
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Mercier, Daniel and Chawdhary, Aziem and Jones, Richard E. (2017) dynStruct: An automatic
reverse engineering tool for structure recovery and memory use analysis. In: 2017 IEEE 24th
International Conference on Software Analysis, Evolution and Reengineering (SANER). Institute
of Electrical and Electronics Engineers pp. 497-501. ISBN 978-1-5090-5502-9.

DOI

https://doi.org/10.1109/SANER.2017.7884661

Link to record in KAR

http://kar.kent.ac.uk/63700/

Document Version

Author's Accepted Manuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/189717592?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

dynStruct: An Automatic Reverse Engineering Tool

for Structure Recovery and Memory Use Analysis

Daniel Mercier

University of Kent, UK

ampotos@gmail.com

Aziem Chawdhary

University of Kent, UK

A.A.Chawdhary@kent.ac.uk

Richard Jones

University of Kent, UK

R.E.Jones@kent.ac.uk

Abstract—dynStruct is an open source structure recovery
tool for x86 binaries. It uses dynamic binary instrumentation
to record information about memory accesses, which is then
processed off-line to recover structures created and used by the
binary. It provides a powerful web interface which not only
displays the raw data and the recovered structures but also allows
this information to be explored and manually edited. dynStruct
is an effective tool for analyzing programs as complex as emacs.
A demonstration video is available at: http://bit.ly/2gQu26e

I. INTRODUCTION

Reverse engineering is the process of understanding the

behaviour and logic of a program without access to its source

code. Reverse engineers are routinely employed by government

and commercial organisations to ensure programs are compliant

with software licensing, security policies and to identify

exploitable vulnerabilities and backdoors [1]. The key goal

of reverse engineering is to extract enough information from

a program to understand its behaviour: such information can

include memory usage, data structures created and manipulated,

network usage and interaction with the host operating system

via system calls. A typical task for a reverse engineer is to

understand the control flow and memory usage of an application

and thus identify how the program behaves. However, much

of the work undertaken by a reverse engineer is manual and

time consuming. Reverse engineers routinely use tools such as

debuggers, disassemblers and profiling tools.

dynStruct is an open source tool that helps recover data

structures created and used by an executable binary. Identifying

data structures is a key task undertaken by many reverse

engineers. However, structure recovery is challenging for a

number of reasons: compilation can remove useful information

such as unexported symbol information, type and size infor-

mation of variables and structures. In addition to the problems

of recovering structures, the control flow of a program is

difficult to determine through static analysis. Data structures

are commonly used in different ways in different parts of

the program, hence understanding control flow is crucial to

correctly identifying the data structures manipulated during

program execution.

dynStruct uses dynamic analysis and thus avoids the need

to recover the control flow of a program before performing

useful analyses: this is in contrast to static analysis which

requires the computation of control flow information prior

to further analysis. By using dynamic analysis, dynStruct

can also attempt to analyse obfuscated programs which is

a major hurdle for static analysis based tools [2]. Since

dynStruct is focused on data structure recovery, it uses dynamic

binary instrumentation (DBI) to gather information about

memory allocation and accesses. DBI generates vast amounts

of data, making manual inspection infeasible. Thus our tool

processes information offline before presenting it to the user.

Offline analysis reconstructs C-like structures and arrays, and

determines where they are allocated and accessed. Engineers

can use dynStruct’s powerful web-based interface to explore

recovered data structures to discover how structures and their

fields are accessed.

Our goal is to support real world reverse engineering, e.g. in

capture-the-flag security contests (ctftime.org/ctf-wtf), where

both speed and accuracy of structure recovery are important.

Full details of dynStruct can be found in Mercier’s thesis [3].

II. RELATED WORK

We highlight notable work on recovering data structures from

binaries. Laika [4] is a Bayesian unsupervised learning system

that recovers structures from memory dumps. It is sufficiently

accurate for use in malware analysis but dynStruct requires

greater accuracy to aid program understanding.

Rewards [5] instruments memory allocations with type

attributes which it propagates during analysis. Information from

standard library and system calls helps determine the types

used by the program. Rewards fails to recover data structures

if there is no interaction with known libraries or system calls.

