
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Vandercammen, Maarten and Nicolay, Jens and Marr, Stefan and De Koster, Joeri and D'Hondt,
Theo and De Roover, Coen (2015) A Formal Foundation for Trace-Based JIT Compilers. In:
Proceedings of the 13th International Workshop on Dynamic Analysis.

DOI

https://doi.org/10.1145/2823363.2823369

Link to record in KAR

http://kar.kent.ac.uk/63824/

Document Version

Author's Accepted Manuscript

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/189717689?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Formal Foundation for Trace-based JIT Compilers

Maarten Vandercammen* Jens Nicolay* Stefan Marr† Joeri De Koster*

Theo D’Hondt* Coen De Roover*

*Vrije Universiteit Brussel, Belgium

† Johannes Kepler University Linz, Austria

*firstname.lastname@vub.ac.be † stefan.marr@jku.at

Abstract

Trace-based JIT compilers identify frequently executed pro-

gram paths at run-time and subsequently record, compile

and optimize their execution. In order to improve the per-

formance of the generated machine instructions, JIT com-

pilers heavily rely on dynamic analysis of the code. Existing

work treats the components of a JIT compiler as a monolithic

whole, tied to particular execution semantics. We propose a

formal framework that facilitates the design and implemen-

tation of a tracing JIT compiler and its accompanying dy-

namic analyses by decoupling the tracing, optimization, and

interpretation processes. This results in a framework that is

more configurable and extensible than existing formal trac-

ing models. We formalize the tracer and interpreter as two

abstract state machines that communicate through a mini-

mal, well-defined interface. Developing a tracing JIT com-

piler becomes possible for arbitrary interpreters that imple-

ment this interface. The abstract machines also provide the

necessary hooks to plug in custom analyses and optimiza-

tions.

Categories and Subject Descriptors D.3.1 [Formal Defini-

tions and Theory]: semantics; D.3.4 [Processors]: compil-

ers, optimization

Keywords tracing JIT compilation, operational semantics,

dynamic analysis

1. Introduction

Just-in-time (JIT) compilation is a technique where, instead

of statically compiling and optimizing an entire program up-

front, an execution engine observes the program’s execution

and a JIT compiler emits machine code at run-time. Doing so

allows the compiler to take into account specific character-

istics of the program’s execution when generating machine

instructions, such as the values or types of the expressions

that are executed. Dynamic analysis is therefore essential to

the process of JIT compilation, since JIT compilers use these

kinds of analyses to optimize the instructions that they gen-

erate at run-time [6].

The few formal models that exist on tracing compilation

[2, 5] are irreversibly tied to one particular execution model

for one particular programming language and treat the dif-

ferent components of a tracing JIT compiler – interpreter,

tracer, compilers, and optimizers – as a monolithic whole

with strong coupling between them. Investigating different

execution models requires extensive changes to the language

semantics used by these models. They are geared more to-

ward exploring soundness of trace optimizations instead of

enabling experiments in dynamic analysis.

We propose a formal framework that facilitates the de-

sign and implementation of a tracing JIT compiler and the

dynamic analyses on which it relies by decoupling the trac-

ing, optimization and interpretation processes, resulting in

a complete framework that is more configurable and exten-

sible than existing formal tracing models. The main benefit

of our model is that it enables applying tracing compilation

to, and subsequent dynamic analysis of, any arbitrary inter-

preter that satisfies a small, fixed interface (Section 3.2). Ex-

cept for this minimal interface, the interpreter is otherwise

treated as a black box and no particular implementation is

specified. Our model also provides the necessary hooks to

plug in custom analyses and optimizations. We do not define

any concrete trace optimizations, but because of the strong

decoupling of components, trace optimizations can be added

in a modular way without being tied to any particular tracer

or interpreter.

2. Trace-based JIT Compilation

Trace-based JIT compilation is a variant of JIT compilation

that builds on two basic assumptions: most of the execution

time of a program is spent in loops, and several iterations

of the same loop are likely to take the same path through

the program [1]. Starting from these two premises, tracing

(let ((a 5))

(while (not (zero? a))

(complex-function (set! a (sub1 a)))))

. . .

push continuation(appk(sub1))
lookup variable(a)
pop continuation()
apply native(sub1)
pop continuation()
. . .

guard while()
. . .

Figure 1. Program with a traceable loop, and part of the

corresponding trace.

compilers do not limit themselves to the compilation of

methods, like method-based JIT compilers, but they trace

frequently executed, “hot” loops in general.

