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Abstract

Today’s complex software systems combine high-level con-

currency models. Each model is used to solve a speciic set

of problems. Unfortunately, debuggers support only the low-

level notions of threads and shared memory, forcing devel-

opers to reason about these notions instead of the high-level

concurrency models they chose.

This paper proposes a concurrency-agnostic debugger

protocol that decouples the debugger from the concurrency

models employed by the target application. As a result, the

underlying language runtime can deine custom breakpoints,

stepping operations, and execution events for each concur-

rency model it supports, and a debugger can expose them

without having to be speciically adapted.

We evaluated the generality of the protocol by applying it

to SOMns, a Newspeak implementation, which supports a

diversity of concurrency models including communicating

sequential processes, communicating event loops, threads

and locks, fork/join parallelism, and software transactional

memory. We implemented 21 breakpoints and 20 stepping

operations for these concurrency models. For none of these,

the debugger needed to be changed. Furthermore, we visu-

alize all concurrent interactions independently of a speciic

concurrency model. To show that tooling for a speciic con-

currency model is possible, we visualize actor turns and

message sends separately.

CCS Concepts · Software and its engineering→ Con-

current programming languages; Software testing and de-

bugging;
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1 Introduction

Building and maintaining complex concurrent systems is

a hard task. Some developers combine diferent high-level

models to solve problems with a suitable tool [Tasharoi et al.

2013]. Unfortunately, debugging support for combined con-

currency models is minimal, which makes building and main-

taining complex concurrent systems even harder.

For more than three decades, debugging support for con-

currency models has been studied for each model in iso-

lation [McDowell and Helmbold 1989]. As a result, thread-

based languages such as Java and C/C++ have debuggers

aware of threads and locks. Similarly, ScalaIDE and Erlang

provide support for actors and message sending.

However, support for debugging combined concurrency

models is still missing. The main challenge is to identify a

common representation for concurrency models so that a

debugger does not need specialized support for each model.

For example, there are four main interpretations of the ac-

tor model, each of which has been implemented in diferent

variations [De Koster et al. 2016]. For comprehensive debug-

ging support of all these variations, a debugger needs to

abstract from the concrete concurrency model and provide

a common set of abstractions instead. This would allow us

to use the same debugger without changes for the diferent

concurrency models and their numerous variations.

This paper presents the Kómpos protocol, a concurrency-

agnostic protocol to enable debuggers to support a wide range

of concurrency models. Using the Kómpos protocol, we

built the Kómpos debugger for online debugging of com-

plex concurrent systems that combine communicating event
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loops (CEL) [Miller et al. 2005], communicating sequential

processes (CSP) [Hoare 1978], software transactional memory

(STM) [Harris et al. 2005], fork/join [Blumofe et al. 1995], and

shared-memory threads and locks. Based on the concurrency-

agnostic protocol, Kómpos supports a rich set of breakpoints

for the various concurrency abstractions, a rich set of step-

ping semantics to explore program behavior, a generic vi-

sualization of interactions between concurrent entities, as

well as an actor-speciic visualization of turns and message

sends. This evaluation shows that the Kómpos protocol is (1)

general enough to support advanced debugger features for

shared-memory and message-passing models, and (2) that

it supports tools using the provided data independently of

any concurrency model, while preserving the ability to build

tools speciic to a single model.

Kómpos is a debugger for SOMns, a Newspeak implemen-

tation [Bracha et al. 2010] based on Trule [Würthinger et al.

2012]. SOMns’ debugger support is built on Trule’s tool-

ing and debugger features [Seaton et al. 2014; Van De Vanter

2015]. SOMns supports the ive aforementioned concurrency

models and implements breakpoints, stepping, and a tracing

mechanism for them. Because of the concurrency-agnostic

design of the Kómpos protocol, the Kómpos debugger is

independent from these concurrency models.

The contributions of this paper are:

• An analysis of themajor shared-memory andmessage

passing concurrency models to identify abstractions

for a concurrency-agnostic debugger protocol.

• A concurrency-agnostic debugger protocol that en-

ables custom breakpoints, stepping, and visualization.

• An implementation of the Kómpos protocol as part

of the Kómpos debugger and SOMns.

• An evaluation of the protocol based on CEL, CSP,

STM, fork/join, and threads and locks.

2 Background

This section discusses existing debugger protocols and intro-

duces the Trule debugger, on which we build our work.

2.1 Debugger Protocols

Runtime systems and integrated development environments

(IDE) typically communicate via a debugger protocol. This

includes the Java Debug Wire Protocol (JDWP),1 the GDB

machine interface,2 the Chrome DevTools protocol,3 and the

Visual Studio Code debug protocol.4

1Java Debug Wire Protocol, Oracle Inc., access date: 2017-05-16, https://docs

.oracle.com/javase/8/docs/technotes/guides/jpda/jdwp-spec.html
2GDB/MI Interface, The GNU Project Debugger, access date: 2017-05-16,

https://sourceware.org/gdb/onlinedocs/gdb/GDB002fMI.html
3Chrome DevTools Protocol, Google, access date: 2017-05-16, https://chrome

devtools.github.io/devtools-protocol/
4VS Code Debug Protocol, Microsoft, access date: 2017-05-16, https://github

.com/Microsot/vscode-debugadapter-node/tree/master/protocol

These protocols deine commands to interact with the

program, to request information about threads, stack frames,

local variables, objects, memory. They also communicate

events, e.g., when a breakpoint was hit. While the protocols

difer in format and structure, they cover a similar set of

common debugger features. For instance, they allow a user

to deine a breakpoint for a speciic source location, possibly

with ilters and conditions attached to it.

The use of a debugger protocol also decouples runtime

systems and debuggers facilitating the construction of new

tools. However, these protocols are often designed for se-

quential or threaded languages. As such, their support for

debugging concurrency abstractions is rather limited. For

instance, JDWP and GDB can show a list of running threads

or control execution of a particular thread. GDB also has

support to request information about Ada tasks. In Chrome,

a step-into-async operation is the only explicit support for

concurrent stepping. In short, the protocols are limited to

these speciic concurrency concepts.