Howard [6] identifies root pointers of data structures from

memory allocation routines and statically allocated data. Arrays

and structure member types are detected at run-time by

searching for specific memory access patterns. Howard claims

around 90% accuracy for heap structures and 80% for stack

structures. In contrast, dynStruct does not use access patterns

but instead records the size of each memory access for offline

processing. This allows dynStruct to recover structures accurate

sized from only one run of the program. In contrast, Howard

needs multiple runs to obtain good accuracy, and its use of the

KLEE execution engine [7] leads to a heavy overhead.

TIE [8] uses both static analysis to recover functions and

function boundaries, and dynamic analysis of memory accesses

to determine the positions of structure members. Its constraint

solver recovers the types of structures and their fields. dynStruct

does not need to recover function boundaries and records

http://bit.ly/2gQu26e
ctftime.org/ctf-wtf

Figure 1. Overview of dynStruct

contextual information for every memory access allowing more

accurate type recovery.

Robbins [9] shows how to mathematically characterise the

correctness of types recovered from a binary executable, using

constraint solving to decompile a binary to a semantically

equivalent type-safe C-like ‘witness’ program, thereby giving

confidence that the recovered types are both correct and

meaningful. The work has been applied to an idealised x86

language.

Grammatech [10] use a sophisticated static type constraint

system to recover types from stripped binaries built on-top of

their proprietary CodeSurfer analysis tool.

Unlike dynStruct, none of these tools are publicly available.

III. DATA GATHERING

dynStruct consists of a data gatherer phase followed by an

offline structure recovery phase and presents the results to the

user via a web interface (Fig. 1). The data gatherer, written

in C, uses the DynamoRIO [11] DBI framework to record

every dynamic memory allocation and every access to these

allocations, along with some contextual information, and saves

this to a JSON file (Fig. 2). DynamoRIO was chosen because

of its portability (multi-OS and multi-architecture) and because

it is an open source project.

A. Allocation Monitoring

The data gatherer records information about dynamically

allocated memory: each call to malloc, realloc, calloc or free

is wrapped by pre- and post-call instrumentation. Pre-call

instrumentation records parameters used for each allocation and

deallocation. Post-call instrumentation records return values.

dynStruct can support other memory allocation routines but

the names must be the same as those provided by libc;

we intend to address this in future work. For performance,

dynStruct ignores allocations in library routines by default, but

the user can provide a list of libraries to be instrumented.

dynStruct terms an allocated region of memory a block. A

block is active until it is deallocated. When a block becomes

inactive it is moved from an AVL tree of active blocks to a

linked list which stores only inactive blocks. This handles

multiple allocations of the same memory region natively,

without time-stamps. Block information includes start and end

addresses, size, whether the block was freed, the location of

the wrapped call, etc.

Figure 2. Data gatherer architecture with exploded view of block recording

B. Access Monitoring

Every memory access executed by the program is instru-

mented. First, we check whether the address accessed is within

an active block. If so, the access is recorded and linked to

this block. The record includes the size of the load/store, the

number of times this access occurred, its offset within the

block, and information about the accessing instruction such as

the opcode and the opcode(s) of the context instruction (see

III-D).

C. Function Calls

For every interaction with memory, dynStruct records the

current function being executed, which dynamoRIO does not

provide. To overcome this, dynStruct records function addresses

in a stack. Function names are recovered via a hashmap of every

loaded symbol. To identify addresses of external functions,

dynStruct identifies the address of the target function by reading

the corresponding GOT section, which is detected at runtime

to handle position independent code.

D. Context

For each memory access two instructions are recorded: the

accessing instruction and a context instruction. The intention

is to assist type recovery in the structure recovery phase. For

a write, the previous instruction may provide information

about how the data was generated. For a read, the following

instruction may provide information on how the data is used.

Contextual information is important for self-modifying code,

which may generate instructions dynamically. Recording these

two instructions avoids complex analysis in the structure

recovery phase. Instrumentation is performed at the granularity

of basic blocks. Consequently, context instructions are not

available for writes at the start of a basic block or for reads at

the end. Nevertheless, because a member is typically read and

written many times, context instructions are usually available

for all structure members.

