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Abstract

Today, software engineering practices focus on finding the

single “right” data representation for a program. The “right”

data representation, however, might not exist: changing the

representation of an object during program execution can

be better in terms of performance. To this end we introduce

Just-in-Time Data Structures, which enable representation

changes at runtime, based on declarative input from a per-

formance expert programmer. Just-in-Time Data Structures

are an attempt to shift the focus from finding the “right” data

structure to finding the “right” sequence of data representa-

tions. We present JitDS, a programming language to develop

such Just-in-Time Data Structures. Further, we show two ex-

ample programs that benefit from changing the representation

at runtime.

Categories and Subject Descriptors D.3.3 [Programming

Languages]: Language Constructs and Features

Keywords data structures, algorithms, dynamic reclassifica-

tion, performance

1. Introduction

Choosing the “right” combination of a data representation and

an algorithm is important for performance. Books, courses,

and research papers on algorithms and data structures typi-

cally discuss the one in function of the other [7]. This makes

choosing the right data representation-algorithm combina-

tion relatively easy. For instance, in the context of a linear

[Copyright notice will appear here once ’preprint’ option is removed.]

indexable data structure, e. g., List in Java, an algorithm

that heavily relies on insertions and deletions of elements

will likely benefit from a pointer-based implementation of

List, e. g., LinkedList in Java. On the other hand, an al-

gorithm that heavily relies on random indexed accesses in

a List, will benefit from an array-based implementation,

e. g., ArrayList in Java. Larger software systems, however,

rarely consist of a single algorithm but rather of a complex

interweaving of multiple algorithms. Finding the right data

representation for a set of algorithms becomes cumbersome

due to the increasing number of, possibly conflicting, require-

ments of these algorithms.

To facilitate the implementation of a more efficient data

structure in later stages of a software development cycle, it

has become best practice to program against a data interface.

In this text we refer to data interface as the set of operations

which define an abstract data type [18]. We will call a concrete

implementation of a data interface a data representation.

Together, data interface and data representation form a

classic data structure. Above we argue that finding the “right”

data representation for a data interface is much less trivial

when the number of algorithms using the data interface

increases because the number of requirements increases.

Imagine a program that first builds a list of sorted elements, in

order to heavily query the list later. Such a program consists

of two phases that prefer the LinkedList representation and

the ArrayList representation respectively. Choosing one

in favor of the other is not trivial. Moreover, we show in

the next section that a program that relies on a single data

representation can be less performant compared to a program

that changes data representations at runtime.

Today, data representation changes are implemented in

an ad hoc way because a systematic approach does not exist.

In this paper we introduce Just-in-Time Data Structures, a

language construct where a set of data representations for

a single data interface is augmented with declarative input

from a performance expert programmer. This declarative
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input defines which representation is to be used in which

circumstances. We show that it is possible for a program with

Just-in-Time Data Structures to obtain better performance

than the same program that uses one single representation for

the data. Moreover, Just-in-Time Data Structures allow de-

velopers to disentangle “application logic” and “performance

engineering tasks”.

The contributions of this paper are: 1. a taxonomy of

data representation changes; 2. the introduction of Just-in-

Time Data Structures; 3. the introduction of homomorphic

reclassification, an implementation technique that we use to

compile a Just-in-Time Data Structure into Java.

The remainder of this text is organized as follows: In

Section 2 we elaborate on a use case where changing the

representation of a data structure at runtime improves perfor-

mance. In Section 3 we introduce a taxonomy of how data

representation selection and data representation changes can

be realized. Section 4 introduces Just-in-Time Data Struc-

tures, which generalizes the idea of changing representation

at runtime, and introduces the new language constructs we

propose to define such a data structure. Section 5 discusses

how to compile the definition of a Just-in-Time Data Structure

into Java. In Section 6 we give two examples of how a devel-

oper can implement Just-in-Time Data Structures to obtain

better performance. Both the related work on data structure

selection, as well as the work related to our compiler im-

plementation techniques are discussed in Section 7. Finally,

Sections 8 and 9 conclude this text and present ongoing and

future work.

2. Motivating Example

In this section, we first introduce the data interface Matrix

and two possible data representations. Then, we introduce

the classic algorithm to multiply two matrices and study the

effect of the chosen data representation on performance. The

matrix multiplication is an example of a computation that

operates on two objects with the same data interface, but

which accesses the two objects with a different data access

pattern. The example shows that changing the representation

of the data objects to match the access patterns at runtime

improves performance.

The Matrix Data Interface. The running example through-

out this text is built around the mathematical concept of a

two-dimensional matrix, i. e., a conceptually rectangular ar-

ray of numeric values. Here, we define the data interface of

a Matrix to be: a constructor that creates a rows by cols

matrix of zeroes; an accessor get and a mutator set which,

based on a row and a col parameter, respectively returns or

sets a value in the matrix. Listing 1 shows this data interface

as a Java abstract class definition. Note that we use abstract

class instead of interface in this code example. The rea-

son thereof is twofold. First, we want to show in this example

that the constructor to create an initial matrix always takes

two arguments, which is not expressible in a Java interface.

Listing 1: Data interface for Matrix.

1 public abstract class Matrix {

2 // create a Matrix of rows by cols

3 Matrix(int rows , int cols) { ... }

4

5 // accessor to read the number of rows

6 int getRows () { ... }

7

8 // accessor to read the number of columns

9 int getCols () { ... }

10

11 // accessor to read the value of a cell

12 double get(int row , int col) { ... }

13

14 // mutator to set the value of a cell

15 void set(int row , int col , double val) { ... }

16 }

Listing 2: Classic matrix-matrix multiplication algorithm of

two N ×N matrices.

1 Matrix mul(Matrix A, Matrix B) {

2 Matrix C = new Matrix(N, N);

3

4 for (int i=0 ; i<N ; i++) {

5 for (int j=0 ; j<N ; j++) {

6 for (int k=0 ; k<N ; k++) {

7 temp = C.get(i, j) +

8 (A.get(i, k) * B.get(k, j))

9 C.set( i, j, temp) }}}}

Second, as exemplified by the first reason, the Java interface

and our data interface are not identical concepts. In Java,

an interface is a language construct that defines (potentially)

only a part of a class’s type. The data interface is the set of

characterizing operations, i. e., the complete structural type.

Two Matrix Data Representations. Let us now consider

two similar data representations for the data interface defined

above. Both representations store the elements of the concep-

tually two-dimensional data structure in a one-dimensional

array. One representation, RowMajorMatrix, stores elements

of the same row next to each other. The second data repre-

sentation, ColMajorMatrix, stores elements of the same

column next to each other.

The Matrix-Matrix Multiplication Algorithm. The classic

matrix multiplication algorithm takes two matrices as input

parameters (i. e., A and B in Listing 2) and has a third matrix

as output (i. e., C in Listing 2).1 For each of the elements of

C, the dot-product of the corresponding row of A with the

corresponding column of B is computed. This dot product

is computed by the inner-most loop, i. e., lines 6–9, which

accesses A in row-major order and B in column-major order.