Thus, custom breakpoints or stepping operations for con-

currency models are not supported. Instead, the protocols

support a ixed set of breakpoint and stepping operations.

Any extension requires changing the protocol.

In this paper, we argue that a protocol similar to the ones

mentioned above forms a foundation for the basic debugger

features, i.e., to interact with the program and request basic

information such as values or local variables and objects.

However, in contrast to the classical debugger protocols,

we propose a concurrency-agnostic protocol that supports

a wide range of concurrency models. Our implementation

in SOMns is inspired by the Visual Studio Code protocol

(cf. section 5), but as detailed later, the Kómpos protocol

abstracts completely from diferent breakpoints and stepping

operations and thereby provides the necessary lexibility to

support custom semantics for diferent concurrency models.

2.2 Trufle Debugger: A Language-Agnostic

Debugging Framework

SOMns is built on top of Trule, a framework for AST-based

interpreters [Würthinger et al. 2012]. Part of the framework

is support for interpreter instrumentation, which is used, e.g.,

for language-agnostic debugging and execution monitoring.

The framework provides Trule-languages with a classic

breakpoint-based debugger for sequential code [Seaton et al.

2014], which we use in SOMns for the basic sequential step-

ping and breakpoint support.

One key element of the framework is its use of tags for

the AST nodes [Van De Vanter 2017]. For the Trule debug-

ger support, a language annotates AST nodes with tags for

Statement, Call, and Root. Based on these tags, the debug-

ger determines the target nodes for line breakpoints, single

stepping, step over, and returning from a method. SOMns

2
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uses the same mechanism for AST node tags to encode addi-

tional information, which is used to recognize concurrency-

related operations as well as generic syntax information such

as keywords. The Kómpos debugger can use this information

for debugging and syntax highlighting.

3 Which Concurrency Concepts are
relevant for Debugging?

This section analyzes concurrency models to identify the

basic concepts that need to be supported by a debugger pro-

tocol to enable concurrency-related breakpoint and stepping

operations. As a basic categorization, we distinguish shared-

memory and message-passing models [Almasi and Gottlieb

1994]. We analyze instances for both types of models in-

cluding threads and locks, STM, and fork/join parallelism

as shared-memory models, and CEL and CSP as message-

passing models. To account for more advanced debugger

features, we also analyze what information would be needed

to visualize these concepts.

3.1 Threads and Locks (T&L)

Shared-memory models, as supported by e.g., C/C++, Java,

C#, have a wide range of concepts for simultaneous execu-

tion and access control to shared resources. For brevity, this

analysis includes only threads, locks, condition variables, and

object monitors. Other constructs are left to future work.

Threads are the active entities that execute code. Locks and

object monitors enable the synchronization of threads, i.e.,

they restrict thread interactions on shared resources to en-

force correctness properties. Condition variables are used to

communicate between threads that certain conditions have

changed. Furthermore, object monitors, as known from Ada

or Java, are a structured synchronization mechanism that

uses a lock to protect some shared resource in the dynamic

scope of some object method or code block. In contrast, locks

and condition variables are entities with which a thread can

interact in unstructured ways.

For debugging, it needs to be possible to step through

the execution of a thread and set breakpoints on statements.

This should include the standard operations to step into or

over a call to, and return from a method. However, the de-

bugger should also provide stepping and breakpoints for

concurrency abstractions such as locks, object monitors, and

conditions variables. This would allow developers to check

for incorrect synchronization. For locks, the debugger should

be able to step from an acquire operation to the correspond-

ing release operation to see how they relate. That also helps

to detect unbalanced acquire/release operations which, e.g,

can lead to starvation if locks are not released. Similarly, for

object monitors, the debugger should allow developers to

set a breakpoint on entering and exiting the monitor. For

condition variables, stepping between the wait and notify

operations allows developers to observe their efects on, and

communication with other threads. From the point where a

thread is created in a program, the debugger should allow

developers to set a breakpoint on its execution, or to step

into its execution. Similarly, when a thread terminates, the

debugger should allow developers to suspend execution of

the thread that joins with it and waits for termination.

The high-level interactions of threads entering monitors

and using locks or condition variables are also relevant for

visualization, which is useful for identifying unintended in-

teractions or missing synchronization.

3.2 Communicating Event Loop Model (CEL)

The CEL model is a variation of the actor model, used by lan-

guages such as E [Miller et al. 2005] andAmbientTalk [VanCut-

sem et al. 2014]. The main concepts are actors, messages,

promises, and turns. Actors are the active entities, each with

its own event loop. Actors execute messages as turns, i.e.,

one by one, in the order they are received. They contain a

set of objects and interact via asynchronous messages be-

cause actors do not share memory. Promises are eventual

values. They can establish a data dependency between actors,

e.g., as placeholders for the return value of an asynchronous

message. Since the CELmodel includes only non-blocking ab-

stractions, promise values can be accessed only via callbacks,

which are executed as turns on an actor.

When debugging such CEL actors, developers should be

able to step through turns of a speciic actor to see which

messages are received. This means, the debugger should

combine normal sequential stepping within a turn with the

ability to skip sequential operations and step to the next turn.

When sending messages, suspending the actor’s execution

before a message is sent would allow developers to inspect

its parameters and target object. Similarly, following the

execution to observe how promises are resolved and how

callbacks on them are executed after resolution can help

developers to identify communication issues or unexpected

values. For all these operations, the debugger should be able

to either explicitly step through them or deine breakpoints.

For a visualization, the high-level interactions of actors

with messages and promises are relevant. For example, a

visualization of the order in which turns, i.e., messages are

executed could help to identify synchronization issues and

bad message interleavings.

3.3 Communicating Sequential Processes (CSP)

The main concepts in CSP are processes, channels, and mes-

sages. Processes are the active entities that execute code.

Channels are irst-class elements that connect processes and

allow them to communicate by passing messages with ren-

dezvous semantics. A message is a speciic datum exchanged

via a channel. Like CEL, CSP is a message passing model.

However, CSP uses blocking semantics and has no notion of

turns, which makes it very diferent to CEL.

