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Abstract

Just-in-time compilers and their aggressive speculative optimiza-

tions reduced the performance gap between dynamic and static

languages drastically. To successfully speculate, compilers rely on

the program variability observed at run time to be low, and use

heuristics to determine when optimization is bene�cial. However,

some variability pa�erns are hard to capture with heuristics. Specif-

ically, ephemeral, warmup, rare, and highly indirect variability are

challenges for today’s compiler heuristics. As a consequence, they

can lead to reduced application performance. However, these types

of variability are identi�able at the application level and could be

mitigated with information provided by developers. As a solution,

we propose a metaobject protocol for dynamic compilation systems

to enable application developers to provide such information at run

time. As a proof of concept, we demonstrate performance improve-

ments for a few scenarios in a dynamic language built on top of

the Tru�e and Graal system.

ACM Reference format:

Guido Chari, Diego Garbervetsky, and Stefan Marr. 2017. A Metaobject

Protocol for Optimizing Application-Speci�c Run-Time Variability. In Pro-

ceedings of ICOOOLPS’17, Barcelona , Spain, June 19, 2017, 5 pages.

DOI: 10.1145/3098572.3098577

1 Introduction

In object-oriented languages, a program usually consists of objects

(perhaps also classes) and methods which realize the desired be-

havior. In the presence of dynamic dispatching, the concrete types

of objects are o�en known only at run time. Additionally, such

languages typically provide re�ective APIs allowing developers

to observe or intercede with language elements programmatically

while the application is running. All these aspects make the opti-

mization of dynamic languages particularly challenging. However,

just-in-time (JIT) compilation successfully faces many of these chal-

lenges by assuming that the run-time variability of applications is

generally low. For instance, polymorphic inline caches (PICs) [5]

for call sites work well under low variability but their performance

decreases when new types are observed.

JIT compilers rely on heuristics that decide what, when, and

how to optimize. In the absence of mechanisms to interact with

compilers, application developers generally treat them as black

boxes. �is leads to unpredictable performance gains or losses

depending on the heuristics hit rate [9]. For example, a call site

with high variability is not always an issue for PICs. Based on its
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heuristics, an aggressive optimizer can clone (split) a method when

it is called from di�erent sites so that the variability is reduced by

incorporating contextual information [1].

Unfortunately, we found that some use cases do not �t well with

the common optimization heuristics. �ese scenarios present a

special kind of variability exhibiting the following main character-

istics: 1) �ey appear as high variability to JIT compilers resulting

in run-time overhead. 2) Application developers could know the

variability follows a �xed pa�ern, which makes it suitable for op-

timization. 3) �e pa�ern instances are application-speci�c. �is

kind of variability is common in applications that use dynamic

features extensively, for instance, when using proxies for complex

initialization or when performing run-time adaptations such as

object instance migrations.

To mitigate their overhead, compilation heuristics could be

adapted whenever a new case is found. However, this requires

changes to low-level and complex artifacts such as the compiler

and possibly the virtual machine. �is is costly, and gathering the

necessary information to recognize complex variability pa�erns

might also harm the overall application performance. Especially

for variability that is highly application-speci�c, a general solution

at the compiler level might be too complex and may introduce

unacceptable run-time overhead for other applications.

We propose to investigate opening up JIT compilers and behav-

ioral information about programs as part of a comprehensive API

in the form of a metaobject protocol (MOP) [6]. Concretely, we

propose to explore re�ective compilers, i.e., compilers exposing

their capabilities to the language level. Exploiting these capabili-

ties, developers can provide �ne-tune optimizations and mitigate

application-speci�c run-time overheads by providing additional

information to the compiler about a program at run time. �is has

the advantage of enabling custom optimizations with a generic

API, accessible at the language level, and applicable to di�erent

scenarios and applications dynamically.

In the remainder of the paper we �rst provide some background

and discuss the di�erent kind of application-speci�c variability we

detected. �en we describe rei�cations of the compiler behavior

and basic structural elements that could be a�ected by those vari-

ability conditions. Examples of such elements are dispatch chains,

program specializations, application pro�ling, and code spli�ing.

Finally, we present running time reductions in two scenarios ex-

hibiting application-speci�c variability, provide some preliminary

conclusions, and discuss our plans to continue this work.

