
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Chari, Guido and Garbervetsky, Diego and Marr, Stefan and Ducasse, Stéphane (2015) Towards
Fully Reflective Environments. In: Proceedings of the 2015 ACM International Symposium
on New Ideas, New Paradigms, and Reflections on Programming & Software.

DOI

https://doi.org/10.1145/2814228.2814241

Link to record in KAR

http://kar.kent.ac.uk/63823/

Document Version

Author's Accepted Manuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/189717688?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Towards Fully Reflective Environments

Guido Chari, Diego Garbervetsky

Departamento de Computación, FCEyN, UBA
and CONICET, Argentina

{gchari,diegog}@dc.uba.ar

Stefan Marr, Stéphane Ducasse

RMoD, INRIA Lille - Nord Europe, France

mail@stefan-marr.de, stephane.ducasse@inria.fr

Abstract

Modern development environments promote live pro-
gramming (LP) mechanisms because it enhances the
development experience by providing instantaneous feed-
back and interaction with live objects. LP is typically
supported with advanced reflective techniques within dy-
namic languages. These languages run on top of Virtual
Machines (VMs) that are built in a static manner so that
most of their components are bound at compile time. As
a consequence, VM developers are forced to work using
the traditional edit-compile-run cycle, even when they
are designing LP-supporting environments. In this paper
we explore the idea of bringing LP techniques to the VM
domain for improving their observability, evolution and
adaptability at run-time. We define the notion of fully
reflective execution environments (EEs), systems that
provide reflection not only at the application level but
also at the level of the VM. We characterize such systems,
propose a design, and present Mate v1, a prototypical
implementation. Based on our prototype, we analyze the
feasibility and applicability of incorporating reflective
capabilities into different parts of EEs. Furthermore,
the evaluation demonstrates the opportunities such re-
flective capabilities provide for unanticipated dynamic
adaptation scenarios, benefiting thus, a wider range of
users.

Categories and Subject Descriptors D.2.6 [Pro-
gramming Environments]: Interactive Environments;
D.3.4 [Processors]: Run-time Environments

General Terms Design, Languages, Experimentation

Keywords Reflection, Live Programming, Virtual Ma-
chines, Metaobject-Protocols, Dynamic Adaptation

1. Introduction

With the recently renewed interest in live programming
(LP), it is becoming more popular to build software in
environments that assist developers with immediate and
continuous feedback. Such environments blur the bound-
ary between development time and run-time, which is
not only beneficial for prototyping tasks, but also for
developing complex software that needs exploration and
continuous evolution [4]. In dynamic languages such as
JavaScript, Python, or Smalltalk, LP is typically en-
abled by language-level mechanisms for observability
and interactivity in the form of reflective APIs.

Dynamic languages that facilitate LP usually run on
top of virtual machines (VMs). VMs are, in general,
highly complex software artifacts that realize heteroge-
neous functionalities such as the language’s semantics,
dynamic compilation, adaptive optimizations, memory
management, and security enforcement. However, these
artifacts are typically developed using tools with a strict
edit-compile-run cycle that do not provide the aforemen-
tioned dynamic features.

For example, industrial-strength VMs for mainstream
languages like Java and JavaScript are written in low-
level static languages, such as C and C++, to comply
with performance requirements. After compilation, such
VMs are optimized binaries that make it hard to observe,
explore, and adapt their behavior at run-time. Thus,
while application developers benefit from LP capabilities,
VM developers still live in the old-fashioned static
world, where build times can be in the order of minutes
rather than milliseconds, significantly slowing down the
development process.

Multiple research projects explored the use of high-
level languages for VM construction [1, 11, 30, 36]. This
approach is appealing because developers can leverage
modern programming techniques and principles to better
deal with the complexity of VM’s development. Some of
these approaches are metacircular, e.g., implementing
a Java Virtual Machine in Java, and thus benefit from
the language’s features. In addition to the use of high-
level languages, aspects such as modularity, observability
and extensibility have been in the focus of the VM

research community as well [13, 35]. However, even
the metacircular approaches produce VMs that do not
enable significant observability and interactivity with
the VM at run-time.

We propose the idea of fully reflective EEs: VMs
exposing their whole structure and behavior to the lan-
guage at run-time. Fully reflective EEs allow developers
to observe and adapt the VM on-the-fly enabling from
simple adaptations up to fine-grained tuning of applica-
tions. This benefits VM developers by bringing them the
possibility to program low-level components with instan-
taneous feedback, something rarely available nowadays.
At the same time, it also provides end-users a high-level
interface for customizing the EE. For instance, applica-
tion developers can rely on run-time services for adapt-
ability instead of having to develop application-specific
solutions.

As an example for the potential of such VMs, consider
an application that has to run without interruption. In
case a security issue is found, one might want to use a
custom security analysis to determine its impact with
respect to application and user data. To avoid further
problems, it is desirable to ensure that this data is not
modified by the analysis, i.e., that it is side-effects free.
A programming language approach for enforcing this
property would turn the critical data of the application
immutable before running the analysis. In this paper
we argue that solutions based on fully reflective EEs
increase the possibilities to approach such scenarios at
the language level while also simplifying the solutions.

The goal of this paper is start exploring the space
of fully reflective EEs. We begin by defining their main
characteristics and we design a reference architecture
to follow. Then, we implement a first prototype, called
Mate v1, that exposes a significant part of its structure
and behavior using a language-level uniform abstraction:
a metaobject protocol (MOP) [16]. To the best of our
knowledge, our approach is the first that uses reflection
at EE level in an integral way. Furthermore, Mate v1
provides extensive reflective capabilities in most of its
main components. To assess the feasibility, applicability,
and usefulness of our approach we analyze how the EE
handles unanticipated fine-grained adaptive scenarios
concerning low-level aspects. We conclude that, using
its reflective capabilities, Mate v1 properly deals with
the required modifications on-the-fly.

The contributions of this paper are:

• The proposal of bringing live programming techniques
to the domain of EEs together with a methodology
to study and characterize fully reflective EEs in order
to explore their advantages and limitations.

• A reference architecture for fully reflective EEs fea-
turing a MOP for handling EE-level reflection at the
application level.

• Mate1: a self-hosted prototypical, but functional,
reflective EE supporting the Smalltalk programming
language.

• A validation through case studies in the context of
dynamic adaptation, that demonstrates the feasibility
and usefulness of our approach by using the incorpo-
rated LP capabilities at the EE level.

2. Background

This section introduces basic notions on which we rely
throughout the paper.

2.1 Reflection

Reflection [27] in programming languages is a mechanism
for programs to express computations about themselves,
enabling the observation (introspection) and/or modifi-
cation (intercession) of their structure and behavior. A
programming language is said to have a reflective archi-
tecture if it provides tools for reflective computations
explicitly [17]. For instance, a reflective architecture
for OO languages can rely on metaobjects that reify
language concepts such as objects and methods. Meta-
objects and their corresponding baselevel objects must
be causally connected: changes in any of them must lead
to a corresponding effect upon the other [17].

Metaobject protocols (MOP) [16] are interfaces to the
language that give users the ability to incrementally mod-
ify the language’s behavior and implementation within
the same language. To improve aspects of distribution,
deployment, and general purpose metaprogramming for
MOPs, Bracha and Ungar [7] proposed the following
Mirror design principles: i) Encapsulation: they do not
expose implementation details. ii) Stratification: they
enforce a separation between the application behavior
and the reflective code. iii) Ontological correspondence:
their meta-level reifications must map one-to-one to con-
cepts of the base-level domain. Since these principles
also correspond to common programming practices, we
base our design on them.

2.2 Reflection Challenges

Reflective implementations must deal with two main
concerns that are in tension: completeness and perfor-
mance. Completeness is the degree in which the concepts
of a domain (i.e., components and their responsibilities)
are reified. We also call this degree the reflectivity of
the system. Within completeness we can distinguish two
main dimensions: domain-breadth and domain-depth.
The former measures how many entities and their corre-
sponding functionalities are included in the reification.
The latter refers to the number of meta-levels that can
be used from the domain. Full reflection refers to the

1 https://ci.inria.fr/rmod/view/Mate/job/MateArg/

coverage of both the domain-bread and domain-depth
aspects of reflection. Completeness and performance are
in tension because incorporating more reflection into
a system (i.e., making it more complete) increases the
flexibility at the cost of affecting its performance.

