
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Chari, Guido and Garbervetsky, Diego and Marr, Stefan (2017) Fully-reflective VMs for Ruling
Software Adaptation. In: Proceedings of the 39th International Conference on Software Engineering
Companion.

DOI

https://doi.org/10.1109/ICSE-C.2017.144

Link to record in KAR

http://kar.kent.ac.uk/63813/

Document Version

Author's Accepted Manuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/189717677?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fully-Reflective VMs for Ruling Software

Adaptation

Guido Chari∗, Diego Garbervetsky∗, Stefan Marr†

∗Departamento de Computación, FCEyN, UBA. ICC-CONICET, Argentina †Johannes Kepler University, Linz, Austria

Email: ∗{gchari, diegog}@dc.uba.ar, †stefan.marr@jku.at

I. INTRODUCTION

It has become common for software systems to require or

benefit from dynamic adaptation, i.e., to modify their behavior

while they are running. Among the existing approaches to this

problem, language-level solutions are appealing for scenarios

in which fine-grained adaptation is needed, i.e., when the

granularity of the modifications is that of individual objects, or

for small applications where an architectural solution based on

complex middleware is overkill. However, there is no consensus

on which of the existing language-level approaches to adopt. A

recent survey on self-adaptive systems asks [9]: Is it possible

to adopt a single paradigm providing all required abstractions

to implement adaptive systems?

To answer this question, Salvaneschi et al. evaluate contem-

porary reflective systems (RS),1 aspect-oriented programming

(AOP) and context-oriented programming (COP). Since the

authors identified strengths and weaknesses for all the ap-

proaches, their conclusions were not definite. We advocate

that a suitable solution must include abstractions to directly

mold the semantics of the whole system, considering both, the

application and the runtime level.

In contrast, paradigms like AOP and COP frequently fall into

indirect mechanisms of adaptation. The reasons are two-fold.

First they were not conceived as general solutions for unantic-

ipated software adaptation. Second, despite theoretically they

may approach adaptations directly, their main implementations

and tools (pointcut languages, layers, etc) biased the user to

think in terms of intercepting execution points and redirecting

their execution flow. On the other hand, most RSs do not reify2

all elements of a language and its implementation [2]. As a

consequence, the adaptations concerning these elements are

not expressible, or can be achieved only indirectly.

We believe that most of the approaches designed to handle

adaptation at the language level (RS, AOP, COP, and even

middlewares) were biased by the lack of adaptation capabilities

in mainstream VMs.

Based on the fact that reflection has already been identified

as a fundamental technique for software evolution [6], in this

paper we argue that a VM exposing its whole structure and

behavior to applications can provide a uniform solution for

adapting systems at the language level and at run time. A

fully-reflective execution environment (FREE) is a particular

1Salvaneschi et al. use the less specific term metaprogramming.
2To reify: model a concept as a first-class entity.

flavor of a VM exposing its whole structure and behavior to

applications [2]. We believe this kind of platforms deserves

more attention in the context of software adaptation.

II. UNANTICIPATED SOFTWARE ADAPTATION

A. Direct vs. Indirect Adaptations

Direct adaptation is the redefinition of program and VM

semantics restricted to the required operations and scope.

For instance, changing the layout (memory representation)

of specific objects.

Indirect adaptation is done by wrapping around (intercept)

the required semantics and redirect the execution flow.

For instance, intercepting the program before a method

activation and delegate it to new code.

To clarify the difference, Figure 1 depicts a very high-level

and simple example. In real applications, adaptations may

depend on a complex combination of operations and individual

instances. An indirect adaptation would intercept, potentially,

all the operations in the whole application and redirect them

to an ad-hoc method. This method, depending on the receiver

object, would determine whether the operation is allowed.

From our experience, in indirect adaptations: 1) The in-

terception of operations is usually implemented as an over-

approximation of the points in the program that need an adap-

tation. 2) Maintainability is hard because when the application

changes the interception points must be updated accordingly.

3) Debugging gets cumbersome because intercepted methods

could be polluted with instrumented code. 4) Composing

adaptations may lead to complex conditions at each interception

point jeopardizing performance. 5) If an operation is not

interceptable the adaption could not be performed. For instance,

language primitives might not be interceptable.

B. Reflective Systems

Reflection in programming languages is a mechanism for

programs to express computations about themselves, enabling

the observation (introspection) and/or modification (interces-

sion) of their structure and behavior [10] through a set of APIs.

When these APIs let clients modify or extend the semantics of

the language, they are called metaobject protocols (MOPs) [5].

Adaptation Approach: RS expose two ways to adapt

an application’s behavior, both fulfilling the direct adaptation

definition: 1) Modify reified objects, i.e., classes. 2) Attach

metaobjects to individual objects.

A B C

D E

A B C

D E

Standard operation

Operation + adaptation 1

Operation + adaptation 2

Operation + adaptation 1 and 2
Wrapper / Interceptor

If op = C then do 1 and 2
if op = A or D then do 1
if op = B then do 2
do op

Application Application + DA Application + IA

B C

D E

A

Fig. 1. Five operations and three combination of adaptations approached with both, direct adaptation (DA) and indirect adaptations (IA)

Adaptation Limitations: Even in advanced RSs, reifica-

tions [7], [8] cover only a limited subset of the VM entities.

As a consequence, they fail to handle directly adaptations

demanding changes to low-level entities.

C. AOP

Most AOP [4] implementations typically provide a domain

specific language to specify a set of points in the program (join

points) at which a feature orthogonal to the application logic

such as logging, caching, and persistence must be executed.

Adaptation Approach: Pointcut languages facilitates the

specification of fine-grained locations where the execution

could be redirected to ad-hoc user-defined behaviors.