For debugging, it should be possible to follow the sequen-

tial execution of a process, from its creation to the end, like

3
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in threads. But, similar to CEL, the debugger should be able

to step through message sends, i.e., in this case channel op-

erations, to identify the communication partners and their

state, or put breakpoints on these operations. Furthermore, it

should account for the rendezvous semantics of channels, to

step from a receiver to the continuation in the sender. This

is useful since channels can be passed around, which might

lead to the wrong processes communicating with each other.

For visualization, the communication between processes

and the run-time network of channels is relevant, e.g., to

identify communication partners or lack-of-progress issues.

3.4 Software Transactional Memory (STM)

STM provides a wide range of notions for transactions, e.g.,

open or closed, optimistic or pessimistic. For brevity, this

analysis includes only the basic concepts of threads and trans-

actions. Threads are the same as for other shared-memory

models. Transactions, on the other hand, introduce a dy-

namic scope, in which all modiications to shared state are

applied either atomically or not at all.

The debugger should be able to interact with transactions

in a way that makes it possible to observe the behavior when

transactional conlicts occurs. Thus, developers should be

able to set breakpoints or step through the execution of

transactions to the inal commit operation. Being able to

stop right before a transaction commits allows developers to

examine transaction interactions. The developer should also

be able to step between transactions to follow the high-level

low of program elements interacting on shared state.

For a visualization, the transactions executed on threads

and their ordering could help to identify missing synchro-

nization, unintended dependencies, or performance issues.

3.5 Fork/Join Parallelism (F/J)

Fork/Join programming enables parallel divide-and-conquer

algorithms. The main abstraction is an asynchronously exe-

cuting task, which produces a result eventually. The model is

only concerned with decomposing problems into a structure

of tasks that synchronize based on fork and join operations.

Other forms of synchronization are left out of the model.

A debugger should focus on these fork and join operations.

Breakpoints and stepping should enable developers to ex-

plore the recursive structure of spawns and joins. Visualizing

these spawn and join dependencies may help to understand

the recursive nature of complex fork/join programs.

3.6 Analysis and Conclusion

The above discussion identiied the main concepts for CSP,

CEL, F/J, STM, and T&L. This section categorizes them to

establish abstractions for a debugger protocol.

Activities are the active entities executing code. This

includes threads, actors, processes, and fork/join tasks. Dy-

namic scopes are well-structured and nested parts of a pro-

gram’s execution during which certain concurrency-related

Interpreter Debugger

CEL CSP

Threads&Locks

STM

Fork/Join

Debugging Support
Kómpos 
Protocol

SOMNS Kómpos

Figure 1. General architecture: Interpreter and debugger

communicate via the concurrency-agnostic Kómpos protocol.

The interpreter provides the implementation of the diferent

concurrency models and debugging support.

properties hold, e.g., during a transaction, while executing

code under an object monitor, or during an actor turn. Pas-

sive entities are entities that do not act themselves, but are

acted upon. For example, we consider messages and promises

as passive entities of the CEL model, while the ones of CSP

are channels and messages. Note that we do not consider

normal objects as passive entities, because it was not needed.

To model interactions between these entities, we use send

and receive operations. A Send Operation is an interaction

that initiates communication or synchronization. A Receive

Operation, is an interaction that reacts to a communication

or synchronization operation. Consequently, we consider ac-

quiring a lock or signaling a condition to be send operations

and joining with a thread is a receive operation.

Table 1 gives an overview of the identiied categories per

concurrency model. These categories of entities and opera-

tions are used as foundation for the Kómpos protocol and

detailed in the following section.

4 A Concurrency-Agnostic Debugger
Protocol

To build a concurrency-agnostic debugger, we devise a proto-

col for communication between the debugger and interpreter

that can support the breakpoints, stepping operations, and

visualizations envisioned in section 3, without merely enu-

merating the concurrency concepts. The goal is that only the

language implementation knows the speciics for each con-

currency model, while the debugger remains independent

of them. Figure 1 shows the architecture of such a system.

An interpreter with support for various concurrency models

is connected to a debugger via the concurrency-agnostic

Kómpos protocol.

4.1 High-Level Overview of the Protocol Concepts

From section 3.6 we derive that concurrency concepts rele-

vant for breakpoints, stepping operations, and visualization

can be modeled based on activities, dynamic scopes, passive

entities, send operations, and receive operations. Using these

4
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Table 1. A Taxonomy of Concurrency Concepts Relevant for Debugging.

T&L CEL CSP STM F/J

Activities threads actors processes threads tasks

Dynamic Scopes object monitors turns transactions

Passive Entities conditions messages channels

locks promises messages

Send Operations acquire lock send message send message

signal condition resolve promise

Receive Operations release lock receive message join thread join task

wait for condition join process

join thread

basic notions, a protocol is independent of any speciic con-

currency model. However, the debugger requires meta data

to match debugging operations and concrete concurrency

concepts. Thus, when the debugger connects to the inter-

preter, it receives meta data with details on the supported

concurrency models, the entities they deine, their break-

points, and their stepping operations. This information is

mostly opaque to the debugger. For breakpoints and stepping,

it is suicient to match opaque identiiers (cf. section 4.3).

Concurrency Concepts. As discussed in section 3.6, activi-

ties are active entities that execute code. The debugger pro-

tocol uses this notion, e.g., to ofer stepping operations that

are speciic to an activity type. Dynamic scopes are used, for

instance to determine possible stepping operations. Some

stepping operations are only available during a transaction

or while holding an object monitor.

Passive entities, send, and receive operations are used for

the visualization of concurrent interactions. However, they

are currently not used in the context of pausing/resuming

program execution or performing step-by-step execution.

Debugger Concepts. For debugging, the protocol includes

various other concepts. For brevity, we discuss only the ones

distinct from other debugger protocols (cf. section 2.1).

A source is either a ile or some other form of source text.

The source text has to be annotated with source tags to iden-

tify the semantic elements contained in a source range. For

instance, tags can indicate the source locations of message

sends or lock operations so that the debugger can show break-

points or stepping operations. As mentioned in section 2.2,

SOMns employs Trule’s tagging mechanism to annotate

AST nodes in the interpreter. The Kómpos protocol is used

to send this information to the debugger.