Trace-based JIT compilation is usually performed in a

mixed-mode execution environment [1], consisting of both

an interpreter and a JIT compiler. In a first phase, the in-

terpreter executes the program but simultaneously profiles

the code, in order to identify hot loops. When a hot loop is

detected, the interpreter starts tracing the execution of this

loop: the operations that are performed by the interpreter

during the execution of this loop are recorded into a trace.

Tracing continues until the interpreter has completed one

full iteration of the loop. Because the trace is a recording

of the operations performed by the interpreter, function calls

are automatically inlined in the trace. Once tracing has com-

pleted, the recorded trace is compiled and optimized. Subse-

quent iterations of this loop then execute the compiled trace

instead of the original loop.

Because a trace is a representation of a single execution

path, we must ensure that the conditions that caused the in-

terpreter to select this path during the recording of the trace

are still valid during the execution of the trace. Tracing JIT

compilers check assumptions by adding guards to a trace.

When a guard fails, execution of the trace is aborted and

the interpreter resumes normal interpretation of the program

from that point onward. The process of aborting trace exe-

cution and restarting interpretation is called a side-exit. Side-

exits give rise to a runtime performance penalty, because the

interpreter state must be correctly restored before normal in-

terpretation can resume.

Example Figure 1 depicts a LISP-like program containing

a loop that may be traced, followed by a part of the trace that

would be recorded when executing this program. At some

point during program execution, the interpreter might decide

that the while loop is hot. The interpreter then traces one

full iteration of the loop, starting from the beginning of the

loop, continuing through the assignment, and terminating the

trace when the start of the loop is reached again. Tracing the

interpreter’s actions comes down to recording the consec-

TracerState = ts(ExecutionPhase,

TracerContext ,

ProgramState,

TraceNode)

ExecutionPhase = NI

| TR

| TO

| TE

tc ∈ TracerContext = tc(False + TraceNode, TraceNode∗)

tn ∈ TraceNode = tn(Label ,Trace)

τ ∈ Trace = TraceInstruction∗

TraceInstruction =ProgramState → InstructionReturn

InstructionReturn = traceStep(ProgramState)

| guardFailed(Restartpoint)

TracingSignal = loop(Label)

| False

restart =Restartpoint × ProgramState → ProgramState

InterpreterReturn = step(ProgramState,

Trace,

TracingSignal)

Figure 2. The tracing machine.

utive instructions the machine executes to update the state

on which it operates. The example trace contains the guard

guard while() that checks whether the value computed for

the condition of the while loop during trace execution cor-

responds with the boolean #t observed during trace record-

ing.

3. Tracing Machine

The tracing machine is modeled as a state machine transi-

tioning between tracer states, as formalized in Figure 2. We

give an overview of its different components.

3.1 Tracer State

We capture the state of the tracing machine in a TracerState ,

consisting of an execution phase, a tracer context, a program

state, and a trace node.

During the execution of the program, the tracing ma-

chine switches between four distinct execution phases, indi-

cated by ExecutionPhase: normal interpretation (NI), trace

recording (TR), trace optimization (TO), and trace execu-

tion (TE). The execution phases and possible transitions can

be modeled as a state diagram, as shown in Figure 3. We de-

scribe the transition between the different tracer states and

execution phases of our tracing machine in Section 3.3.

The TracerContext is a two-tuple used by the tracer. The

first component of the tuple stores the trace that is currently

being recorded. This is either False , if no trace is being

recorded, or it consists of a trace node (TraceNode), which

Trace finished

Trace
Optimization

[TO]

loop [different label]

Store trace

Guard failed

Normal
Interpretation

[NI]

 loop

[existing trace]

 loop

[same label]Trace

Recording

[TR]

 loop

[no existing trace]

Trace

Execution

[TE]

Figure 3. The four execution phases of a program.

step : ProgramState 7→ InstructionReturn

restart : Restartpoint × ProgramState 7→ ProgramState

Figure 4. Minimal tracing interface for interpreters.

is a simple structure used to associate a trace with a unique

label, so that this trace can later be retrieved by referencing

its label. The second component of the tracer context is a list

of all trace nodes containing the traces that have previously

been recorded.

The ProgramState is defined by the interpreter and is

opaque to the tracing machine. The interpreter operates di-

rectly on program states, while the tracer obtains new pro-

gram states from the interpreter during normal interpretation

and trace recording, or by executing trace instructions during

trace execution.

The last component of the tracer state either equals False

if no trace is currently being executed, or it contains the trace

node storing the trace that is being executed.