1 For the ease of implementation of the example code we only consider

square matrices of size N ×N .
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Effect of Implementation on Performance. A simple ex-

periment shows that the choice of data representations of the

matrices A and B has a significant effect on the execution time.

We executed the mul function with all combinations of data

representations for both input matrices, while we kept the

data representation of the matrix C, the output variable, fixed

in the RowMajorMatrix representation. The execution times

for all combinations are shown in Table 1.2

Data Representation Execution Time

A B

Row Major Order Col Major Order 6.33 s

Col Major Order Col Major Order 10.29 s

Row Major Order Row Major Order 13.72 s

Col Major Order Row Major Order 25.83 s

Table 1: The execution time of multiplying two 1250× 1250
matrices depends on the chosen data representation.

The execution time is significantly lower when the

data access pattern (computation) matches the data repre-

sentation, i. e., RowMajorMatrix×ColMajorMatrix. Con-

versely, when the data access pattern and data representation

conflict for both matrices, the execution time is significantly

higher.

As a second experiment we computed the product of two

row-major matrices where the representation of the second

matrix B was changed to column-major order just before

the actual multiplication. The overall execution time, thus

including the cost of a transposition, is only 6.42s. Paying

the extra cost of changing the representation proves to be

more efficient than keeping the representation fixed for both

matrices.

This matrix multiplication example shows the existence of

computations that operate on a single data interface but where

choosing a single data representation results in suboptimal

performance. Conversely, paying the cost of a representation

change at runtime results in better performance compared to

relying on a single fixed data representation.

3. Taxonomy of Changing and Selecting Data

Representation

Just-in-Time Data Structures, as we introduce in Section 4,

change the data representation to match the computation

in order to achieve better performance. The design space

for techniques to change and select data representations for

programs is vast. Based on the examined work (cf. Section 7),

we developed a taxonomy according to which existing efforts

2 We gathered these numbers from a C++ implementation, compiled with

−O3 where we multiplied two matrices of 1250 × 1250 elements. The

resulting binary was executed on a 2.6 GHz processor with 256 KiB of L2

cache. While the presented numbers are the result of a single run only, we

observed that they are representative for all runs. The code for this small

experiment is available on our website.

http://soft.vub.ac.be/~madewael/jitds/

Listing 3: Internal transformation logic.

1 Matrix A = new RowMajorMatrix(rs, cs);

2 Matrix B = new TransposableMatrix(rs, cs);

3

4 // internal to TransposableMatrix

5 B.enforceColMajorOrder ();

6 Matrix C = mul(A, B);

Listing 4: External transformation logic.

1 Matrix A = new RowMajorMatrix(rs, cs);

2 Matrix B = new RowMajorMatrix(rs, cs);

3

4 // external to RowMajorMatrix

5 B = new ColMajorMatrix(B);

6 Matrix C = mul(A, B);

can be categorized. Below we introduce this taxonomy and

explain the axes based on the matrix multiplication example.

In Section 7 we present and position the related work along

the relevant axes for each approach.

Internal or External Transformation Logic. A data struc-

ture does not automagically know how to change its repre-

sentation. Clearly, there has to be some code fragment re-

sponsible for the actual conversion from one representation

to the other. The code fragment that expresses this transition

is called the transformation logic.

We observe that the transformation logic can either be

a part of the definition of a data structure (encapsulated)

or not. Data structures with internal transformation logic

encapsulate the logic that describes the representation change,

within their implementation. Otherwise, we refer to them as

data structures with external transformation logic.

By a call to enforceColMajorOrder, on line 5 in

Listing 3, we rely on the encapsulated functionality of

TransposableMatrix to change its internal representation.

The RowMajorMatrix does not provide this functionality but

relies on the constructor of ColMajorMatrix (line 5 in List-

ing 4) to handle the change in representation. Note that here,

the internal transformation logic example keeps the object’s

identity intact, e. g., the reference B in Listing 3 points to the

same object before and after the call to enforceColMajor-

Order, whereas the reference B in Listing 4 points to a new

— ColMajor — object on line 5.

Internal or External Change Incentive. A data structure

does not automagically know when to change its represen-

tation. We call the code fragment that is responsible for ini-

tiating a representation change the representation change

incentive code. We differentiate between approaches where

the representation change incentive code is encapsulated in

the data structure’s definition and those where it is not. Rep-

resentation changes with internal incentive are initiated by

the data structures itself, i. e., as part of their implementation.
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Listing 5: Choosing a data representation.

1 // Static Selection of Representation

2 Matrix a = new RowMajorMatrix(rs, cs);

3 Matrix b = new ColMajorMatrix(rs, cs);

4

5 // Dynamic Selection of Representation

6 Matrix c = MatrixFactory.createMatrix( ... );

Listing 6: Choosing a representation offline.

1 Matrix A = new RowMajorMatrix(rs, cs);

2 Matrix B = new ColMajorMatrix(rs, cs);

3

4

5 Matrix C = mul(A, B);

Conversely, when a new representation is imposed on the

data structure from the outside the data structure, we say the

representation change incentive is external.

Listings 3 and 4 are both examples of external representa-

tion incentive code, because it is the code using the matrix B

that is responsible for initiating the change in representation.

Prototypical examples of internal incentives can be found in

the class of self-adapting data structures. An AVL tree, for

instance, rebalances itself upon insertion.

Table 2 further clarifies the difference between represen-

tation change incentive and representation transformation

logic. The example used in the code fragments deals with a

list with sorted data to which elements can be added.

Online or Offline. Listings 3 and 4 are two examples of

data representation changes that happen online, during the

execution of the program (i. e., at runtime). In the more classic

approach, e. g., on line 2 of Listing 6, the representation of

a data structure does not change at runtime, but is chosen

during the development of an application, i. e., static data

representation selection. Alternatively, the data representation

selection is delayed until runtime (e. g., Listing 5) but the

representation remains fixed during the execution of the

program, i. e., dynamic data representation selection. We call

data representation selection an offline approach.

Developer or Environment. At first sight, the choice of

data representation is the responsibility of the developer, as

is illustrated in the examples in Listings 3, 4 and 6. However,

there also exist environments (e. g., compilers, interpreters,

or dynamic optimization systems) that change the physical

representation of data behind the scenes. The developer

using these techniques is thus not necessarily aware of them.

For instance, the Javascript V8 engine does not guarantee

that an array uses contiguous memory, but chooses the

representation it sees fit (e. g., sparse representation). Thus,

the Developer–Environment-dimension stipulates the level of

abstraction on which the choice of data representation takes

place.

Listing 7: Maintaining multiple representations.

1 public class AmbiguousMatrix

2 implements TransposableMatrix {

3

4 RowMajorMatrix rm;

5 ColMajorMatrix cm;

6 boolean rowActive = true;

7 ...