A breakpoint type deines suspension points, which may

be related to concurrency concepts. For example, one break-

point type could be for the point where a message is received

by an actor. They are distinguished by name and deinewhich

source tags they apply to. Thus, the debugger does not need

to know the relationship between tags and breakpoints. In-

stead, it can treat tags as opaque identiiers.

atomic {

  int b = this.fieldB;

  this.fieldA = b + 1;

}

1

2

3

actType scopes

thread

thread

thread

transaction

transaction

Atomic

Figure 2. Example program using an atomic transaction. The

debugger recognizes the atomic keyword via the Atomic tag.

When execution suspends at one of the three program points

indicated with a number, the debugger receives location,

indicated activity type, and active dynamic scopes.

A stepping operation type deines an operation to follow

program execution sequentially or concurrently. Similar to

breakpoint types, stepping operation types are distinguished

by name. Furthermore, they deine criteria to determine

whether the operation is applicable in the current dynamic

context. Such applicability criteria include source tags, the

activity type executing the currently suspended code, as well

as the dynamic scopes active for the current execution.

4.2 Example: Breakpoints and Stepping for an

Atomic Block

This section discusses an example to illustrate the protocol.

Consider the program fragment in ig. 2 that uses an atomic

block to ensure that the fieldA of an object is updated with-

out interference by other threads.

The igure indicates three possible program points with a

number, in which execution can be suspended for the atomic

block. Further, it shows that the atomic block is known to

the debugger via the Atomic tag, which it received as part

of the meta data and source information. When execution is

suspended, the debugger received the source location, the

activity type, and active dynamic scopes, which are depicted

in the right hand side of the igure. From the meta data and

the Atomic tag associated with the source location for 1⃝,

the debugger can derive that it can ofer a breakpoint that is

triggered right before a transaction is started.

5
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Setting the breakpoint sends a BreakpointUpdate mes-

sage to the SOMns interpreter, which includes the source

location and the chosen breakpoint type. Afterwards, the

program can stop at the atomic keyword, and the interpreter

sends a Stoppedmessage to the debugger. The message says

that execution is suspended at location 1⃝, and that the cur-

rent activity is a thread with a speciic id. Based on this lo-

cation information, source tags, and execution information,

the debugger can derive the applicable stepping operations.

Note that in this case there is no concurrent stepping applica-

ble. However, all stepping operations are handled uniformly.

When the debugger determines the stepping operations for
1⃝, the resulting set contains only the sequential stepping

operations that always apply, e.g. step into and step over.

When the developer chooses the step-into operation, the

debugger sends a Step message to the interpreter, which in-

cludes the thread id and the chosen stepping operation. After

the interpreter performs this step, execution is suspended

at 2⃝ and the debugger receives again the current location

and activity. It also receives the information that a dynamic

scope for a transaction is active. Based on this scope, it can

ofer extra stepping operations, e.g., to step right before or

after the commit for the transaction. When executing these

stepping operations, execution would continue either to 3⃝,

or to the irst statement after the atomic block.

4.3 Detailed Description of the Kómpos Protocol

This section details the protocol. While we discuss its seman-

tics, we refrain from prescribing a speciic implementation,

since we consider the ideas to be applicable to wide range

of concrete debugger protocols. A concrete prototype imple-

mentation is discussed in section 5.

The protocol assumes bidirectional communication be-

tween interpreter and debugger, which could be realized

with remote function calls, messages on sockets, etc.

Figure 3 shows an overview of the main concepts used by

the Kómpos protocol. We distinguish between (1) debugging-

speciic messages exchanged between debugger and inter-

preter, (2) trace data sent from the interpreter for visualiza-

tion, and (3) a general meta-data description used to interpret

the exchanged messages. We detail each of them below.

DebuggerMessages. For stepping and breakpoints, the Kóm-

pos protocol uses the irst four debugger messages in ig. 3.

The Source message provides the source information to

the debugger. Since the debugger is to be agnostic from spe-

ciic concurrency concepts, as well as incidentally from a spe-

ciic language, we provide source information explicitly. The

message includes a URI to identify the source ile or resource,

the source text, and a list of tagged source locations. Source

locations specify the exact coordinates, for instance based

on a line number, column number, and character length. The

tags are merely opaque identiiers which identify concur-

rency operations, e.g., as seen with the Atomic tag in ig. 2.

Meta Model

Debugger Messages Trace Events

ActivityType

creation: byte 

completion: byte

icon: string

EntityType

id: typeId

label: string

DynamicScopeType

start: byte 

end: byte

PassiveEntityType

creation: byte

BreakpointType

name: string

label: string

applicableTo: Tag[]

SteppingType

name: string

label: string

applicableTo: Tag[]

activities: ActivityType[]

scopes: DynamicScopeType[]
SendOperationType

marker: byte

entity: EntityType

target: EntityType

ReceiveOperationType

marker: byte

source: EntityType

Source

URI: URI 

sourceText: string

locations: TaggedCoord[]

BreakpointUpdate

location: Coord

type: BreakpointType

Stopped

activityId: id

location: Coord

actType: ActivityType

scopes:DynamicScopeType[]

Step

activityId: id

type: SteppingType

Symbols

syms: Map<symId, string>

ActivityCreation

activityId: id

name: symId

location: Coord

ActivityCompletion

ScopeStart

scopeId: id

location: Coord

ScopeEnd

PassiveEntityCreation

entityId: id

location: Coord

SendOperation

entityId: id

targetId: id

ReceiveOperation

sourceId: id

marker: byte

Figure 3. Class diagram of the main elements of the Kóm-

pos protocol. The meta model describes the concurrency

and debugger concepts supported by the interpreter, and

provides the debugger with the meta data to identify when

and where breakpoints and stepping operations are applica-

ble. Debugger messages are used to update the debugger or

interpreter. Trace events encode an execution trace used for

visualization. Trace events are preixed with a marker byte.

The BreakpointUpdate message is used to communicate

breakpoints from the debugger to the interpreter. It encodes

the source location and the breakpoint type.