3.2 Tracing Interface

In our framework, the tracer monitors and controls the exe-

cution of the interpreter by using the minimal interface de-

picted in Figure 4.

It is assumed that the interpreter can be modeled as a

state machine operating on a ProgramState . Interpreting a

program then comes down to following a fixed set of state

transition rules; tracing the interpreter can be modeled as

recording the transitions that are applied by the interpreter

and executing a trace is done by replaying all recorded state

transitions on the current program state.

To allow for a more fine-grained optimization of traces,

we allow the interpreter to use two sets of state transition

rules: high-level and low-level transitions, both operating on

a program state. One high-level transition is composed of

several low-level transitions, i.e., executing the high-level

High-level
 transition

LLT3

LLT2

LLT1

Low-level
transition intermediate

state 2

state 2state 1

intermediate

state 1

Figure 5. High-level and low-level state transitions.

transition is equivalent to applying each of the constituent

low-level transitions consecutively.

During the normal interpretation and trace recording

phases, the tracing machine repeatedly asks the interpreter

to perform a single high-level transition by calling step.

This function takes the current program state as input and

outputs an InterpreterReturn: a three-tuple containing the

resulting program state, the set of low-level state transitions,

or trace instructions, that together constitute the high-level

transition that has been performed, and possibly a tracing

signal. During the tracing phase of the program’s execution,

the tracer appends the trace instructions to its current trace.

The tracing signal is used by the interpreter to indicate that

it has reached the start of a loop. This allows the tracer to

decide whether to start tracing this loop, start executing a

previously recorded trace for this loop, or do nothing at all.

For this to work, the interpreter machine should uniquely

identify each loop in the user program through a label.

Traces contain guard instructions at certain locations to

ensure that the control flow of the executed trace remains

valid. In this model, we implement guards as a kind of

trace instruction: a guard takes a program state as input,

checks some condition in the state and signals back to the

tracer that the condition is either still valid or has become

invalid, i.e., that the guard has failed. Since the generation

and placement of guards depends on the semantics of the

language under consideration, the interpreter is expected to

create the necessary guards when applying step and return

them through the InterpreterReturn , mixed with the other

trace instructions that are returned, so that, if any trace is

being recorded, the guards are automatically inserted into

the trace.

As we implement guards as a form of low-level tran-

sition, guards must have the same interface as “regular”

trace instructions. Each trace instruction takes a program

state as input and returns an InstructionReturn . This

InstructionReturn can either be a traceStep or a guard-

Failed. By using these two structures, we allow for both

the execution of guard and non-guard instructions. Execut-

ing a non-guard instruction results in a traceStep being

returned, carrying the new program state. A guard instruc-

tion, however, may return either of both structures. If the

condition that is guarded is invalid, a guardFailed can be

returned so that the tracer can detect this and take actions

accordingly. If the condition is still valid, the guard can sim-

ply return its input, or any other program state it wishes to

return.

We also require the interpreter to implement a mecha-

nism to restart normal interpretation from the point of a

guard failure. To this end, we require the existence of a func-

tion restart in the interface and we define the concept of

restartpoints. The exact definition of a restartpoint is inten-

tionally left vague, so that interpreters may implement these

as they wish. When a guard fails during the execution of

a trace, the tracing machine applies restart to the current

program state, i.e., the state of the program at the point of the

guard failure, and the restartpoint associated with the failed

guard in order to retrieve the program state from where nor-

mal interpretation must resume.

It is important to note that we never specify a concrete

definition for any of the concepts that we have defined here,

such as the program state or the restartpoint. Interpreters

may implement these as they wish, allowing for maximal

decoupling between the tracer and the interpreter. To give a

concrete example however, when using a CESK machine as

an interpreter [3], the program state would be the CESK state

while a restartpoint may simply be the control component

of this state. In this case, the restart function could then be

implemented as a function that takes this control component

and merges it with the rest of the CESK state, i.e., the

environment, store and continuation stack.

It is also important to note that the definition of the

TracingSignal can be extended. Later on, one may wish

to extend this framework with a set of new features which

might require the interpreter to send back additional infor-

mation about its execution. This can then be accomplished

by adding a new set of signals to TracingSignal .

3.3 Transition Rules

Figure 6 depicts the transition rules between tracer states.

For simplicity, we omit the trace optimization phase that

occurs after the recording of a trace is finished. Instead, we

fold this phase into a single, abstract optimize function

which takes a trace as input and returns an optimized version

of this trace.

