing ast interpreters. In Proceedings

of the 8th Dynamic Languages Symposium, DLS’12, pages 73–82, October 2012.
ISBN 978-1-4503-1564-7. doi: 10.1145/2384577.2384587. 244

Yasuhiko Yokote. The Design and Implementation of ConcurrentSmalltalk. PhD
thesis, Keio University Japan, Singapore; Teaneck, N.J., 1990. 59, 100

Weiming Zhao and Zhenlin Wang. Scaleupc: A upc compiler for multi-core
systems. In Proceedings of the Third Conference on Partitioned Global Address

Space Programing Models, PGAS ’09, pages 11:1–11:8, New York, NY, USA,
2009. ACM. ISBN 978-1-60558-836-0. doi: 10.1145/1809961.1809976. 62

Jin Zhou and Brian Demsky. Memory management for many-core pro-
cessors with software configurable locality policies. In Proceedings of the

2012 international symposium on Memory Management, ISMM ’12, pages

295

References

3–14, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1350-6. doi:
10.1145/2258996.2259000. 62

Lukasz Ziarek, Adam Welc, Ali-Reza Adl-Tabatabai, Vijay Menon, Tatiana
Shpeisman, and Suresh Jagannathan. A uniform transactional execution
environment for java. In Proc. of ECOOP’08, pages 129–154, 2008. doi: 10.
1007/978-3-540-70592-5_7. 188

Yoav Zibin, Alex Potanin, Paley Li, Mahmood Ali, and Michael D. Ernst.
Ownership and immutability in generic java. In Proceedings of the ACM

international conference on Object oriented programming systems languages and

applications, OOPSLA ’10, pages 598–617, New York, NY, USA, 2010. ACM.
ISBN 978-1-4503-0203-6. doi: 10.1145/1869459.1869509. 134

296

	Abstract
	Samenvatting
	Acknowledgments
	1 Introduction
	1.1 Research Context
	1.2 Problem Statement
	1.3 Research Goals
	1.4 Dissertation Outline
	1.5 Supporting Publications and Technical Contributions

	2 Context and Motivation
	2.1 Multi-Language Virtual Machines
	2.2 The Multicore Revolution
	2.3 Concurrent vs. Parallel Programming: Definitions
	2.3.1 Concurrency and Parallelism
	2.3.2 Concurrent Programming and Parallel Programming
	2.3.3 Conclusion

	2.4 Common Approaches to Concurrent and Parallel Programming
	2.4.1 Taxonomies
	2.4.2 Threads and Locks
	2.4.3 Communicating Threads
	2.4.4 Communicating Isolates
	2.4.5 Data Parallelism
	2.4.6 Summary

	2.5 Building Applications: The Right Tool for the Job
	2.6 Summary

	3 Which Concepts for Concurrent and Parallel Progr. does a VM need to Support?
	3.1 VM Support for Concurrent and Parallel Programming
	3.1.1 Survey Design
	3.1.1.1 Survey Questions
	3.1.1.2 Survey Subjects
	3.1.1.3 Survey Execution

	3.1.2 Results
	3.1.2.1 Threads and Locks
	3.1.2.2 Communicating Threads
	3.1.2.3 Communicating Isolates
	3.1.2.4 Data Parallelism
	3.1.2.5 Threats to Validity

	3.1.3 Conclusion

	3.2 A Survey of Parallel and Concurrent Programming Concepts
	3.2.1 Survey Design
	3.2.1.1 Survey Questions
	3.2.1.2 Selecting Subjects and Identifying Concepts

	3.2.2 Results
	3.2.3 Threats to Validity
	3.2.4 Summary
	3.2.4.1 General Requirements
	3.2.4.2 Connection with Concurrent and Parallel Programming
	3.2.4.3 Conclusions

	3.3 Common Problems for the Implementation of Concurrency Abstractions
	3.3.1 Overview
	3.3.2 Isolation
	3.3.3 Scheduling Guarantees
	3.3.4 Immutability
	3.3.5 Reflection
	3.3.6 Summary

