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A Flexible Framework for Studying Trace-Based

Just-In-Time Compilation

Maarten Vandercammena, Stefan Marrb, Coen De Roovera

aSoftware Languages Lab, Vrije Universiteit Brussel, Belgium
bInstitute for System Software, Johannes Kepler University, Austria

Abstract

Just-in-time compilation has proven an effective, though effort-intensive,
choice for realizing performant language runtimes. Recently introduced JIT
compilation frameworks advocate applying meta-compilation techniques such
as partial evaluation or meta-tracing on simple interpreters to reduce the
implementation effort.

However, such frameworks are few and far between. Designed and highly
optimized for performance, they are difficult to experiment with. We there-
fore present STRAF, a minimalistic yet flexible Scala framework for studying
trace-based JIT compilation. STRAF is sufficiently general to support a di-
verse set of language interpreters, but also sufficiently extensible to enable ex-
periments with trace recording and optimization. We demonstrate the former
by plugging two different interpreters into STRAF. We demonstrate the lat-
ter by extending STRAF with e.g., constant folding and type-specialization
optimizations, which are commonly found in dedicated trace-based JIT com-
pilers. The evaluation shows that STRAF is suitable for prototyping new
techniques and formalisms in the domain of trace-based JIT compilation.

Keywords: trace-based JIT compilation, optimization, operational
semantics

1. Introduction

Constructing a dedicated just-in-time compiler for a language requires
significant engineering effort. The Truffle [23] and RPython [4] frameworks
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address this problem by reducing the language-specific engineering that is
required by applying partial evaluation and meta-tracing to relatively simple
interpreters. It has recently been shown [16] that the technique of meta-
tracing is capable of lifting the performance of a meta-traced interpreter
to the same order of magnitude of a dedicated just-in-time compiler, while
requiring less engineering effort from the developers of this interpreter.

However, several open research questions for (meta-)trace-based compi-
lation remain. For example, how can the warm-up time of the compiler be
reduced, and how can the problem of trace explosion be addressed to avoid
tracing an exponential number of paths. Although RPython has proven
itself as a framework for constructing performant language runtimes, its per-
formance focus makes it difficult to adapt the framework itself or experiment
with various compilation strategies. Addressing the aforementioned research
questions by experimenting in RPython is therefore a complex undertaking.
We therefore introduce STRAF, a minimalistic Scala framework with the aim
of facilitating further experiments in trace-based JIT compilation. STRAF

is designed not as a performant competitor to RPython, but as an extensi-
ble research vehicle for studying tracing compilation. It enables experiments
with dynamic analyses of traces, with strategies for their optimization, and
with the various ways in which executions, traces, and optimizations interact.
STRAF can therefore be used as a testbed for various experimental strategies
in trace-based compilation. Once researchers feel that these strategies have
been sufficiently explored, they may be implemented in a mature trace-based
compiler to be further developed and evaluated.

As the main priority of STRAF is to achieve an extensible and minimal-
istic tracing framework, we separate the tracing mechanism in STRAF from
the actual semantics of the language being executed. This results in a flexible
runtime that can be composed with various language interpreters, similar to
meta-tracing frameworks like RPython. However, in contrast to these meta-
tracers, the traces recorded by STRAF are not generic, but are specific
to the interpreter that is employed. As traces are interpreter-specific, lan-
guage implementers wishing to benefit from the advantages of the STRAF

framework must therefore provide a number of hooks in their interpreter,
e.g., to enable optimization and de-optimization, that are not required by
a meta-tracing framework. The effort required for language implementers
to compose their interpreter in STRAF are therefore higher than in tradi-
tional meta-tracing framework, but enables maximal decoupling of tracing
and language semantics. The difference between the STRAF framework and
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a general meta-tracing compiler is described in more detail in Section 3.4.
To concisely describe the framework, we formalize STRAF and provide

the implementation.1 Our implementation integrates with a Scala frame-
work [19] for defining abstract machines through the AAM methodology [20].
This methodology provides a procedure for systematically transforming the
concrete semantics of any language, which, when implemented, correspond
to a concrete interpreter for the language, to some abstract semantics of this
language. The abstract semantics enable finite reasoning over a program’s
execution and can therefore be used as the basis for a static analysis of the
language. The integration of STRAF with this analysis framework only adds
to STRAF’s potential for experimentation.

STRAF not only offers a large degree of flexibility in terms of the lan-
guage interpreters it can execute, it is also adaptable in how the framework
itself can be extended. In this article, we evaluate both aspects. First, we
present two different interpreters and demonstrate how they can be plugged
into STRAF. Second, we show how to extend STRAF with six trace opti-
mizations, with a heuristic for selecting hot loops for which it is effective to
start tracing, and with guard tracing to mitigate the performance penalty
of aborting the execution of a previously-recorded trace. These extensions
are commonly found in trace-based JIT compilers. Concretely, this article
makes the following contributions:

• the design, a formal specification, and a reference implementation of the
minimalistic, but extensible STRAF framework into which interpreters
can be plugged to construct a trace-based JIT compiler,

• an evaluation of STRAF’s generality by composing it with two lan-
guage interpreters,

• an evaluation of STRAF’s extensibility by extending it with six trace
optimizations, with a heuristic for detecting hot loops, and with the
ability to start tracing from the point of a guard failure.

2. Trace-Based JIT Compilation

Trace-based JIT compilation is an alternative to the more common method-
based JIT compilation. It builds on two basic assumptions: most of the exe-

1Available at https://github.com/mvdcamme/scala-am
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cution time of a program is spent in loops, and several iterations of the same
loop are likely to take the same path through the program [4]. Trace-based
JIT compilers therefore do not limit compilation to methods, like method-
based ones, but they trace and compile frequently executed, i.e., “hot” loops.

Runtimes incorporating a trace-based JIT compiler usually do so through
mixed-mode execution. Initially, an interpreter executes the program and
profiles loops to identify hot ones. When a hot loop is detected, the runtime
starts tracing the execution of this loop: the operations that are performed by
the interpreter while in this loop are recorded into a trace. Tracing continues
until the interpreter has completed a full iteration of the loop. The recorded
trace is then compiled and optimized. Subsequent iterations of this loop will
execute the compiled trace.

Because a trace represents a single execution path, it must ensure that
the conditions that held while the trace was being recorded still hold when
it is executed. These assumptions are checked by inserting guards encoding
the corresponding conditions in each trace. When a guard fails, execution
of the trace is aborted and the interpreter resumes normal interpretation of
the program from that point onward. The point where trace execution is
aborted and interpretation restarts is called a side-exit. Side-exits give rise
to a performance penalty, because execution of the optimized trace must be
aborted and evaluation must proceed through regular interpretation of the
program. To mitigate the overhead, most tracing compilers use optimized
trace bridges to jump from one trace to another, once a guard has failed [18].

Example. Listing 1a depicts a Scheme program containing a loop. Part of
the loop’s corresponding trace is depicted in Listing 1b. As the expres-
sion (= n 0) evaluated to false during tracing, the tracer inserted a guard
ActionGuardFalse that will check whether this condition still evaluates to
false during trace execution.

3. Overview of STRAF

A language runtime implemented using STRAF consists of two main
entities: an interpreter, responsible for regular program execution, and a
tracing machine or tracer, responsible for trace recording and execution. The
tracer is provided by the STRAF framework, while the interpreter is to be
provided by the language developer, in a manner similar, but not identical,
to meta-tracing. The tracer controls the interpreter by repeatedly asking it
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5

(define (fac n)

(if (= n 0)

1

(* n

(fac (- n 1)))))

(fac 5)

(a) The program to be traced

...

ActionEvalPush("=", FrameFunCallFunction(List("n", 0)))

ActionLookupVar("=")

ActionPushValue

ActionPopKont

ActionEvalPush("n", FrameFunCallArgs(List(0)))

ActionLookupVar("n")

ActionPushValue

ActionPopKont

ActionEvalPush(0, FrameFunCallArgs(List()))

ActionLiteralValue(0)

...

ActionGuardFalse(...)

ActionEvalTraced((* n (fac (- n 1))))

...

(b) Part of the trace

Listing 1: A loop in a program and part of its corresponding trace.



TracerState ::= ts(ExecutionPhase,

TracerContext ,

ProgramState,

Null + TraceNode)

ExecutionPhase ::= NI | TR | TE

tc ∈ TracerContext ::= tc(Null + TraceNode, TraceNodeMap)

tn ∈ TraceNode ::= tn(Label , Trace, ProgramState)

T ∈ TraceNodeMap ::= Label → TraceNode

a ∈ Action ::= InterpreterAction | etrp

t ∈ Trace ::= Action∗

ActionReturn ::= actionStep(ProgramState)

| guardFailed(RestartPoint)

| endTrace(RestartPoint)

TracingSignal ::= startLoop(Label)

| endLoop(Label ,RestartPoint)

| False

InterpreterStep ::= interpreterStep(Trace,TracingSignal)

Figure 1: The tracing machine.

to execute a step when no trace is being executed, and is itself responsible
for determining how execution of the program should proceed in other cases.
Section 3.2 details the interface through which the tracer and the interpreter
communicate. For instance, the interpreter is to send signals to the tracer
when it reaches interesting points in the program, such as the beginning of
or exit from a loop iteration.