Normal Interpretation The normal interpretation phase

(NI) of a program’s execution refers to the execution stage

in which no trace is being recorded or executed. The tracing

machine therefore delegates execution entirely to the inter-

preter and only intervenes when the interpreter has reached

the start of a loop, at which point the tracer may either decide

to start tracing this loop, or decide to start executing a trace

that was previously recorded for this loop. The interpreter

signals these kinds of events through TracingSignal . The

formal semantics describing the execution of this phase are

given in Figure 6a.

Rule (1) represents the most common case where the

interpreter machine has not entered any loop. It therefore

returns False instead of a signal, along with the new program

ts(NI , tc, ς, False) → (1)

ts(NI , tc, ς′, False)

if step(ς) = step(ς′, τ, False)

ts(NI , tc(False, TNs), ς, False) → (2)

ts(TR, tc(tn(lbl , τ), TNs), ς′, False)

if step(ς) = step(ς′, τ, loop(lbl))

and if no trace for lbl has been recorded yet

and where TNs is a list of trace-nodes

ts(NI , tc, ς, False) → (3)

ts(TE , tc, ς′, tn(lbl , τ))

if step(ς) = step(ς′, τ ′, loop(lbl))

and where τ is the trace that has previously been recorded for lbl

(a) Normal interpretation

ts(TR, tc(tn(lbl , τ), TNs), ς, False) → (4)

ts(TR, tc(tn(lbl , τ : ι1 : ... : ιn), TNs), ς′, False)

if step(ς) = step(ς′, ι1 : ... : ιn , False)

ts(TR, tc(tn(lbl , τ), TNs), ς, False) → (5)

ts(TR, tc(tn(lbl , τ : ι1 : ... : ιn), TNs), ς′, False)

if step(ς) = step(ς′, ι1 : ... : ιn , loop(lbl
′))

ts(TR, tc(tn(lbl , τ), TNs), ς, False) → (6)

ts(TE , tc(False, tn : TNs), ς′, tn)

if step(ς) = step(ς′, ι1 : ... : ιn , loop(lbl))

and where τ ′ equals τ : ι1 : ... : ιn
and where tn equals tn(lbl , optimize(τ ′))

(b) Trace recording

ts(TE , tc, ς, tn(lbl , ι : τ)) → (7)

ts(TE , tc, ς′, tn(lbl , τ))

if ι(ς) = traceStep(ς′)

ts(TE , tc, ς, tn(lbl , ι : τ)) → (8)

ts(NI , tc, ς′, False)

if ι(ς) = guardFailed(rp)

and where ς′ = restart(rp, ς)

ts(TE , tc, ς, tn(lbl , ‘())) → (9)

ts(TE , tc, ς, tn(lbl , τ))

and where τ is the trace that has already been recorded for lbl

(c) Trace execution

Figure 6. Transition rules between tracer-states.

state and the set of actions it has applied to compute this new

state. Because the tracing machine is running in the normal

interpretation phase, it has no use for these instructions and

therefore immediately discards them. The new tracer state is

then just a copy of the old one, where the original program

state is replaced by the new program state returned by the

interpreter machine.

A more interesting case arises in rules (2) and (3), when

the interpreter machine enters a loop identified by the label

lbl . In rule (2), no trace has been recorded yet for lbl , so the

tracer starts tracing this loop. It switches its execution phase

to indicate that it is now tracing and updates its tracer context

by replacing the component representing its current trace.

This component now becomes a trace node consisting of the

label that is traced, as well as the instructions τ that have just

been executed by the interpreter and that were carried back

in the step. The program state of the tracer state must also

be updated because this program state continues to be used

by the interpreter as its actions are being traced.

In rule (3), the same conditions as in the second rule

apply, except that the tracer context now does contain an

already recorded trace for the label lbl . In this case, the tracer

must start executing this trace, so it switches its execution

phase to TE and switches the trace node of the tracer state

to the trace node containing the previously recorded trace

for the label lbl . We again also have to update the program

state because this state now serves as the input to all state

transitions that have been recorded in the trace τ .

Trace Recording In the trace recording phase (TR), all

actions that are executed by the interpreter are recorded into

a trace. Recording stops when the interpreter again enters the

same loop that is currently being traced. The tracing machine

can detect that it has entered the same loop by comparing

the label of this loop to the label of the trace currently being

recorded. Figure 6b gives the formal semantics governing

the program’s execution during the trace recording phase.