Within completeness, the domain-depth dimension
is strongly related with the concept of metaregression.
A well-known example from literature that exposes
this situation is the tower of interpreters [27]: when an
interpreter is reified it requires another (not yet reified)
entity to interpret itself. This scales to an infinite tower
where each level is in charge of giving semantics to the
subsequent upper level. The lowest level, i.e., the base
level, is the application. In practice, there are different
ways to avoid this infinite chain of meta-activations.
For instance, one approach is fixing the number of
metalevels so that the top level can not be further
reified. Note that this alternative limits domain-depth
completeness. All alternatives face with similar trade-
offs. As a consequence, it is infeasible to reify everything
considering both domain-breadth and domain-depth.

2.3 Live Programming

Live programming is mainly concerned with providing
instantaneous feedback to developers. From a conceptual
point of view, a live interaction helps to better under-
stand and manage complex problems. LP is also suitable
for exploratory stages since it speeds up development by
reducing offline compilation steps [10, 20]. In particular,
Burckhardt et. al [10] see the classical edit-compile-run
cycle as one reason for the gap between the program
text and the perception of its effects.

The elimination of this cycle is already supported by
high-level OO programming languages, such as Small-
talk, Ruby, Javascript, or Python, via reflective APIs.
For instance Smalltalk, with its reflective object model,
embraces a fix-and-continue way of debugging, where
code and state can be modified while the program is
being debugged. Similarly, in JavaScript objects behave
like hash maps so that fields can be dynamically added
or removed with instantaneous effects.

2.4 Execution Environments

We define an Execution Environment to be any layer of
software within a system that is responsible for executing
programs written in a specific programming language.
Particularly, in this work we are interested in EEs for
object-oriented (OO) languages. For instance, an EE is
responsible for executing language expressions, define
the representation of objects in memory, and garbage
collect objects. It is worth noting that many EEs are
also known as Virtual Machines (VMs) or Managed
Runtimes. We use the terms interchangeably throughout
this paper.

A common characteristic of EEs is that they consist
of several intertwined components coping with complex
and low-level responsibilities [14]. In addition, their per-
formance affects the overall performance of the programs
they execute. We already mentioned in section 1 that as
a consequence, they are usually rather static artifacts,
difficult to observe and adapt at run-time. For instance,
a VM developer that wants to experiment with another
algorithm for the method lookup mechanism, must re-
compile and deploy the whole VM. A system supporting
LP at EE-level would allow her to change the method
lookup in a programmatic manner and instantaneously
analyze its effects.

2.5 Application-level vs. EE-level Reflection

Commonly, reflective computations are distinguished
based on whether they use introspection or intercession,
as well as whether they affect behavioral or structural
elements. However, this does not distinguish reflective
operations at different abstraction levels. For example
the operations to add fields to an object and to modify
its memory position are both characterized as structural
intercession, but they deal with different levels of abstrac-
tion. The first operation is at the object (application)
level while the latter is at the EE level. Moreover, it is
common in reflective languages, such as Smalltalk and
Javascript, to support the addition of fields at run-time
while most languages do not support the modification of
the memory position of an object. For the work discussed
in this paper, it is important to distinguish this kind of
operations to precisely characterize reflective environ-
ments. As a consequence, we introduce the following
categories:

• Application-level reflection refers to metaprograms
that work with objects, classes, methods, or object
fields of the application’s domain model.

• EE-level reflection refers to metaprograms that re-
gard operational semantics, execution stack, layout,
method lookup, or memory management.

3. Exploring Fully Reflective EEs

In this section we describe the characteristics that EEs
must fulfill for being fully reflective. We also present the
research questions we identified after analyzing them.
Finally, we describe our methodological approach to
answer these questions.

3.1 Main Characteristics

The following maxims define, from our perspective, the
main characteristics that fully reflective EEs must have.

Maxim 1. Universal Reflective Capabilities:

EEs must enable intercession and introspection of all
entities at both, the application and the EE level.

As we already pointed out, EEs for dynamic lan-
guages are generally written in low-level languages. As
a consequence, EE’s developers lack the LP capabili-
ties that the application level promotes. Moreover, EEs
usually impose a rigid boundary between them and the
application, beneficial in terms of security and portabil-
ity but severely restricting the interaction between an
application and its EE at run-time. We propose to push
LP techniques to the domain of EEs. More precisely, we
advocate for EEs with reflective capabilities that cover
the cartesian product of the dimensions introduced in
section 2.5:

{Intercession, Introspection}
×

{Structure, Behavior}
×

{Application, Environment}

Maxim 2. Uniform Reflective Abstractions:

EEs must provide the same language tools for interacting
with both, the application and the EE levels.

Uniform tools for logically related concepts help
to improve the understandability and evolvability of
the programming environment [21]. Hence, improving
the reflective capabilities with EE-level reflection must
use the same application-level reflective techniques to
avoid increasing the complexity. Developers that work in
different domains should be able to focus on enhancing
their knowledge on a single tool for dealing with reflective
computations at different levels. For instance, if the
language offers application-level reflection via a MOP,
EE-level reflection must also be supported by a MOP.

Maxim 3. Separation of Application and EE:

Observability and adaptability should not be a concern of
an application’s design. Instead, the EE should provide
the necessary capabilities.

To separate concerns, an application must focus on
the problem domain, while orthogonal concerns should
be handled separately. For example, similar to aspect-
oriented programming, a cross-cutting low-level adapta-
tion such as making objects immutable must not affect
the application’s domain model. Hence, it is important
that the abstraction for dealing with reflection enables
a clear separation between the application and the EE
domains. Moreover, EE-level reflective capabilities must
not impose any cost when not used.

3.2 Analysis of Fully Reflective EE

Our research goal is to understand the consequences
of incorporating reflective capabilities in all EE com-
ponents. This includes analyzing the classical issues of
completeness and performance, discussed in section 2.2,

but also the effects derived from the particular charac-
teristics of the EE domain. To approach this goal we
intend to answer a series of questions regarding feasibil-
ity, performance and applicability.

Starting with feasibility, we need to understand the
potentials and limitations of modeling full reflection at
the EE domain. In section 2.2 we already discussed that
full reflection is not feasible because of the metaregres-
sion problem [18] for the domain-depth dimension of
completeness. But, we are not aware of previous works
exploring the reflective capabilities of EEs in a domain-
breadth fashion. We think a finer-grained analysis in
the breadth is particularly relevant for the EE domain.
The reason is that EEs include complex elements that
are highly coupled and, thus, reflective implementations
must ensure causal relationships with more encompass-
ing implications. For instance, changes to a GC property
potentially need to be taken into account by a JIT com-
piler to generate different code. Taking all this into
account we propose the following research questions:

• What are the precise fundamental limits of fully
reflective EEs?

• What is the minimal core of an EE that cannot be
implemented in a fully reflective way?

• What are the techniques for dealing with the funda-
mental limitations?

• Do reflective capabilities in one component interfere
with the capabilities of others, and if so how?

In the context of applicability, we think it is also impor-
tant to analyze pragmatical issues such as the relevance
of fully reflective EEs in the context of real applications.
For instance, understand how design decisions impact
on the capabilities for properly handling different prob-
lems at run-time. Furthermore, practical EEs must meet
certain performance demands. Although reflection im-
poses significant performance overheads [8, 18], Marr et
al. [19] recently showed that it is possible to remove this
overhead of language-level reflection in the context of
just-in-time compilation. In summary, we are interested
in studying also usability and performance aspects of
fully reflective EEs such as:

• Are fully reflective EEs suitable for tackling realistic
problems?

• What are the reflective operations that are better
suited for each kind of scenario?

• What are the main performance overheads of fully
reflective EEs? How can they be mitigated?