Adaptation Limitations: Most AOP implementations

mostly provide means for adapting applications in an indirect

way. For adapting a single operation for a single instance it

intercepts all the occurrences and at run time tests whether

the actual subject (receiver) of the operation is the required

instance. This eventually leads to the problems that indirect

adaptations expose (cf. Section II-A).

D. COP

COP is a paradigm specially designed for applications with

behavioral variations depending on contextual information [3].

Adaptation Approach: COP languages support the follow-

ing features for adaptations: a) Means to specify behavioral

variations. b) Means to group variations into layers. c) Dynamic

activation/deactivation of layers based on context. d) Means to

explicitly and dynamically control the scope of layers.

Adaptation Limitations: Adaptations concerning execution

semantics or object’s structure can not be handled directly. As

such, COP is more suitable for dealing with anticipated rather

than unanticipated adaptation scenarios.

E. Summary

All the approaches have serious difficulties to support certain

adaptation scenarios. Specially, when the adaptations involve

VM internals such as object layouts, operational semantics,

etc. To handle these scenarios, at best they provide means for

indirect adaptations. Our conclusion is that a solution enabling

direct semantics adaptations involving both, entities of the

application and the VM itself, is still needed.

III. FULLY-REFLECTIVE VIRTUAL MACHINES

A FREE[2] is a particular kind of VM providing compre-

hensive reflective capabilities. Preliminary evidence suggests

that this kind of FREE can run efficiently [1]. By design, a

FREE enables to express adaptations involving VM entities

directly. In addition, a MOP-based FREE enables to describe

this semantics in a modular, composable and reusable way,

separated from the application’s logic. As a consequence, we

conjecture that a FREE is a suitable solution for approaching

adaptive scenarios at the language level and propose them as

a unique solution for software adaptation.

A. Sketching Language-level Approaches in a FREE

Reflective Systems: By definition, a FREE extends, and thus

subsumes, RSs because, ideally, a FREE reifies every entity.

Aspect-Oriented Programming: Joinpoints are precise loca-

tions of particular operations within the application. Since a

FREE can capture any operation and redefine its semantics

with language-level methods, it is possible to implement any

pointcut language in top of a FREE. On the other hand, one of

AOP’s most salient features is the decoupling of the crosscutting

concerns from the application’s logic. MOPs can be designed

for supporting the same property by promoting mechanisms

for composing metaobjects regarding cross-cutting concerns.

Context-Oriented Programming: The main mechanism to

support COP is the redefinition of method lookups and

activations so that they take into account the contextual

information and the activated layer. By definition, a FREE

reifies both concepts. On the other hand, layers just group

contextual-dependent behavioral variations. They can still be

expressed with any way of grouping methods or even by

composing metaobjects.

IV. CONCLUSIONS

From our perspective, contemporary reflective systems,

aspect-oriented programming, and context-oriented program-

ming present fundamental limitations for handling software

adaption in general. The main reason is that, with different

degrees of limitations, they do not enable to express direct

adaptations for a wide-range of entities. In particular, entities

concerning low-level aspects of the system. As a path to follow

for the software engineering community, we proposed the

incorporation of reflective capabilities to the runtime (VMs)

structures. We conjecture that these features are a more suitable

foundation for developing flexible software than other language-

level approaches.

REFERENCES

[1] G. Chari, D. Garbervetsky, and S. Marr. Building Efficient and Highly
Run-time Adaptable Virtual Machines. In Proceedings of the 12th

Symposium on Dynamic Languages, DLS’16. ACM, 2016. (to appear).
[2] G. Chari, D. Garbervetsky, S. Marr, and S. Ducasse. Towards fully

reflective environments. In 2015 ACM International Symposium on New

Ideas, New Paradigms, and Reflections on Programming and Software

(Onward!), Onward! 2015, pages 240–253, New York, NY, USA, 2015.
ACM.

[3] R. Hirschfeld, P. Costanza, and O. Nierstrasz. Context-oriented program-
ming. Journal of Object Technology, 7(3), 2008.

[4] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M.
Loingtier, and J. Irwin. Aspect-oriented programming. pages 220–242.
Springer, 1997.

[5] G. Kiczales and J. D. Rivieres. The Art of the Metaobject Protocol. MIT
Press, 1991.

[6] O. Nierstrasz, M. Denker, T. Gîrba, A. Lienhard, and D. Röthlisberger.
Change-enabled software systems. In Software-Intensive Systems and New

Computing Paradigms, pages 64–79. Springer-Verlag, Berlin, Heidelberg,
2008.

[7] B. Redmond and V. Cahill. Supporting unanticipated dynamic adaptation
of application behaviour. ECOOP ’02, pages 205–230. Springer, 2002.

[8] D. Röthlisberger, M. Denker, and E. Tanter. Unanticipated partial
behavioral reflection: Adapting applications at runtime. Comput. Lang.

Syst. Struct., 34(2-3):46–65, July 2008.

[9] G. Salvaneschi, C. Ghezzi, and M. Pradella. An analysis of language-level
support for self-adaptive software. TAAS, 8(2):7, 2013.

[10] B. C. Smith. Reflection and semantics in lisp. In Proceedings of the

11th ACM SIGACT-SIGPLAN Symposium on Principles of Programming

Languages, POPL ’84, pages 23–35. ACM, 1984.

	I Introduction
	II Unanticipated Software Adaptation
	II-A Direct vs. Indirect Adaptations
	II-B Reflective Systems
	II-C AOP
	II-D COP
	II-E Summary

	III Fully-Reflective Virtual Machines
	III-A Sketching Language-level Approaches in a FREE

	IV Conclusions
	References