The Stopped message is sent from the interpreter to the

debugger to indicate that either a breakpoint was hit or a step-

ping operation completed. It identiies the current location

and the suspended activity with id and type. Furthermore, it

includes a list of currently active dynamic scopes for this ac-

tivity. Note that the activity type and active dynamic scopes

can also be determined from the trace data, but providing

them explicitly simpliies the debugger implementation.
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Finally, the Stepmessage is sent from the debugger to the

interpreter to instruct the latter to resume execution of a

speciied activity with a given stepping type.

The last message listed in ig. 3, called Symbolsmessage, is

an optimization. It avoids sending long strings repeatedly by

sending a symbol table from the interpreter to the debugger.

Execution Trace Data. To provide details about the execu-

tion of a concurrent program, the Kómpos protocols uses

trace events that encode the program’s behavior with 7 dif-

ferent trace entries. We use these trace events for instance

to visualize concurrent interactions. In general, each trace

event starts with a marker, which is indicated by the dashed

line in ig. 3. The relation between the concrete marker and

a concurrency concept is deined via the meta data discussed

in the following subsection.

An ActivityCreation event records the id of the created

activity, its name, and the source location of the creation op-

eration. An ActivityCompletion event is merely a marker

recording that an activity terminated. The corresponding

activity id can be determined from the complete trace. A

ScopeStart event records the beginning of a dynamic scope.

It records the id of a scope, which corresponds to, e.g., the

message id for an actor turn. It also includes the source loca-

tion for the scope, e.g., the method invoked for a turn, or the

atomic code block for a transaction. A ScopeEnd event is also

a marker that can be matched to the scope start implicitly. A

PassiveEntityCreation event records the id of the passive

entity created and the source location of the operation.

Interactions are recorded as SendOperations with the id

of the involved passive entity, e.g., channel or message, and

the target entity id, e.g., the receiving actor. Information

about the sending entity can be inferred from the trace based

on the dynamic scope or current activity. ReceiveOperations

encode merely the id for the source entity which is for in-

stance a channel or fork/join task.

Meta Data Description. The debugger messages and trace

events discussed above are completely independent from

concurrency models. To distinguish diferent types of enti-

ties and interactions, the interpreter sends meta data to the

debugger when the connection is initialized. The meta data

consists of the 8 concepts shown at the top of ig. 3.

There exist three types of entities: ActivityType, Dyna-

micScopeType, and the PassiveEntityType. EntityType

deines data common to all entity types. All entities have

a label, i.e. a name, and a unique id to distinguish them.

ActivityType additionally deines unique trace eventmarker

for activity creation and completion, as well as an identiier

for an icon to be used in the user interface. DynamicScopeType

deines the start and end markers for scopes, and Passive-

EntityType deines creation marker.

The BreakpointType deines the possible breakpoints.

Each type has a unique name, a label to be used in the user

interface, and an applicability criterion based on source tags.

If a source location has one of the listed tags, then it supports

the breakpoint. If a breakpoint type does not specify any

source tags, it applies to all source locations.

The SteppingType deines the stepping operations. Each

type has a name and label. As for breakpoints, source tags

also deine whether a stepping operation is applicable. For

instance, the operation to step to the receiver of a message

is only available on a message-send operation. An additional

applicability criterion is the current activity type, e.g., to

enable stepping to the next turn for actors. Similarly, stepping

can be conditional to the current dynamic scope. As such

the third applicability criterion is the current scope type. For

instance, some transaction-related stepping operations are

only useful within a transaction (cf. section 4.2).

Finally, the meta data speciies how to interpret Send-

Operations and ReceiveOperations. For each operation,

a unique marker is deined. For a send, the operation type

speciies the entity types for the involved entity and target

to identify which set of entities it belongs to. Similarly, for a

receive operation, the type of the source entity is speciied.

This meta data makes it possible to handle breakpoints

and stepping operations in an abstract manner. Furthermore,

it becomes possible to interpret the trace events either gener-

ically or speciic to a concurrency model to visualize them.

We evaluate both aspects in section 6.

5 Implementation

This section provides basic details on our implementation,

which is used for the evaluation. The Kómpos debugger is

a TypeScript application running in a browser. The SOMns

interpreter implements the support for the concurrency mod-

els, their breakpoints, stepping semantics, and execution

tracing. As shown in ig. 1, the SOMns interpreter and the

Kómpos debugger communicate via a bi-directional connec-

tion, for which we use Web Sockets.5 JSON is used to encode

the meta data and debugger messages. For eiciency, the

trace events are sent through a separate binary web socket.

When the Kómpos debugger connects to SOMns, the in-

terpreter sends the meta data to initialize the debugger. The

debugger then processes the meta data to enable eicient

parsing of trace events, to initialize breakpoints, stepping

operations, and visualizations. Based on the labels provided

as part of the meta data, the Kómpos debugger also inter-

prets the meta data to enable iltering and querying data

for speciic concurrency models, which can be used to build

tools speciic to a concurrency model.

When a program executes in the SOMns interpreter, it

sends source code and source tags as part of the Sourcemes-

sage to the debugger. The Kómpos debugger uses this data to

display the code, indicate possible locations for breakpoints,

5The WebSocket Protocol, IETF, access date: 2017-05-16, https://tools.ietf .o

rg/html/rfc6455
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and also apply syntax highlighting based on the tags. This

approach makes the debugger completely language-agnostic.

When the program hits a breakpoint or completes a step,

the debugger uses the data from the Stopped message to

highlight the source location. It also uses the meta data and

information about current activity type and active dynamic

scopes to select the possible stepping operations. To obtain

information on the stack trace and local variables, we use

messages similar to the Visual Studio Code debugger proto-

col (cf. section 2.1). As a result, we can also use Visual Studio

Code as debugger for SOMns,6 for sequential debugging.