E. Data Recording and Output

dynStruct uses the memory management functions provided

by DynamoRIO to separate its data from the instrumented

program’s. By using a chunked, linked list of 4 KiB pages,

allocated on demand, dynStruct can run complex programs

under the data gatherer with feasible time and memory overhead.

Data is output every time the inactive blocks list reaches

100 blocks long. This keeps memory overhead low even for

long running programs. When program execution terminates

any remaining blocks, active or inactive, are written to the

output file. For example, without this optimization dynStruct

was unable to start an Emacs process with than 45K lines of

Lisp (configuration files and modules): after 15 minutes the

data gatherer stopped because it used more than 2 GiB of

RAM. With the optimization, the same Emacs process and

configuration started in 6 minutes and used a maximum of

only 400 MiB.

IV. STRUCTURE RECOVERY

Initially, every memory block is considered a structure but,

over five steps (Fig. 3), anything that does not look like a

structure is removed.

A. Step 1: Recover Member Types and Sizes

The first step is to analyse the raw data from the JSON file

to find the type of every member of every structure. This step

is split in two sub-steps: get the size of the access, then recover

the type.

a) Recovering Member Sizes: A member may be accessed

with multiple sizes, often because of initialization with memset

or compiler optimizations, so recovering the real size of each

member is the most important step of structure recovery.

dynStruct uses the heuristic that a member’s size is the size

most commonly used to access it. If this distribution of sizes

is multi-modal, the smallest size is used. This mainly happens

because of string manipulation with XMM registers.

b) Recovering the Type: The type of a member is

determined from the accessing and context instructions. The

opcodes recorded by the data gatherer are disassembled using

Capstone [12], a universal disassembly framework. Every

access is typed, and the most frequent type is retained as

the type of the member. The analysis for a write/read is based

on checking whether the previous/next instruction respectively

provides information that can be exploited to detect its type.

Figure 3. Structure recovery process

c) Block Comparison: Usually multiple instances of a

structure are allocated during the execution of a program. To

avoid repeating the recovery process on every instance of the

same structure, dynStruct compares the types and sizes of

members, block by block. If one of the two blocks has a “hole”

instead of a member, the two blocks are still considered as

instances of the same structure (because some instances can

have unaccessed members). There are only two cases where

types can be different but two blocks are still considered as

instances of the same structure: if one block has a default

type of a pointer size and the other has a pointer or a pointer

to function, or if one block has a simple pointer and the

other a pointer to function. If two blocks are deemed to be

instances of the same structure, they are merged. The merge

fills holes with members of the second block when available,

and replaces less meaningful types (default type of pointer

size and simple pointer) by more meaningful ones (pointer or

pointer to function).

B. Step 2: Fill with Padding

At this stage there may be “holes” in recovered structures.

Because the accesses are retrieved from only one execution

of the program, some access paths may not have been

used: without accesses, dynStruct cannot recover members.

The compiler may also add padding to satisfy alignment

requirements. dynStruct fills these holes with padding, arrays

of uint8_t.

C. Step 3: Array Detection

So far, only individual members have been recovered, but

merging consecutive members which have the same type into

an array can increase readability. dynStruct simply replaces

a sufficiently long sequence of members of the same type

with an array of the same size; the type of the array is that

of its members. As it is common for a structure to have a

few members of the same type — for example, a coordinate

may be a pair of integers — dynStruct assumes that arrays

have at least 5 members. Even if this assumption is wrong,

the structure’s layout will still be correct. It would be possible

to remove this restriction by examining access patterns in the

data gatherer to reveal inner structures.

D. Step 4: Detecting Arrays of Structures

Similarly, consecutive structures are replaced by an array of

structures. Detecting this pattern requires multiple passes until

no new array is detected. This allows the discovery of arrays

of structures where the inner structure contains another array

of structures, etc.

E. Step 5: Fusing Array-like Structures

This last step removes every structure considered to be

an array. A structure is considered to be an array if all its

members are of the same recovered type or padding. This

step can be disabled with a run-time option, as necessary.

For structure recovery, showing (typically, many) arrays can

obscure important structures in the flow of information. But,

for memory use analysis, retaining arrays provides important

information about how memory is used.