Finally, there exists a potential abstraction mismatch
between the high-level nature of the language and the

low-level nature of the EE. For instance, it is not
clear how to express computations for handling memory
issues using a high-level language that does not provide
constructs for manually managing memory (e.g., it uses
a garbage collector). This is something a fully reflective
EE must address:

• Is there a proper way to deal with the abstraction
mismatch between the language expressiveness and
the environment low-level necessities?

3.3 Approach

In order to approach the research questions in a system-
atic manner we use the following methodology:

1. Define a reference architecture.

2. Inspired by a representative problem, design and
implement an EE prototype that increments the
reflective capabilities of the previous iteration.

3. Analyze the reflective capabilities and the ability to
address the case studies of the prototype.

4. Incorporate the feedback of the empirical data into
the analysis of the research questions.

5. If there remain unanswered aspects go back to 2.

In the remainder of this paper we describe our ref-
erence architecture in section 4 and evaluate it in two
phases. In section 5 we select a representative prob-
lem and then discuss the design, implementation and
analysis of the corresponding EE prototype. We use
this implementation for gathering insights about poten-
tial feasibility issues and studying the characteristics
of different reflective capabilities. Section 6 describes
the second part, an evaluation of the prototype in the
context of a series of case studies. This allows us to
gather information about applicability aspects. Finally,
with all the information obtained, in section 7 we answer
(at least partially) the research questions.

4. Reference Architecture

Recall from section 3.1 that we aim to design a universal
reflective EE that exposes a uniform reflective abstrac-
tion which promotes separation of the application and
EE domains. Guided by these maxims we designed an
architecture following these three guidelines:

1. The EE supports a language already providing ex-
tensive reflective capabilities at the application level.

2. Every EE-level entity features reflective capabilities.

3. EE-level reflection is realized using an independent
MOP that follows the Mirror’s principles.

Figure 1 presents the resulting architecture that
forms the basis for the implementation of the successive
prototypes. The architecture is divided into two layers:

Application Level

MethodObject

Bind to

Language
MOP

Sent to

Execution Environment Level

Executor

Layout Ex. Context

Message

Memory

Mate
MOP

Figure 1: Mate High-Level Architecture.

the application and the EE levels. The arrows represent
interaction points between components. The application
level includes only the fundamental blocks of the OO
programing paradigm: objects and methods. The idea
is to minimize the restrictions imposed so that more
existing languages fit in the architecture. The only
requirement for the OO language is that it must include a
MOP in charge of the application-level reflection, which
to a certain degree most OO solutions do to realize their
reflective architectures.

The bottom layer comprises a set of essential EE-
level entities needed for executing expressions, realizing
objects, and managing memory in a pure OO language.
Following universal reflection (maxim 1) they must
all be first-class citizens in any implementation of the
architecture. Moreover, following uniformity (maxim
2) we decided to structure EE-level reflection as a
MOP complementary to the application-level MOP. The
bottom rounded dashed box in figure 1 shows this
graphically. We based our decision on the fact that
several authors suggested that MOPs are an elegant
solution for handling non-functional aspects and we
have the hypothesis that MOPs also fit well with our
requirements. In fact, there are already approaches such
as Iguana/J [23], Object-Centric Debugging [24] and
Slots [32], that adopt MOPs as a way to deal with low-
level concerns.

Finally, MOPs adhering to the Mirror’s principles iso-
late the reflective capabilities into separate intermediary
objects that directly correspond to language structures.
The requirement of adhering to these principles at the
EE level provides the required separation of domains of
maxim 3. The explicit separation we impose between EE-
level and application-level MOPs already comply with
the Mirror’s principle of stratification. Bracha and Ungar
claim that adhering to this principle helps to avoid over-
heads when EE-level reflection is not needed by making
it easy to eliminate it [7]. In addition, the decision of
representing each EE-level entity by a metaclass honors
the Mirror’s principle of ontological correspondence.

We now describe briefly the main responsibilities of
the EE-level entities included in our reference architec-
ture:

Executor is responsible for interpreting (and eventu-
ally optimizing) methods defining the operational
semantics of the language.

Execution context manages the stack and the essential
information that the executor uses for executing a
method, including the given receiver and arguments.

Message is responsible for the binding of messages to
methods (method lookup) and the corresponding
method activation that creates the execution context
in which the method will be later executed.

Memory is responsible for dealing with the actual
memory. This includes read/write accesses as well as
allocation and garbage collection.

Layouts describes the concrete organization of the
internal data of objects.

5. Mate v1: A Complete Iteration over

the Methodology

In this section we present Mate v1, a first prototype
of a reflective EE that we obtained by following the
described methodology. We discuss its main design
decisions, mostly concerning the EE-level MOP, and
analyze the resulting reflective capabilities.

5.1 Representative Problem

We first selected a practical problem for guiding the de-
sign of Mate v1: unanticipated fine-grained adaptations
at run-time. By this we mean adaptations, at the granu-
larity of objects or methods, that were not anticipated at
design time and have to be applied without stopping the
system. An example of this kind of scenarios was already
presented in section 1. We adopted this problem inspired
on [26] that has already pointed out that language-level
approaches are suitable alternatives for dealing with fine-
grained behavioral adaptations. In addition, we have the
hypothesis that many unanticipated scenarios requiring
fine-grained adaptations can be properly handled by
adapting the EE in a programmatic fashion at run-time.
We evaluate this hypothesis in section 6.

5.2 EE-level Metaobject Protocol

Figure 2 presents a sketch of the resulting MOP. The
metaclasses are grouped into two main clusters: one
concerning the execution and another referring to the
organizational aspects of the EE. Compared to the ref-
erence architecture it only misses the memory metaclass.
We decided to leave the reflective implementation of the
memory for future iterations because our case studies
do not require reflection for that component. The combi-

Execution
Message

Lookup

Activate

Organization

Executor
Store Field

Load Field

Push On Stack

Pop From Stack

Send Message

Return

Memory

Not
Implemented
in Mate V1

Layout
Read Field

Write Field

Initialize Field

Count of Fields
Create Layout
Customize Structure

Context
Receiver

Arguments

Return Frame

Stack

Facade
LowLevelOp

Language
System

Environment
Execution
Organization

Figure 2: Mate’s Metaobject Protocol. The operations
highlighted in italics represent behavioral aspects of the
EE while the others represent structural aspects.

nation of the capabilities of these metaclasses represent
the entire EE-level reflectivity of Mate v1.

To determine the reflective capabilities of each meta-
class we dealt with requirements that were sometimes
in tension between: a) handle the adaptation scenarios.
b) explore new reflective capabilities at EE level. c) im-
plement a yet practical EE. What follows is a brief
description of the resulting capabilities per metaclass:

• Message: Allows developers to redefine (intercede) the
method lookup algorithm and the method activation
mechanism. In section 6.1.2 we show examples of its
application for handling adaptation scenarios.

• Executor: Mate v1 implements a bytecode interpreter.
This metaclass allows developers to redefine at the
language level the behavior of each individual byte-
code. We only use a subset for the case studies.

• Execution Context: Makes it possible to observe and
intercede the execution context of each method by
interacting with the receiver, the arguments, the
caller’s context, and the stack. We show an example
of its usage in section 6.1.2.

• Layout: Provides means to modify the behavior of
operations interacting with object’s fields. Specifically,
the reading, writing, and initialization of fields. It
also allows the introspection and intercession of the
organization of objects (for the sake of simplicity we
omit the details about how objects are organized in
Mate v1). Usage examples can be found in section 6.2.

5.2.1 How To Use the MOP

When dealing with structural aspects of an EE entity,
reflection is handled by observing and/or altering its
corresponding metaobject’s fields. For instance, in Mate
v1, at instantiation time every object is automatically
linked to a layout metaobject describing its structure.
An execution context metaobject is automatically instan-
tiated for every method invocation. Currently, these are
the only two metaobjects providing structural reflection
at EE level in Mate v1.

In contrast, behavioral intercession is handled by
adding methods that overload base-level functionalities.
These methods must be incorporated as extensions (via
inheritance) of the previously introduced metaclasses:
Message, Executor, and Layout. ExecutionContext is not
included because its operations consider only structural
aspects. The subclasses can overload the operations
distinguished in figure 2 using italic letters, which are
essentially the operations concerning behavioral aspects.