One challenge for the correct implementation of a concur-

rent debugger such as Kómpos is that interactions between

the interpreter and debugger need to handle data races. For

instance, there is a race between the two web socket con-

nections, because the order, in which messages are received

between the two connections, is not guaranteed. This can

be problematic because we might hit a breakpoint for which

the debugger does not yet know the corresponding activ-

ity. We solve this in the debugger by using promises for the

activities, which delays handling for the debugger message

until all data is available. Similarly, a trace event can also use

a symbol id, for which the full string was not yet received

via the Symbols message. For trace events, we handle these

races by waiting for all dependent data elements before a

trace event can be used further.

General Requirements For an application of the Kómpos

protocol to other systems, we see as a main requirement

the information about the lexical location of concurrency

operations. While we leverage Trule’s approach of anno-

tated AST nodes, the information can also be obtained from

bytecodes or with static analysis. A larger hurdle for adop-

tion could be the implementation of the necessary runtime

support for stepping, breakpoints, and trace events inside an

existing VM or runtime system. It might require substantial

changes to ensure an eicient implementation and provide

the ine-grained stepping semantics as provided in SOMns.

Generally, Trule’s AST-based implementation and optimiza-

tions are convenient, but not essential. Similarly, the protocol

is language and concept agnostic, and thus, can be applied

to a wide range of systems.

6 Evaluation

This section evaluates the Kómpos protocol with respect to

its ability to support breakpoints, stepping operations, and vi-

sualizations. The goal of the evaluation is to demonstrate that

the protocol is agnostic of speciic concurrency abstractions

and general enough to support a wide range of concurrency

models. We base the evaluation on the ive aforementioned

models: CEL, CSP, fork/join, STM, and threads and locks.

These models are chosen for their diferent concurrency

6SOMns VS Code Extension, access date: 2017-05-16, https://github.com/s

marr/SOMns-vscode

characteristics, and for being the main programming models

in the ield. All reported experiments are implemented as

part of SOMns7 and the Kómpos debugger [Marr et al. 2017].

6.1 Breakpoints

To evaluate the lexibility of the system to represent various

breakpoints, we apply the analysis results of section 3 to

SOMns. Speciically, we identify and implement 21 diferent

breakpoints that can be used to pause execution based on the

concurrency abstractions and their interactions. As a general

principle, we consider the point in time right before or after

a concurrent operation as potentially relevant. The goal is to

allow developers to observe the efects of an operation that

might interleave with other operations in the system. The

breakpoints are listed with a brief description in table 2.

With the concepts of the Kómpos protocol presented in

section 4.3, we were able to model all breakpoints solely by

specifying the source tag to identify the source locations they

apply to. No speciic support was required in the debugger.

The breakpoint implementation is thus completely conined

to the interpreter, where the concurrency operations are

implemented. Arguably, the Kómpos protocol allows devel-

opers to deine arbitrary breakpoints speciic to concurrency

operations, or other kind of language constructs.

6.2 Stepping Operations

To evaluate the Kómpos protocol’s support for standard and

advanced stepping operations, we apply the results of the

analysis in section 3 and implement 20 diferent stepping op-

erations. Guided by the breakpoints in table 2, we identiied

stepping operations that allow one to follow the execution

low between various potential points of interest. The step-

ping operations are listed with a brief description in table 3.

With the Kómpos protocol, we were able to model all

those stepping operations and customize their applicability

based on a current source location, the type of the current

activity, or active dynamic scopes. Other than these generic

concepts, no support is required in the debugger. Similar to

the breakpoint support, the stepping operations are deined

completely in the interpreter, where the concurrency opera-

tions are implemented. This demonstrates that the Kómpos

protocol provides the desired lexibility to deine arbitrary

stepping operations.

6.3 Visualization

Finally, we evaluate whether the data provided by the Kóm-

pos protocol can be used for visualizations. To this end, as-

sess whether it is possible to built a visualization that is

agnostic to the concurrency models as well as one that is

speciically designed for one concurrency model. The goal

is to identify where the boundary is between concurrency-

agnostic aspects and special-purpose constructs. We built:

7SOMns and the Kómpos Debugger Protocol, access date: 2017-05-16, https:

//github.com/smarr/SOMns
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Models Name Description Source Tag

all activity creation before an actor, process, task, or thread is created ActivityCreation

CSP, F/J, T&L activity execution before irst statement of the new activity is executed ActivityCreation

CSP, F/J, T&L before join before waiting that a process, task, or thread completes ActivityJoin

CSP, F/J, T&L after join after a process, task, or thread completed execution ActivityJoin

CEL actor message send before an actor message is sent EventualMessageSend

CEL actor message receiver before irst statement of message is processed in the receiver EventualMessageSend

CEL before async. method activation before the irst statement of a method activated by an async. msg send EventualMessageSend

CEL after async. method activation before returning from a method activated by an async. msg send EventualMessageSend

CEL before promise resolution before a promise is resolved with a value or error PromiseCreation

CEL on promise resolution before the irst statement of all handlers registered on promise PromiseCreation

CSP before channel send before executing the send on a channel (set on send operation) ChannelWrite

CSP after channel receive after receiving a message from a channel (set on send operation) ChannelWrite

CSP before channel receive before receiving a message from a channel (set on receive operation) ChannelRead

CSP after channel send after sending on a channel (set on receive operation) ChannelRead

STM before transaction before starting a transaction Atomic

STM before commit before attempting to commit changes of a transaction Atomic

STM after commit after committing the transaction succeeded Atomic

T&L before acquire before attempting to acquire a lock AcquireLock

T&L after acquire after acquiring a lock AcquireLock

T&L before release before releasing a lock ReleaseLock

T&L after release after releasing a lock ReleaseLock

Table 2. Set of breakpoints implemented in SOMns. None of the breakpoints requires special support in the Kómpos protocol.

Instead, they are all implemented based on meta data that includes name and source tag.