2 Background

�is section brie�y discusses two basic dynamic language optimiza-

tions as background for the remainder of the paper.

http://dx.doi.org/10.1145/3098572.3098577
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Dynamic Objects In dynamic languages such as JavaScript, PHP,

or Python, �elds can be added and removed dynamically. Further-

more, the type of values stored in �elds is not known statically.

To optimize the representation of such a dynamic structure of un-

known size and shape, the notions ofmaps [1] and object shapes [10]

have been proposed. Essentialy, they keep track and cache object

structures and �eld types at run time. Exploiting this informa-

tion enables a record-like representation in memory, where �eld

accesses can be mapped to direct memory accesses.

Dispatch Chains Polymorphic inline caches (PICs) [5] record

type information and cache methods to minimize their lookup over-

head. Dispatch Chains generalize PICs to generic operations, such

as object �eld accesses (for dynamic objects) and metaprogram-

ming, caching arbitrary values [7, 10]. Dispatch Chains rely on the

stability and low variability of run-time behavior. Each element

caches a value (a specialization) and has a guard to test its validity

in the current run-time context. If not valid, the following element

in the chain is tested. Finally, dispatch chains are structured so that

the last element implements the fallback behavior, i.e., the behavior

for the most general case.

3 Handling Application-Speci�c Variability

As programming language implementers and application develop-

ers we have been on both sides of the table. On the one hand, as

implementers we know that a compiler needs as much information

as possible to recognize optimizable pa�erns. On the other hand,

as developers we have dealt with code whose performance has

degraded signi�cantly without a clear reason.

3.1 Motivating Example: Ephemeral Variability

Let us consider an application that periodically walks through the

elements of a list. To make it concrete and simple, suppose the

elements are instances of a Point class and that the application

requests their x �eld. �e code snippet in Smalltalk syntax is:

Example>>#gatherX

↑points collect: [:point | point x]

Now, suppose that for at least one of the points in the list, there

is a proxy protecting the actual point object that has not yet been

initialized. When the �eld read is triggered, the proxy lazily initial-

izes the object and updates the list at the corresponding position.

�is scenario contains what we call ephemeral variability. �is vari-

ability is in the �eld access operation, which refers always to the

same type (Point) with the exception of the �rst iterations where

it also refers to Proxy.

Figure 1 illustrates the challenges this type of variability poses

to a compiler by showing the evolution of the AST representation

of gatherX.1 On the le� we see the output a�er parsing. In the

middle is the AST a�er walking through the �rst point of the list:

the uninitialized read was replaced by a specialization that caches

the memory o�set to look for the x �eld of Point instances. �e

AST remains unchanged until we reach the Proxy in the list and

add another node for caching the o�set for proxies (on the right).

A�erwards, the AST no longer changes.

1 We chose ASTs for illustrative reasons but the main idea is generalizable to other
representations used by speculative compilers.
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Figure 1. Run-time changes in the AST of the gatherX method.

As shown, ephemeral variability a�ects dispatch chains and

thus, performance. In Section 5.2 we show preliminary empiri-

cal evidence of its performance e�ects. In our example, a node

caching Proxy location is at the head of the chain although we

know that proxies will never be observed a�er initialization. �is

phenomenon, which is application-speci�c, can be hard to detect in

a general-purpose JIT compiler. In particular, the compiler cannot

determine when Proxy instances will no longer be observed. How-

ever, this information can be determined by a developer based on

the application behavior. Equipped with the right tools, she could

inform the optimizer about the pa�ern.

3.2 Application-speci�c variabilities

What follows is an informal characterization of di�erent kinds

of variability we have observed in our experiments using Truf-

�eMate as an adaptive platform [3]. While we assume they have

been observed by many VM implementers before, to the best of our

knowledge, they have not been widely documented yet.

Ephemeral Variability: As we illustrated in the motivating ex-

ample, ephemeral variability refers to an increase in variability that

disappears a�er some time, perhaps a program phase, a�er which

the system continues the execution with lower variability. �is

is o�en observable in applications performing adaptations at run

time such as instance migration. Another example is unexpected

inputs that trigger exceptions and error handling. Ephemeral vari-

ability a�ects optimizations based on type pro�ling. Concretely, it

may prevent inlining and other optimizations, because the dispatch

chains will keep information about all previously observed types

(especially in commonly used library functions) while the applica-

tion only needs a subset of them a�er startup.

