
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions 

for further reuse of content should be sought from the publisher, author or other copyright holder. 

Versions of research

The version in the Kent Academic Repository may differ from the final published version. 

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the 

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact: 

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down 

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

De Wael, Mattias and Marr, Stefan and De Meuter, Wolfgang  (2014) Data Interface + Algorithms
= Efficient Programs: Separating Logic from Representation to Improve Performance.    In: Proceedings
of the 9th Workshop on Implementation, Compilation, Optimization of Object-Oriented Languages,
Programs and Systems.

DOI

https://doi.org/10.1145/2633301.2633303

Link to record in KAR

http://kar.kent.ac.uk/63830/

Document Version

Author's Accepted Manuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/189717695?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Position Paper (Version for Review)

Data Interface + Algorithms = Efficient Programs

Separating Logic from Representation to Improve Performance

Mattias De Wael

Software Languages Lab
Vrije Universisteit Brussel

madewael@vub.ac.be

Stefan Marr

RMoD, INRIA Lille Nord Europe
Lille, France

stefan.marr@inria.fr

Wolfgang De Meuter

Software Languages Lab
Vrije Universisteit Brussel

wdmeuter@vub.ac.be

Abstract

Finding the right algorithm–data structure combination is easy, but
finding the right data structure for a set of algorithms is much less
trivial. Moreover, using the same data representation throughout
the whole program might be sub-optimal. Depending on several
factors, often only known at runtime, some programs benefit from
changing the data representation during execution. In this position
paper we introduce the idea of Just-In-Time data structures, a com-
bination of a data interface and a set of concrete data represen-
tations with different performance characteristics. These Just-In-
Time data structures can dynamically swap their internal data rep-
resentation when the cost of swapping is payed back many times
in the remainder of the computation. To make Just-In-Time data
structures work, research is needed at three fronts: 1. We need to
better understand the synergy between different data representa-
tions and algorithms; 2. We need a structured approach to handle
the transitions between data representations; 3. We need descrip-
tive programming constructs to express which representation fits
a program fragment best. Combined, this research will result in a
structured programming approach where separating data interface
from data representation, not only improves understandability and
maintainability, but also improves performance through automated
transitions of data representation.

Categories and Subject Descriptors D.2.8 [SOFTWARE ENGI-
NEERING]: Metrics– Performance measures

Keywords algorithms, data structures, performance

1. Context

Finding the right combination of a data structure and an algorithm
is easy: it either requires knowledge (i.e., courses and books on
Data Structures and Algorithms), or it requires experience. But in
most cases, an optimal solution requires performance engineering
on the actual program, because programs seldomly rely on a sin-
gle algorithm to do their job. Finding the right combination of a
data structure and a sequence of algorithms (i.e., program) is not so
trivial and might not even be possible without taking the dynamic
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characteristics such as the amount of data and properties like sort-
edness, into account. In these situations it is beneficial to consider
multiple data representations for the same data interface and change
representation between phases of the program, i.e., when the cost
of changing from one data representation to another, is smaller than
the cost introduced by using the “wrong” (i.e., sub-optimal) data
structure . In our research we target this kind of phased programs
that can benefit from a changing data representation.

Consider an email client application as an example: most of
the time you want your emails sorted by date, but at the same
time you also like to browse through a history of emails from a
single correspondent, while new emails keep on arriving in your
mailbox. A trained computer scientist or programmer can find the
best algorithm for sorting a mostly sorted sequence (i.e., sort by
date), find the best data structure for iterating over a sub-set of
elements (i.e., iterate by author), and find the best data structure
for cheap insertion at-the-front (i.e., new emails arrive by definition
in chronological order). The question which data representation fits
all needs will likely be left unanswered. Moreover, the programmer
responsible for combining the different functionalities probably
does not care how the data interface is implemented. Does he
want to program with a linked-list-of-emails, an array-of-emails,
or would he prefer to program against the interface of a mailbox?