Execution is divided into three distinct execution phases: normal inter-
pretation, in which the program is interpreted without the tracer interfering,
trace recording, in which the operations of the interpreter are recorded by the
tracing machine, and trace execution, in which a previously recorded trace is
executed. The execution phases and their transitions can be modeled as a
state diagram, shown in Figure 2.
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Normal 

Interpretation 

[NI]

start-loop 

[no existing trace]

start-loop [existing trace]

Guard failed

Looping trace 

finished

start-loop 

[label being 

traced]

start-loop or end-loop 

[label not 

being traced]

Trace 

Recording 

[TR]

Trace 

Execution 

[TE]

end-loop 

[label being  

traced]

Non-looping trace finished

Program Start

Figure 2: The three execution phases of a program.

3.1. Tracer State

The tracer is modeled as a state machine transitioning between tracer
states. Figure 1 lists the definitions of these states: a TracerState consists
of a reference to the aforementioned execution phase, a tracer context, a
program state, and a trace node.

During the execution of the program, the tracer switches between the
ExecutionPhases: normal interpretation (NI), trace recording (TR) and trace
execution (TE) phases. Section 3.3 describes the transitions between the
different states of the tracer.

The TracerContext is a two-tuple used by the tracer. The first component
of the tuple stores the trace that is currently being recorded. This is either
Null , if no trace is being recorded, or it is a trace node (TraceNode), which
is a three-tuple that associates a trace with a unique label and a program
state, so that this trace can later be retrieved by referencing its label. The
second component, TraceNodeMap, stores all trace nodes, containing the
traces that were previously recorded, by mapping the aforementioned labels
to the trace nodes. The trace itself is a sequence of actions which are opaque
interpreter-specific data structures that represent the operations performed
by the interpreter while evaluating the program. When executing the trace,
these same actions are again executed one-by-one by the interpreter. As
these actions are unique to the interpreter that is used, they are not defined
here. An example of some possible actions appeared in Listing 1b and is
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shown again in Section 4, when discussing one possible implementation of
the interpreter. However, we define one special end-trace action etrp, whose
semantics are detailed in Section 3.3.

It is assumed that interpreters are modeled as state machines operating
on a program state. This requirement enables the tracer to grab the entire,
current execution state of the interpreter in the form of some program state
which is defined by the interpreter and remains opaque to the tracer. The
implementer of the interpreter could for example model the interpreter as a
CESK machine. CESK-based interpreters operate on CESK states, consist-
ing of a control component (C), an environment (E) (mapping variables to
addresses), a store (S) (mapping addresses to values) and a continuation stack
(K) [12]. These interpreters are guided through the evaluation of a program
by checking the state’s control component, which corresponds with either an
expression to next be evaluated or a continuation to be followed. The state’s
environment maps variables to addresses and its store maps these addresses
to values. The continuation stack saves the continuations to be followed
upon completing the evaluation of a (sub)expression and reaching a value.
Abstracting a program’s execution as a program state facilitates transition-
ing between the various phases of execution as both the execution of a trace
and normal interpretation of the program operate on the same structure.

During the evaluation of the program, the interpreter operates on these
program states and determines the next instruction, which, depending on
the current execution phase, may be recorded into a trace by the tracing
machine. The tracer obtains new program states from the interpreter during
normal interpretation and trace recording, or by executing trace instructions
during trace execution.

The last component of the tracer state either equals Null if no trace is
currently being executed, or it contains the trace node storing the trace that
is being executed.

3.2. Tracing Interface

Interpreter Functions. The tracing machine monitors and controls the ex-
ecution of the interpreter through the following interface, which must be

8



provided by the interpreter:

step : ProgramState → InterpreterStep

applyAction : ProgramState × Action → ActionReturn

restart : RestartPoint × ProgramState → ProgramState

optimize : Trace × ProgramState → Trace

The tracer asks the interpreter to perform a single evaluation step on a
program state via a two-step process. The tracer first calls the step function
on this state. In this step call, the interpreter checks the state and considers
which operations must be completed in this step of the evaluation. It then
reifies these operations in the form of actions, i.e., data structures represent-
ing the operations to execute, and wraps a list of the computed actions in an
InterpreterStep. As the second step in the process, the tracer then makes the
interpreter actually execute these reified operations by calling applyAction

on them and the state to compute a ActionReturn that contains the new,
updated program state. The restart function enables the tracer to restart
normal interpretation when a guard failure has occurred at run time. The
optimize function takes a trace and a program state and returns a trace
that is optimized with respect to the given program state. It is designed
such that the tracer can consider the optimization of a trace as a black box,
rendering it the responsibility of the language implementer. In Section 4, we
demonstrate how an interpreter that satisfies this interface may be built.

Note that although in principle the definitions of program states and
actions are specific to one particular interpreter, in practice they might be
reused between different interpreters, which in turn would enable language
developers to also reuse at least the applyAction and optimize functions,
similar to what is done in PyPy. However, creating a set of these common
elements might place further constraints on the design of the interpreter, as
the interpreter would have to accommodate for these components by adapting
its step and restart functions so that they employ these actions and states.
Additionally, such a common program state should be sufficiently generic that
it could be used by any sort of interpreter.

Program States. With the interpreter being a state machine, interpreting a
program amounts to continuously executing the state transition rule that
is applicable for the current program state; tracing the interpreter becomes
recording the transitions performed by the interpreter state machine and
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executing a trace corresponds to replaying the recorded transitions starting
from the current program state. These transitions thus correspond to the
aforementioned actions in STRAF. Note that our tracer does not depend on
a particular definition for the program state or state transition, but this is
left to the interpreter.

Actions. To enable a more fine-grained optimization of traces, the interpreter
can use two sets of state transition rules: high-level and low-level transitions,
i.e., actions, both operating on a program state. One high-level transition is
composed of several low-level actions. As illustrated by Figure 3, executing
the high-level transition is equivalent to applying each of the constituent
actions consecutively. The high-level transition itself does not appear in a
trace; only the low-level actions are recorded.

InterpreterStep. During the normal interpretation and trace recording phases,
the tracing machine repeatedly asks the interpreter to perform a single high-
level transition by calling step. This function takes the current program
state as input and outputs an InterpreterStep: a two-tuple containing a list
of actions to be applied on the given program state that together constitute
the high-level transition that has just been performed, and possibly a tracing
signal. When the interpreter enters a loop, it communicates this to the tracer
by including a tracing signal, startLoop, in its response. This enables the
tracer to decide whether to start tracing this loop, start executing a previ-
ously recorded trace for this loop, or do nothing at all. For this to work, the
interpreter should identify each loop in the user program uniquely through
a label. When interpreting a loop over multiple iterations, a startLoop is
sent at the start of each iteration. If the tracer has started recording a loop
after detecting a startLoop signal at one iteration and subsequently detects
another startLoop for the same loop, it knows that one full iteration of the
loop has been completed so it can stop recording. Conversely, when the in-
terpreter exits a loop instead of continuing with another iteration, it includes
the endLoop signal in the InterpreterStep. This enables the tracer to stop
tracing in case it had been tracing this loop, so as not to trace outside of the
loop. We will call traces whose recording is stopped via such an endLoop
signal non-looping traces in contrast to looping traces which are terminated
via a startLoop. The difference between looping and non-looping traces is
made more clear in Listing 2. Note that in Scheme, loops are constructed by
recursively calling a function. Every function call could therefore loop back
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(define (loop n)

(loop (+ n 1)))

(a) A looping function; tracing will be ter-
minated via a startLoop.

(define (id x)

x)

(b) A non-looping function; tracing will
be terminated via an endLoop.

Listing 2: A looping versus a non-looping function.

High-level
 transition

Action3
Action2

Action1
intermediate

state 2

state 2state 1

intermediate
state 1

Figure 3: A high-level transition and corresponding actions.

to itself, so the interpreter sends an startLoop at the start of every function
call. Should the function indeed recursively call itself, as depicted in Listing
3a, a second startLoop will be sent and recording will be terminated. If no
recursive call takes place, as is the case for Listing 3b, the interpreter sends
a endLoop upon returning from the function call. Upon later execution
of a non-looping trace, the tracer will restart normal interpretation when it
reaches the end of the trace.

Note that in the basic model of STRAF, a nested loop will be inlined
when tracing the outer loop. However, it would be possible to extend STRAF

such that this inlining is avoided, e.g., by aborting trace recording of an outer
loop when an inner loop is detected.

Applying an Action. An action is applied by the tracer via the interface’s
applyAction function. This returns an ActionReturn structure, which can
be: an actionStep, a guardFailed or an endTrace. Most actions result
in an actionStep, which wraps the new program state that is the result of
applying the action on the input state. The purpose of guardFailed and
endTrace will become clear over the next sections. Note that, in this model,
guards are also a kind of action.