To provide a homogeneous and controlled mechanism
for writing these methods, the MOP features two meta-
classes: Environment and LowLevelOperation. They are
contained in the Facade cluster located at the bottom
of figure 2. Environment metaobjects are the only in-
teraction points between the application and the EE
metalevel. LowLevelOperation metaobjects only put to-
gether instances of the metaclasses with the incorporated
method redefinitions. Environments are linked to up to
two LowLevelOperation metaobjects: one redefining ex-
ecution aspects and the other organizational aspects of
the EE. Finally, environments can be assigned to entities
at different granularity levels: individual objects, set of
objects, execution contexts, or even the whole system.

It is worth noting that our mechanism enables only
one interceding point for the execution cluster and
another for the organization cluster. Although this
may appear restrictive, we preferred not to handle
the potential complexity of enabling simultaneous (and
possibly conflicting) interceding mechanisms in this
prototype.

To better illustrate how to use these metaclasses we
now present an example. Consider an unanticipated
requirement for making a group of objects immutable at
run-time like the scenario discussed in the introduction.
In addition, there is a need for improving memory
consumption by compressing objects that contain several

uninitialized fields. Using Mate v1, the operations of the
MOP to be redefined are:

• Write field bytecode from Executor to throw an
exception whenever the system tries to change the
value of a field (immutability).

• Read field, write field, and field count from Layout
to handle the memory compression and make it
transparent to the application that the layout has
changed.

Figure 3-a shows a possible configuration of metaob-
jects implementing the aforementioned scenario and 3-b
the corresponding steps needed to generate this config-
uration. To ease readability, we distinguish in the fig-
ure between metaclasses, metaobjects and facade meta-
classes. Two metaclasses extensions are responsible for
the required adaptation: Immutable and Compactable.
Immutable extends the Executor and Compactable the
Layout. Each overloads the aforementioned operations
correspondingly. aImmutable and aCompactable are in-
stances of these respective metaclasses. aExecution and
aOrganization are the LowLevelOperation instances
linked to aImmutable and aCompactable via its instance
variables. Note that we need two instances of LowLevel-
Operation because there is a requirement for overloading
methods concerning both execution and organizational
aspects of the EE. Finally, aImmutableCompactable is
an Environment metaobject linked to aExecution and
aOrganization.

5.3 Analysis of Reflective Capabilities

We present a graphical representation to characterize
the reflective capabilities of Mate v1 and compare them
with respect to other approaches featuring advanced
reflectivity. To the best of our knowledge they are
Pinocchio [31] and CLOS [16]. Bellow, we briefly discuss
their main differences with Mate v1 while in section 8.2
we provide a more detailed description of both of them.

Figure 4 presents an axis for each EE-level entity
appearing in our reference architecture as a means to
compare the approaches in a fine-grained manner. We
analyze these artifacts estimating the number of reified
operations and evaluating their relevance. Note that this
ad-hoc evaluation only considers the domain-breadth
dimension. Therefore, when solutions have a similar
domain-breadth valuation, we would consider the solu-
tion with the highest domain-depth as more complete.
The top of each axis corresponds to the ideal of full re-
flection, the base line to having no reflection at all. The
dashed wave crossing the figure is an imaginary shape
representing the reflectivity that could be achieved in
practice. Our long-term goal is to progressively charac-
terize its actual maximum reflectivity value for each of
these axis.

MetaobjectsMetaclasses

Executor Layout

readField
writeField
fieldsCount

Compactable

writeField

Immutable

Facade

- language
- system

LowLevelOp

- execution
- organization

EnvironmentaImmutableCompactable

aExecutionaImmutable

aCompactable

aOrganization

a. Configuration of metaobjects for the adaptation scenario

1 Subclass Executor and Layout (Immutable, Compactable).
2 Overload required methods on Immutable and Compactable.
3 Instantiate both (aImmutable, aCompactable).
4 Instantiate twice LowLevelOp (aExecution, aOrganization).
5 Assign aImmutable to aExecution.
6 Assign aCompactable to aOrganization.
7 Instantiate Environment (aImmutableCompactable).
8 Assign aExecution to aImmutableCompactable.
9 Assign aOrganization to aImmutableCompactable

b. Instantiation of facade objects

Figure 3: How to define and instantiate intercession handlers.

Executor Layouts MemoryMessage

Full Reflective EE

Practical Limits?

+

-

R
e
fl
e
c
ti
v
it
y Mate V.1

Pinocchio

CLOS

Figure 4: Analysis of reflectivity per component.

Mate v1 reifies the behavior (operational semantics)
and part of the structure (execution context) of the
executor. We consider this as a higher degree of reflection.
However, Pinocchio is above Mate on the executor’s axis
because beyond this, Pinocchio also enables to work with
an unlimited number of metalevels. In contrast, Mate
v1 limits the number of metalevels (see next section for
a rationale for this). Hence, Pinocchio is more complete
in the domain-depth dimension. CLOS reifies several
operations on the layout and message components. But
even though this enables partial modifications of some
program’s semantics, it does not include all aspects of the
execution. For instance, Mate enables the redefinition of
each individual bytecode, and Pinocchio each operation
at the AST level. In contrast, CLOS reifies neither of
them. Therefore it has lower reflectivity on this axis.

Concerning layouts, Mate v1 provides limited struc-
tural reflection on the object formats and intercession
handlers for many operations on fields. As a consequence,
the reflective capabilities in Mate v1 on layouts can be
considered as less powerful than its executor capabil-
ities. Nevertheless, Mate v1 reflective capabilities on
layouts outperform Pinocchio’s which focuses only on
the executor components. Meanwhile, CLOS also fea-
tures reflective capabilities on layouts by incorporating
the concept of slots for reifing instance variables. Mate
v1 is slightly above CLOS since it supports similar redef-

initions for operations on fields, but in addition, Mate v1
also considers a larger part of its structural organization.

Pinocchio and Mate v1 enable to overload the se-
mantics of messages. CLOS has lower reflectivity in this
axis because according to our understanding, it does not
provide means to intercede the method lookup and acti-
vation on individual objects. None of the solutions allow
developers to adapt the structure of methods. Finally,
as already discussed in section 5.2, Mate v1 does not
support reflection for the memory management entity,
as neither of the other approaches does.

5.4 Implementation Details

We developed an EE from scratch in order to have full
control for tuning and experimenting with advanced
reflective capabilities. We adopted Smalltalk as the
language to support. The reasons are that Smalltalk
fits in the reference architecture, it is well-known for its
conceptual simplicity, and it already provides advanced
reflective capabilities at the application level. Mate v1
implements an interpreter that supports the complete
bytecode of the Cog VM [22], making it compatible with
two well known open-source Smalltalk implementations:
Squeak [15] and Pharo [5]. It also defines its own object
format and a memory manager featuring a mark &
sweep garbage collector. In summary, Mate v1 is a
research prototype capable of running standard Small-
talk programs that consist of a base-level EE and a MOP
reifing its essential components.

5.4.1 Causal Connection

We now present the two different ways of implementing
the causal connection between the base and the meta
levels of the EE. For each, we discuss completeness and
performance as the main obstacles we faced during the
implementation of the reflective components.