It is well accepted that programming with abstract data types
(interfaces to data) instead of with concrete implementations (inter-
faces to data representation) is better for the sake of maintainabil-
ity, understandability, and modularity. We assume that separating
the choice of data representation from algorithm design and other
program logic can also have a significant beneficial impact on the
performance of programs by changing the representation at run-
time. In recent research (see Section 2) this assumption has been
successfully verified in specific contexts, e.g., higher-level collec-
tions. We want to develop a structured programming model that
generalises this technique and brings it to the level of the applica-
tion programmer. In this model separation of interface from imple-
mentations is encouraged, such that changing data representation
can be automated, with improved performance as a result.

2. Related Work

We are not the first to think about finding the right algorithm–data
structure combination for the sake of performance. It is a known
and studied problem, but hitherto, we are lacking a general solution.
In this section we give an overview of what research has been done
in the past.

Foremost, there has been done a large body of groundwork on
the performance of algorithms in combination with data structures
in theoretical computer science. Measuring and/or estimating the
time complexity of algorithms is part of every Bachelor level course
on this subject and is part of every book on this subject, e.g., Cor-

Just-In-Time Data Structures 1 2014/6/25



men et al. [3] who popularised the master theorem for estimating
asymptotic bounds on the time complexity of recursive programs.

A second body of work (i.e., in the area of compiler and pro-
gramming language research) focusses on a specific data struc-
ture: multi-dimensional arrays. In Fortran, for example, arrays are
stored column-major order, in C arrays are stored row-major order,
and Java’s 2D arrays are implemented with an extra level of indi-
rection, i.e., an array of references to arrays. Compilers for these
languages take these specifications into account when generating
code for loops over arrays, where they i.a. rely on the polytope
model [8]. This mathematical model can be used to reason about
nested iterations over multi-dimensional arrays and can help to im-
prove performance by enumerating “allowed” transformation of the
iteration code. Besides the idea of improving general computations
(e.g., bounded loops in Fortran), other approaches focus on highly
specific algorithms. The Pochoir stencil compiler, for example, fo-
cusses on stencil computations [12].

Yet another body of work focusses on higher-level collections as
are offered by e.g., STL or java.util.Collection. These approaches
improve the performance of a program by selecting or proposing
the “right” data collection implementation. Both online and of-
fline approaches exist. In an offline approach the best collection
implementation is selected during development time. The online
approaches come into play at runtime and make dynamic decisions
on when to switch to a different data representation. Brainy [5] and
Chameleon [11] are examples of the first approach, they collect
data during test runs which is then used to make an informed deci-
sion on which collection implementation to use in production code.
CoCo [13] and Storage Strategies [1] are examples of the online,
dynamic approach.

Other dynamic approaches can be found the in realm of “Self
Adjusting Data Structures”. These data structures are developed
with a certain use case in mind and readjust themselves according
to the concrete usage at runtime. Examples are Move-To-Front-
Lists, AVL-trees, object-maps in SELF [2], hybrid representation
in Databases [6]. These data structures are optimised for a single
use case and are therefore expected to outperform more general
approaches, i.e., where the use cases are not necessarily know in
advance.

Finally, there exists a lot of software engineering knowledge in
the area of object-oriented design patterns to model changing state
and changing behaviour [4]. As well as on data (representation)
hiding through inheritance, interfacing and the like.

All techniques, approaches, and tools mentioned above try to
improve either performance or understandability of a program by
separating data representation from data usage. The approaches dif-
fer in whether they change the computation to match the data repre-
sentation or vice versa. They differ in the level of abstraction they
target, i.e., the algorithmic level or the hardware level. They also
differ in the level of generality they support, e.g., a lot of work fo-
cusses solely on collection types. Moreover, these techniques play
their role at different times in the development process, ranging
from analysis phase, trough development aid and automatic tuning
at install time, to full dynamic performance optimisation.

We envision a technique that allows programmers to implement
a data structure that can change its representation at runtime, but
where the burden on the programmer of changing the representa-
tion during execution is eventually eliminated. Conversely, perfor-
mance specific knowledge, for instance expressed in a DSL, is used
to automatically change between representations.