Guard Instructions. As a trace represents a single execution, guards are in-
serted to ensure that a trace is only executed when the conditions that lead
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to this specific path through the program are valid. Guards being actions
themselves, when applied via applyAction, they cause the interpreter to
check some condition on this state and then either return some actionStep
in case the guard did not fail, or a guardFailed in case it did. The tracer
detects this return value and takes action accordingly. As the generation
and placement of guards is specific to the interpreted language, they need to
be created by the interpreter during its processing of step requests and be
included in the list of actions returned to the tracer via an interpreterStep.

Restarting Interpretation. Upon failure of a guard during the execution of
a trace, or upon reaching the end of a non-looping trace, the tracer applies
restart to the current program state and to a so-called restart point in
order to restart normal interpretation. A restart point includes the necessary
information to construct the program state from where normal interpretation
must resume. Similar to actions and program states, the exact definition of
a restart point intentionally depends on the interpreters. For the CESK
example, a restart point could correspond to the control field of a state
and point to the program expression that must now be evaluated; restart
could then take this control and merge it with the other fields of the CESK
state. Note that the design of correct restart points may depend on not
only the interpreter that is used, but also on the optimizations employed by
this interpreter, as the optimizations that are applied on a trace may have
an effect on the restart points inside this trace. Similar to the process of
optimizing traces, designing correct restart points, as well as ensuring that
any interference between the trace optimizations and the restart points is
resolved, is hence a responsibility of the interpreter developers.

3.3. Transition Rules

Figure 4 lists the formal semantics of the tracing machine and its in-
teraction with the interpreter. We use this formalism to concisely describe
the working of STRAF. A reference implementation for these semantics is
available at https://github.com/mvdcamme/scala-am.

These semantics center around how the TracerState of the tracing ma-
chine is updated as execution of the program proceeds. For each rule, the
first line matches the current configuration of the TracerState, the second
line describes the updated TracerState. Subsequent lines describe conditions
that must hold for for the original TracerState to transition such that it pro-
duces this updated TracerState; specifically, the third line always indicates
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what the result of the interpreter’s step function on the current program
state must have been for this transition to take place. Note also that we use
a helper function applyAction* which takes a program state and a sequence
of actions as input and consecutively updates the program state with each
action in the sequence, assuming the action resulted in an actionStep.

The helper function applyAction* can be recursively defined as follows:

t is an empty list

applyAction*(s, t) = s
applyActionEmpty

applyAction(s, a) = actionStep(s ′)

applyAction*(s, a : t) = applyAction*(s′, t)
applyActionNonEmpty

We also use the underscore character to match any field whose value is
irrelevant. We use the notation T [lbl ] to look up the label lbl in the map
T . If the map does not contain this label, it returns an undefined value.
Similarly, we use the notation T [lbl 7→ tn] to either extend the map T with
tn at lbl , if T did not yet contain lbl , or to replace the previous entry for lbl
with the value tn.

Normal Interpretation. The normal interpretation phase (NI) refers to the
execution stage in which no trace is being recorded or executed: the tracer
only intervenes when the interpreter reaches the start of a loop, signaled by
the interpreter via a TracingSignal , at which point the tracer may either
decide to start tracing or to start executing a previously recorded trace.
Figure 4a depicts the corresponding formalization.

Rule Ni-ContinueInterpreting represents the most common case in
which the interpreter either has not entered any loop, and the interpreter
hence returns False instead of an actual signal, or the interpreter has exited
a loop and it sends the endLoop tracing signal to indicate this. In both
cases, the interpreter also returns the list of actions, t, that must be applied
to arrive at the new program state, s′. As no actions are recorded while in
the NI phase, the new tracer state is simply a copy of the old one, with the
original program state replaced by the new one.

In rules NI-StartTracing and NI-StartExecuting, the interpreter
enters a loop that is identified by the label lbl . The first sequence of ac-
tions, that are already part of the loop, consist of a1 : ... : an. In rule NI-

StartTracing, no trace has been recorded yet for this loop, so the tracer
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step(s) = interpreterStep(t , signal)
signal equals either False or endLoop(lbl , rp)

ts(NI, tc, s , Null) →
ts(NI, tc, s ′, Null)

NI-ContinueInterpreting

Where s’ = applyAction*(s, t)

step(s) = interpreterStep(a1 : ... : an , startLoop(lbl))
T [lbl ] is undefined

ts(NI, tc(_, T ), s , Null) →
ts(TR, tc(tn(lbl , a1 : ... : an , s), T ), s ′, Null)

NI-StartTracing

Where s′ = applyAction*(s, a1 : ... : an)

step(s) = interpreterStep(_, startLoop(lbl))
T [lbl ] = tn

ts(NI, tc, s , Null) →
ts(TE, tc, s , tn)

NI-StartExecuting

(a) Normal interpretation



step(s) = interpreterStep(a1 : ... : an , signal)
signal equals either False or startLoop(lbl ′) or endLoop(lbl ′,_) with lbl 6= lbl ′

ts(TR, tc(tn(lbl , t , ss), T ), s , Null) →
ts(TR, tc(tn(lbl , t : a1 : ... : an , ss), T ), s ′, Null)

TR-ContinueTracing

Where s′ = applyAction*(s, a1 : ... : an)

step(s) = interpreterStep(t ′, startLoop(lbl))

ts(TR, tc(tn(lbl , t , ss), T ), s , Null) →
ts(TE, tc(Null , T [lbl 7→ tn]), s ′, tn)

TR-SameStart

Where s′ = applyAction*(s, t′)
tn = tn(lbl , optimize(t , ss), ss)

applyAction(_, etrp) = endTrace(rp)
ApplyActionEndTrace

step(s) = interpreterStep(t ′, endLoop(lbl , rp))

ts(TR, tc(tn(lbl , t , ss), T ), s , Null) →
ts(NI, tc(Null , T [lbl 7→ tn]), s ′, Null)

TR-SameEnd

Where s′ = applyAction*(s, t′)
tn = tn(lbl , optimize(t : etrp , ss), ss)

(b) Trace recording



applyAction(s, a) = actionStep(s ′)

ts(TE, tc, s , tn(lbl , a : t , _)) →
ts(TE, tc, s ′, tn(lbl , t , _))

TE-NoSignal

applyAction(s, a) = guardFailed(rp)

ts(TE, tc, s , tn(lbl , a : t , _)) →
ts(NI, tc, s ′, Null)

TE-GuardFailure

Where s′ = restart(rp, s)

applyAction(s, a) = endTrace(rp)

ts(TE, tc, s , tn(lbl , a : t , _)) →
ts(NI, tc, s ′, Null)

TE-TraceEnd

Where s′ = restart(rp, s)

T [lbl ] = tn

ts(TE, tc(tn, T ), s , tn(lbl , φ, _)) →
ts(TE, tc(tn, T ), s , tn)

TE-RestartLoop

Where φ represents the empty list

(c) Trace execution

Figure 4: Transition rules between tracer-states.



starts tracing it: it changes its execution phase to indicate that it is now
tracing, updates its tracer context by replacing the component representing
its current trace and, as the sequence of actions a1 : ... : an is part of the loop
to be traced, it immediately records this sequence. The actions a1 : ... : an
are also applied to arrive at the new program state s′. This component now
becomes a trace node consisting of the label lbl of the loop that is traced, the
actions that were executed by the interpreter and that were carried back in
the interpreterStep, as well as the old program state s. s is saved so it can
later be used as input for the optimize function, as described in Section 5.

In rule NI-StartExecuting, the interpreter also starts a new loop iter-
ation, but the tracer context already contains a trace for this loop: i.e., it has
an entry for the loop’s label lbl . The tracer switches its execution phase to
TE to indicate it must execute this trace in the following step and the tracer
replaces the trace node of the tracer state for the trace node containing the
trace for the label lbl . As execution must now switch to the trace, the actions
carried back in the interpreterStep are discarded entirely.

Trace Recording. In the trace recording phase (TR), all actions executed by
the interpreter are recorded into a trace. Recording stops when the inter-
preter sends either a startLoop signal or an endLoop signal carrying the
same label as the trace being recorded. Figure 4b lists the corresponding
rules.

Rule TR-ContinueTracing describes the situation where the inter-
preter has either not entered or exited a loop, or it has entered or exited
a loop different from the one currently being traced, which is indicated by
respectively the startLoop or endLoop carrying a label different from the
label of the loop being traced. In any case, the tracer records the interpreter’s
actions by appending the list of actions a1 : ... : an returned from the inter-
preter to the back of the trace. The program state is also replaced as the
tracing process remains otherwise unaffected, the tracer continues tracing.