EE-level Behavioral Reflection

Behavioral reflection is implemented with hooks in the
base-level EE. These hooks are usually known as inter-
cession handlers. Before executing an EE-level operation
that is part of the MOP, like a bytecode, the VM tests

1 function executeOperation(op, level) {
2 if (level is Base)
3 if (MOP overloads op)
4 method = MOP.fetch(op)
5 for (metaOp in method)
6 execute(metaOp, Meta)
7 else VM.execute(op);
8 else VM.execute(op);
9 }

Figure 5: Mate’s intercession handlers implementation.
The notation is Java-like pseudo code.

whether there is a metaobject redefining it. If not, the
original static implementation of the operation executes.
In case the operation is redefined, the VM delegates the
responsibility to the corresponding metaobject’s method.
We now discuss the main limitations of these intercession
handlers:

Completeness: We already pointed out the domain-
breadth dimension of completeness for each metaclass of
the MOP during this section. It is worth adding that in
Mate v1 it is not possible to add new hooks (intercession
handlers) to the base level at run-time. Therefore, the
behavioral reflectivity of the EE cannot be increased
on-the-fly. For the domain-depth dimension, Mate v1
allows two levels of execution: meta and base. Every time
the EE delegates the execution of an EE-level operation
to the MOP, the level is set to meta and no further
delegations are possible until the operation returns.
This mechanism is illustrated in figure 5 and essentially
prevents potential metaregressions by avoiding to dive
into further metalevels.
Performance: Each intercession point in the base-level
EE requires one extra test whenever the operation is
going to be executed. These tests have an impact on the
overall performance of the system. However, this kind
of mechanism can be optimized using state-of-the-art
dynamic compilers (see section 7.3).

EE-level Structural Reflection

We reify the structure of base-level entities using the
fields of metaobjects. This mechanism enables a program
to observe and change the value of the fields with instan-
taneous effects. To guarantee the causal connection the
base level entity behaves according to the information
residing in the corresponding metaobject and vice versa.
The difficulties are similar to the previous case:

Completeness: Analogous to the behavioral case, struc-
tural reflectivity of the MOP cannot be increased at
run-time. Considering the domain-depth dimension, we
faced a metaregression issue with layouts. Since layout
metaobjects are also first-class objects they must be

determined by another layout metaobject. As a compro-
mise (and general) solution, in Mate v1 the structure of
metaobjects is determined by fixed layouts.
Performance: The indirections are similar to those of
behavioral reflection. However, since the execution of
the base level strongly depends on metaobjects, it is
unclear how it affects potential code optimizations.

6. Mate v1 Adaptation Capabilities

In this section we present a series of case studies where we
analyze how Mate v1 handles unanticipated fine-grained
adaptations scenarios at run-time. Recall, in this scenario
the application was not designed for such adaptations
and they need to be performed while the system keeps
running. Furthermore, they are fine-grained adaptations
at the granularity of individual objects or methods. We
compare Mate v1 against other adaptation approaches
with respect to the feasibility, simplicity and amount of
modifications required.

6.1 Immutability

Object immutability [38] is useful, for instance, for soft-
ware development, testing, and safe updates. For exam-
ple, during the execution of a test suite it is desirable to
enforce that assertion expressions have no side-effects.
Activating and deactivating immutability on-the-fly can
protect the system against unintended side-effects. More-
over, reference immutability controls mutation at the
reference level and enforces more complex mutability
properties such as:

• objects being mutable from one reference but im-
mutable from another,

• and propagating immutability through reachable
references.

Object and reference immutability have been used
to enforce properties such as thread non-interference,
parameter non-mutation, and to simplify compiler opti-
mizations [29].

6.1.1 Object Immutability In Mate v1

The following code snippet supplements the general idea
already sketched in section 5.2.1 for providing object
immutability in Mate v1:

1 class Immutable : Executor {
2 function writeField(aNumber, anObject){
3 throw new ImmutableException();
4 }
5 }
6 immutable = new LowLevelOp();
7 immutable.system(new Immutable());
8 immutableEnv = new Environment();
9 immutableEnv.execution(immutable);

10 obj = (new Object()).environment(immutableEnv);

On lines 1-5, we subclass the Executor metaclass
and overload the writeField operation so it throws
an exception. From line 6 on, the code creates the
two required facade metaobjects and links them to an
instance of the new subclass. The last line installs the
environment in a new object. Note that deactivating
the immutability property requires simply to unset the
environment: obj.environment(null).

6.1.2 Reference Immutability In Mate

Smalltalk does not include the concept of references at
language level. Hence, for providing reference immutabil-
ity we extended Mate v1 at run-time for supporting
them. We followed Arnaud et al.’s handles approach [2].
Handles are like proxies to objects that do not delegate
the mutable operations to their targets. For keeping the
consistency of Smalltalk, handles must be transparent: a
user should not be able to distinguish if she is accessing
an object directly or through a handle. Moreover, any
object accessed through a handle is wrapped into an-
other handle. This way the readonly property propagates
through the complete chain of objects accessed from an
immutable reference.

Our implementation approach of handles in Mate v1
abstracts the semantics of both, the immutability, and
the transparency and propagation properties, in two
corresponding metaobjects. In the case of immutability
we reuse the Immutable metaobject from the previous
example. For the transparency and propagation we in-
troduce the DelegationProxy. DelegationProxy overloads
the method lookup and activation for ensuring the prop-
agation and transparency of handles. Concretely, mes-
sages sent to a handle must execute the method from the
target object and side-effects must be disabled from that
method on in the chain of further activations. Below the
code:

1 class DelegationProxy : Message {
2 function lookupFrom(aSymbol, aClass) {
3 return super(aSymbol, this.target());
4 }
5 function apply(method) {
6 activation = this.metaActivationObject;
7 activation.fieldAtPut(1,method);
8 activation.fieldAtPut(2,targetOrSelf);
9 activation.fieldAtPut(3,Handle.envForHandles());

10 }
11 }
12 class Handle : Object {
13 function initialize() {
14 this.environment(this.class().envForHandles());
15 }
16 static function envForHandles(){
17 ImmutableReferences = new LowLevelOp();
18 ImmutableReferences.system(
19 new ImmutableExecution()
20);

21 ImmutableReferences.language(
22 new DelegationProxy()
23);
24 return new Environment(ImmutableReferences);
25 }
26 }

Line 3 delegates the lookup to the superclass imple-
menting the standard algorithm. However, the second
parameter ensures that the required method must be
looked up in the original object (the target) and not in
the handle. The apply function overloads how to activate
the method. In particular, line 9 selects the environment
metaobject to define the semantics within the method
context in which the method would be executed. As a
consequence, any operation executed in that context is
forbidden to modify objects because it is reachable from
a readonly reference. Note that this is an example of a
metaobject installed at a method activation granularity.
Moreover, further calls to other methods inside that
context use the aforementioned lookup propagating the
same behavior over all the messages that originates from
a handle. Summarizing, DelegationProxies ensures the
transparency and propagation of handles.

With both semantic elements represented as metaob-
jects, we can implement handles. In Smalltalk, when an
object is created, the method initialize is executed. In
this case the handles install an environment metaobject
to themselves. From line 17 on, we show how this en-
vironment metaobject combines the two corresponding
metaobjects.

Comparison to other approaches. A classic ap-
proach for ensuring object immutability is to instrument
the code of every method that may eventually modify
the state of immutable objects. Since it requires to mod-
ify the application code with non-functional behavior,
it is an undesirable solution that increases complexity.
Moreover, it is typically limited to the granularity of
classes, and then it is not useful for finer-grained sce-
narios like per-object adaptations. On the other hand,
VisualWorks Smalltalk2 and some Ruby versions use
a mutability flag in each object to support per-object
immutability. Every time an object is to be changed,
the VM first checks this flag and raises an error if muta-
tion is forbidden. These solutions do not suffer from the
aforementioned limitations, but they require dedicated
VM support and do not support propagation.

In the case of reference immutability for dynamic lan-
guages, Arnaud’s implementation of handles [2] requires
the duplication of classes. Every class that eventually
needs to be immutable has a corresponding shadow class.
Shadow classes wrap all the methods that change state
in order to forbid the modification. This mechanism

2 http://www.cincomsmalltalk.com

requires changes in the compiler and the instrumenta-
tion of bytecodes as a mean to keep classes updated
every time a method of the original classes changes. In
addition, for ensuring transparency, the approach re-
quires to adapt the VM so that messages sent to the
handle are actually dispatched to the methods in the
shadow classes. More recently, in [34] an approach based
in dynamic proxies modeled handles without requiring
modifications to the VM. However, these proxies still
require complex code generation for managing method
duplications and updates. Furthermore, there is certain
lack of transparency: using standard reflection users can
identify that they are interacting with proxies.