Warm up Variability: A particular kind of ephemeral variability

that occurs whenever there is a clearly de�ned initial phase where

applications feature highly dynamic behavior, but a�erwards, sta-

bilize and exhibit lower variability. For instance, during startup,

an application might initialize a complex data structure involving

the instantiation of heterogeneous objects and the execution of

complex initialization methods. A�erwards, the application might

merely use the data structure and never execute the initialization

code again. Depending on the time it takes the instance to prop-

erly initialize, the motivating example could also be categorized as

showing warm up variability.

Rare Variability: Some programs have rare but reoccurring vari-

ability in their behavior. Examples can be heterogeneous run-time

values appearing occasionally or behavior triggered by a periodic

task. �is leads to short stretches of execution diverging from stable

behavior, and thus, causing problems for existing heuristics. One
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of the reasons is that the rarely occurring behavior can still block

important optimizations from being performed for the frequently

executed code. So, it might be be�er to avoid optimizing rarely

executed code, and instead keep interpreting it. Moreover, in the

cases where it is still worth optimizing, the dispatch chains would

be contaminated with the last observed values, and a reordering

of the specializations would mitigate this phenomenon. Unfortu-

nately, PICs and other heuristics usually do not take rare variability

into account.

Highly Indirect Variability: �is phenomenon captures variabil-

ity generated in di�erent source locations, which are usually far

from the points where they �nally have an impact. It is usually

observed in applications that make extensive use of frameworks,

libraries, and/or high-order functions. An example is any standard

library method that applies a lambda received as parameter. Dif-

ferent call sites will dispatch di�erent lambdas. To mitigate this

variability JIT compilers usually split (clone) the library method to

enable context-sensitive pro�ling. �is signi�cantly reduces the

length of the dispatch chain and promotes aggressive optimizations

like the inlining of the lambdas. For highly indirect variability,

spli�ing is not su�cient to distinguish di�erent calling contexts

preventing optimization. An example is detailed in Section 5.2.

Summarizing, general purpose JIT compilers are usually unable

to properly recognize the aforementioned variability pa�erns. �e

reason is that to keep them tractable, these compilers pro�le prop-

erties that can be easily detected and monitored while these types

of variability are usually opaque and application-speci�c. As a

consequence, they lead to performance degradation.

4 Towards a Compilation Metaobject Protocol

Application-speci�c variability can potentially be handled by a

compiler if developers provide the proper information at run time.

To do so, we propose the use of re�ective compilers, i.e., compilers

exposing an API to the language level that can be exploited at run

time. In this section, we propose a (not necessarily comprehensive)

set of operations for such an API. We focus on compilation aspects

that may be a�ected by the already presented types of variability.

Concrete examples, along with code illustrating how to use the API,

can be found in Sections 5.1 ands 5.2.

Subsequently, we present the operations based on the entity

starting the communication (i.e., application or compiler). We as-

sume an optimizing compiler that works on methods represented

as ASTs. However, the ideas can also be applied to other represen-

tations, e.g., bytecodes. We reify the essential concepts of ASTs

for dynamic languages: nodes, dispatch chains, and pro�lers. To

connect the base and meta levels, each method has access to its

AST.

4.1 Run-Time Directives from the Application to the

Compiler

Applications can observe or modify the state of a compilation by

using the following operations:

• Compile: force the compilation of a method. Handy to

accelerate warm up times when the developer knows that

the variability is low, especially, a�er a deoptimization. Also

for compiling methods with customized specializations.

• Invalidate: discard the optimized code of a method. �is

is useful whenever compiled code contains specializations

that no longer hold or are blocking optimizations.

• Manage compilation information, covering operations for:

i) Inspecting the run-time AST nodes of a method to an-

alyze its current state (specially its dispatch chains). ii)

Altering the AST. Concretely: ii.a) Add new nodes, use-

ful for customizing specializations ii.b) Reset, reorder, or

remove nodes, in particular, specializations from dispatch

chains. �ese can help to remove pro�le pollution caused

by old phases and/or improve guard execution times (see

one example in Section 5.1).

• Trigger optimizations: force method optimizations such

as spli�ing, inlining, and loop unrolling. Useful when the

compiler heuristics fail to provide the optimal performance.