Model Name Description Criteria

all resume continue execution of current activity

all pause pause execution of current activity

all stop terminate program

all step into step into method call

all step over step over method call

all return return from method call

CSP, F/J, T&L step into activity halt new activity before execution of the irst statement source tag: ActivityCreation

CSP, F/J, T&L return from activity halt activity that joins with the current one, after joining current activity: Process, Task, Thread

CEL step to message receiver halt activity before executing the irst statement of a received

message

source tag: EventualMessageSend

CEL step to promise resolver halt activity before resolving a promise source tag: PromiseCreation

CEL step to promise resolution halt all activities before executing the irst statement of han-

dlers registered on a promise

source tag: PromiseCreation

CEL step to next turn continue current actor’s execution and stop before the irst

statement of the next executed message

current activity: Actor

CEL return from turn to resolution continue current actor’s execution and stop before the exe-

cution of the irst statement of all handlers registered on a

promise that is resolved by the current turn

current activity: Actor

CSP step to channel receiver halt activity reading from a channel to receive the sent message source tag: ChannelWrite

CSP step to channel sender halt activity sending to a channel source tag: ChannelRead

STM step to next transaction halt activity before starting the next transaction

STM step to commit halt activity before committing a transaction dynamic scope: Transaction

STM step after commit halt activity after committing a transaction dynamic scope: Transaction

T&L step to release halt activity before releasing a lock dynamic scope: monitor

T&L step to next acquire halt the next activity right after acquiring the current lock dynamic scope: monitor

Table 3. Set of stepping operations implemented in SOMns. None of these stepping operations require special support in the

Kómpos protocol. Instead, they are realized solely based on the applicability criteria provided as part of the meta data.

9
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!! Platform

!! ReportActor

!! DataActor

!! JsonInputActor

!! InputGeneratorActor

!! λbuildParallelSumTreefromto@371@40:: (9)

!! λλcalculateSumOfwithfrominto@386@12@387@52 (9)

⧭⧭ JsonStreamTokenizer

⧭⧭ DataFilterProcess

Figure 4. Screenshot of the system interaction visualization

in Kómpos. Activities are represented as rectangles. The de-

bugger assigns color ranges to an activity type, e.g., green for

actors, yellow for processes, and red for tasks. Color shades

distinguish between activities of the same type. Black arrows

represent messages sent and gray dashed arrows indicate

who created an entity. Black bars with two white arrows

are a custom visualization for channels. The visualization is

chosen via an optional map using an entity type’s label.

(1) an agnostic visualization of interactions between entities

in a program, and (2) a visualization speciic to the actor

model which shows the execution of actor turns and their

causal relationships based on the messages sent in a turn.

6.3.1 System Interaction Visualization

The system interaction visualization shows how entities com-

municate with each other. Figure 4 shows a screenshot of

the visualization. Activities are visualized as rectangles with

rounded corners. Depending on the number of activities cre-

ated from the same source location, the visualization groups

the activities. Furthermore, the debugger chooses a diferent

color range depending on the activity type. On the other

hand, the icon in front of an activity’s name is directly spec-

iied as part of the meta data (cf. ig. 3). An ActivityType

includes a name for an icon, for which the debugger can then

determine a suitable visualization.

Passive entities are visualized with custom SVG graphics.

Figure 3 shows channels as two white arrows on top of a

black bar. The visualization is generated in the debugger

and matched to a PassiveEntityType based on its label.

The goal was to make these entities easier to recognize. The

design tradeof here is between including more meta data

in the protocol and leaving room for the debugger to add

custom visualizations like this. We decided that the simplest

would be to have an extensible map in the debugger to select

a speciic visualization for entities it is aware of.

The gray-dashed arrows between entities, i.e., activities or

passive entities, are determined based on their creation infor-

mation. The visualization does not show dynamic scopes. It

merely uses them to identify the connection between entities.

! Platform ! Pong ! Ping

Figure 5. Screenshot of the actor turn visualization in Kóm-

pos. Each actor is shown on a lane with its turns indicated as

circles. Lines between turns indicate message sends. When

expanding a turn, it shows the order of the messages sent.

Actor and channel messages are not shown because we do

not record their creation, but rather the speciic send/receive

operations. Thus, the visualization itself is agnostic from

the concurrency models, but it depends on how the data is

encoded in trace events for a speciic concurrency model.

Send/receive events are used for the black arrows. Entities

exchanging more messages are displayed closer together.

Overall, the system interaction visualization is indepen-

dent of speciic concurrency models. It just uses the knowl-

edge about activities, dynamic scopes, passive entities, cre-

ation operations, and send/receive operations to generate

a graph representing the systems interaction. For most as-

pects, the debugger independently visualizes the elements,

colors, and icons considering only meta data provided by the

interpreter. However, to provide the extra bit of polish, i.e.,

to provide an iconic representation of channels, it includes a

map of additional visualizations that matches entity type la-

bels.We consider this design a reasonable tradeof that shows

that small customizations are possible, but a concurrency-

agnostic visualization is feasible.

6.3.2 Actor Turn Visualization

Figure 5 shows our second visualization which is inspired

by the processes view in Causeway [Stanley et al. 2009]. The

goal of this visualization is to show the causality between

turn executions and messages. It visualizes each actor in

the system on a lane, on which its turns are indicated as

circles. A line indicates the message that caused a turn.When

inspecting a speciic turn, it unfolds into an ellipse and shows

sent messages (as rectangles) in the order they were sent. The

messages connect with arrows to the turns on the receiving

actor that processes them.

While this visualization is speciic to the actor model,

parsing and interpreting of the trace events is still done in

an agnostic way. Only after obtaining the data, the Kómpos

debugger uses the meta data to determine which activities

are actors, which dynamic scopes are turns, and which send

operations are actor messages.

This visualization is speciic to the notion of communicat-

ing event loops, and its implementation makes assumptions

10
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aboutwhich interactions are possible. Nonetheless, it is based

on Lamport’s general happens-before relationship [Lamport

1978], which can be applied to other concurrency models,

too. Moreover, its implementation in Kómpos is based on the

abstract notions of the protocol, and merely ilters out the

actor-related trace events. Thus, it seems feasible to extent

it to other concurrency models, especially if they use for

instance transactions or object monitors as dynamic scopes,

to indicate their causal relations.

6.4 Conclusion

The evaluation shows that the Kómpos protocol is abstract

enough to support arbitrary breakpoints and stepping op-

erations independent from a speciic concurrency model.

Furthermore, the provided data is generic enough for tools

that are agnostic of the concurrency models as shown with

our system interaction view. However, it remains possible to

build tools speciic to a concurrency model by interpreting

the meta data, as we have shown with the actor turn view.