8 public void enforceRowMajorOrder () {

9 rowActive=true;

10 }

11

12 public void enforceColMajorOrder () {

13 rowActive=false;

14 }

15

16 public void set(int r, int c, int v) {

17 rm.set(r,c,v);

18 cm.set(r,c,v);

19 }

20

21 public int get(int r, int c) {

22 rowActive?rm.get(r,c):cm.get(r,c);

23 }

24 }

Gradual or Instant. When it is possible to unambiguously

determine the current representation of a data structure at

any point during the execution we say the representation

change is instant. The matrices in Listing 4 are either in row-

major representation or in col-major representation, but never

in both nor in a hybrid form. Alternatively, data structures

can also be implemented to (partially) maintain multiple

representations simultaneously. For such data structures it

is not possible to pinpoint the current representation, as it is

gradually changing between different representations. For

instance, consider AmbiguousMatrix, implemented as in

Listing 7. While an instance of AmbiguousMatrix has a

“principal representation” (cf. rowActive, a boolean that

represents the active state) it uses for access, is also maintains

the “other representation” during mutation.

Dedicated or General. Representation changing techniques

can be deployed in two possible ways. First, we see dedicated

techniques that are tailored towards a well defined set of

use-cases, which can be deployed as-is, off the shelf. These

dedicated approaches include — but are not limited to —

libraries, runtimes, and self-adapting data structures. Other

techniques, however, are more general. These techniques

provide a set of concepts and insights, but leave the concrete

implementation to the developer. An example of such a

general concept is “transposing” data as is shown in the

concrete example of matrix multiplication. On the other

hand, this technique is general enough to be applied in other

contexts as well. The “array-of-structs” versus “struct-of-

array” discussion, for instance, applies the same technique to

more heterogeneous data.
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Transformation Logic

Internal External

C
h

an
g

e
In

ce
n

ti
v
e

In
te

rn
al

1 // User Code:

2 myList.add(x);

3

4 // Representation Code:

5 public void add(Object x) {

6 this.data.add(x);

7 this.sort ();

8 }

1 // User Code:

2 myList.add(x);

3

4 // Representation Code:

5 public void add(Object x) {

6 this.data.add(x);

7 Collections.sort(this);

8 }

E
x

te
rn

al

1 // User Code:

2 myList.add(x);

3 myList.sort ();

4

5 // Representation Code:

6 public void add(Object x) {

7 this.data.add(x);

8 }

1 // User Code:

2 myList.add(x);

3 Collections.sort(myList );

4

5 // Representation Code:

6 public void add(Object x) {

7 this.data.add(x);

8 }

Table 2: A list with internal/external transition logic and internal/external incentive code to change representation.

We identified that data representation selection strategies

can be categorized according to the following axes: Internal

or External Transition Logic, Internal or External Change

Incentive, Online or Offline, Developer or Environment, Grad-

ual or Instant, and Dedicated or General. In Section 7 we

taxonomize the work related to our Just-in-Time Data Struc-

tures according to these axes. We observe that, besides ad-hoc

implementations, there does not exist a general approach that

gives the developer the power to easily change the chosen data

representations online. Our Just-in-Time Data Structures fill

this hole. Just-in-Time Data Structures is a general approach

that provides developers with the infrastructure to create data

structures that can swap representation online using internal

transition logic. Furthermore, our approach supports both

internal and external representation change incentive code.

Currently, we only support instant representation changes,

but we foresee including gradual representation changes as

future work.

4. Just-in-Time Data Structures

The idea of separating data interface from data representa-

tion is almost as old as computer science itself. The rationale

of programming against an interface as opposed to program-

ming with the representation directly is mainly driven by

software engineering advantages such as modularity, main-

tainability, and evolvability. It can also be motivated by per-

formance. For instance, in software engineering it is a tried

and true approach to first implement a trivial but working rep-

resentation for a data structure. Only if the initial implementa-

tion proves to be a performance bottleneck, the programmer

should consider to optimize the initial implementation (i. e.,

avoid premature optimizations).

With the advent of object-technology it became possible to

have multiple data representations for a single data interface

available at runtime. In class-based object-oriented languages,

for instance, this is realized by implementing multiple classes

that extend the same base class. The data representation

is usually chosen statically (lines 2-3 in Listing 5) and

occasionally chosen dynamically (line 6 in Listing 5). In

either case, even with the aforementioned object technology,

the representation chosen at allocation time remains fixed

during the remainder of the data object’s lifetime.

Adhering to one representation during a object’s lifetime

is sufficient for data structures that are used for a single role

in a single algorithm. In Section 2 we showed an example of

a program where relying on a single representation hampers

performance. In theory, one could implement a representation

that performs well in “all” situations. In practice however,

such implementation are hard to find and hard the develop.

Alternatively, one could implement an ad-hoc representation

change. The problem with ad-hoc representation changes is

that they usually do not preserve object identity. The other

references to the original object still point to the original

representation and multiple versions of the same mutable

data are kept together in memory.

We propose Just-in-Time (JIT) Data Structures, a data

structure with the intrinsic property of changing its underly-

ing representation. To facilitate the development of Just-in-

Time Data Structures, we have implemented an extension of

Java called JitDS-Java. We use this language to informally

introduce the concepts needed to implement Just-in-Time
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Listing 8: The class Matrix combines two representations.

1 class Matrix

2 combines RowMajorMatrix , ColMajorMatrix {

3

4 RowMajorMatrix to ColMajorMatrix {

5 target(source.getCols(),

6 source.getRows(),

7 source.getDataAsArray ());

8 target.transpose ();

9 }

10

11 ColMajorMatrix to RowMajorMatrix {

12 target(source.getCols(),

13 source.getRows(),

14 source.getDataAsArray ());

15 target.transpose ();

16 }

17

18 swaprule Matrix Utils.mul(Matrix a, Matrix b) {

19 if ((a.getRows ()*a.getCols ()) > LARGE)

20 swap a to RowMajorMatrix;

21 if ((b.getRows ()*b.getCols ()) > LARGE)

22 swap b to ColMajorMatrix;

23 proceed;

24 }

25 }

Data Structures. In Section 5 we explain how we transpile

JitDS-Java to Java.

Combining Representations. Implementing a data struc-

ture in Java is realized by declaring a new class, e. g.,

RowMajorMatrix or ColMajorMatrix. Implementing a

JIT Data Structure in JitDS-Java is realized by declaring a

new JIT class which combines multiple representations (lines

1 and 2 in Listing 8). The representations themselves are

implemented as traditional Java classes. An instance of a JIT

class can be the target of a swap statement (e. g., lines 20 and

22 in Listing 8), which forces the data structure to adhere

to the instructed representation. An instance of a JIT class

implements the union of the methods implemented by its

representing classes. Assume for now that all representing

classes implement the same set of methods. Thus, an instance

of the JIT class Matrix is able to respond to the methods

int getRows(), int getCols(), int get(int, int),

and void set(int, int, int) (cf., Listing 1).

Listing 9 introduces a second example which models a

File that can be in one of three states: open, closed, or

locked (forever closed). To this end File combines three

representation classes (lines 1 and 2).

A swap statement potentially causes the JIT Data Structure

to change its representation, which is a non-trivial transfor-

mation. To express such transformations3 we introduce a

new kind of class member in the body of a Just-in-Time

class: the transition function. A transition function defines

the transition from a source representation to a target repre-

3 In the work on object evolution these are called evolvers [6]. In [1] they are

described as coercion procedures

Listing 9: The class File combines three representations.