3. Research Vision

Choosing the right data structure for a program (sequence of vari-
ous algorithms) is not as trivial as choosing the right data structure
for a single algorithm. Moreover, in some programs it is beneficial

for performance to change the structure of the data between the dif-
ferent algorithms, i.e., when the transformation cost is much lower
than the the performance improvement of using the other represen-
tation. The decision of when to change representation is crosscut-
ting with the conceptual design of a program. We argue that the
data representation should be able to change during execution in
order to achieve optimal performance, while the control of these
changes remains separated from the program’s core logic. To this
end, we envision a structured programming approach where sepa-
rating data interface from data representation is not only beneficial
for the understandability and maintainability of the software, but
also improves performance. Separating interface and implementa-
tion is nothing new, the novelty in this approach is the Just-In-Time
data structure, an object that can transition between semantically
equivalent representations without imposing any technical burden
onto the programmer. To this end, we want to automate the changes
in representations based on domain-specific knowledge about the
performance characteristics of the different implementations. The
following paragraphs focus on the research activities we foresee in
developing this structured programming approach.

Cost Model for Switching In a program where subsequent algo-
rithms have affinity for different data representations, changing the
representations in between algorithms can introduce performance
benefits. This, however, is not necessarily true and can even prove
to be counter productive. In order to make the envisioned approach
viable, it is a necessity to better understand the characteristics of
the data and its representation that play a role in the efficiency of
a program. These characteristics are often only known at runtime,
e.g., the density of a graph or the sparsity of a matrix, and depend
on the hardware on which the program is executed.

In matrix multiplication A × B = C, for instance, it is a well
known technique to swap the rows and columns (transpose) of the
second matrix B. Here, the transposition is an example of chang-
ing the data representation, i.e., from row-major-order to column-
major-order. Even though the transposition comes at a cost (there
exists a transposition algorithm in O(n)), the overall execution
time is better if B has been transposed, and if the matrixes A, B,
and C do not fit in (cache) memory. Thus, the decision of trans-
posing B depends on the “size” of the matrixes in relation to the
executing hardware.

To understand the synergy between algorithms and data repre-
sentations we want to build a cost model that takes the properties
of a data sets (e.g., size, density) into account. To this end we need
to study a significant body of data structures and algorithms to un-
derstand which characteristics of the data structure and interface
design play a role in performance. A significant part of the cost
model will have to deal with transition algorithms, i.e., algorithms
that transform data from one representation to the other. Ideally, the
expertise of building the cost model for one data type can be con-
solidated into a structured approach to extend the cost model for
more data types.

Just-In-Time Data Structures Based on the cost model, as dis-
cussed above, it becomes possible to make an informed decision
on when it is beneficial to change the data representation. We call
a data structure that is open for changing its representation at run-
time a Just-In-Time data structure. The bridge design pattern [4],
for instance, can be used to implement Just-In-Time data structures
because they allow an object to change their representation and be-
haviour without changing their identity. A similar pattern will be
the bases of the implementation of our approach and therefore we
want to embed the highly specialised pattern into a language or
framework that allows to define these Just-In-Time data structures.
The bases of such a language is the classic single interface mul-
tiple implementation construct found in many object oriented lan-
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guages (e.g., Java). Pseudo code for the “Matrix” example is shown
in fig. 1. To make changes between the implementations possible
transition functions are needed.

A transition function is a function that takes an instance A of
one implementation as argument and returns an instance B of an-
other implementation while the data represented by A and B are
equivalent. In theory, n implementations requires n× (n−1) tran-
sition functions. In practice, however, we think that implementing
n × (n − 1) different functions will not be necessary. First, some
transitions can be unnecessary in practice. Second, in the case of
dual implementations (e.g., row major order and column major or-
der) A and B, the transition function A → B can be commutative.
Third, transition functions can be composed, i.e., if there exists a
transition function f from implementation A to B and there ex-
ists a transition function g from implementation B to C then g ◦ f
can transform an instance of implementation A into an an instance
of B. Finally, we assume that for many interfaces there exists one
transition function that can map from any implementation to any
other, we call such a function a canonical transition function.