In rule TR-SameStart, the interpreter reaches the start of a loop, but
this loop has the same label as the one currently being traced. This means,
one full iteration of the loop is completed and tracing can stop. The trace is
then optimized, making use of the program state that was saved when start-
ing the recording of this trace, and stored in the tracer context. The actions
t′ carried back in the interpreterStep are the same actions as those that
were recorded at the beginning of the trace and are hence not recorded in
the trace. Execution then continues by executing this optimized trace. Rule
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TR-SameEnd describes the interpreter exiting a loop that is being traced,
instead of continuing with its next iteration. The interpreter sends an end-
Loop signal carrying the loop’s label and a restart point rp. In response, the
tracer appends the special end-trace action etrp to the end of the trace. The
semantics of this action are defined in the ApplyActionEndTrace rule:
when this action is executed via the applyAction function, applyAction

always returns an endTrace structure carrying the communicated restart
point. This restart point can then be used to restart normal interpretation
from the point of the end of this loop.

Trace Execution. In the trace execution phase (TE), the tracer is executing
a previously recorded trace. Figure 4c lists the corresponding rules. Note
that a guard instruction is a normal action.

Rule TE-NoSignal describes the case where a non-guard action is ap-
plied, or a guard action that did not fail: an action from the trace is applied
on the current program state, by calling applyAction, and an actionStep is
returned that contains the resulting program state. The tracer then continues
by swapping its program state and moving on to the next action. In effect,
this means that execution of each consecutive action in the trace happens
via the interpreter.

Rule TE-GuardFailure describes a guard failure. Execution switches
back to normal interpretation, restarting from the point that corresponds
with the guard failure. This point is determined by applying restart on the
restart point given by the guard and the current program state, as described
in Section 3.2.

In rule TE-TraceEnd, the end of a non-looping trace has been reached.
The tracer restarts normal interpretation from some program point, deter-
mined by calling the restart function on the current program state and the
restart point associated with the end of the trace.

Rule TE-RestartLoop handles reaching the end of a regular, looping
trace, which means one full iteration of the loop is completed. The trace is
restarted by looking up the full trace belonging to the label and replacing
the current empty one.

3.4. Difference with Meta-tracing

Meta-tracing compilers, such as the RPython framework, do not directly
trace the execution of a user-program, but rather trace the execution of a
language interpreter, while this interpreter executes the user-program [4]. By
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annotating their interpreters with certain hints [5], e.g., for detection of loops
in the user-program, language developers can guide tracing and optimization
of traces. The traces are then heavily optimized to produce efficient machine
code corresponding to the relevant operations performed by the user pro-
gram. This enables the interpreter’s implementers to employ the benefits of
trace-based compilation without having to create their own dedicated trac-
ing compiler. Furthermore, this makes it possible for developers to rapidly
create interpreters with an acceptable performance level [16].

In STRAF, the tracing interface described in Section 3.2 enables de-
velopers to compose STRAF with any interpreter satisfying this interface.
The purpose of the tracing interface is also similar to the purpose of the
hints provided in the language interpreters for the RPython framework. In
these respects, STRAF resembles meta-tracing compilation frameworks such
as the RPython framework. However, although STRAF’s tracing interface
and RPython’s hints share the same purpose, their implementation and the
extent to which both are used are significantly different.

The extent of the tracing interface is far greater than that of the RPython
hints: the tracing interface not only enables detection of loops, but is also
used to generate all instructions, including guard instructions, that must be
recorded into the trace. This implies that, unlike meta-tracing, traces are
interpreter-specific: instructions are not generated by the tracer but by the
interpreter. As a consequence, the semantics of these instructions are gener-
ally opaque to the tracer. Optimization of traces must therefore be performed
by the interpreter, as opposed to the tracing compiler in the RPython frame-
work, implying that a developer of an interpreter is also responsible for the
optimization of traces.

Figure 5 illustrates the difference between the STRAF framework and
a general meta-tracing compiler, such as the RPython framework. Whereas
in meta-tracing, the language interpreter is generally described as running
on top of the tracing compiler, in STRAF, the interpreter runs on the same
level as the tracer, with the tracer delegating regular program execution to
the interpreter whenever required. Note also that the traces generated by
STRAF are not machine code, but that they are optimized sequences of
instructions to be executed by the interpreter.
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Figure 5: The difference between the STRAF framework and a meta-tracing framework

4. Evaluating STRAF’s Generality

The strength of STRAF is its flexibility: it is general with respect to the
set of interpreters that can be used, and it is extensible, i.e., the framework it-
self can be extended with new features. Our evaluation of STRAF therefore
focuses on evaluating these two aspects instead of, e.g., performance. Sec-
tions 5 and 6 evaluate STRAF’s extensibility. This section demonstrates the
generality of STRAF by constructing interpreters for two different Scheme-
like languages and integrating them into STRAF. This indicates that a vari-
ety of interpreters can be built that are in correspondence with the interface
specified in Section 3.2 and, therefore, that STRAF does indeed accept mul-
tiple interpreters. At the same time, the presentation of these interpreters
serves as a guide for how other suitable interpreters may be built.

4.1. Simple Scheme Interpreter

The first interpreter implements a non-trivial subset of the Scheme lan-
guage. The interpreter is modeled after a variant of a CESK-machine [12]
and hence satisfies the first requirement of our framework to model the in-
terpreter as a state machine operating on some program state. Concretely,
the program state consists of the standard control (C), environment (E),
store (S), and continuation stack (K) components, as well as a value stack
and value register. These last two components simplify implementing various
transitions: the value register is used to store the value of the last evaluated
subexpression, while the value stack is used to temporarily save the current
environment as well as already evaluated arguments in a function call.
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4.1.1. Evaluating Expressions

The interpreter determines how it should transition based on the content
of its control component, which can either be an expression to be evaluated
or a continuation to be followed. The step function of the interpreter checks
the control and either calls stepEval with the expression to be evaluated
or it calls stepKont with the corresponding continuation frame and the last
value v that was evaluated. Both functions return an interpreterStep, as
specified in the declaration of step in Section 3.2. Listing 3 exemplifies
how an expression of the form (set! variable exp) is evaluated via the,
partially elided, stepEval function.

1 def stepEval(e: SchemeExp): InterpreterStep = e match {

2 ...

3 case SchemeSet(variable, exp) =>

4 val actions = ActionSaveEnv() ::

5 ActionEvalPush(exp, FrameSet(variable)) ::

6 Nil

7 InterpreterStep(actions, SignalFalse())

8 }

9

10 def applyAction(state: ProgramState,

11 action: Action): ActionReturn = action match {

12 ...

13 case ActionEvalPush(exp, frame) =>

14 ActionStep(state.copy(control = ControlExp(exp),

15 kstack = state.kstack.push(frame)))

16 }

Listing 3: Evaluating a set!-expression.

In the case of a set! expression, the returned interpreterStep includes
an ActionSaveEnv(), for saving the current environment on the value stack,
and an ActionEvalPush(exp, FrameSet(variable))), for simultaneously
replacing the control component by the expression exp, as its value will
have to be computed next, and pushing the continuation FrameSet on the
continuation stack. Finally, the SignalFalse component indicates that the
evaluation of a set! expression cannot trigger the beginning nor the end of
a loop directly.

The returned actions are consecutively applied via the applyAction func-
tion. In the case of the Scheme interpreter, the actions are data structures
to be interpreted. For example, an ActionEvalPush is handled by returning
an actionStep (which is one possible ActionReturn) containing a copy of
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the input program state with the continuation pushed onto the stack kstack

and the control component replaced by the expression exp.
This example demonstrates how interpretation of a program can be de-

composed into selecting which actions to use (step) and applying them
(applyAction).

4.1.2. Loops

This subset of Scheme does not offer iterative looping constructs such as
for. Loops in an execution therefore stem from recursion, as is the case for
the factorial function depicted in Listing 4.

1 (define (fac n)

2 (if (< n 2)

3 1

4 (* n (fac (- n 1)))))

Listing 4: A factorial function.

Since the interpreter cannot generally know whether a function is recur-
sive, it signals the possible start of a loop during the evaluation of every
function application. Function application starts when all of its arguments
are evaluated; arguments are evaluated by consecutively pushing and pop-
ping FrameFunCallArgs continuation frames, as depicted in Listing 5. Each
FrameFunCallArgs contains a reference to the evaluated operator, i.e., the
function to be applied, and the list of arguments yet to be evaluated. If
there is still an argument arg left to be evaluated, stepKont returns an
ActionEvalPush to evaluate this argument next. If no arguments remain,
the interpreter starts evaluating the function’s body: it moves to the first
expression of the function’s body and it pushes a FrameFunBody to evaluate
the rest of the body afterwards. Since this is the proper start of the func-
tion application, the interpreter passes a startLoop tracing signal along in
the interpreterStep. The label of the signal corresponds to the AST of
the body of the function to be applied. If this signal causes the tracer to
start recording, tracing continues until the interpreter reaches the start of
this function again, as this indicates that one iteration of the loop has been
completed.

4.1.3. Non-Looping Traces

Listing 6 depicts how the endLoop tracing signal is sent when the in-
terpreter reaches the end of a function application, i.e., when the list of ex-
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1 def stepKont(v: Value, frame: Frame): InterpreterStep = frame match {

2 ...