1 class File

2 combines OpenFile , ClosedFile , LockedFile {

3 OpenFile to ClosedFile as close { ... }

4 ClosedFile to OpenFile as open { ... }

5 ClosedFile to LockedFile as lock { ... }

6 }

sentation. For instance, the transition function on lines 4–9 in

Listing 8 transforms a RowMajorMatrix into a ColMajor-

Matrix. The body of the transition function (between curly

braces) shows much resemblance with the body of a parame-

terless constructor. Within the body of a transition function

two new keywords can be used: target and source. These

denote the object in the new representation and the object

in the old representation respectively. Outside the body of

a transition function these keywords have no meaning. The

intentional semantics of a transition function are as follows:

1. before the execution of the body the original object is as-

signed to source, 2. the first statement in the body invokes

a constructor of the target representation and assigns the re-

sulting object to target, 3. during the execution of the body

both target and source exist as separate objects, 4. after

the execution of the body the original object replaces the ob-

ject denoted by target. Optionally, a transition function can

be named, as shown in Listing 9. The named transition func-

tion can be invoked by calling it as a parameterless method,

e. g., myFile.close().

In the definition of the JIT class File (Listing 9), there are

three transition functions defined. From these, it is possible

to construct the finite state graph shown in Figure 1, which

we call the transition graph. The transition graph of File

shows that it is not possible to transition from a locked file

to any other representation. When such a swap is issued at

runtime, an UnsupportedSwapException is thrown.

An obvious critique to this approach is a potential combi-

natorial explosion of the number of transition functions that

need to be implemented as the number of representations

grows. We argue, however, that in practice this will not be an

issue because of the following reasons:

• First, when we look at existing libraries, the number

of different representations for a single interface is rel-

atively small. In Java for instance there are only three

implementations for the List interface (i. e., ArrayList,

LinkedList, and Vector). Then, the number of transi-

tion functions stays within acceptable bounds.

• Second, we conjecture that most data interfaces can be

enriched such that it is possible to implement a transition

function that is generic enough to transition from any

representation to any other representation. An example of

such a general transition function for the Matrix example

is shown in Listing 10. Such a general transition function

can replace all other specialized transition functions. Of

Just-in-Time Data Structures, author’s preprint 6 2015/8/20



Listing 10: A transition function that is generic enough to

transition a Matrix from any representation to any other

representation.

1 Matrix to Matrix {

2 target(source.getRows(), source.getCols ());

3 for ( int r=0 ; r<source.getRows () ; r++ ) {

4 for ( int c=0 ; c<source.getCols () ; c++ ) {

5 target.set(r, c, source.get(r,c));

6 }

7 }

8 }

course, from the performance perspective, specialized

transition functions are likely to be preferred. An example

of a specialized transition function in the matrix example

is the transpose function which expresses the transition

from a RowMajorMatrix to a ColMajorMatrix, and

vice versa. These specialized transition functions are

shown in Listing 8 (lines 4–9 and 11–16).

• Third, the set of available specialized transition functions

can be used transitively. In the file example we can transi-

tion from an open file to a locked file by combining two

transitions, i. e., myFile.close(); myFile.lock().

Again, a specialized and direct transition function might

be preferred in terms of performance.

• A final argument to counter the “transition function explo-

sion” is that some transitions between two representations

are unlikely or even impossible to occur. Implementing a

specialized transition function in such a case, serves no

practical purpose. For instance, the LockedFile repre-

sentation does not allow transitions to any other represen-

tation.

+path()

+ write(String)

OpenFile
+ path()

ClosedFile
+ path()

LockedFile

close()

open() lock()

close() + lock()

Figure 1: The states of a File: Open, Closed, Locked.

What we have now is a data structure that, when instructed,

is able to transition between representations, given its tran-

sition graph. The remainder of this section introduces swap

rules, the language constructs to induce a representation

change; and specialized swaps, i. e., implicit representation

changes imposed by JitDS-Java.

4.1 Swap Rules

Swap rules are the constructs in our language that allow the

developer of JIT Data Structures to express when a repre-

sentation swap is needed. In general, a swap rule expresses

what events are important to observe and how to react to

them accordingly. Based on the observed usage of a JIT Data

Structure a reaction can be formulated in the form of a tran-

sition from one representation into another. We identify two

levels of granularity on which to make these observations.

The coarsest level of granularity we consider is the level of

computation. Observing an invocation of the matrix multi-

plication method mul, for instance, is a computation level

observation. Based on the expert knowledge about the affin-

ity of mul for the row-major × col-major representations it is

beneficial for performance to impose a representation change

on the arguments of mul. Alternatively, a more fine-grained

observation is on the level of a data structure’s operations,

i. e., invocations of the methods. In the matrix example these

are for instance get(row, col) or set(row, col, val).

The observation that set is mostly called with val==0 makes

a sparse matrix representation a viable candidate to swap to.

Note that interface invocation observations imply a reasoning

from a perspective internal to the JIT Data Structure. The

two levels of granularity coincide with the external versus

internal representation change incentives introduced in Sec-

tion 3. Consequently, we introduce external swap rules that

express representation changes on the computation level; and

we introduce internal swap rules that express representation

changes on the interface level.

External Swap Rules are swap rules that invoke a repre-

sentation change on the level of computations. In an object-

oriented language, methods are a straightforward boundary

of computation. Therefore we restrict ourselves to method

invocations as join points4 at which to introduce representa-

tion changes. To capture the invocation of a single method,

the header of an external swap rule looks like the header of a

Java method definition (i. e., list of modifiers, a return type, a

name, and a list of formal parameters), prepended with the

keyword swaprule (Listing 8, line 18). Note that the name

used in the swap rule should be fully qualified to capture the

method in the intended class. The body of an external swap

rule consists of three parts: a set of statements, a proceed

statement, and again a set of statements (Listing 8, lines 18–

24). All statements in the body have access to the arguments

of the method invocation and can perform any necessary com-

putation to decide whether or not to invoke a representation

swap. The proceed statement represents the actual invocation

of the advised method call. The relation between external

swap rules and AOP is discussed in Section 5.

On lines 18–24 of Listing 8 an external swap rule is

defined that captures all the invocations of the method mul

(matrix multiplication) defined in some class named Utils.

When the arguments, both instances of the JIT class Matrix,

are “large enough” to benefit from a representation that is

aligned with the computation, a representation swap is issued.

An invocation of doCommute (also in Utils, see Listing 11),

then implies potentially four representation changes.

4 Other researchers explicitly study language constructs to express more fine

grained join points [16].
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Listing 11: Swapping a swappable Data Structure

1 boolean doCommute(Matrix a, Matrix b) {

2 return mul(a, b). equals(mul(b, a));

3 }

Listing 12: Internal swap rule to RowMajorMatrix based on

the number of non-zero elements.

