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Deep Convolutional Neural Networks for Raman Spec-

trum Recognition: A Unified Solution

Jinchao Liu,a‡ Margarita Osadchy,b Lorna Ashton,c Michael Foster,d‡ Christopher J.

Solomon, e and Stuart J. Gibson,e∗

Machine learning methods have found many applications in Raman spectroscopy, especially for

the identification of chemical species. However, almost all of these methods require non-trivial

preprocessing such as baseline correction and/or PCA as an essential step. Here we describe

our unified solution for the identification of chemical species in which a convolutional neural net-

work is trained to automatically identify substances according to their Raman spectrum without the

need for preprocessing. We evaluated our approach using the RRUFF spectral database, com-

prising mineral sample data. Superior classification performance is demonstrated compared with

other frequently used machine learning algorithms including the popular support vector machine

method.

1 Introduction

Raman spectroscopy is a ubiquitous method for characterisation

of substances in a wide range of settings including industrial pro-

cess control, planetary exploration, homeland security, life sci-

ences, geological field expeditions and laboratory materials re-

search. In all of these environments there is a requirement to

identify substances from their Raman spectrum at high rates and

often in high volumes. Whilst machine classification has been

demonstrated to be an essential approach to achieve real time

identification, it still requires preprocessing of the data. This is

true regardless of whether peak detection or multivariate meth-

ods, operating on whole spectra, are used as input. A standard

pipeline for a machine classification system based on Raman spec-

troscopy includes preprocessing in the following order: cosmic

ray removal, smoothing and baseline correction. Additionally, the

dimensionality of the data is often reduced using principal com-

ponents analysis (PCA) prior to the classification step. To the best

of our knowledge, there is no existing work describing machine

classification systems that can directly cope with raw spectra such

as those affected significantly by baseline distortion.

In this work we focus on multivariate methods, and introduce
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the application of convolutional neural networks (CNNs) in the

context of Raman spectroscopy. Unlike the current Raman analy-

sis pipelines, CNN combines preprocessing, feature extraction and

classification in a single architecture which can be trained end-to-

end with no manual tuning. We show that CNN not only greatly

simplifies the development of a machine classification system for

Raman spectroscopy, but also achieves significantly higher accu-

racy. In particular, we show that CNN trained on raw spectra

significantly outperformed other machine learning methods such

as support vector machine (SVM) with baseline corrected spectra.

Our method is extremely fast with a processing rate of one sample

per millisecond ∗.

The baseline component of a Raman spectrum is caused pri-

marily by fluorescence, can be more intense than the actual Ra-

man scatter by several orders of magnitude, and adversely affects

the performance of machine learning systems. Despite consider-

able effort in this area, baseline correction remains a challenging

problem, especially for a fully automatic system1.

A variety of methods for automatic baseline correction have

been used such as polynomial baseline modelling1, simulation-

based methods2,3, penalized least squares4,5. Lieber et al.1 pro-

posed a modified least-squares polynomial curve fitting for fluo-

rescence subtraction which was shown to be effective. Eilers et

al.6 proposed a method called asymmetric least square smooth-

ing. One first smooths a signal by a Whittaker smoother to get

an initial baseline estimation, and then applies asymmetric least

square fitting where positive deviations with respect to baseline

estimate are weighted (much) less than negative ones. This has

∗ Software processing time only. Not including acquisition of Raman signal from spec-

trometer.
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been shown to be a useful method, and in principle can be used

for automatic baseline correction, although it may occasionally

require human input. Kneen et al.2 proposed a method called

rolling ball. In this method one imagines a ball with tunable ra-

dius rolling over/under the signal. The trace of its lowest/highest

point is regarded as an estimated baseline. A similar methods is

rubber band3 where one simulates a rubber band to find the con-

vex hull of the signal which can then be used as a baseline estima-

tion. Zhang et al.4 presented a variant of penalized least squares,

called adaptive iteratively reweighted Penalized Least Squares (air-

PLS) algorithm. It iteratively adapts weights controlling the resid-

ual between the estimated baseline and the original signal. A de-

tailed review and comparison of baseline correction methods can

be found in Schulze et al.7.