1 da ta−i n t e r f a c e M a t r i x {
2 c o n s t r u c t ( rows , c o l s )
3 i n t rows ( )
4 i n t c o l s ( )
5 i n t g e t ( row , c o l )
6 vo i d s e t ( row , co l , v a l u e )
7 }
8
9 da ta−r e p r e s e n t a t i o n RowMajor o f M a t r i x {

10 c o l s , rows , d a t a [ ]
11
12 c o n s t r u c t ( rows , c o l s ){
13 t h i s . rows = rows
14 t h i s . c o l s = c o l s
15 d a t a = a r r a y−of−s i z e ( rows∗ c o l s )
16 }
17
18 g e t ( row , c o l ) := d a t a [ row∗ c o l s + c o l ]
19
20 }
21
22 da ta−r e p r e s e n t a t i o n ColMajor o f M a t r i x {
23 c o l s , rows , d a t a [ ]
24
25 c o n s t r u c t ( rows , c o l s ){
26 t h i s . rows = rows
27 t h i s . c o l s = c o l s
28 d a t a = a r r a y−of−s i z e ( rows∗ c o l s )
29 }
30
31 g e t ( row , c o l ) := d a t a [ row + c o l ∗ rows ]
32 }

Figure 1. Proving an interface and two implementations of Matrix.

A canonical transition function is a transition function that
describes the transition from any implementation to any other using
only the proposed interface. For the Matrix example such a function
would set the value of a new Matrix on row r and column c
to the value of the original Matrix row r and column c. This is
shown in fig. 2. This function works regardless of the chosen data
representation. The down side of a canonical transition functions is
that, due to the generality, the performance will be suboptimal.

For the sake of performance, it is possible to define specialised
transition functions that implement a more performant transition
between two (or more) representations. In the Matrix example,
changing from row-major-order to column-major-order is know as

1 M a t r i x t r a n s i t i o n ( Ma t r i x m) {
2 M a t r i x c = Ma t r i x (m. rows ( ) , m. c o l s ( ) )
3 f o r ( i n t r : m. rows ( ) ) {
4 f o r ( i n t c : m. c o l s ( ) ) {
5 c . s e t ( r , c , m. g e t ( r , c ) )
6 }
7 }
8 }

Figure 2. A canonical transition function for Matrix.

“transposition of a matrix” (shown in fig. 3 for square matrixes) for
which more efficient algorithms exist than a naive transformation.

1 M a t r i x t r a n s p o s e ( Ma t r i x m) {
2 f o r ( i n t r : m. rows ( ) ) {
3 f o r ( i n t c : m. c o l s ( ) ) {
4 i f ( c > r ) {
5 temp = m. g e t ( r , c )
6 m. s e t ( r , c m. g e t ( c , r ) )
7 m. s e t ( c , r , temp )
8 }
9 }

10 }
11 }

Figure 3. Transposition is a dedicated transition function for row-
major-order to column-major-order (or vice versa).

From a set of implementations and a set transition functions it
is then possible to construct a data structure that can swap between
its different representations.

When a read intensive program phase ideally uses represen-
tation B, while both the preceding and successive phases have
affinity for representation A, two representation swaps are needed
(A → B → A). Introducing the overhead of swapping twice
might be to much w.r.t. the performance benefits from using rep-
resentation B. This is one of the cases where the best solution is
to (temporarily) keep multiple copies with different representations
in memory [6]. Therefore, when permitted by memory constraints,
it should be possible to obtain a working copy of a Just-In-Time
data structure. Ideally, in the presence of writes, working copies
can be merged back into a single the Just-In-Time data structure.
For multi-threaded applications concurrency has to be taken into
account, e.g. many data structures have a threat-safe variant. How-
ever, research on concurrency and thread-safe data structures as
such, fall outside the scope of this work.