1 swaprule SparseMatrix {

2 int size = getRows ()* getCols ();

3 if ( getNonZeroCount () > size *0.25 ) {

4 this to RowMajorMatrix;

5 }

6 }

Internal Swap rules are swap rules that describe for which

“state” of a JIT Data Structure it becomes opportune to is-

sue a representation change. Conceptually, these checks are

performed continuously during the execution of a program.

For performance reasons, however, continuously performing

these checks might not be optimal. Finding the right bal-

ance between responsiveness and performance has not yet

been investigated, but is discussed in Section 8. Listing 12

shows an example of an internal swap rule. On the first line

the swap rule reveals for which representations the rule is

applicable, here SparseMatrix. The body of the internal

swap rule states that the data structure should swap to the

RowMajorMatrix representation when less than 25% of the

values in the matrix are zero.

4.2 History Based and Learned Reactions

It is possible to implement more complex and expressive

swap rules than the examples presented above. First, these

“simple” swap rules are based on readily observable state,

e. g., invocation of the mul method, current representation

and size. Second, these swap rules express a change into a

developer-defined representation. Orthogonal to the choice of

implementing internal or external swap rules, we also allow

observations based on the history of the data structure’s usage

and we allow learning, to find the best target representation

of a swap rule.

History Based Reactions. Because swapping comes at a

certain cost, it is not always economical to change the rep-

resentation eagerly. For instance, swapping from RowMajor-

Matrix to SparseMatrix on the first call to set with a zero

value would be counterproductive. In such cases, it is more

interesting to react to a pattern of observations, that was seen

over time. Some representation changes should therefore be

based on a history of observations.

To facilitate the bookkeeping of history information, exter-

nal swap rules have access to statically defined member fields

in the JIT class. Internal swap rules have access to instance

member fields of a JIT class. Internal swap rules can also

Listing 13: Internal swap rule to SparseMatrix based on

estimated sparsity.

1 #set(int row , int col , int val);

2

3 #zeroSet as set(int row , int col , int val) {

4 count-if (val == 0);

5 }

6

7 #nonZeroSet as set(int row , int col , int val) {

8 count-if (val != 0);

9 }

10

11 swaprule RowMajorMatrix {

12 if ( (#set > FREQUENT_SET) &&

13 (# zeroSet > #nonZeroSet *# nonZeroSet) ) {

14 this to SparseMatrix;

15 }

16 }

make use of a special kind of history information, in the form

of Invocation Count Expressions.

Invocation Count Expressions. To make counting the num-

ber of invocations of member methods easier, we introduce

invocation count expressions. The need for similar informa-

tion to decide whether or not to issue a representation change

is also identified by Shacham et al. [19], i. e., “opCounts”,

and by Xu [23], i. e., “swap conditions”. In its simplest form,

an invocation count expression is a hash-symbol followed

by a method-name and a list of formal parameters between

braces (line 1 in Listing 13). Such an expression evaluates

to the number of invocations of the matching method, here

set. Adding a body to an invocation count expression allows

for more complex statistics, i. e., only those invocations for

which at least one count-if-statement evaluates to true

are counted. Optionally, an invocation count expression can

be given a more revealing name. An example of invocation

count expressions with names and bodies is given in List-

ing 13 (lines 3–5 and 7–9). The value of an invocation count

expression can be used in the body of an internal swap rule

by referring to it by its name preceded by a hashtag, e. g.,

the ratio of zeroSet and nonZeroSet is used to estimate

the “sparsity” of a matrix (line 13) and potentially invoke a

representation change.

Learned Reactions. All example swap rules presented hith-

erto express transitions to a representation defined by the

developer. Alternatively, the “right” representation to swap

to can be learned, using machine learning techniques. In Sec-

tion 6.1, we use epsilon-greedy Q-learning to find the best

representation for A and B in mul. Assume qLearner4Mul

to be an object that implements this learning algorithm. The

swap rule in Listing 14 first asks qLearner4Mul for the

“best” representations; then the multiplication is performed

and its execution time is measured; finally, qLearner4Mul is

informed about the time needed to execute mul and “learns”
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Listing 14: Learned Reaction to the occurrence of a call to

mul

1 static QLearner qLearner4Mul = new QLearner (2);

2

3 swaprule Matrix Utils.mul(Matrix A, Matrix B) {

4 A to qLearner4Mul.getRepresentation (0);

5 B to qLearner4Mul.getRepresentation (1);

6 long begin = System.currentTime ();

7 proceed;

8 long end = System.currentTime ();

9 qLearner4Mul.minimize( (end-begin) ,

10 representationOf(A), representationOf(B));

11 return C;

12 }

which representations for A and B it should suggest the next

time mul is called.

Note that Listing 14 reveals two properties of JitDS-Java

that where not yet discussed. On the one hand, it shows how

external swap rules can access static members of a JIT class.

On the other hand, it shows how representation types are first

class values in JitDS-Java. They can be the result of a function

call (line 4 and 5) and they can be passed as arguments to a

function call (lines 9 and 10). In Section 5 we also show that

they can be assigned to a variable, and we show how this is

implemented in the compiler.

4.3 Specialized Swaps

If we relax the assumption that all representing classes im-

plement the same set of methods, then we can partition the

set of methods into the core methods, i. e., those methods

implemented by all representing classes, and the specialized

methods, i. e., those methods implemented by one represent-

ing class. To execute a specialized method, a data structure

has to adhere to the correct representation. The Specialized

Swap is the implicit representation change imposed by our

language to allow the execution of such a specialized method.

For instance, consider the class SparseMatrix, a third

representation for our JIT class Matrix. Besides the methods

as defined in Listing 1, this class also provides a method

Iterator nonZeroElementsIterator() which is not

part of the core of the Matrix data type. When this method is

invoked, as on line 3 in Listing 15, the matrix m is implicitly

converted into a SparseMatrix.

5. Compiling Just-in-Time Data Structures

into Java

We now describe the transpiler which we implemented to

translate the specification of a JIT class written in JitDS-Java

into Java.

Just-in-Time Class Definition. The definition of a JIT

class (e. g., Matrix) is compiled directly into a simple

class definition with the same name and package. Then,

we compute for each of the representation classes (e. g.,

Listing 15: Counting the number of non-zero elements im-

plies an implicit representation swap.

1 int numberOfNonZeroElements(Matrix m) {

2 int count = 0;

3 Iterator it = m.nonZeroElementsIterator ();

4 while(it.hasNext ()) {

5 it.next ();

6 count ++;

7 }

8 return count;

9 }

RowMajorMatrix, ColMajorMatrix, and SparseMatrix)

the set of public, non-static methods. We add a (static)

interface (here Matrix.Interface) which contains the

union of the above described set of methods augmented

with a void swap(Representation) operation and a

Representation representationOf() operation. Then

we add a non-static member class definition to the “JIT

class” for each of the representations, which we call the

local representation class. These local representation classes

extend a single representation class and implement the newly

defined interface. Finally, the JIT class holds a reference

to an instance of the Interface type in a field member

called instance. All methods of the Interface type

are implemented by the JIT class by forwarding the call

to the instance. For those methods implemented by the

instance’s super class (representation class) no new imple-

mentation needs to be provided, rather Java’s polymorphism

takes care of those. The specialized methods need special

care of the compiler. These are implemented as a call to swap,

which changes the representation, followed by re-invocation

of the intended method. Now the new instance does adhere

to the correct representation and, by construction, knows how

to respond to the invocation.