3 case FrameFunCallArg(fun, arg : args) =>

4 val acts = ... :+

5 ActionEvalPush(arg, FrameFunCallArg(fun, args)))

6 InterpreterStep(acts, SignalFalse)

7 case FrameFunCallArg(fun, Nil) =>

8 val acts = ... :+

9 ActionEvalPush(fun.body.head,

10 FrameFunBody(fun.body,

11 fun.body.tail)

12 InterpreterStep(acts, SignalStartLoop(functionValue.body))

13 }

Listing 5: Evaluating a function application.

pressions still to be evaluated in the function’s body is Nil, while handling a
FrameFunBody continuation frame. The label used in this signal is once more
the full AST of the function’s body, which was passed via the FrameFunBody

continuation. As specified in Section 3.3, an endLoop signal must carry a
restart point for restarting normal interpretation after completing the execu-
tion of the non-looping trace, so a RestartTraceEnded structure is included
in the signal.

1 def stepKont(v: Value, frame: Frame): InterpreterStep = frame match {

2 case FrameFunBody(body, Nil) =>

3 InterpreterStep(..., SignalEndLoop(body, RestartTraceEnded()))

4 }

Listing 6: Completing a function application.

4.1.4. Guards

Listing 7 shows how guard instructions are inserted into the trace in
STRAF. The listing depicts the evaluation of if-expressions, at the point
at which the predicate has already been evaluated.

The interpreter checks the value of the evaluated predicate and determines
whether to evaluate the consequence or the alternative branch. It adds a
guard instruction that corresponds to the taken branch: if the condition was
true, the interpreter returns ActionGuardTrue and passes a reference to the
other branch, i.e., the branch alt that was not taken.

Listing 8 shows how such an ActionGuardTrue is handled. When this
guard instruction is reached during the execution of the trace, the value of
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1 case class ActionGuardTrue(rp: RestartPoint) extends Action

2 case class RestartGuardIf(exp: SchemeExp) extends RestartPoint

3

4 def stepKont(v: Value, frame: Frame): InterpreterStep = frame match {

5 case FrameIf(cons, alt) =>

6 if (v.isTrue()) {

7 val actions = ActionGuardTrue(RestartGuardIf(alt)) :: ...

8 InterpreterStep(actions, SignalFalse)

9 } else { ... }

10 }

Listing 7: Continuing the evaluation of an if-expression.

the condition is stored in the value register, similar to how the condition’s
value was stored there during the recording of the trace. The value register is
therefore checked: if the value was again true, nothing needs to be done so an
actionStep is returned. Otherwise, the guard has failed so a guardFailed
is returned.

1 def applyAction(state: ProgramState,

2 action: Action): ActionReturn = action match {

3 case ActionGuardTrue(rp) =>

4 if (state.v.isTrue()) {

5 ActionStep(this)

6 } else {

7 GuardFailed(rp)

8 }

9 }

Listing 8: Handling an ActionGuardTrue.

4.1.5. Restarting

Listing 9 depicts part of the interpreter’s implementation of the interface’s
restart function, for generating new program states based on a restart point
and the current program state. If the restart point is an RestartGuardIfFailed

(cf. Listing 7), it contains a reference to the branch that was not taken dur-
ing the recording of the trace, and restart must only generate a copy of
the input program state with its control component replaced by the given
branch.

The implementation of guards and the restart function demonstrate
that it is feasible to provide the functionality of trace guards by including a
restart point structure and a restart function.
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1 def restart(state: ProgramState,

2 rp: RestartPoint): ProgramState = rp match {

3 case RestartGuardIfFailed(exp) =>

4 state.copy(control = ControlExp(exp))

5 }

Listing 9: Partial implementation of the restart function.

4.2. Non-deterministic Ambeval Interpreter

To further demonstrate the generality of STRAF, we instantiate it with
a second interpreter: an implementation for Abelson and Sussman’s non-
deterministic ambeval [1, Chapter 4].

4.2.1. Introduction

We first exemplify the non-determinism supported by this interpreter
before discussing its implementation. Listing 10 shows a function that, upon
exhaustive backtracking, returns all pairs of elements from two lists of which
the sum is prime. It relies on the predefined function an-element-of which
selects an element from the given list, and returns another element upon
backtracking.

1 (define (prime-sum-pair list1 list2)

2 (let ((a (an-element-of list1))

3 (b (an-element-of list2)))

4 (require (prime? (+ a b)))

5 (list a b)))

Listing 10: Example of a non-deterministic program [1, Chapter 4].

Ambiguous programs make use of a primitive amb expression, which se-
lects a value among its arguments, creating a choice point in the execution
of the program. The an-element-of function passes its input list to an
amb expression to select some element from this list. require evaluates the
given prime? predicate and causes evaluation of the program to fail when
the predicate is false. When the program fails, execution backtracks to the
last choice point: in this case, to the point where a value for the variable b

was chosen. This causes b to be bound to a new element of the list. When
no more elements remain, execution backtracks further to the definition of
a where the process is repeated. The program can therefore be thought of
as non-deterministic; any possible value is considered for each ambiguous
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variable but only those values that satisfy all requirements are eventually
used.

4.2.2. Implementation

The ambeval interpreter is challenging due to the possible interactions be-
tween backtracking and tracing. Its implementation is modeled once more af-
ter a CESK machine, with the exception that a separate failure continuation
stack complements the regular continuation stack in the interpreter states.
When the interpreter encounters an amb-expression, it pushes a FrameAmb

continuation on this new stack. When execution fails, the interpreter pops
a continuation from this same stack such that it can continue from the last
amb-expression with another value.

To restart execution from the last amb-expression, the interpreter must
undo any changes made in the meantime. For instance, variables that have
since been defined should be removed from the environment. To enable undo-
ing such actions, for each action that is applied, an opposite action is wrapped
in a FrameUndoAction and pushed onto the failure continuation stack, as il-
lustrated by Figure 6. When a failure is triggered, the interpreter executes
the undo-actions saved on the failure stack, thereby restoring the program
state from the time at which the amb-expression it is restarting from was
evaluated. Eventually, the interpreter will pop the FrameAmb continuation
from the stack, at which point stack rewinding is complete.

In general, adapting the interpreter such that it saves these undo-actions
on the failure continuation stack does not interfere with tracing. The am-
beval interpreter traces functions in a way that is identical to the previous
interpreter: by sending a startLoop signal to the tracer upon entering the
body of a function and sending an endLoop signal upon its exit. However,
care must be taken during stack rewinding when a function is being traced. If
the execution were to backtrack behind the function call that is being traced,
tracing should be aborted as this situation is similar to exiting from a func-
tion before the function loops. Listing 11 exemplifies how undo-actions are
applied and how the endLoop signal is sent.

Section 4.1.2 explained that the interpreter pushes a FrameFunBody onto
the regular continuation stack when starting a function application. When
this continuation is therefore popped again while backtracking, the inter-
preter has reached the point in the program at which it started evaluating
the function application. If the tracer is tracing the function application
that it is now returning from, tracing should stop here, as it would backtrack
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Figure 6: Undoing actions after execution has failed.

1 def stepKont(v: Value, frame: Frame): InterpreterStep = frame match {

2 // Rewinding the failure continuation stack

3 case FrameUndoAction(reverseAction) => reverseAction match {

4 // Undoing a push-continuation

5 case ActionPopKont() => getTopKont() match {

6 // Undoing a push of a FrameFunBody continuation

7 case FrameFunBody(body, Nil) =>

8 InterpreterStep(..., SignalEndLoop(body, RestartTraceEnded()))

9 }

10 }

11 }

Listing 11: Backtracking out of an function application.

out of the function otherwise. The interpreter therefore sends an endLoop
signal with a restart point of the form RestartTraceEnded.

No further changes need to be made to this Ambeval interpreter to make
it satisfy the required interface.

4.3. Conclusion

The interpreters presented here demonstrate the variety of interpreters
that can be plugged into STRAF, and exemplify executable implementations
of the structures and signals described in Section 3.2. Together, they serve to
demonstrate the generality of STRAF: its tracer can be reused to construct
runtimes for different languages.
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5. Optimizing Traces

We now provide a first demonstration of STRAF’s extensibility by using
its optimize hook to implement a set of optimizations that are common in
the literature. For brevity, we give only a high-level description of the added
optimizations, but their implementation is available online.2 The traces on
which we apply these optimizations are recorded by the simple Scheme run-
time presented in Section 4.1.

Optimization of traces is encoded in the interpreter’s interface via the
optimize function, which takes a trace as input as well as the program state
that was observed by the tracing machine when it started recording the given
trace. As the application of actions is deterministic,3 saving the program
state that was observed at the start of the trace recording enables the opti-
mizer to reconstruct, if necessary, each program state as it could have been
observed while applying the corresponding actions during the recording of
the trace. These program states provide the optimizations with all available
concrete information, such as the contents of the store and the environment
and hence the values that were observed for all variables in the program. The
states can be discarded after completing the optimizations.