(See Section 5.2 for an explicit spli�ing example).

• Activate/Deactive pro�lers.

4.2 Run-Time Callbacks from the Compiler to the

Application

�ese operations allow applications to customize how the compiler

responds to compilation events.

• onSpecialization: when a specialization is going to be added

because the current subject’s type has not been observed

before.

• onGuardSucess/onGuardFailure: to inform about the suc-

cess or failure when executing a guard.

• onNodeReplacement: when a node is going to be replaced

with a more speci�c behavior for the current subject’s type.

5 Validation

As a preliminary validation2 of our approach, we implemented al-

most all the compiler directives of the API presented in the previous

section.

Implementation. We implemented the API in Tru�eMate [2], a

Smalltalk VM with comprehensive re�ective capabilities for most

of its components but not its compiler. In Tru�eMate, metaobjects

can be installed either on individual objects or method activation

frames. When installed, they govern the semantics of the interceded

entity. Tru�eMate uses a self-optimizing AST interpreter featuring

dynamic objects and dispatch chains for speculative optimizations.

Preliminary evidence [3] suggests that, in combination with the

Graal [11] JIT compiler, Tru�eMate can run e�ciently.

Experimental Setup. �e benchmarking machine is a quad-core

Intel Core i7-3770, 3.40 GHz with 16 GB RAM, running Ubuntu

with Linux kernel 4.4, and Java 1.8.0 121 with HotSpot 25.121-

b13. For both experiments we ran 400 iterations and report 100

measurements a�er steady state has been reached.

5.1 Ephemeral Variability

We used as baseline the gatherX method presented in Section 3

and execute three variations with subtle di�erences:

1. Instance Migration (IM): One of the points in the list is

wrapped by a proxy as introduced in the motivation exam-

ple.

2Instructions on how to reproduce the experiment can be found at: h�ps://github.
com/charig/Tru�leMATE/tree/papers/ICOOOLPS17

https://github.com/charig/TruffleMATE/tree/papers/ICOOOLPS17
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Figure 2. Steady state execution time for the instance migration

micro benchmark with ephemeral variability.

2. IM+Reset: Same as IM, but a�er the proxy initialization, we

use the compilation API to �nd the �eld reading node of

x, gather its dispatch chain, and trigger a reset (See listing

below).

3. IM+Update: Same to the previous case but instead of reset-

ting the dispatch chain we just remove the specialization

generated by the proxy instance.

Example>>#InstanceMigrationReset

| ast node |

ast ← (Baseline>>#gatherX) compilation.

node ← (ast fieldReadsWithName: 'x') first.

↑node dispatchChain reset.

Results. Con�rming our hypothesis, Figure 2 shows IM is slower

than the baseline a�er stabilization: warm up + compilation. Fur-

thermore, both, IM+Reset and IM+Update show performance boosts

in comparison to IM producing running times similar to the baseline.

�e mean overall results for the iterations of each benchmark are:

Baseline 1234ms , IM 1547ms , IM+Update 1227ms , IM+Reset 1261

ms .

5.2 Highly Indirect Variability

Let us now consider the call to Vector>>collect: in the gatherX

method from the previous example. �e callee is part of the Tru�e-

Mate standard library. Tru�eMate speculates on the block (closure)

received as parameter for optimizing its dispatching and enabling

the JIT compiler to inline it. To illustrate a highly indirect scenario,

suppose now a subtle di�erence with the previous example: we

need to collect both the x and y values from the vector:

Example>>#gatherAndProcessXandY

| xValues yValues |

xValues ← points collect: [:point | point x].

yValues ← points collect: [:point | point y].

self process: xValues and: yValues.

�is example presents highly indirect variability because it calls

collect: twice within the same method (context) but with two

di�erent blocks. Since the context is the same, the (Graal) compiler

heuristics avoid spli�ing collect:.

Benchmarks. We ran the previous example in two di�erent �avors:

Indirect runs exactly the example while Indirect+Split forces the

spli�ing of the second call to collect using the compilation API:

Example>>#splitCollect

| ast send callSite |

ast ← (Example>>#gatherAndProcessXandY) compilation.

send ← (ast messageWithSelector: 'collect:') second.
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Figure 3. Steady state execution time for the splitCollect micro

benchmark with highly indirect variability.

callSite ← send dispatchChain firstSpecialization.