Homomorphic Reclassification. The swap method is im-

plemented in each of the local representation classes as a

switch statement: if swap is called using the current repre-

sentation, nothing happens; if swap is called using a rep-

resentation for which a transition function is defined, the

instance is set to a new object with the corresponding rep-

resentation using the transition function. Finally, if swap is

called using a representation for which no matching transition

function exists, an IllegalSwapOperationException is

thrown. This functionality of changing the representation of

an object at runtime while retaining its identity, is known as

dynamic object reclassification [11]. Because the JIT Data

Structure never loses properties (i. e., all operations of the

data interface have to be defined), the swap is a restricted

form of dynamic reclassification called monotonic reclas-

sification [6]. Moreover, a JIT Data Structure never gains

properties either, which makes the swap an even more re-

stricted form of dynamic reclassification which we will call

homomorphic reclassification. Our implementation of ho-
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momorphic reclassification explained above resembles the

Inheritance–Evolution technique from [6] and is effectively a

more elaborate variant of the bridge pattern [13].

External Swap Rules. Both the syntax and intended behav-

ior of external swap rules have the look-and-feel of aspect-

oriented programming. More precisely, our external swap

rules provide a static quantification of when to execute a

certain representation change [12]. It will therefore come as

no surprise that our compiler translates external swap rules

directly into an “around advice” with operates on a “execute

pointcut” expressed in AspectJ [17]. In future work, however,

we want to do the code weaving ourselves to gain more fine

grained control.

Internal Swap Rules. An internal swap rule provides a dy-

namic quantification of when to execute a certain representa-

tion change [12]. Opposed to our implementation of external

swaprules, we implemented the weaving of internal swaprules

ourselves. All bodies of the internal swap rules that apply to

a representation class are combined into a private method in

this representation class. This method is invoked “regularly”.

That is, our current compiler inserts a call to this method be-

fore each core method invocation. Below and in Section 8 we

hint at reducing this overhead by relying on thorough (static)

analysis of the code (e. g., counters being changed, combining

multiple swap rules into one, or with runtime sampling).

Invocation Count Expressions. For each of the declared

invocation count expressions, a private int member is added

to the representation class. The body of each method captured

by an invocation count expression is prepended with a con-

ditional increment instruction of this member. References to

these counters in the body of an internal swap rule are simply

converted to the correct name.

Discussion. The compiler in its current form allows ex-

pressing all of our new constructs and compiles them to Java

(i. e., JIT classes, transition functions, named swap rules, inter-

nal swap rules, external swap rules, and invocation count ex-

pressions). What is currently missing is (static) analysis to aid

the compiler in reducing the amount of overhead introduced

in the code, and to check for anomalies in the combination of

representation classes, e. g., colliding method signatures. The

source files needed to build the compiler are available on our

website.5

6. Evaluation: JITMatrix and JITList

In this section we present two Just-in-Time Data Structures,

that we implemented to serve as example programs. Both

examples are chosen such that they exemplify the complexity

of different kinds swap rules presented in Section 4. The first

example is an extension of the running example of this text:

the Matrix and its multiplication. In the Matrix-example we

show the difference between learned and developer defined

5 http://soft.vub.ac.be/~madewael/jitds

transitions. In the second example we present a Just-in-

Time List which is used to find prime numbers using the

traditional sieve. The List-example shows how to use the

fine grained observations at the interface invocation level in

combination with a history based reaction. The benchmarks

were executed on an Ubuntu 14.04.2 server, kernel version

3.13.0-44-generic, with four AMD Opteron 6376 processors

at 2.3 GHz with 64 GB of memory with NUMA (non-uniform

memory access) properties. All experiments are run 30 times

and the aggregated results are presented in the graphs (and

text).

In the code fragments — and in the accompanying text

— a lot of seemly random numbers are used, i. e., problem’s

input sizes and the “magic numbers” in the representation

swaprules. The input sizes are chosen in function of the

presentation of this text, e. g., to show the difference between

small and large input sizes. The numbers in the swaprules,

however, are the result of the tedious work performed by

a performance expert. Because performance engineering is

difficult [9], we consider the separation of application logic

and representation change logic as a key benefit of our Just-

in-Time Data Structures.

6.1 Matrices and Matrix Multiplication

Listing 16: Raising a matrix A to the nth power.

1 public static Matrix pow(Matrix A, int n) {

2 Matrix C = makeIdentityMatrix( A.getCols () );

3 for (int i=0 ; i<n ; i++) {

4 C = mul(A, C);

5 }

6 return C;

7 }

As already shown, the data access pattern for the ma-

trix multiplication algorithm, mul(A, B), prefers A to be

stored in row-major order and B to be stored in col-major

order for better performance. Our benchmark program im-

plements a power function pow(Matrix m,int n), which

raises the matrix m to the nth power (Listing 16). Thus, pow

iteratively calls mul. We measure the execution time of rais-

ing a 512× 512 matrix to the 16th power. In our experiment

we compare three approaches: 1. We consider Matrix to be

a JIT class without any swap rules and thus without any rep-

resentation changes, 2. The Matrix from (1) with the swap

rule from Listing 8 to enforce a multiplication of RowMajor

x ColMajor, and 3. The Matrix from (1) with the swap

rule from Listing 14, which implements the epsilon-greedy

Q-learning algorithm [21] to learn the best representation

based on execution time.6

Figure 2 shows a box-plot of the execution times of raising

a 512× 512 matrix to the 16th power. The graph summarizes

the executions times of 30 runs. As expected, the versions

6 The machine learning technique used here is the basic epsilon-greedy Q-

learning algorithm, and serves as a prototypical implementation. Hitherto,

no further research was conducted in the area of self-learning swaprules
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Figure 2: Raising a 512× 512 matrix to the 16th power.

with swap rules outperform the version where all matrices

have a single representation. The outliers in the learned

version are those runs where the machine learning algorithm

is trying to find an optimum. As already shown in Section 2,

changing the representation of the matrices yields better

performance, and thus also when running the code generated

by our compiler. Also the version using the learning swap

rule performs clearly better than than the program without

representation changes.

6.2 Search for Primes in a List

In Java the List interface comes with three standard im-

plementations, i. e., LinkedList, ArrayList, and Vector.

The implementations ArrayList and Vector are roughly

equivalent up to synchronization and are based on an array

of Objects. The LinkedList implementation on the other

hand is based on the helper-class Entry which holds a ref-

erence to a previous and next Entry and a reference to a

value. Consequently, the LinkedList is pointer based with-

out guarantees on the memory layout.

Intuitively, the LinkedList is better for dynamic lists, or

those with frequent insertions and deletions of elements. The

ArrayList is expected to outperform in random access, e. g.,

getting and setting elements. This intuitive characterization is

summarized in Table 3. As shown by other researchers (e. g.,

[3, 23]), making a fixed choice of implementation before (or

at) start-up time can be suboptimal. For instance, in programs

that exhibit phased behavior [20], e. g., phases of frequent

inserts followed by phases of frequent selects, and vice versa.