We implemented six different optimizations. Four of these represent well-
known and widely used optimizations in the domain of (trace-based) JIT
compilation:

Constant folding (O1) [9] Applications of arithmetic primitives that only
use constants as arguments are replaced by the resulting value.

Arithmetic operations type specialization (O2) [7] Applications of generic
arithmetic primitives, e.g., a generic plus operation, are optimistically
replaced by the equivalent type-specialized operation, e.g., a plus oper-
ation specialized for floating point operands, if it was observed that all
of its arguments belong to the same type. A guard is inserted to verify
whether the types of the arguments remain the same at run time.

Variable folding (O3) The set of all free variables in a trace, i.e., the set
of variables that are neither defined nor assigned to inside the trace,

2https://github.com/mvdcamme/scala-am/blob/master/src/main/scala/

tracing/SchemeTraceOptimizer.scala
3In practice, there are some instances of non-determinism, e.g., random, so the frame-

work includes additional information for some actions while recording a trace.
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is computed. The trace is extended with a loop-invariant header con-
taining, for each variable, an action for saving the current value of the
variable in a specified register. Each read instance of these variables is
then replaced by an action for looking up this variable in the register,
thereby avoiding a more costly double lookup of the variable through
the environment and the store.

Action merging (O4) Some actions that are likely to appear immediately
behind each other in a trace are merged. Applying the merged action
then has the same result as applying both actions separately. Increasing
the granularity of actions decreases the total time spent in dispatching
actions. For example, an action for looking up a value could in practice
likely be followed by an action for popping a continuation from the
continuation stack; these actions could hence be merged into one action
to perform both operations. The effect of the granularity of opcodes in
traces was previously described in [8].

In addition, we implemented two optimizations that respectively remove
redundant saves and restores of the environment (O5), and pushes and pops
of the continuation stack (O6).

Listing 12 demonstrates how the type specialization optimization, can be
implemented and how it uses the starting program state to compute the state
that would have been recorded for each action in the trace. This state is then
used to retrieve the operands of arithmetic operations. The optimization then
checks whether each operand is of the same type and if so replaces the generic
operation by its equivalent type-specialized operation instead.

The actual optimize function pipelines each of these six optimizations,
passing along its input program start state to each individual optimization
that requires it. The purpose of adding these optimizations is not to provide
a performant execution environment for Scheme, but to demonstrate that
STRAF is sufficiently extensible to support them. The optimize hook with
its two input parameters sufficed to implement all six optimizations, without
requiring changes to the framework itself. All implementations together,
moreover, amount to a mere 500 lines of Scala code.

5.1. Benchmark Results

To illustrate the effectiveness of the listed optimizations, we include Fig-
ure 7, depicting the median time required, with the 95% confidence intervals

29



1 def typeSpecialize(trace: Trace, start: ProgramState): Trace = {

2 /*

3 * replaceActions takes as input a tuple of an action in the

4 * trace and its associated program state (i.e., the state achieved

5 * by consecutively applying each action up til now in the trace

6 * on the given start-state) and returns either a new, more specific,

7 * action if the action corresponds to the application of an

8 * arithmetic operation on a set of operands all of the same type,

9 * or the same action otherwise.

10 */

11 def replaceAction(tuple: (Action, ProgramState)): Action = {

12 val (action, state) = tuple

13 // The operands are saved on the stack in the state

14 val operands = getOperands(action, state)

15 if (isArithmeticOperation(action) && (allSameType(operands)) {

16 // We call replaceOperation to replace this action

17 // with its equivalent, type-specialized action.

18 // The generation of a guard is not depicted here.

19 replaceOperation(action, typeOf(operands))

20 // Action cannot be specialized

21 } else {

22 action

23 }

24 }

25 // We compute the consecutive program states that correspond

26 // with applying each action in the trace via weaveStates, zipping

27 // program states and actions together.

28 val zipTrace: List[(Action, ProgramState)] = weaveStates(trace, start)

29 zipTrace.map(replaceAction) }

Listing 12: Pseudo-implementation of type specialization.

included, for STRAF to execute a set of benchmarks when no optimizations
are applied. These results serve as the baseline for Figure 8, which depicts
the median execution time, normalized with respect to this baseline, of exe-
cuting the same benchmarks, first with each of the six optimizations enabled
individually (O1-6), and finally with all optimizations enabled (All).

The benchmarks were executed on an Intel I7-4870HQ CPU at 2.50GHz
with 6MB cache and 16GB RAM, running 64bit OS X 10.11.4 and Scala 2.11.7
on the Java Hotspot VM 25.92. Each benchmark is executed 30 times in a
separate JVM. Measurements are taken after JVM warmup was completed:
we observed stable measurements after two iterations of execution of the pro-
gram. The median of the results and its 95%-confidence interval are reported.
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While executing these benchmarks, we used the tracing compilation features
described in Section 6 by defining a tracing threshold of 10 and enabling
guard tracing.

The results show that the first four optimizations generally do not pro-
vide significant performance improvements. Removing redundant saves and
restores of the environment (O5) and removing redundant pushes and pops
of continuation frames (O6), do offer a small performance increase in some
cases. Notably, the collatz benchmark is significantly slower when applying
these two optimizations. This benchmark produces one large trace of which
the execution always leads to a guard failure quickly. Thus, the overhead of
applying both optimizations on this trace is never recouped, as execution of
the trace is quickly aborted.
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Figure 7: Median execution time for the baseline execution (no optimizations applied).
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Figure 8: Normalized execution times with each of the six optimizations applied individ-
ually (O1-6), and with all optimizations applied (All).

Figure 9 depicts the total number of traces that were recorded during the
execution of each benchmark. This number includes both regular traces and
traces produced after a guard failure has occurred (see Section 6.2). Note
that both the trace recording and optimization process as well as the bench-
marks themselves are completely deterministic. The number of recorded
traces therefore does not vary over time. Also note the high number of
(guard) traces produced by the collatz benchmark indicating that traces are
quickly aborted due to failing guards, which in turn leads to more traces
being recorded, so that the computational overhead of optimizing the trace
is never recouped.

Regardless of their effectiveness, adding these optimizations to STRAF

indicates that the framework is extensible, and that optimizations can be
implemented by using the optimize hook.
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Figure 9: The total number of traces recorded during the execution of the benchmark.

5.2. Additional Performance Metrics

Since we experiment with a highly conceptualized and thus comparably
inefficient interpreter, the optimizations are not as effective as they are in
optimized systems. Inspired by Brunthaler [6], we thus also measure their
effects on a different set of metrics beside performance and we compare with
the baseline, unoptimized execution of the benchmarks. This gives us a
notion of the effect of the optimizations on the traces.

1. The effectiveness of the action merging optimization (O4), the removal
of redundant environment saves and restores (O5), as well as the re-
moval of redundant continuation pushes and pops (O6), is measured
by total length of the generated traces. For brevity, we only report the
combination of the three optimizations.

2. The type specialization (O2) optimizations is measured by the number
of non-type specialized arithmetic operations that are applied.

3. The variable folding optimization (O3) is measured by the number of
variable lookups.

Note that all figures depicting the baseline results use a log-scaled y-axis.
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5.2.1. Trace lengths

Figure 10b illustrates that the action merging optimization, the removal
of redundant environment saves and restores and the removal of redundant
continuation pushes and pops is effective at reducing the length of traces by
at least 50% in all cases.

5.2.2. Generic arithmetic operations

Figure 11 depicts the total number of generic, non-type-specialized arith-
metic operations that are executed during the total lifetime of each pro-
gram, both while executing a trace or while interpreting the program. When
enabling the type-specialization optimization (Figure 11b) the number of
generic operations that are executed in the ack, count, loop2, mut-rec and
rotate programs, drops down to almost zero, as all arithmetic operations
that take place in a trace are successfully type-specialized. The only generic
arithmetic operations left for these benchmarks are those that are executed
outside of a trace. In the case of the fact, fib, gcipd and widen benchmarks,
the number of generic arithmetic operations also significantly decreases. As
the dderiv benchmark does not use any arithmetic operations inside a traced
part of the program, the optimization is ineffective.

5.2.3. Variable Lookups

Figure 12 depicts the total number of times a variable is looked up during
the execution of each program, again both while executing a trace and while
interpreting the program. As the variable folding optimization avoids lookups
of free variables in the trace by placing these variables in read-only registers
before executing the trace, we expect the number of variable lookups to
drop significantly, depending on the amount of free variables. As shown in
Figure 12b, the number of variable lookups indeed significantly drops across
all benchmarks, from 13% for the collatz benchmark, to 67% for the fact
benchmark.

5.2.4. Constant Folding

In the case of this limited set of benchmarks, the constant folding opti-
mization has no effect on any benchmark, as none of the programs contain
any arithmetic expression that only makes use of constant values.
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Figure 10: Measuring the total length of all, combined traces.
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(b) The number of generic, i.e., not type-specialized, arithmetic operations (nor-
malized to Figure 11a) with only optimization O2 enabled.