Similar to rule (1), rule (4) describes the common case

where the interpreter machine has not entered a loop. The

tracing machine therefore records the actions that have just

been executed by the interpreter: it appends the list of trace

instructions ι1 : ... : ιn that were returned by the interpreter

through the interface and appends them to the back of the

trace τ that has already been recorded so far. Furthermore,

as in the normal interpretation phase, we update the program

state with the state returned by the interpreter machine.

In rule (5), the interpreter reaches the start of a loop

carrying a label different from the label of the loop currently

being traced. Because the label is different, entering this loop

has no impact on the tracing process, so the tracer continues

tracing. As with the first rule, we do have to update both the

program state and the trace currently being recorded.

In rule (6), the interpreter also reaches the start of a loop,

but this loop does have the same label as the one currently

being traced. Reaching the start of this loop implies that we

have now completed one full iteration of the loop, so we can

stop tracing, analyse and optimize the completed trace and

store the optimized trace away in the tracer context. Note that

there is no explicit transition from the trace recording to the

trace optimization phase, but that this is handled implicitly

via the optimize function. Furthermore, because we are

at the start of the loop that we have just traced, we can

immediately start executing the optimized trace instead of

switching back to normal interpretation.

Trace Optimization (TO) Our framework leaves open

which analyses and optimizations are performed or how they

are implemented. Instead, they are treated as one opaque

function, optimize, which takes a trace as input and returns

an optimized version of this trace. optimize essentially

forms the hook through which developers can plug their op-

timizations and analyses into the framework. Although in

practice the analysis and optimization of traces is likely to

be performed in the background, simultaneously to program

execution, for simplicity we treat trace optimization as a

sequential process in the model.

Trace Execution In the trace execution phase (TE) the

tracer is executing a previously recorded trace. In Figure 6c

we define the formal semantics that express how the execu-

tion of a trace should be handled. For these rules, we write

ι(ς) to express that we apply the trace instruction ι on the

program state ς . Recall that a guard instruction is considered

to be the same as any other trace instruction. In rule (7), we

apply an instruction ι from the trace on the current program

state and a traceStep is returned, containing the program

state resulting from applying this instruction. The tracer then

continues by swapping its program state and moving on to

the next instruction in the trace. This rule represents both

the case where we apply a non-guard instruction, or a guard

instruction that did not fail.

Rule (8) expresses the case where a guard instruction has

been applied and subsequently failed. The rule states that we

should then switch our execution phase to normal interpreta-

tion. Additionally, interpretation should be restarted from the

point in the program that corresponds with the guard failure.

To find this point, we can call the restart function provided

by the interpreter with the restartpoint given by the guard

and the current program state, as mentioned in Section 3.2.

Rule (9) handles the case where we have reached the end

of a trace. Reaching the end of the trace corresponds with

finishing one full iteration of the loop, so we simply restart

the trace: we look up the full trace belonging to the label of

the trace we we executing and we replace the current, empty,

trace by this new, full, trace.

4. Evaluation

As a validation of this model, we have implemented an inter-

preter for a LISP-like language. Figure 1 depicts an example

of a small program in this language. Its interpreter satisfies

the interface defined in Section 3.2. The implementation1

and complete formal semantics2 are publicly available.

The interpreter is modeled after a CESK machine [3],

extended with a value register named v for storing the value

of the last expression that was evaluated. Execution of a

program therefore proceeds through following a set of CESK

state transitions.

Due to space constraints, we provide only a partial

overview of the interpreter, containing the most relevant

evaluation rules. For example, evaluation of a while-expression

of the form (while cond exp) is handled by the following

transition:

ps((while cond exp), ρ, σ, κ, v) →

1 https://github.com/mvdcamme/woda15/
2 https://soft.vub.ac.be/~mvdcamme

https://github.com/mvdcamme/woda15/
https://soft.vub.ac.be/~mvdcamme

step(ps(cond , ρ, σ, φ : κ, v), {psh cont(φ)}, False)

where φ equals wcondk(cond , exp)

Evaluating such an expression thus comes down to pushing

a wcondk continuation, containing the condition and the

body of the while-expression, onto the continuation stack

and continuing with the evaluation of the condition. Calling

step on the left-hand side program state therefore results in

the step structure on the right-hand side of the transition.