Sometimes this phase shift is lexically (e. g., one specific line

of code) observable in the program’s code. In the following

example we present a program where the phase shift is not

lexically observable: in one of the iterations of the while loop

(Listing 17, lines 19–23).

get/set add/remove

(random position) (current position)

ArrayList O(1) O(n)
LinkedList O(n) O(1)

Table 3: Intuitive performance characteristics of List-

representations in Java.

Listing 17: Implementation of the sieve of Eratosthenes.

1 JITList primes = new JITList ();

2

3 for (int i=N ; i>=2 ; i--) {

4 primes.add(0, i);

5 }

6

7 for (int idx=0 ; idx <primes.size() ; idx ++) {

8 /* Get idx’th prime */

9 int prime = primes.get(idx);

10

11 /* Advance Iterator */

12 primes.startIterator ();

13 while ( primes.hasNext () &&

14 (primes.next()<=prime) ) {

15 /* do nothing */

16 }

17

18 /* Remove Multiples */

19 while ( primes.hasNext () ) {

20 if ( (primes.next ()% prime) == 0) {

21 primes.remove ();

22 }

23 }

24 }

The “sieve of Eratosthenes” is an algorithm to find all

prime numbers smaller than N . The algorithm starts with

a sequence of integers from 2 till N . Then, it iteratively

filters all multiples of all found primes. An implementa-

tion in Java is shown in Listing 17 and was designed to

play off the ArrayList implementation of List against the

LinkedList implementation. On line 4, for instance, an ele-

ment is added to the front of the list which is an increasingly

expensive operation for the ArrayList.7 Then, at line 7 the

iterative sieving starts. Each iteration consists of a random ac-

cess (line 9), iterating through the list to the wanted position

(line 12–16), and finally, iterating further while potentially

removing elements (lines 19–23).

Listing 18: A set of invocation count expressions used in the

JitList.

1 #iter as next ();

2 #del as remove ();

3 #insert as add(int i, int v);

4 #get as get(int i);

7 The implementation of add(int,Object) in ArrayList requires a call

to System.arraycopy and potentially a second call if the underlying array

is too small. Conversely, add(int,Object) in LinkedList simply creates

a new Entry and adjusts a single reference.

Just-in-Time Data Structures, author’s preprint 11 2015/8/20



Listing 19: Swap rule from ArrayList to LinkedList

1 swaprule ArrayList {

2 if ( (size () >1000) && (#insert >10*# get)) {

3 this to LinkedList;

4 }

5 }

Listing 20: Swap rule from LinkedList to ArrayList

1 swaprule LinkedList {

2 if ( (size () >1000) && (10*# del < #iter)) {

3 this to ArrayList;

4 }

5 }

We implemented a JITList in JitDS-Java which is an

JIT Data Structure that is able to swap between represen-

tations based on ArrayList and LinkedList. Listings 19

and 20 show the logic that describes when to swap from one

representation to the other.

Implementation Details. Note that there are two differ-

ences between the original List from Java and the JitList

as used in Listing 17. First, we do not consider generic types

in our language and therefore JitList is assumed to be

be like List<Integer>. The second difference is the use

of the JitList as an Iterator instead of requesting an

Iterator (i. e., Iterator it = primes.iterator();).

The latter difference is more fundamental and therefore fur-

ther discussed in Section 8.

As an experiment we compared the execution times of

running the “‘sieve” application with an ArrayList, a

LinkedList, and a JITList with the swap rules and in-

vocation counters introduced above (Listings 18 to 20). The

internal swap rule in Listing 19 is designed to change an

ArrayList into a LinkedList when the number of inserts

becomes too high compared to the number of random reads

(#get). The magic constant, 10, was introduced as damp-

ening factor to avoid premature representation changes and

is determined by trial-and-error. The internal swap rule in

Listing 20 is designed to change a LinkedList into an

ArrayList when the list is mainly iterated over (#iter)

compared to the number of deletions (#del). Again, the

magic constant is a dampening factor determined by trial-

and-error. Further, we vary the number of elements initially

added to the list. Figure 3 summarizes the executions times of

30 runs in three box-plots, one for each input size. Comparing

the ArrayList and the LinkedList implementations, we

observe that for the smallest input, LinkedList outperforms

ArrayList, whereas for the larger inputs the situation is

reversed.

When analyzing the representation changes of the JIT-

List, we observe a first transition from ArrayList to

LinkedList early in the program’s execution (i. e., dur-

ing the building of the list). A second transition, i. e., from

LinkedList to ArrayList, is observed during one of the

early iterations of the sieve loop. We conclude, by comparing

the execution time needed by the JITList with the others,
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Figure 3: Varying the initial number of elements added to the

list.

that the representation changes allow the JITList to com-

bine the best of both classic list representation, and eventually

outperforms both (Figure 3c).
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7. Related Work

This section on related work is divided into two parts. In the

first part we present work related to the techniques needed to

implement Just-in-Time Data Structures. In a second part we

discuss the work related to data structure selection in general.

7.1 Implementing a Just-in-Time Data Structure

In Section 4 we showed that changing data representation

at runtime can be implemented using a restricted form of

dynamic reclassification which we called homomorphic re-

classification. The idea of using a restricted form of dynamic

object reclassification is explored by Tal Cohen et.al. in [6].

They present three implementation techniques of which we

use the inheritance-based technique. This technique effec-

tively implements the bridge design pattern as described in

[13], in a different context. Similar ideas have been explored

in the context of objects and their identity in the language

Gilgul by Costanza [8]. More general forms of dynamic ob-

ject reclassification can be found for instance in the language

Fickle [11] and in Smalltalk (cf. become:).

To implement JIT Data Structures, we observe the usage

of the data structure and react accordingly. Our strategy to im-

plement the observations and reactions and merge them with

the application logic could also be realized through aspect-

oriented programming [16], i. e., we disentangle the logic for

data structure selection from the rest of the application logic.

While our work is not focussing on AOP as such, it is inter-

esting to consider the work on domain-specific approaches in

the context of performance. Introducing representation swaps

at a non-lexical place in a program, as discussed in Section 4,

implies the need for selecting a specific kind of join point.

Similarly, LoopsAj introduces expressiveness dedicated to

join points for loops [14], which in turn allows parallelization

of the code and improves performance.

7.2 Data Structure Selection

Above we compared our implementation of JitDS-Java with

other software engineering efforts. Here we focus on four

approaches that have the same goal as Just-in-Time Data

Structures, i. e., selecting the best possible data representation

for an application. We classify the approaches according to

the axes presented in Section 3.

Brainy is a general program analysis tool that automati-

cally selects the best data representation for a given program

on a specific micro-architecture [15]. Brainy makes an offline

decision by observing interface invocations of a sample run

and feeds this information into an machine learning algo-

rithm, which takes architecture-specific characteristics into

account.