In contrast to [2] and [34], we showed in this example
that with Mate v1 immutability, both in a per-object
and per-reference fashion, can be activated at run-
time even if the requirement was unanticipated. No
ad-hoc VM support is needed and the adaptations
do not affect the application-level code. Our solution
required only to extend two metaobjects adding no
more than 40 lines of code to the system and does not
need shadow classes nor method duplications. Eventual
modifications to the application would not affect handles
since the adaptation semantics are encapsulated in the
corresponding metaobjects.

6.2 Changing Object Format

Consider a system which data model includes the rep-
resentation of people with a considerable amount of
optional data. A standard way of modeling this is with
a Person class that has a field for every piece of informa-
tion. Smalltalk, like many systems, implement object’s
fields with an array like representation in contiguous
memory addresses. This provides rapid access to them
but is considerably inefficient in terms of space whenever
most of the fields are uninitialized.

Suppose that Person’s instances have twenty fields
of which only five are mandatory: name, surname,
ssn, address and postal code. Hence, each Person’s
instance holds twenty contiguous words of memory for
its fields although most of them may be empty. For a
large application, it can be desirable to reduce memory
consumption by compressing the object representation
without shutting down the system. One approach is the
use of a hash-based representation that ensures that
for Person’s instance with only mandatory data, only
the minimal necessary amount of memory is used. We
show below how to exploit Mate’s layout capabilities for
tackling this scenario at run-time:

1 class HashBasedLayout : Layout {
2 function readField (aNumber){
3 index = self fieldIndexForField(aNumber);
4 if (index.isNull()){
5 return null;
6 } else {

7 return self.instVarAt(index);
8 }
9 }

10 function writeField(aNumber, anObject){
11 index = this.fieldIndexForField(aNumber);
12 if (index.isNull()) {
13 throw new NoMoreSpaceException();
14 } else {
15 this.instVarAtPut(index, anObject);
16 this.instVarAtPut(index + 1, aNumber);
17 }
18 }
19 function fieldsCount() {
20 this.class().instanceVariables().size();
21 }
22 }

We assume that the required instances were already
assigned a layout metaobject describing that the object
has only ten fields. The reason is that we implement a
hash that uses two fields for each field of Persons. The
hash stores the value in the first field and the index of
the original field in the second. As a consequence, this
layout is only suitable for Persons with only the five
mandatory fields filled.

The HashBasedLayout metaclass essentially adapts
the reading and writing of fields for working with the
aforementioned hashed-based organization. For both
operations we first need to look for the position on the
hash for that field and then do the concrete operation.
In addition, for ensuring consistency and transparency,
we also redefine the method that returns the quantity
of fields of an object. If a user queries the number of
fields of a person with the hash-based layout she will
still receive twenty as an answer.

Comparison to other approaches. Another ap-
proach to avoid the waste of memory caused by optional
fields could be the migration of inefficient instances to
new classes. This would however require to change both,
application code and instantiation points. Furthermore,
depending on the implementation, this may require to
change several lines of code or the adoption of complex
frameworks for managing the migration at run-time. In
summary, this alternative increases the complexity by
spreading one concept into different classes.

Similar to Mate v1, [32] defines layouts at the lan-
guage level. But these layouts can be bypassed by prim-
itive operations that do not recognize those constructs.
On the other hand, dynamic languages such as Javascript
or PHP represent properties of objects with hashed-
based dictionaries. However, this is inefficient when most
of the fields are used.

Using Mate v1 it is sufficient to create a new struc-
tural layout (layouts are first-class) with much less stor-
age consumption than the original one. Complementary,
we created the behavioral counterpart of the layout

metaobject and redefine the required operations for be-
ing compatible with the structural layout. We managed
to adapt the application at run-time adding less than 30
lines of code and saving at least 50% of memory storage
for each changed object. We did not need to modify the
application code nor add application-level classes to the
system. Summarizing, Mate v1 does not depend on how
the application is implemented, it does not replicate
classes, and it can handle at run-time both, array-based
and hash-based storage scenarios.

7. Analysis of Research Questions

In this section we provide (partial) answers to the
questions presented in section 3.2. We based the answers
on the feedback gathered from the two-phases study
presented in the previous sections.

7.1 Feasibility

We think that the degree of reflection reached by Mate
v1 is already a good indicator for the feasibility of fully
reflective EEs. In addition, the experiments demonstrate
how different implementation mechanisms, which were
analyzed in section 5.4.1, deal with structural or behav-
ioral aspects of the EE.

7.2 Applicability

Our evaluation focuses on comparing the adaptation
capabilities of Mate v1 with existing approaches, con-
sidering qualitative aspects such as feasibility and sim-
plicity. We carefully selected examples of adaptation
properties that appeared to be of interest in several pub-
lications. For completeness and generality, we analyzed
cases ranging from behavioral to structural adaptations
that need different EE-level adaptations. To the best of
our knowledge, we compared Mate to other language-
level approaches such as handles. However, currently,
there are very few approaches that can address low-level
adaptive scenarios at run-time.

While we still need to perform more experimentation,
we found initial evidence that fully reflective EEs are a
promising approach for handling unanticipated dynamic
fine-grained adaptations. We demonstrated that with
Mate v1 it is possible and straightforward to apply on-
the-fly modifications to concrete EE-level functionality
without polluting the application model.

7.3 Performance

Building an industrial strength EE capable of handling
real life workloads is a complex task that requires
considerable engineering resources. While we decided
to develop a new EE from scratch (see section 5.4),
we focused on studying advanced reflective capabilities
instead of common compiler optimizations. Hence, Mate
v1 in its current stage is not comparable to industrial
EEs in terms of performance.

Nevertheless, recent research shows strong evidence
that performance overheads of fully reflective EEs can
be minimized. Partial evaluation [37] and meta-tracing
[6] frameworks such as Truffle and PyPy [25] have al-
ready presented significant speedups for dynamic envi-
ronments with similar indirection characteristics to Mate
v1. Both solutions generate optimized code with guards
for ensuring correctness. Furthermore, Marr et al. [19]
recently showed that these mechanisms can eliminate
the overhead of reflective operations as well as complex
metaobject protocols. We showed in section 5.4.1 that
our intercession handlers pose only one extra level of
indirection. As a consequence, we think that Mate v1
fits in the setting of these solutions.

7.4 Abstraction Mismatch

We have not faced with the abstraction mismatch limi-
tation presented in section 3.2 mainly because in Mate
v1 we did not implement the lower-level component:
the memory manager. In future iterations, we plan to
analyze how well the ideas implemented in high-level
low-level programming frameworks such as Benzo [9]
and org.vmmagic [12] fit with fully reflective EEs.

8. Related Work

In this section we describe solutions from different
domains that are related with Mate v1.

8.1 Models of Reflection

As discussed in section 2.2, Smith’s tower of interpre-
ters [27] is widely used for modeling procedural reflection.
Compared to our approach, it does not distinguish be-
tween different entities at the same abstraction level.
Since our goal is to analyze the reflective capabilities of
individual EE-level entities and their impact on others,
this reflective model is not enough. The denotational
semantics of reflection presented by Wand and Fried-
man [33] presents similar incompatibilities for analyzing
reflection in a fine-grained manner.

8.2 Reflective Solutions

Pinocchio first class interpreter [31] is a practical im-
plementation, in the context of an OO language, of the
tower of interpreters. The interpreter is first-class and
extensible from language level. In contrast to Mate v1,
Pinocchio does not impose a fixed number of metalevels
for dealing with metaregression but adapts to different
levels on demand. On the other hand, Pinocchio is a
reflective interpreter while Mate v1 covers more EE-level
entities. For instance, Pinocchio is not able to deal with
the memory case study of section 6.2, because it does
not reify object layouts. Similar to Pinocchio, Asai [3]
proposes a first-class interpreter but in the context of a
functional language. It shares with Pinocchio the same
fundamental differences with Mate.