Classification rates have been compared for various machine

learning algorithms using Raman data. The method that is fre-

quently reported to outperform other algorithms is support vec-

tor machines (SVM)8. An SVM is trained by searching for a

hyperplane that optimally separates labelled training data with

maximal margin between the training samples and the hyper-

plane. Binary (two class) and small scale problems in Raman

spectroscopy have been previously addressed using this method.

A large proportion of these related to applications in the health

sciences, use a non-linear SVM with a radial basis function ker-

nel, and an initial principal component analysis (PCA) data re-

duction step. In this context SVM was shown to: outperform lin-

ear discriminant analysis (LDA) and partial least squares discrim-

inant analysis (PLS-LDA) in breast cancer diagnosis9, successfully

sort unlabelled biological samples into one of three classes (nor-

mal, hyperplastic polyps or adeno-carcinomas)10 and discrimi-

nate between three species of bacteria using a small number of

training and test examples11. Although multiclass classification

is possible using SVM, in practice training a non-linear SVM is in-

feasible for large scale problems involving thousands of classes.

Random forests (RF)12 represent a viable alternative to SVM for

high dimensional data with a large number of training examples.

RF is an ensemble learning method based on multiple decision

trees that avoids overfitting the model to the training set. This

method generated a lot of attention in the machine learning com-

munity in last decade prior the widespread popularity of CNN.

However when compared with PCA-LDA and RBF SVM on Ra-

man microspectroscopy data13 it performed poorly. The method

previously applied to spectral classification problems that is clos-

est to our own approach is fully connected artificial neural net-

works (ANN). Unlike CNN, ANN is a shallow network architec-

ture which does not have enough capacity to solve large scale

problems. Maquel et al.14 determined the major groupings for

their data prior to a multilayered ANN analysis. Their study con-

cluded that vibrational spectroscopic techniques are well suited to

automatic classification and can therefore be used by nonexperts

and at low cost.

A drawback associated with the methods previously used is

that they require feature engineering (or preprocessing) and don’t

necessarily scale easily to problems involving a large number of

classes. Motivated by the recent and widespread success of CNNs

in large scale image classification problems we developed our net-

Table 1 Summary of Raman datasets used in classification studies

Problems #Classes #Spectra Baseline Removal

Sattlecker et al. 9 2 1905 N/A♣

Kwiatkowski et al. 18 10 N/A Yes

Carey et al. 16 1215 3950 Yes

Ours #1 1671 5168 Yes

Ours #2 512 1676 No

1 ♣ Note that in this work special filtering methods were developed
to discard spectra of bad quality which account for 80% of the total
amount.

work architecture for the classification of 1D spectral data. A suit-

able dataset to test the efficacy of the CNN is the RRUFF mineral

dataset. Previous work15,16 has focused on identifying mineral

species contained in this dataset using nearest neighbor meth-

ods with different similarity metrics such as cosine similarity and

correlation (also used in commercial softwares such as Crystal-

Sleuth). Carey et al.16 achieved a species classification accuracy

on a subset of the RRUFF database17 of 84.8% using a weighted

neigbour (WN) classifier. Square root squashing, maximum in-

tensity normalisation, and sigmoid transformations were applied

to the data prior to classification. Accuracy was determined using

cross validation with semi-randomised splits over a number of tri-

als. The WN classifier compared favourably with the k = 1 nearest

neighbour (82.1% accuracy) on which the CrystalSleuth match-

ing software is believed to be based. In Table 1 we summarise the

sample data used in our own work and in some previous Raman

based spectral classification studies.

2 Materials and Methods

CNNs have become the predominant tool in a number of research

areas - especially in computer vision and text analysis. An ex-

tension of the artificial neural network concept19, CNNs are non-

linear classifiers that can identify unseen examples without the

need for feature engineering. They are computational models20

inspired by the complex arrangement of cells in the mammalian

visual cortex. These cells are stimulated by small regions of the

visual field, act as local filters, and encode spatially localised re-

gions of natural signals or images.