Figure 11: Measuring the number of generic arithmetic operations.
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(b) The number of variable lookups (normalized to Figure 12a) with only optimiza-
tion O3 is enabled.

Figure 12: Measuring the total number of variable lookups.



6. Evaluating STRAF’s Adaptability

This section evaluates STRAF’s extensibility by adding two mechanisms
that are widely used in trace-based JIT compilers. Specifically, we add a
heuristic for detecting hot loops and a mechanism for starting traces from
guard failures. These mechanisms build on the framework itself, so we de-
scribe them as variations on the semantics presented in Section 3, although
they are directly included in our implementation. By demonstrating how
STRAF can be extended with these features, we provide an intuition of the
effort for further extending or adapting STRAF. As we will show, including
these mechanisms requires only minimal changes.

6.1. Hot Loop Detection

Tracing compilation is most effective when applied to the parts where a
program spends most of its time (i.e., the hot parts) [14]; optimizing rarely
executed parts can reduce overall performance, because of the time it takes
to do the tracing and optimizations [13].

In STRAF, tracing of a loop starts immediately once this loop is executed
for the first time. Although this is adequate for a basic implementation, it
does not correspond well to the state-of-the-practice in tracing JIT compilers.
Therefore, the first evaluation of the adaptability of STRAF is a heuristic
to detect hot loops in a program’s execution. A program loop is called “hot”
once it has been completed at least a fixed amount of times, i.e., once a
threshold has been exceeded. This type of hot loop detection is used for
instance in HotpathVM [13], TraceMonkey [14], and SPUR [3].

6.1.1. Extending the Tracing Machine

To detect hot loops, we extend the tracing machine to count the number
of iterations that have been completed for each loop, as shown in Figure 13.
To this end, our extension implements a LabelCounterMap that associates
a trace label to a counter, similar to how TraceNodeMap associates a label
to a trace node. When the interpreter enters a loop, i.e., when it sends the
startLoop signal, the counter for the loop’s label is updated.

6.1.2. Semantics

To add hot loop detection, we need to adapt the tracing semantics. Specif-
ically, we need to change how tracing is started, i.e., how we transition from
the normal interpretation phase of trace execution to the trace recording
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tc ∈ TracerContext ::= tc(Null + TraceNode, TraceNodeMap, LabelCounterMap)

L ∈ LabelCounterMap ::= Label → N

Figure 13: The updated tracing machine for hot loop detection.

phase. The execution of traces and tracing itself remain unchanged. We
therefore only have to update the rules for normal interpretation by the trac-
ing machine (cf. Figure 14).

In rule NI-FirstEncounter, a loop carrying a label is entered that
has not yet been seen before. Hence, no corresponding entry in the list
of label counters exists yet. The tracing machine therefore creates such a
label counter, adds it to the list, and continues interpretation. Rule NI-

FirstEncounter specifies the case in which a loop is entered with a la-
bel that is not yet hot; its counter is still below the threshold that is re-
quired to start tracing. The label’s counter is updated and interpretation
continues as before. In rule NI-LoopHot, a label is encountered that has
become hot, causing the tracing machine to start tracing. Note that rules
Ni-ContinueInterpreting and NI-StartExecuting have remained un-
changed and are therefore still in effect.

6.2. Guard Tracing

Guard tracing mitigates the performance penalties of guard failures. Nor-
mally, a guard failure aborts the execution of a trace and normal interpreta-
tion is restarted; the compiled and heavily-optimized trace is abandoned to
interpret unoptimized code. Additionally, returning back to the interpreter
is a slow operation on its own [2, 8].

Guard tracing enables tracing from the point of a guard failure. Whenever
the guard fails again, execution is switched directly to the new trace instead of
restarting interpretation. Guard tracing is used for instance by RPython [18],
Dynamo [2], and SPUR [3]. In practice, guard tracing is only started when
the guard failed often enough. For simplicity, we start tracing immediately
after a guard failure. Although suboptimal in practice, this is adequate for
a basic implementation of guard tracing.

We call a trace recorded for a guard failure a guard trace, and a trace
recorded from a loop a label trace. When a guard failed and a guard trace is
recorded, we say the trace with the failing guard spawned the guard trace.
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step(s) = interpreterStep(t , startLoop(lbl))
T [lbl ] is undefined
L[lbl ] is undefined

ts(NI, tc(Null , T , L), s , Null) →
ts(NI, tc(Null , T , L[lbl 7→ 1 ]), s ′, Null)

NI-FirstEncounter

Where s′ = applyAction*(s, t)

step(s) = interpreterStep(t , startLoop(lbl))
T [lbl ] is undefined
k < Threshold

ts(NI, tc(Null , T , L), s , Null) →
ts(NI, tc(Null , T , L[lbl 7→ k + 1 ]), s ′, Null)

NI-LoopNotHot

Where s′ = applyAction*(s, t)
k = L[lbl ]

step(s) = interpreterStep(a1 : ... : an , startLoop(lbl))
T [lbl ] is undefined
k >= Threshold

ts(NI, tc(Null , T , L), s , Null) →
ts(TR, tc(tn(lbl , a1 : ... : an , s), T , L), s ′, Null)

NI-LoopHot

Where s′ = applyAction*(s, a1 : ... : an)
k = L[lbl ]

Figure 14: The updated semantics of the normal interpretation phase.
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Figure 15: The tracing diagram updated with guard tracing semantics.

Figure 15 depicts how the tracing state diagram presented in Figure 2
is updated to accommodate these changes to the tracing model: the edge
corresponding with a guard failure in a trace in the original diagram has
been replaced with two edges, depicted in red, corresponding with the cases
where a guard failure leads to either the recording of a new guard trace, or
to the execution of such a trace.

6.2.1. Extending the Tracing Machine

For guard tracing, we first redefine how traces are identified. Originally,
traces could be identified only through their label. Guard traces however can
share labels, namely the label of the the trace that spawned the guard trace.
To once again uniquely identify all traces, we use trace identifiers or trace
ids. Figure 16 formalizes these trace ids. A label trace id ltid just wraps
a label. A guard trace id gtid carries both a label and a guard identifier
uniquely representing the failing guard. We also change TraceNodeMap and
LabelCounterMap so that they map these trace ids, instead of the labels, to
trace nodes and counters respectively.

As we build this feature on top of the previous extension, hot loop detec-
tion, all other parts of the tracing machine are identical to that of Section 6.1.
Language developers must, however, provide a mechanism of their choosing
for identifying individual guard instructions.
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tid ∈ TraceId ::= ltid(Label)

| gtid(Label , GuardID)

gid ∈ GuardID ::= Identifier

tn ∈ TraceNode ::= tn(TraceId , Trace, ProgramState)

T ∈ TraceNodeMap ::= TraceId → TraceNode

L ∈ LabelCounterMap ::= TraceId → N

Figure 16: The updated tracing machine for guard tracing.

6.2.2. Guard Instructions

Making guards carry an identifier can be accomplished by making the
identifier a parameter of the guard instruction. We create this identifier
alongside the guard itself; i.e., when the guard is inserted into a trace by the
tracer during trace recording. When a guardFailed signal is returned after
the execution of an action, we include the guard identifier of the guard that
just failed:

guardFailed(RestartPoint , GuardID)

6.2.3. Semantics

We now describe how the semantics of the tracing machine need to be
updated. As guard tracing has no effect on the normal interpretation of the
program, we only alter the evaluation rules for trace recording and trace
execution as depicted by Figure 17.

Trace Recording. Recording a guard trace is identical to recording a label
trace, up to the level of stopping their recording. Recording is stopped when
the interpreter sends a startLoop or endLoop signal carrying the label of
the trace that initially spawned the guard trace that is now being recorded.
The updated trace recording rules are therefore almost identical to the old
rules, except that they now account for the fact that a trace identifier can
take two different forms. For brevity’s sake we fuse these forms together by
defining a function label which, given a trace id, extracts the label used in
that trace id. Labels are components of both kinds of trace ids, so retrieving
the label of a trace id is always possible.
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step(s) = interpreterStep(t ′, startLoop(lbl))

ts(TR, tc(tn(tid , t , ss), T , L), s , Null) →
ts(TE, tc(Null , T [tid 7→ tn], L), s ′, tn(ltid(lbl), t ′, _))

TR-SameStart’

Where s′ = applyAction*(s, t′)
tn = tn(tid , optimize(t , ss), ss)
lbl = label(tid)

(a) Trace recording

applyAction(s, a) = guardFailed(rp, gid)

ts(TE, tc, s , tn(tid , a : t , ss)) →
ts(TE, tc, s ′, tn)

TE-GuardTraceExists

Where s′ = restart(rp, s)
tn = T [gid ]

applyAction(s, a) = guardFailed(rp, gid)
T [gid ] is undefined

ts(TE, tc(Null , T , L), s , tn(tid , a : t , _)) →
ts(TR, tc(tn(gtid(lbl , gid), φ, s ′), T , L), s ′, Null)

TE-RecordGuardTrace

Where s′ = restart(rp, s)
lbl = label(tid)
φ represents the empty list

ts(TE, tc, s , tn(tid , φ, ss)) →
ts(TE, tc, s , tn)

TE-RestartLoop’

Where lbl = label(tid)
tn = T [tid ]
φ represents the empty list

(b) Trace execution

Figure 17: Transition rules for enabling guard tracing.