Structural Coercion With a cost model for switching in the one
hand and a language to implement Just-In-Time data structures in
the other hand, it is a matter of combining these two efforts to de-
velop efficient programs. In a first step, we think about augment-
ing sections of the program’s logic with the knowledge of the cost
model in a declarative way using Structural Coercion Hints. It is
then the responsibility of the language or framework to coerce the
representation of the data into another representation based on these
hints. In fig. 4 the classic matrix multiplication algorithm is aug-
mented with the knowledge that when the matrixes are big (e.g.,
much larger than the L1 cache), it is beneficial to execute the pro-
gram with matrix A stored in row-major-order and matrix B in
column-major-order. Lines 2-6 in fig. 4 show what the structural
coercion hint could look like, with the actual condition on line 5,
and the ideal representation expressed on line 6. This extra infor-
mation (e.g., the magical constant 5) is expressed in a DSL by a
performance expert.

Depending on the type of information, structural coercion hints
can be compiled into statically enforced coercions or compiled
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1 f u n c t i o n m a t r i x m u l t i p l y (A, B) {
2 l e t A−s i z e = (A. rows ( ) ∗ A. c o l s ( ) )
3 B−s i z e = (A. rows ( ) ∗ A. c o l s ( ) )
4 C−s i z e = (A. rows ( ) ∗ B . c o l s ( ) )
5 A−s i z e + B−s i z e + C−s i z e > 5 ∗ L1−cache−s i z e
6 => RowMajor (A) and ColMajor (B)
7
8 C = Ma t r i x ( A. rows ( ) , B . c o l s ( ) )
9 f o r ( i : C . rows ( ) ) {

10 f o r ( i : C . c o l s ( ) ) {
11 C . s e t ( i , j , 0 )
12 f o r ( k : A. c o l s ( ) ) {
13 l e t c = C . g e t ( i , j )
14 a = A. g e t ( i , k )
15 b = B . g e t ( k , j )
16 C . s e t ( i , j , c + ( a ∗ b ) )
17 }
18 }
19 }
20 }

Figure 4. In some cases matrix multiplication can benefit from a
specific data representation.

into dynamic checks that will do a potential coercion at runtime.
The overall result is that the programmer is relieved from writing
explicit conversions (“how”) as statements in the code (“when”),
but instead is allowed to express the actual knowledge (“what”).

Automating Just-In-Time Data Structures Programming with
Just-In-Time data structures allows programmers to concentrate on
the program’s core logic and on the program’s performance sepa-
rately. However, when a program is written to target multiple hard-
ware architectures, a single set of structural coercion hints to co-
ordinate the transitions between data representations will not suf-
fice. Second, when programs grow and when the number of imple-
mented representations grow, the number of possible combinations
explodes. Then, even an expert programmer or performance engi-
neer will have a hard time expressing an optimal set of structural
coercion hints. When the solution space for Just-In-Time data struc-
tures becomes unmanageable for humans, it is possible to resort to
automated techniques such as static analysis, machine learning, and
auto-tuning. These techniques have proven to be successful in re-
lated work. E.g., Jung et al. [5] use machine learning to effectively
select the best implementation of data collection. SPIRAL [10], a
DSL for linear digital signal processing, generates auto-tuned code
optimised for a given platform. Similar, but generalised, efforts can
automate the dynamic changes in representation, and render man-
ual insertion of structural coercion hints obsolete.

4. Conclusion

Writing programs is about modelling concepts of the real world
and representing them as symbols in a computer [9]. Over time,
the evolution of software engineering has proposed various lev-
els and techniques of abstraction to cope with the discrepancy of
both worlds (e.g., ADTs [7]). Object-oriented programming intro-
duced the programming technique of polymorphism, where objects
with the same interface can behave differently depending on the im-
plementation. This technique is frequently used in object-oriented
software to improve maintainability and understandability. We pro-
pose to use polymorphism for the sake of performance. For in-
stance, when semantically identical implementations, that only dif-
fer in performance characteristics (i.e., both space and time), can
change their representation dynamically when the cost of changing
is payed back by the remainder of the computation.

We envision a structured programming approach where the pro-
grammer is (eventually) relieved from the burden of changing the
data representation during the execution of a program. Our idea to-
wards this goal is “Just-In-Time Data Structures”, a data interface
with multiple implementations that allows to change its represen-
tation at runtime. Together with “structural coercion hints” or au-
tomated techniques e.g., based on machine learning, it is then pos-
sible to dynamically swap the data representation to obtain better
performance.
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