7 Related Work

This section discusses concurrent debuggers and novel IDE

designs that inluenced our work or that are closely related.

Debugger protocols similar to ours and their limitations have

been discussed in section 2.1. Generally, their support for

concurrency models is minimal and they do not provide any

facilities for custom breakpoint or stepping types, while the

Kómpos protocol is designed for this purpose.

7.1 Concurrent Debuggers

Debuggers for concurrent and parallel systems have a long

history [McDowell and Helmbold 1989]. This includes sup-

port for breakpoints, stepping, and visualizing of parallel

systems. However, to the best of our knowledge, so far, no

debugger supports a wide range of concurrency models.

REME-D [Gonzalez Boix et al. 2014] is the closest related

work. It is also an online debugger focusing on distributed

communicating event-loop programs, that uses a meta-pro-

gramming API to realize breakpoints and stepping semantics.

Our actor breakpoint and stepping operations are reminis-

cent of REME-D’s ones. However, REME-D’s API is speciic

to the actor model, and does not abstract from concurrency

concepts as the Kómpos protocol does.

Erlang8 and ScalaIDE9 support basic debugging of actor

programswith sequential stepping and breakpoints. ScalaIDE

also includes an option to follow a message send and stop in

the receiving actor. However, neither of them attempts to go

beyond this basic debugger functionality.

Zyulkyarov et al. [2010] introduced a debugger for a trans-

actional system. The focus of their work is to ensure that

8Debugger , Ericsson AB, access date: 2017-05-16, http://erlang.org/doc/app

s/debugger/debuggerchapter.html
9Asynchronous Debugger , ScalaIDE, access date: 2017-05-16, http://scala-i

de.org/docs/current-user-doc/features/async-debugger/index.html

the STM implementation does not interfere with the debug-

ging experience, and that stepping over or into transactions

works naturally. Furthermore, they provide mechanisms for

conlict-point discovery and debug-time transactions. Our

work, however, focuses on advanced breakpoint and stepping

semantics. Their advanced debugging mechanisms would be

highly interesting for Kómpos, too.

Early prototypes of the Kómpos debugger were presented

by Torres Lopez et al. [2016] and Marr et al. [2017]. However,

this was only an exploration of initial ideas and did not yet

include any work on the Kómpos protocol.

7.2 Novel IDE Designs

Projects such as the Language Server Protocol,10 which is

implemented by Visual Studio Code, and Monto [Keidel et al.

2016] try to change how we think about integrated devel-

opment environments (IDEs). Instead of using the plugin

approach common to Eclipse or Visual Studio, they provide

support for languages by providing a common protocol to

exchange information for code completion, code errors, and

other common IDE services. We consider their design an

inspiration for this work. However, neither the language

server protocol nor Monto support debugging at this point.

With respect to lexible debuggers, Ressia et al. [2012]

explored how to bring the abstraction level from a stack-

centered view to the object level introducing higher-level

stepping operations and breakpoints. Chiş et al. [2015] fol-

lowed this line of work with a debugger framework for

domain-speciic debuggers. They support domain-speciic

breakpoints, stepping operations, and debugger views. For

example, they have a debugger for a parser framework to step

through the parsing process on the level of the parser rules

instead of the parser implementation. Similarly, they have a

debugger for a complex notiication system to step through

the activations of the subscriptions to notiications instead

of working on the basic notion of method calls and callbacks.

Instead of providing a framework for building debuggers,

our work focuses on the protocol between the debugger and

the interpreter. To our understanding, our protocol supports

all required elements to also support their domain-speciic

breakpoint and stepping operations. However, we do not

provide a framework to build custom debugger interfaces as

they do.

8 Conclusion and Future Work

To enable better debugging tools for complex concurrent ap-

plications, we propose the Kómpos protocol, a concurrency-

agnostic debugger protocol. The protocol abstracts from spe-

ciic concurrency models to support custom breakpoints,

stepping operations, and visualizations, without requiring

support for the speciic concurrency models.

10Language Server Protocol, Microsoft, access date: 2017-05-16, https://gith

ub.com/Microsot/language-server-protocol
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Based on our study of shared-memory andmessage-passing

models, the protocol represents concurrency concepts in

terms of activities, dynamic scopes, and passive entities. It

uses opaque meta data to allow the debugger to determine

where breakpoints or stepping operations are applicable.

The protocol also includes the notion of send and receive

operations to, e.g., visualize concurrent interactions.

To evaluate the protocol, we implemented it in the Kómpos

debugger and SOMns. SOMns supports the ive major con-

currency models: threads and locks, communicating event

loops, communicating sequential processes, fork/join paral-

lelism, and software transactional memory. We implemented

21 breakpoints and 20 stepping operations in SOMns for

these models, without requiring any modiications to the

debugger, which shows that the protocol is concurrency ag-

nostic. We also implemented two visualizations. The irst one

shows the concurrent interactions independently of the con-

currency models. The second one shows causalities between

actor turns, messages, and their ordering, which is speciic

to the communicating event-loop model. This demonstrates

that the protocol is lexible enough to enable advanced de-

bugging tools that are concurrency agnostic, while it remains

possible to build tooling speciic to a concurrency model.

Based on this work, existing debugger protocols could be

extended to provide advanced debugging support for con-

current programming, without requiring support for speciic

concurrency models. This provides a foundation for better

tooling and debuggers for complex concurrent systems that

combine concurrency models.

For future work, we would like to study how to enable

arbitrary libraries to beneit from such a generic protocol.

The challenge here is to expose the relevant data about con-

cepts and their relation to library methods to the interpreter

so that it can be communicated to the debugger. Especially

in dynamic languages, it needs to be able to expose this

information at runtime.

Further work is also required to make the visualization

scalable to large applications. We need to ind ways to ex-

plore complex systems and focus on relevant details, and we

need to investigate ways to provide the relevant data ei-

ciently. Future work also needs to study how to efectively

expose the large number of concurrency-speciic debugger

features to users, and whether they help to debug concurrent

applications more efectively.
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