↑callSite split.

Results. Figure 3 shows a reduction in the execution time of In-

direct+Split. �e mean overall results for the iterations of each

benchmark are: Indirect 420ms and Indirect+Split 399ms , resulting

in a performance gain of about 5%. In the case of critical methods,

this simple �ne-tuning at run time appears worth trying.

5.3 Conclusions

�ese preliminary results indicate that a re�ective compiler could

improve the obtained performance of a general-purpose JIT com-

piler by leveraging developers knowledge of the application to

�ne-tune the optimizations. A more comprehensive validation is

still needed to be�er understand several aspects such as the best

applicable scenarios and the concrete limits and drawbacks of the

approach.

6 Related Work

For brevity, this section discusses only decaying invocation coun-

ters [4] and Lancet [9], a recent compilation framework closely

related to our work.

Decaying Invocation Counters. Hölzle proposed that method ac-

tivation counters represent invocation rates instead of counts. He

suggested counters that decay exponentially to avoid the com-

pilation overhead for methods that are not performance critical.

Furthermore, Hölzle proposed to dynamically adapt the decay rate

depending on the stability of the system. �is would mitigate

problems with transient variability such as warm up, rare, and

ephemeral variability. However, this heuristic does not apply to

all issues we identi�ed. Concretely, it would fail whenever an

application phase containing transient behavior executes the corre-

sponding method frequently enough. Our approach complements

compilation heuristics for the cases when they are not enough, by

giving developers the opportunity to amend those scenarios using

a comprehensive language-level API.

Lancet. Recently, Rompf et al. presented the Lancet JIT compiler

framework for Java bytecode that enables programs to control sev-

eral aspects of the JIT compilation process. Lancet features hooks,

used to trigger a prede�ned set of macros whenever a method is go-

ing to be compiled. On top of these macros, Lancet features an API

allowing developers to annotate methods with compilation direc-

tives such as compile, unroll, or freeze (partial evaluate at compile

time). We share the same vision and goals noticing a potential in

connecting a JIT compiler with the application it optimizes. How-

ever there are di�erences in the approaches. While Lancet’s API is
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mainly used at compile time, our API was designed to enable the

inspection and modi�cation of the compilation aspects of a method

at run time. In addition, we focused on reifying aspects regarding

speculative optimizations such as dispatch chains and spli�ing,

while Lancet focused on other aspects such as partial evaluation

and inlining. For instance, to the best of our knowledge Lancet is

not able to deal with our case studies. Lastly, Lancet advocates for

an integration of the compilation directives within the source code,

while we promote the modularization of the optimization aspects

by the use of a MOP.

7 Conclusion

We presented a series of application-speci�c variabilities, namely:

ephemeral, warm up, rare, and highly indirect. We showed how

they may challenge state-of-the-art JIT compilers, leading to perfor-

mance overheads. �ese overheads could be mitigated if application

developers had the means to supply the compiler with additional

information and improve over heuristics. �erefore, we proposed

to make compilers re�ective, enabling the introspection and inter-

cession of optimization-related aspects, for instance, the ability to

manage dispatch chains or force a deoptimization. As a roadmap

to follow, we presented an API covering several aspects of the com-

pilation process, implemented a subset, and obtained signi�cant

overhead reductions in a couple of preliminary scenarios including

application-speci�c variability.

It is worth noting that our approach relies on developers with

advanced knowledge of both, the application speci�cs and compiler

optimizations for dynamic languages. We expect the API to be used

in cases where the application-speci�c variability is known a priori

to block optimizations. Furthermore, because of being re�ective,

we expect also a posteriori usages of the API, i.e., run-time tweaks

for boosting the performance of running systems. On the negative

side, developers might not use the compiler API properly. Wrong

hints and directives given to the optimizer may lead to potential

performance penalties. More comprehensive use cases stressing

the usage of the MOP are needed to analyze its eventual negative

impact.

Concluding, we think re�ective compilers open new perspectives

for run-time adaptive scenarios. �is was already suggested by

the context-oriented programming community [8]. For the near

future, we plan to re�ne, extend, and implement the API completely.

Furthermore, we also plan to evaluate its performance results in the

context of more comprehensive applications to be�er understand

the prerequisites for, and overall impact of, using the compilation

API.
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