Most of the other related work is dedicated to collections.

Chameleon is a tool that assists the developer in choosing the

appropriate collection representation [19]. Chameleon makes

its offline decisions based on a rule-engine and the collection’s

behavior gathered during sample runs of the program. The

rules for the Chameleon engine are expressed in a DSL where

“number of interface operation invocations” is one of the

possible expressions.

CoCo on the other hand, is an online application-level

optimization technique for collections [23]. CoCo exploits

the known algorithmic characteristics of Java collections to

improve performance. CoCo differs from other online ap-

proaches because it allows a gradual transition between rep-

resentations, i. e., CoCo is able to provide a “cheap transition

function” to revert a representation swap. We have not yet

considered this in our approach, but it is an interesting avenue

of future work.

In PyPy, the homogeneity of collections in dynamic lan-

guages can be exploited by changing the strategy for storing

elements [3]. Also in the V8 JavaScript interpreter the un-

derlying representation of data is changed based on the cur-

rent content and usage.8 These ideas date back to maps, one

of the implementation techniques of SELF’s object storage

model [4].

A more established form of representation changes are the

offline representation changes introduced by compilers. Auto-

boxing and unboxing are examples thereof.9 Typecasting and

coercion are two other examples of established forms of rep-

resentation changes readily available in many languages [1].

A final body of related work tackles performance from

the opposite angle and changes the computation — as op-

posed to the data -£– to improve a program. The amount of

work in this area (i. e., compiler technology) is vast. Tang

et al. [22], for instance, develop a special purpose compiler

to improve the performance of stencil computation based on

the target hardware and the shape of the stencil. Based on

the polytope model, dependency graphs, and other theoreti-

cal properties, compilers are allowed to “rearrange” nested

loops to improve performance while keeping semantics intact.

From these efforts, the work of Ansel et al. [2] resembles

our work the most. In their language a developer can “com-

bine” multiple algorithms to solve the same problem (e. g.,

insertion-sort or merge-sort) into a single algorithm (e. g.,

sort). Much like qsort is currently implemented manually in

the standard C headers, the PetaBricks language chooses the

“right” algorithm to be used at runtime based on the data.

8. Discussion and Future Work

We presented JitDS-Java, an extension of Java, to define

Just-in-Time Data Structures and discussed a straightforward

compiler that translates the new constructs into Java. More-

over, in Section 6, we showed two example programs that

benefit from using a JIT Data Structure. In its current form

8 V8 JavaScript Engine - Google Project Hosting, V8 project authors, access

date: December 21st 2014 https://code.google.com/p/v8/source/

browse/trunk/src/array.js#89
9 Autoboxing and Unboxing, Oracle, access date: April 1st 2015

https://docs.oracle.com/javase/tutorial/java/data/

autoboxing.html
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the compiler is a prototype for fast development of JIT Data

Structures (e. g., JitMatrix, JitList, or JitFile). There

are a number of points on which JitDS-Java and its compiler

need to be further refined in order to allow for better usability.

Engineering: Reducing the Overhead. Currently, the com-

piler is implemented straightforwardly, as discussed in

Section 5 and therefore would benefit from a more ma-

ture implementation which generates code with less per-

formance overhead. First, we want to reduce the method

invocation overhead introduced by the extra level of indi-

rection of using the bridge pattern. Technically, the cheap

invokeVirtual of a simple method call is, in our imple-

mentation, replaced by an invokeVirtual followed by an

(expensive) invokeInterface. Second, in its current form,

the compiler introduces a lot of checks for potential internal

swap rule invocations that are not strictly necessary, i. e.,

before every core method invocation. We plan to turn this

around and invoke only those swap rules which can trigger

because of newly updated counters or values, i. e., push-based

instead of pull-based. For this we are looking in the direction

of expert systems and rule engines.

Expensive and Invalid Transitions. Writing program logic

with JIT Data Structures allows the developer of the code

to be oblivious of the actual representation of the data

structures. For instance, using a lot of specialized methods

potentially causes a lot of representation swaps invisible to the

programmer. Moreover, some transitions can be invalid (cf.

the file example, Figure 1). In these cases, the programmer

should be warned of the potentially expensive or invalid code.

We want to introduce a type system in our language that

allows for static warnings when code becomes potentially

expensive, and for static errors (rejected program) when the

program will run into an unacceptable transition. DeLine

and Fähndrich [10] present a type system which allows static

reasoning about the “state”, here the current representation,

of objects.

Escaping Pointers. It is common in programs for member

functions to return a value which holds, direct or indirect,

a reference to the object itself. For instance, Iterators as

obtained from a List need a reference to the list to be able to

iterate. While passing references around is generally legit in

OOP. In the context of JIT Data Structures, however, it raises

some problems. If a reference to an internal representation is

passed outside the boundaries of the JIT Data Structure, the

object identity is not longer maintained.

An iterator obtained from a JitList before a swap will

no longer be able to correctly iterate over the list after a

swap. We call this the problem of escaping pointers. We

want to introduce ownership types [5], to aid the developer

in programming with JIT Data Structures and to allow the

compiler to introduce guards.

Freezing and Thawing. One of the benefits of implement-

ing JIT Data Structures is that it is possible to express rules
on a conceptual level when it is beneficial to swap represen-

tations. In practice, however, it is possible that multiple rules

should be triggered at the same time, causing a ping-pong

effect of representation swaps. These cascading transitions

can even be caused by a transition from one representation

to another. To avoid polluting the invocation counters we are

currently investigating the Freezing and Thawing of our JIT

Data Structure’s swapping capability, i. e., disallowing swaps

for a certain period. Currently, our compiler already “freezes”

the data structure during a swap, such that a swap caused by

a swap is not possible.

Interfering Swap Rules. When the number of swap rules

increases, it becomes likely that they will interfere with each

other. We want to give external swap rules priority over

internal swap rules, i. e., internal swap rules do not trigger

within the execution flow of an external swap rule. In general,

however, the interplay between multiple swap rules needs

further investigation.

9. Conclusion

In this text we introduced Just-in-Time Data Structures, a

general approach for developers to implement data structures

that can intrinsically change their representation at runtime.

This approach is beneficial for those applications where fix-

ing the data representation before execution or at allocation

time is suboptimal. We implemented JitDS-Java, a language

in which it is possible to define such Just-in-Time Data Struc-

tures. Defining swap rules for a JIT Data Structure, allows

developers to separate the core application logic from the

crosscutting concern of data structure selection. This could

ease the software engineering task by separating “engineer-

ing application logic” from “performance engineering tasks”,

which in turn could divide the software engineering efforts

over a domain-expert developer and a performance-expert

developer.

To define a Just-in-Time Data Structure, a developer com-

bines multiple data representations and provides the functions

to transition between them. Further, the performance-expert

developer implements a set of internal and external swap

rules to define which representation is to be used in which

situations. Our compiler turns these definitions into a data

structure that is intrinsically capable of changing its represen-

tation during the execution of a program.

In conclusion, this work wants to shift the focus from

“trying to find the right data representation for a program”

to “finding the right sequence of data representations for a

program”.
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