F. Output

The recovered structures can be written to a file or on the

console with a C header style. It is also possible to serialize

the recovered structures, loaded blocks and accesses. This

allows starting the web interface later directly by loading this

serialized file without having to re-run the recovery process.

V. WEB INTERFACE

dynStruct’s web interface provides a powerful and easy to

use tool, linking the raw data and structures recovered to allow

a reverser to explore memory usage. A web interface has the

advantage of portability and allows collaborative exploration.

Data can be obtained either directly from the data gatherer

(via the JSON file) and analyser or, more quickly, load from a

serialized file.

To help the reverser find data quickly, it is presented in

tables, which can be sorted using any column as the key (for

example, access size, or the name of a function that called

malloc). Fig. 4 shows an example. Rows can be filtered using

search boxes in each column. As well as displaying the data

in an effective way, the web interface needs to be reactive,

even with hundreds of thousands or more recorded accesses.

Processing that amount of data in the browser (in JavaScript)

is clumsy; for 700,000 entries any sorting or filtering action

would take more than twenty seconds. To avoid that, all the

sorting and filtering is done in Python before sending the data

to the web interface.

The web interface allows structures to be edited easily,

e.g. if a reverser wants to rename a structure member or

change its type to improve readability or capture some

semantic knowledge. The reverser can also add or remove

members, or modify their size. The size of a complete structure

cannot be changed, but new ones can be created and existing

ones removed. This can be useful where structure recovery

considered two similar blocks to be instances of the same

structure, but the reverser wants to separate them as they are

semantically different. The only condition for adding a block

as instance of a structure is that it is the same size as the

structure’s other instances. All the modifications made in the

web interface are automatically saved in the serialized file.

VI. RESULTS

We measured dynStruct’s accuracy using a suite of small

and large programs. Small programs present a tougher test

for structure recovery since its accuracy depends on how

many times and in how many places a structure is used.

‘Real’ programs were used to measure performance and

memory overhead. All the tests were performed on a freshly

setup VMware virtual machine running 64-bit Ubuntu 16.04

(kernel 4.4), with 4GiB RAM and 2 processors. The only

packages installed were those needed by dynStruct and the test

program.

dynStruct’s overheads are not related simply to the size of

the instrumented program but to the number of allocations

made and how these are accessed. The data gatherer’s memory

overhead varied between 4× for emacs (Tab. I) and 20×

for small programs, much of which is due to DynamoRIO’s

and dynStruct’s libraries. The performance overhead varies

between 20× and 50× that of the original program. The cost

of structure recovery depends on the size of the JSON file but

dynStruct’s performance certainly makes it a useful tool for

small and medium sized programs — one of the authors has

used it successfully in real time in capture-the-flag contests.

Obviously, the cost of data gathering and structure recovery

may be expensive for long running programs, especially if

a specific action has to be taken to trigger the behaviour to

analyse.

We examined the accuracy of structure recovery against the

suite of programs use by Robbins [9], excluding those that

did not allocate structures. dynStruct’s accuracy is good but

not perfect, correctly recovering 20/22 structures. It matched

48/61 members exactly and the remaining 13 partially, i.e. with

the correct size but not the wrong type. In one example, an

array of pointers was recovered as a mixture of int64_t and

pointer types because not every element had the same context.

In another, two semantically distinct but similar structures were

recognised as instances of the same structure. dynStruct also

misrecovered a structure consisting of a sequence of identical

types as an array.

Figure 4. Web interface: structure view

Table I
OVERHEAD RESULTS FOR THE DATA GATHERER AND THE RECOVERY PROCESS (ARITHMETIC MEAN AND 95% CONFIDENCE INTERVALS). MEMORY