Once evaluation of cond is completed, the wcondk con-

tinuation is popped and the following rule is triggered:

ps(wcondk(cond , exp), ρ, σ, φ : κ, v) →

if v equals #t:

step(ps(exp, ρ, σ, wbodyk(cond , exp) : φ : κ, v),

{guard while(); psh cont(wbodyk(cond , exp))}

loop(exp))

if v equals #f:

step(ps(φ, ρ, σ, κ, v), {pop cont()}, False)

If the condition was true, evaluation proceeds to the body of

the while. Since the interpreter then enters the start of a loop,

it sends the tracing signal loop to the tracer. In the case of

this mini-language, the body of the while loop can be used

to uniquely identify each loop. If the condition was false, we

skip evaluation of the loop and pop the topmost continuation

from the stack.

In each transition rule, the interpreter also returns the con-

secutive trace instructions that were used in the computation

of the new high-level program state. For example, pushing a

continuation φ onto the continuation stack is referred to as

psh cont(φ) and defined as:

ps(e, ρ, σ, κ, v)
psh cont(φ)
−−−−−−−→

traceStep(ps(e, ρ, σ, φ : κ, v))

In this mini-language, only one type of guard instruction is

needed, for checking whether a while-condition is still valid.

This guard is implemented as follows:

ps(e, ρ, σ, φ : κ, v)
guard while()
−−−−−−−−→

guardFailed(φ) if v equals #f

traceStep(ps(e, ρ, σ, φ : κ, v)) if v equals #t

This guard checks whether the while-condition, whose eval-

uated value is stored in the value register v, still equals #t.

If it does, the guard just returns the input program state. Else,

the guard returns a guardFailed containing the current

continuation that rests at the top of the continuation stack.

Finally, the restart function can be implemented as fol-

lows:

restart(φ, ps(e, ρ, σ, φ : κ, v)) → ps(φ, ρ, σ, κ, v)

This function effectively generates a new program state by

popping the first continuation from the continuation stack

and continuing evaluation through this continuation.

5. Conclusion

We presented a formal model of trace-based JIT compilation

that distinguishes itself from previous work by its focus on

separating the tracing aspect from the interpretation compo-

nent in the execution of a program. We achieve this by di-

viding a program’s execution between two separate entities:

a tracing machine and an interpreter machine. This decou-

pling was enabled by identifying the set of requirements that

must be satisfied by an interpreter in order to enable tracing

of its execution, and moulding these requirements into an

interface (Section 3.2). Our model formally defines a trac-

ing machine which interacts with the interpreter through this

interface, but otherwise treats it as a black box. The result-

ing framework allows us to model the tracing of all inter-

preters that adhere to this interface. We validated our model

by implementing a CESK-style interpreter that conforms to

the defined interface, and demonstrated how it interacts with

the tracer.

The model presented in this paper facilitates experiments

with dynamic analyses because it formalizes the concept of

trace-based JIT compilation and enables gathering a pro-

gram’s execution traces. These traces can subsequently serve

as input for run-time dynamic analyses, such as type special-

ization, constant propagation of observed runtime values, al-

location removal etc. In future work we plan to develop new

analyses, or evaluate existing optimizations, in the context

of a diverse set of execution traces. Alternatively, this model

can be used to prove the soundness of existing trace opti-

mizations, as has already been explored in previous formal

models [2, 5].

References

[1] C. F. Bolz, A. Cuni, M. Fijalkowski, and A. Rigo. Tracing

the meta-level: Pypy’s tracing jit compiler. In Proc. of the 4th

Workshop of ICOOOLPS, ’09, pages 18–25.

[2] S. Dissegna, F. Logozzo, and F. Ranzato. Tracing compilation

by abstract interpretation. In Proc. of the 41st ACM SIGPLAN-

SIGACT Symposium of POPL, ’14, pages 47–59, 2014.

[3] M. Felleisen and D. P. Friedman. A calculus for assignments

in higher-order languages. In Proc. of the 14th ACM SIGACT-

SIGPLAN Symposium of POPL, ’87, pages 314–, 1987.

[4] M. Fulton and M. Stoodley. Compilation techniques for real-

time java programs. In Proc. of CGO, pages 221–231, 2007.

[5] S.-y. Guo and J. Palsberg. The essence of compiling with traces.

SIGPLAN Not., 46(1):563–574, Jan. 2011.

[6] T. Suganuma, T. Yasue, M. Kawahito, H. Komatsu, and

T. Nakatani. A dynamic optimization framework for a java just-

in-time compiler. In ACM SIGPLAN Notices, volume 36, pages

180–195. ACM, 2001.

	Introduction
	Trace-based JIT Compilation
	Tracing Machine
	Tracer State
	Tracing Interface
	Transition Rules

	Evaluation
	Conclusion