Only rule TR-SameStart requires some adaptation. Recall that once
recording of a trace is finished with a startLoop signal, execution of the new
trace is started immediately. This still holds true after the addition of guard
traces, but finishing the recording of a guard trace causes the tracer to start
executing the label trace that initially spawned the guard trace, instead of
the guard trace itself.

Rules TR-ContinueTracing and TR-SameEnd remain the same, ex-
cept that the label of the recorded trace is first extracted via the label

function before it is compared with the label used in the startLoop or end-
Loop signal.

Trace Execution. The trace execution phase must be updated to account for
the novel handling of guard failures.

When a guard fails, the tracer must check whether a guard trace for the
corresponding guard identifier already exists. Rule NI-GuardTraceExists

states that if a guard trace exists, the tracer swaps the trace that is currently
being executed for this guard trace. Rule NI-RecordGuardTrace ex-
presses that if there is no existing trace, the tracer starts tracing the guard.
The guard trace id is constructed by combining the label of the trace being
executed with the guard identifier carried back in the guardFailed signal.
The tracer restarts interpretation by constructing a new program state from
the restart point carried back in the guard and the current program state.

Note that we use the generic term tid to refer to the trace id of a trace
node. It is entirely possible that a guard failure during the execution of a
guard trace triggers the tracing machine to start recording a guard trace for
that guard trace. In that case, the label of the new trace’s id and the id of the
trace that was aborted both equal the label of the label trace that spawned
the initial guard trace.

Rule NI-RestartLoop’ specifies that if the tracer reaches the end of a
looping trace, no matter which kind of trace is being executed, the tracer
restarts the loop by finding the label trace node associated to the label of
the trace currently being executed. In other words, if the tracer has reached
the end of a looping guard trace, it does not restart this guard trace itself,
but rather the label trace that initially spawned this guard trace. Rules
TE-NoSignal and TE-TraceEnd remain unchanged.
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6.3. Conclusion

We have extended the implementation and the formal semantics of STRAF

with a means to detect hot loops and with the capability to start recording
traces from guard failures. Although our extensions correspond to straight-
forward incarnations of these techniques, they are testament to the flexibility
of STRAF. This is important given its purpose as an enabler of future studies
of various tracing compilation features. The changes required for these exten-
sions are minimal, suggesting that similar features might be added without
extensive modifications, too.

7. Discussion

STRAF aims to be a minimalistic, but extensible framework for rapid
prototyping of various techniques related to trace-based JIT compilation —
such as program analysis and trace optimization. Experiments that have been
proven feasible in our framework, can then be transposed to frameworks such
as the the Mu Micro VM [22] to evaluate their performance in an environment
that more closely resembles real-world runtimes.

As an example for such an experiment, we plan to investigate whether
and how dynamic compilation could benefit from advanced static knowledge
of the program. We hypothesize that optimizations could benefit from ex-
tending their scope of available information with data that lies beyond the
boundaries of the trace. To this end, STRAF is integrated into scala-

am [19], a Scala abstract interpretation framework using the AAM method-
ology [20] which enables an abstract machine, e.g., a CESK machine [12],
for a language to double as both a concrete interpreter and as a static an-
alyzer for this language. We can therefore reuse the same abstract machine
for performing static analysis of a program, and for plugging the abstract
machine in as a concrete interpreter into STRAF. As an abstract machine
always models a state machine, the abstract machine already satisfies one of
the requirements for interpreters that were outlined in Section 3.2.

Sections 5 and 6 demonstrated how new features, respectively an opti-
mization mechanism and two additional tracing mechanisms, can be added
to the compiler. Although we cannot predict the extent of the changes that
will be required for other extensions, they were minimal for the hot loop
detection and guard tracing techniques.

However, STRAF also has its limitations. Tracing can only be applied
on interpreters that are state-based and which satisfy the interface defined
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in Section 3.2. Much of the responsibility for the resulting compiler’s cor-
rectness lies with the language implementers. They are required to build an
interpreter that sends the correct tracing signals to the tracer at the right
times. This is necessary for generating the proper guards and for correctly
restarting normal interpretation after a guard failure.

Furthermore, with our chosen design of giving maximal flexibility to the
interpreters on how state and behavior are implemented, optimizations are
currently bound to a specific interpreter. While similar interpreters could
reuse optimizations, this is currently not possible in general.

Finally, in its current state, STRAF itself does not feature a native code
compiler. While this avoids a significant amount of complexity, it also re-
stricts experimentation to a conceptual level. We argue that this is indeed
by design and simplifies prototyping of ideas and their early evaluation.

8. Related Work

We described an early formalization and Scheme implementation of STRAF

in prior work [21]. This article refines that formalization, provides a ref-
erence implementation in Scala that is integrated into an existing frame-
work for executing abstract machines using the AAM methodology [19], and
demonstrates the frameworks’ generality and extensibility. The former by
composing it with two different interpreters, and the latter by adding six op-
timizations, a hot loop detection heuristic, and a guard tracing mechanism.

As related work, we consider the RPython, Truffle, and SPUR meta-
compilation frameworks and formal models meant to investigate trace-based
JIT compilation.

8.1. RPython and Truffle

Section 3.4 already compared STRAF and the RPython framework with
respect to the difference to meta-tracing. Although RPython has some simi-
larity to our model, its purpose is to create performant interpreters with JIT
facilities. Our framework is aimed to study tracing compilation in general.

Similar to the RPython framework, the Truffle framework facilitates the
development of performant abstract-syntax-tree (AST) interpreters [23]. It
provides mechanisms for dynamic self-optimization of a program’s AST struc-
ture. Furthermore, it uses the Graal compiler [17] to partially evaluate the
ASTs at run time and then generate efficient native code for a modified ver-
sion of Java’s HotSpot VM [24].
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SPUR [3] is a trace-based JIT compiler for Microsoft’s Common Inter-
mediate Language (CIL) [11], the intermediate language to which languages
such as C# and VisualBasic are compiled. By first compiling these languages
to a common intermediate language and then using SPUR to execute this in-
termediate language, only one JIT compiler has to be constructed to serve all
languages that are translatable to CIL. In their evaluation, Bebenita et al. [3]
demonstrated that compiling a Javascript program to CIL and subsequently
executing the compiled code via SPUR achieves performance on par with a
dedicated trace-based JIT compiler for Javascript.

While RPython, Truffle, and SPUR can all be used to investigate the
effect of JIT compilation on user programs, one is limited in further experi-
mentation. For instance, to study the effect of JIT compilation features, one
has to adapt a highly complex framework that has grown over many years and
is laced with performance compromises, making certain experiments hard, if
not infeasible. In contrast, STRAF is designed for this purpose. Further-
more, we also provide a complete formal description of our framework to
support precise reasoning over such experiments.

8.2. Formalized Tracing Models

Guo and Palsberg [15] and Dissegna et al. [10] set out to formally prove
the soundness of certain optimizations on traces. To this end, they developed
small, formal models of trace-based compilation. Although they are success-
ful in proving soundness of optimizations and have delivered rather small
tracing models, both models are tightly coupled to one particular execution
semantics, i.e., one particular interpreter for some language. Any changes to
the execution semantics also require extensive changes to the model of the
tracing compiler itself. For the first model, detailed execution semantics are
included, but for every rule in these semantics, a near-identical copy of the
rule has to be specified: the first rule expresses how execution of an input
program should proceed in the case the compiler is not tracing, while the
second rule states how this should be done when a trace is being recorded.
The second model suffers from similar disadvantages, in that their tracing
compiler is difficult to adapt.

9. Conclusion and Future Work

STRAF is a framework for experimenting with trace-based JIT compi-
lation for interpreters. It is designed to study the various effects tracing
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compilation can have on the execution of programs. The framework is flexi-
ble both in the wide variety of interpreters it supports, and in the extensions
to the basic tracing scheme that it supports.

We evaluated the first aspect with two interpreters and show how they can
be plugged into STRAF. The first interpreter is for an applicative Scheme di-
alect, while the second one is an ambeval evaluator, which uses back tracking.
This demonstrates that a wide range of languages can be supported.

The second aspect is evaluated by both extending an interpreter with
an optimization mechanism and by adapting STRAF’s semantics with ex-
tensions for two common features: a loop hotness detection mechanism to
improve the selection of loops to trace, and a guard tracing mechanism to mit-
igate the performance penalty of aborting the execution of a trace. Although
our extensions correspond to a naive implementation of these mechanisms,
they indicate that researchers who wish to include additional mechanisms
need only make minimal changes to the basic STRAF framework.

In future work, we wish to investigate how to employ static analyses to
further improve dynamic compilation facilities. To this end, we integrated
STRAF in a larger framework for developing static analyses via abstract
interpretation.
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