	3.4 Requirements for a Unifying Substrate for Concurrent Programming
	3.5 Conclusions

	4 Experimentation Platform
	4.1 Requirements for the Experimentation Platform
	4.2 SOM: Simple Object Machine
	4.2.1 Language Overview and Smalltalk Specifics
	4.2.2 Execution Model and Bytecode Set

	4.3 Squeak and Pharo Smalltalk
	4.4 RoarVM
	4.4.1 Execution Model, Primitives, and Bytecodes
	4.4.2 Memory Systems Design
	4.4.3 Process-based Parallel VM
	4.4.4 Final Remarks

	4.5 Summary

	5 An Ownership-based MOP for Expressing Concurrency Abstractions
	5.1 Open Implementations and Metaobject Protocols
	5.2 Design of the OMOP
	5.3 The OMOP By Example
	5.3.1 Enforcing Immutability
	5.3.2 Clojure Agents

	5.4 Semantics of the MOP
	5.5 Customizations and VM-specific Design Choices
	5.6 Related Work
	5.7 Summary

	6 Evaluation: The OMOP as a Unifying Substrate
	6.1 Evaluation Criteria
	6.1.1 Evaluation Goal
	6.1.2 Evaluation Criteria and Rationale

	6.2 Case Studies
	6.2.1 Clojure Agents
	6.2.2 Software Transactional Memory
	6.2.3 Event-Loop Actors: AmbientTalkST
	6.2.4 Conclusion

	6.3 Supported Concepts
	6.3.1 Supported Concepts
	6.3.2 Partially Supported Concepts
	6.3.3 Conclusion

	6.4 Comparing Implementation Size
	6.4.1 Metrics
	6.4.2 Clojure Agents
	6.4.3 LRSTM: Lukas Renggli's STM
	6.4.4 Event-Loop Actors: AmbientTalkST
	6.4.5 Summary and Conclusion

	6.5 Discussion
	6.5.1 Remaining Evaluation Criteria
	6.5.2 Limitations
	6.5.3 Conclusion

	6.6 Conclusion

	7 Implementation Approaches
	7.1 AST Transformation
	7.1.1 Implementation Strategy
	7.1.2 Discussion
	7.1.3 Related Work and Implementation Approaches

	7.2 Virtual Machine Support
	7.2.1 Implementation Strategy
	7.2.2 Discussions

	7.3 Summary

	8 Evaluation: Performance
	8.1 Evaluation Strategy
	8.1.1 Evaluation Goal
	8.1.2 Experiments and Rationale
	8.1.3 Virtual Machines
	8.1.4 Generalizability and Restrictions of Results

	8.2 Methodology
	8.2.1 Precautions for Reliable Results
	8.2.2 Presentation

	8.3 Baseline Assessment
	8.4 Ad hoc vs. OMOP Performance
	8.5 Assessment of Performance Characteristics
	8.5.1 OMOP Enforcement Overhead
	8.5.2 Inherent Overhead
	8.5.3 Customization Constant Assessment

	8.6 Absolute Performance
	8.7 Discussion and Threats to Validity
	8.8 Conclusions

	9 Conclusion and Future Work
	9.1 Problem and Thesis Statement Revisited
	9.2 Contributions
	9.3 Limitations
	9.4 Overall Conclusions
	9.5 Future Work
	9.5.1 Support for Parallel Programming
	9.5.2 Support for Just-in-Time Compilation
	9.5.3 Relying on the CPU's Memory Management Unit
	9.5.4 Representation of Ownership
	9.5.5 Applying the OMOP to JVM or CLI
	9.5.6 Formalization
	9.5.7 Additional Bytecode Set for Enforced Execution

	9.6 Closing Statement

	A Appendix: Survey Material
	A.1 VM Support for Concurrent and Parallel Programming
	A.2 Concurrent and Parallel Programming Concepts

	B Appendix: Performance Evaluation
	B.1 Benchmark Characterizations
	B.1.1 Microbenchmarks
	B.1.2 Kernel Benchmarks

	B.2 Benchmark Configurations

	References