CNNs are designed to extract features from an input signal

with different levels of abstraction. A typical CNN includes con-

volutional layers, which learn filter maps for different types of

patterns in the input, and pooling operators which extract the

most prominent structures. The combination of convolutional

and pooling layers extracts features (or patterns) hierarchically.

Convolutional layers share weights which allow computations to

be saved and also make the classifier invariant to spatial trans-

lation. The fully connected layers (that follow the convolutional

and pooling layers) and the softmax output layer can be viewed as

a classifier which operates on the features (of the Raman spectra

data), extracted using the convolutional and pooling layers. Since

all layers are trained together, CNNs integrate feature extraction

with classification. Features determined by network training are
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Fig. 1 Diagram of the proposed CNN for spectrum recognition. It consists of a number of convolutional layers for feature extraction and two

fully-connected layer for classification.

optimal in the sense of the performance of the classifier. Such

end-to-end trainable systems offer a much better alternative to a

pipeline in which each part is trained independently or crafted

manually.

In this work, we evaluated the application of a number of

prominent CNN architectures including LeNets21, Inception22

and Residual Nets23 to Raman spectral data. All three showed

comparable classification results even though the latter two have

been considered superior to LeNet in computer vision applica-

tions. We adopted a variant of LeNet, comprising pyramid-

shaped convolutional layers for feature extraction and two fully-

connected layers for classification. A graphical illustration of the

network is shown in Figure 1.

2.1 CNN for Raman Spectral Data Classification

The input to the CNN in application to Raman spectrum classifi-

cation is one dimensional and it contains the entire spectrum (in-

tensity fully sampled at regularly spaced wavenumbers). Hence

we trained one-dimensional convolutional kernels in our CNN.

For our convolutional layers, we used LeakyReLU24 nonlinear-

ity, defined as

f (x) =

{

x, if x > 0

ax, otherwise
(1)

Formally, a convolutional layer can be expressed as follows:

y j = f

(

b j +∑
i

ki j ∗ xi

)

,

where xi and yi are the i-th input map and the j-th output map,

respectively. ki j is a convolutional kernel between the maps i and

j, ∗ denotes convolution, and b j is the bias parameter of the j-th

map.

The convolutional layer is followed by a max-pooling layer, in

which each neuron in the output map yi pools over an s×1 non-

overlapping region in the input map xi. Formally,

yi
j = max

0≤m<s
{xi

j·s+m}.

The upper layers of the CNN are fully connected and followed

by the softmax with the number of outputs equal to the number

of classes considered. We used tanh as non-linearity in the fully

connected layers. The softmax operates as a squashing function

that re-normalizes a K-dimensional input vector z of real values to

real values in the range [0,1] that sum to 1, specifically,

σ(z) j =
ez j

∑
K
k=1 ezk

for j = 1, ...,K.

To avoid overfitting the model to the data, we applied batch

normalization25 after each layer and dropout26 after the first

fully connected layer. Further details of the architecture are

shown in Figure 1.

2.2 CNN Training

Since the classes in the our experiments have very different num-

bers of examples, we used the following weighted loss to train the

CNN:

L (w,xn,yn) =−
1

N

N

∑
n=1

αn

K

∑
k=1

tkn lnykn (2)

where xn is a training spectrum, tn is the true label of the nth sam-

ple in the format of one-hot encoding, yn is the network prediction

for the nth sample, αn ∝ 1
#C and #C is the number of samples in

the class C that xn belongs to. N is the total number of samples

and K is the number of the classes.

CNN is a data hungry model. To reduce the data volume re-

quirements we use augmentation which is a very common ap-
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proach for increasing the size of the training sets for CNN train-

ing. Here, we propose the following data augmentation proce-

dure: (1) We shifted each spectrum left or right a few wavenum-

bers randomly. (2) We added a random noise, proportional to the

magnitude at each wave number. (3) For the substances which

had more than one spectra, we took linear combinations of all

spectra belonging to the same substance as augmented data. The

coefficients in the linear combination were chosen at random.