CLOS [16] is an object-oriented layer for LISP that
implements an advanced MOP, regarded as one of the
most complete in terms of introspection and intercession
reflective capabilities. CLOS reifies Slots, a language level
representation of instance variables (fields). It also pro-
vides means to customize methods with generic functions,
method combinators, and before/after methods. Since
CLOS’s main goal is enabling language customizations
rather than being a reflective EE, it does not support
extensive reflective capabilities for low-level functionali-
ties such as the complete operational semantics of the
language. In addition, CLOS is not able to deal with the
read-only references of section 6.1.2, in a transparent
fashion as Mate v1, because of its limitations for inter-
ceding the method lookup and activation on individual
objects.

Flexible Object Layouts [32] reifies the internal struc-
ture of objects for a Smalltalk environment. Its main
reification is the Slot that is similar to the Slot of CLOS.
Slots can be extended at run-time by redefining four
main operations: read, write, initialize and migrate. Mate
v1 follows a similar approach for implementing its Layout
metaobjects.

8.3 Virtual Machines

Several self-hosted approaches for VM construction
support some forms of EE-level reflection. Klein [30]
for Self has goals similar to Mate but its support for
modifying EE-level entities at run-time is not explained
in the literature. The paper only mentions support for
advanced mirror-based debugging tools to inspect and
modify a remote VM. Tachyon [11] translates the VM
sources written in JavaScript to native code. Then, it
uses special bridges for interacting with low-level entities
of the VM. However, bridges are low-level mechanisms
that only allow to call remote functions. Tachyon uses
them to initialize a new VM during the bootstrap process.
In contrast to Mate, Tachyon was not designed with EE-
level reflection as a goal and it does not provide run-time
adaptation capabilities of EE-level entities. Maxine [36]
for Java, uses abstract and high-level representations
of EE-level concepts and consistently exposes them
throughout the development process. Development tools
like inspectors at multiple abstraction levels provide a
live and advanced interactivity with the running VM
while debugging. However, Maxine allows to inspect
but not to change the EE at run-time. Similarly, in the
JikesRVM [1] VM components can be inspected but not
modified at run-time. Reflection on VM components is
mainly used for the bootstrapping of the system. Mate,
on the other hand, focuses on providing interactivity
during run-time.

8.4 Dynamic Adaptations

To the best of our knowledge, Partial Behavioral Reflec-
tion (PBR) [28] is the most complete reflective solution
for supporting unanticipated adaptations. PBR relies
on bytecode instrumentation. Hence it is restricted to
adaptations regarding only the operational semantics.
In addition, instrumentation techniques modify the ap-
plication code and, from an EE perspective, the original
code is not distinguishable from the instrumented code.
In contrast, Mate v1 fulfills the adaptations by using
reified EE-level components and does not modify the
application code. Concretely, Mate v1 focuses on EE-
level reflection while PBR depends on application-level
reflection for (simulating) the low-level adaptations.

The Iguana/J environment [23] has similar character-
istics to PBR. However, Iguana/J provides these capa-
bilities with a MOP that also has similarities with Mate
v1 in terms of behavioral adaptive capabilities. Similar
to CLOS, Iguana/J provides intercession handlers for
method interceptions, reading, and writing of fields. In
contrast, Mate v1 allows to intercept a broader set of
operations such as the complete operational semantics of
the system. In addition, Mate v1 also provides structural
EE-level reflective capabilities.

9. Conclusions

In this paper we described our vision of reflective ex-
ecution environments (EEs) and identified the main
research question (RQs) that we want to address. For
tackling these RQs we outlined a methodology that pro-
pose to iteratively design prototypes with increasing
reflective capabilities inspired by the need of handling
a set representative case studies. Finally, we evaluated
our approach by designing and implementing Mate V1,
which introduces reflective capabilities for EE-level con-
cepts through a specialized MOP. Our evaluation also
includes a series of case studies for handling unantici-
pated adaptation scenarios.

We showed that EE-level reflection is feasible and
suitable for handling the case studies. We also identified
that, in contrast to classic approaches, EEs must be
aware of the reifications of themselves in order to
allow the language to observe and intercede them. This
somehow lifts the level of abstraction twice and needs to
be taken into account in the development of a reflective
EE. We believe the decision of using a MOP to provide
EE-level reflection helps reducing this gap. Considering
also that we do not yet reify the lower-level component
(memory), during the implementation of Mate v1 we
did not face obstacles besides the expected classical
challenges of completeness and performance.

We consider Mate v1 as a lower bound in the reflec-
tivity space that we are willing to explore. In future
iterations, after reifing more components and explor-

ing new reflective capabilities, we expect to encounter
new challenges like stronger causal connections, perfor-
mance issues and other concerns. Some of them may
lead to new ways of modeling reflection that may need
different techniques than those applied for the tradi-
tional application-level reflection. Moreover, a set of
quantitative metrics is needed to precisely distinguish
the reflectivity of different solutions. Finally, we would
also like to experiment with consistency issues when all-
encompassing low-level adaptations such as modifying
the representation of objects in memory at run-time are
possible. Encapsulation and indirection are the standard
ways of dealing with them, but other approaches like
monitoring of invariants and on-demand compensation
might be good alternatives.

Acknowledgments

We would like to thank the reviewers of this paper
for their constructive feedback which contributed to
improve it. This work was partially supported by the
projects UBACYT N° 20020130100384BA, MinCYT
(PICT 2012 N° 0724, PICT 2013 N°2341), CONICET
(PIP 11220110100596CO, PIP 11220130100688CO), LIA
INFINIS and the European Union Seventh Frame-
work Programme under grant agreement no. 295261
(MEALS).

References

[1] B. Alpern, S. Augart, S. M. Blackburn, M. Butrico,
A. Cocchi, P. Cheng, J. Dolby, S. Fink, D. Grove,
M. Hind, K. S. McKinley, M. Mergen, J. E. B. Moss,
T. Ngo, and V. Sarkar. The jikes research virtual ma-
chine project: Building an open-source research commu-
nity. IBM Syst. J., 44(2):399–417, Jan. 2005.

[2] J.-B. Arnaud, M. Denker, S. Ducasse, D. Pollet,
A. Bergel, and M. Suen. Read-only execution for dy-
namic languages. In Proceedings of the 48th International
Conference on Objects, Models, Components, Patterns,
TOOLS’10, pages 117–136. Springer-Verlag, 2010.

[3] K. Asai. Reflection in direct style. In Proceedings of
the 10th ACM International Conference on Generative
Programming and Component Engineering, GPCE ’11,
pages 97–106. ACM, 2011.

[4] L. Baresi and C. Ghezzi. The disappearing boundary
between development-time and run-time. In Proceed-
ings of the FSE/SDP Workshop on Future of Software
Engineering Research, FoSER ’10, pages 17–22. ACM,
2010.

[5] A. Black, S. Ducasse, O. Nierstrasz, D. Pollet, D. Cassou,
and M. Denker. Pharo by Example. Square Bracket
Associates, 2009.

[6] C. F. Bolz and L. Tratt. The impact of meta-tracing on
vm design and implementation. SCICO, pages 408–421,
Feb. 2015.

[7] G. Bracha and D. Ungar. Mirrors: Design principles
for meta-level facilities of object-oriented programming
languages. In Proceedings of the 19th Annual ACM
SIGPLAN Conference on Object-oriented Programming,
Systems, Languages, and Applications, OOPSLA ’04,
pages 331–344. ACM, 2004.

[8] M. Braux and J. Noyé. Towards partially evaluating
reflection in java. In Proceedings of the 2000 ACM SIG-
PLAN Workshop on Partial Evaluation and Semantics-
based Program Manipulation, PEPM ’00, pages 2–11.
ACM, 1999.

[9] C. Bruni, S. Ducasse, I. Stasenko, and G. Chari. Benzo:
Reflective Glue for Low-level Programming. In Interna-
tional Workshop on Smalltalk Technologies, Aug. 2014.

[10] S. Burckhardt, M. Fahndrich, P. de Halleux,
S. McDirmid, M. Moskal, N. Tillmann, and J. Kato.
It’s alive! continuous feedback in ui programming. In
Proceedings of the 34th ACM SIGPLAN Conference on
Programming Language Design and Implementation,
PLDI ’13, pages 95–104. ACM, 2013.