INCLUDES LIBRARY USAGE FOR THE PROGRAM, DYNAMORIO AND DYNSTRUCT. PERFORMANCE OVERHEAD INCLUDES THE TIME TO LOAD AND

INITIALISE DYNAMORIO, ABOUT 0.05S

Data gatherer Structure recovery

memory usage time gatherer memory recovery

program original dynStruct original dynStruct output used time

ls 2.4MiB 42MiB <0.01s 0.16s±0.02s 204KiB 28.5MiB 2.08s±0.14s

netstat 2.6MiB 42MiB 0.016s±0.01 0.33s±0.03s 6.6KiB 23.5MiB 0.18s±0s

emacs -q 27MiB 103.7MiB 0.20s±0.04s 56.59s±2.93 129MiB 2.9GiB 4h30

xterm -e ’exit’ 11MiB 68MiB 0.12s±0.01s 4.22s±0.07s 28MiB 900MiB 1h16±23.56

VII. CONCLUSION

dynStruct is a reverse engineering tool which can successfully

recover structures used by a program. Its powerful web interface

allows a reverse engineer to explore the raw data gathered and

the structures recovered. It has been included in WeakerThan

Linux 7, a custom security oriented Linux distribution (http:

//www.weaknetlabs.com/2016/07/wt7-updater-stable.html. dyn-

Struct is available at https://github.com/ampotos/dynStruct.

REFERENCES

[1] J. Baldwin, A. Teh, E. Baniassad, D. Van Rooy, and Y. Coady,
“Requirements for tools for comprehending highly specialized assembly
language code and how to elicit these requirements,” Requirements

Engineering, vol. 21, no. 1, pp. 131–159, 2016.

[2] S. Schrittwieser, S. Katzenbeisser, J. Kinder, G. Merzdovnik, and
E. Weippl, “Protecting software through obfuscation: Can it keep pace
with progress in code analysis?” ACM Comput. Surv., vol. 49, no. 1, pp.
4:1–4:37, July 2016.

[3] D. Mercier, “dynStruct: An automatic reverse engineering tool for
structure recovery and memory use analysis,” Master’s thesis, University
of Kent, Nov. 2016. [Online]. Available: http://kar.kent.ac.uk/58461/

[4] A. Cozzie, F. Stratton, H. Xue, and S. King, “Digging for data structures.”
in Operating Systems Design and Implementation, 2008, pp. 255–266.

[5] Z. Lin, X. Zhang, and D. Xu, “Automatic reverse engineering of data
structures from binary execution,” in Information Security Symposium

(CERIAS), 2010, p. 5.
[6] A. Slowinska, T. Stancescu, and H. Bos, “Howard: A dynamic excavator

for reverse engineering data structures.” in Network and Distributed

System Security Symposium (NDSS), 2011.
[7] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and automatic

generation of high-coverage tests for complex systems programs,” in
Operating Systems Design and Implementation. USENIX, 2008, pp.
209–224.

[8] J. Lee, T. Avgerinos, and D. Brumley, “Tie: Principled reverse engineering
of types in binary programs,” in Network and Distributed System Security

Symposium (NDSS). Internet Society, 2011.
[9] E. Robbins, A. King, and T. Schrijvers, “From minx to minc: semantics-

driven decompilation of recursive datatypes,” in Principles of Program-

ming Languages (POPL). ACM, 2016, pp. 191–203.
[10] M. Noonan, A. Loginov, and D. Cok, “Polymorphic type inference for

machine code,” in Programming Languages Design and Implementation

(PLDI). ACM, 2016, pp. 27–41.
[11] D. Bruening, Q. Zhao, and S. Amarasinghe, “Transparent dynamic

instrumentation,” in Virtual Execution Environments (VEE). ACM,
2012, pp. 133–144.

[12] “Capstone engine,” http://www.capstone-engine.org.

http://www.weaknetlabs.com/2016/07/wt7-updater-stable.html
http://www.weaknetlabs.com/2016/07/wt7-updater-stable.html
https://github.com/ampotos/dynStruct
http://kar.kent.ac.uk/58461/
http://www.capstone-engine.org

	Introduction
	Related Work
	Data Gathering
	Allocation Monitoring
	Access Monitoring
	Function Calls
	Context
	Data Recording and Output

	Structure Recovery
	Step 1: Recover Member Types and Sizes
	Step 2: Fill with Padding
	Step 3: Array Detection
	Step 4: Detecting Arrays of Structures
	Step 5: Fusing Array-like Structures
	Output

	Web Interface
	Results
	Conclusion
	References