[11] M. Chevalier-Boisvert, E. Lavoie, M. Feeley, and B. Du-
four. Bootstrapping a self-hosted research virtual ma-
chine for javascript: An experience report. In Proceedings
of the 7th Symposium on Dynamic Languages, DLS ’11,
pages 61–72. ACM, 2011.

[12] D. Frampton, S. M. Blackburn, P. Cheng, R. J. Garner,
D. Grove, J. E. B. Moss, and S. I. Salishev. Demystifying
magic: High-level low-level programming. In Proceedings
of the 2009 ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments, VEE
’09, pages 81–90. ACM, 2009.

[13] N. Geoffray, G. Thomas, J. Lawall, G. Muller, and
B. Folliot. Vmkit: A substrate for managed runtime
environments. In Proceedings of the 6th ACM SIG-
PLAN/SIGOPS International Conference on Virtual
Execution Environments, VEE ’10, pages 51–62. ACM,
2010.

[14] M. Haupt, C. Gibbs, B. Adams, S. Timbermont,
Y. Coady, and R. Hirschfeld. Disentangling virtual ma-
chine architecture. Software, IET, June 2009.

[15] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and
A. Kay. Back to the future: The story of squeak, a
practical smalltalk written in itself. In Proceedings of
the 12th ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications,
OOPSLA ’97, pages 318–326. ACM, 1997.

[16] G. Kiczales and J. D. Rivieres. The Art of the Metaobject
Protocol. MIT Press, 1991.

[17] P. Maes. Concepts and experiments in computational
reflection. In Conference Proceedings on Object-oriented
Programming Systems, Languages and Applications,
OOPSLA ’87, pages 147–155. ACM, 1987.

[18] J. Malenfant, M. Jacques, and F. N. Demers. A tu-
torial on behavioral reflection and its implementation.
Reflection ’96 Conference, 1996.

[19] S. Marr, C. Seaton, and S. Ducasse. Zero-overhead
metaprogramming: Reflection and metaobject protocols
fast and without compromises. In Proceedings of the 36th
ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2015, pages 545–554.
ACM, 2015.

[20] S. McDirmid. Living it up with a live programming
language. In Proceedings of the 22nd Annual ACM
SIGPLAN Conference on Object-oriented Programming
Systems and Applications, OOPSLA ’07, pages 623–638.
ACM, 2007.

[21] B. Meyer. Object-oriented Software Construction.
Prentice-Hall, Inc., 1997.

[22] E. Miranda. The Cog Smalltalk virtual machine. In
Proceedings of the 5th Workshop on Virtual Machines
and Intermediate Languages, VMIL ’11. ACM, 2011.

[23] B. Redmond and V. Cahill. Supporting unanticipated
dynamic adaptation of application behaviour. In Proceed-
ings of the 16th European Conference on Object-Oriented
Programming, ECOOP ’02, pages 205–230. Springer-
Verlag, 2002.

[24] J. Ressia, A. Bergel, and O. Nierstrasz. Object-centric
debugging. In Proceedings of the 34th International
Conference on Software Engineering, ICSE ’12, pages
485–495. IEEE Press, 2012.

[25] A. Rigo and S. Pedroni. Pypy’s approach to virtual
machine construction. In Companion to the 21st ACM
SIGPLAN Symposium on Object-oriented Programming
Systems, Languages, and Applications, OOPSLA ’06,
pages 944–953. ACM, 2006.

[26] G. Salvaneschi, C. Ghezzi, and M. Pradella. An analysis
of language-level support for self-adaptive software.
TAAS, 8(2):7, 2013.

[27] B. C. Smith. Reflection and semantics in lisp. In Proceed-
ings of the 11th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages, POPL ’84,
pages 23–35. ACM, 1984.

[28] E. Tanter, J. Noyé, D. Caromel, and P. Cointe. Partial
behavioral reflection: Spatial and temporal selection of
reification. In Proceedings of the 18th Annual ACM
SIGPLAN Conference on Object-oriented Programing,
Systems, Languages, and Applications, OOPSLA ’03,
pages 27–46. ACM, 2003.

[29] M. S. Tschantz and M. D. Ernst. Javari: Adding
reference immutability to java. In Proceedings of the 20th
Annual ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications,
OOPSLA ’05, pages 211–230. ACM, 2005.

[30] D. Ungar, A. Spitz, and A. Ausch. Constructing a
metacircular virtual machine in an exploratory program-

ming environment. In Companion to the 20th Annual
ACM SIGPLAN Conference on Object-oriented Program-
ming, Systems, Languages, and Applications, OOPSLA
’05, pages 11–20. ACM, 2005.

[31] T. Verwaest, C. Bruni, D. Gurtner, A. Lienhard, and
O. Niestrasz. Pinocchio: Bringing reflection to life with
first-class interpreters. In Proceedings of the ACM In-
ternational Conference on Object Oriented Program-
ming Systems Languages and Applications, OOPSLA
’10, pages 774–789. ACM, 2010.

[32] T. Verwaest, C. Bruni, M. Lungu, and O. Nierstrasz.
Flexible object layouts: Enabling lightweight language
extensions by intercepting slot access. In Proceedings of
the 2011 ACM international conference on Object ori-
ented programming systems languages and applications,
OOPSLA ’11. ACM, 2011.

[33] M. Wand and D. P. Friedman. The mystery of the tower
revealed: A non-reflective description of the reflective
tower. In Proceedings of the 1986 ACM Conference
on LISP and Functional Programming, LFP ’86, pages
298–307. ACM, 1986.

[34] E. Wernli, O. Nierstrasz, C. Teruel, and S. Ducasse.
Delegation proxies: The power of propagation. In
Proceedings of the 13th International Conference on
Modularity, MODULARITY ’14, pages 1–12. ACM,
2014.

[35] C. Wimmer, S. Brunthaler, P. Larsen, and M. Franz.
Fine-grained modularity and reuse of virtual machine
components. In Proceedings of the 11th Annual Interna-
tional Conference on Aspect-oriented Software Develop-
ment, AOSD ’12, pages 203–214. ACM, 2012.

[36] C. Wimmer, M. Haupt, M. L. Van De Vanter, M. Jordan,
L. Daynès, and D. Simon. Maxine: An approachable
virtual machine for, and in, java. ACM Trans. Archit.
Code Optim., 9(4):30:1–30:24, Jan. 2013.

[37] T. Würthinger, C. Wimmer, A. Wöß, L. Stadler, G. Du-
boscq, C. Humer, G. Richards, D. Simon, and M. Wol-
czko. One vm to rule them all. In Proceedings of the
2013 ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming & Software,
Onward! ’13, pages 187–204. ACM, 2013.

[38] Y. Zibin, A. Potanin, M. Ali, S. Artzi, A. Kie, un, and
M. D. Ernst. Object and reference immutability using
java generics. In Proceedings of the the 6th Joint Meeting
of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on The Foundations
of Software Engineering, ESEC-FSE ’07, pages 75–84.
ACM, 2007.

	1 Introduction
	2 Background
	2.1 Reflection
	2.2 Reflection Challenges
	2.3 Live Programming
	2.4 Execution Environments
	2.5 Application-level vs. EE-level Reflection

	3 Exploring Fully Reflective EEs
	3.1 Main Characteristics
	3.2 Analysis of Fully Reflective EE
	3.3 Approach

	4 Reference Architecture
	5 Mate v1: A Complete Iteration over the Methodology
	5.1 Representative Problem
	5.2 EE-level Metaobject Protocol
	5.2.1 How To Use the MOP

	5.3 Analysis of Reflective Capabilities
	5.4 Implementation Details
	5.4.1 Causal Connection

	6 Mate v1 Adaptation Capabilities
	6.1 Immutability
	6.1.1 Object Immutability In Mate v1
	6.1.2 Reference Immutability In Mate

	6.2 Changing Object Format

	7 Analysis of Research Questions
	7.1 Feasibility
	7.2 Applicability
	7.3 Performance
	7.4 Abstraction Mismatch

	8 Related Work
	8.1 Models of Reflection
	8.2 Reflective Solutions
	8.3 Virtual Machines
	8.4 Dynamic Adaptations

	9 Conclusions