The training of the CNN was performed using Adam algo-

rithm27, which is a variant of stochastic gradient descent, for 50

epochs with learning rate equal to 1e-3, β1 = 0.9, β2 = 0.999, and

ε=1e-8. The layers were initialised from a Gaussian distribution

with a zero mean and variance equal to 0.05. We applied early

stopping to prevent overfitting. Training was performed on a sin-

gle NVIDIA GTX-1080 GPU. The training time was around seven

hours. While for inference, it took less than one millisecond to

process a spectrum.

2.3 Evaluation Protocol

We tested the proposed CNN method for mineral species recogni-

tion on the largest publicly available mineral database RRUFF17

and compared it with a number of alternative, well known, ma-

chine learning methods. As there are usually only a handful of

spectra available for each mineral, we use a leave-one-out scheme

to split a dataset into training and test sets. To be specific, for

minerals which have more than one spectra, we randomly select

a spectrum for testing and use the rest for training. We compared

our method to cosine similarity16/correction18 (which has been

used in commercial software such as CrystalSleuth and Spectral-

ID), and to other methods that have been shown to be success-

ful in classification tasks including applications based on Raman:

nearest neighbor, gradient boosting machine, random forest, and

support vector machine28.

The proposed CNN was implemented using Keras29 and Ten-

sorflow30. The gradient boosting machine method was imple-

mented based on lightGBM released by Microsoft. All other meth-

ods were implemented using on Scikit-learn31.

3 Results and Discussion

3.1 Classifying baseline-corrected spectra

We first evaluated our CNN method on a processed mineral

dataset from the RRUFF database. These spectra have been base-

line corrected and cosmic rays have also been removed. The

dataset contains 1671 different kinds of minerals, 5168 spectra in

total. Spectra for the mineral Actinolite are shown in Figure 2(a),

illustrating the typical within-class variance. The number of spec-

tra per mineral ranges from 1 to 40. The distribution of sample

numbers per a mineral species is shown in Figure 2(b). We fol-

lowed the protocol as described in section 2.3 to generate training

and test sets randomly using the leave-one-out scheme.

In a large scale classification, some classes could be quite sim-

ilar and differentiating between them could be very difficult or

even impossible. Hence, it is common to report top-1 and top-k

accuracy. In the former, the class that the classifier assigns the

highest probability to is compared to the true label. The latter

reports whether the true label appears among the k classes with

the highest probability (assigned by the classifier).

We report in Table 2, the top 1, 3 and 5 accuracies of the com-

pared methods, averaged over 50 independent runs. One can see

that CNN outperformed all other methods and achieved top-1 ac-

curacy of 88.4% and top-3 accuracy of 96.3%. The difference in

classification accuracy between CNN and the second best method

is statistically significant, t(50) = 71.78, p < 0.001.
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(a) Spectra of Actinolite 17.
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(b) Number of spectra per mineral of the whole dataset.

Fig. 2 (a) Spectra of an example mineral species (Actinolite) indicating

the within class spectrum variation and (b) a frequency plot showing the

imbalance regarding spectra per species.

To understand the trained model of CNN better, we also closely

examined typical predictions, especially where these did not

agree with the correct labelling. In Figure 3 the top spectrum

in each set is the test sample (shown in red) which is followed

by the top-3 predictions given by the CNN. The correct prediction

is highlighted in green. We also show scores in each plot which

reflect the confidence level of predictions. Figure 3(a) shows the

examples where the CNN made the correct prediction. Figure

3(b) shows the examples in which the correct prediction is scored

second. In Figure 3(c), the top-3 predictions do not include the

correct label.

As shown in Figure 3(a), the CNN successfully predicted the

correct mineral, actinolite, and also ranked Ferroactinolite and

Tremolite as the second and third probable candidates. In fact,

all these three minerals are members of the same mineral group.

This is not uncommon. For instance, in Figure 3(b), the most

probable mineral Montebrasite (as predicted by the CNN) belongs

to the same group as the correct one, Amblygonite, and they share

similar spectral structure.

If we examine the peak similarity, for instance in Figure 3(c),

the peak locations of the top-1 prediction, Hydrokenoelsmoreite,
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Table 2 Test accuracy of the compared machine learning methods on the baseline corrected dataset

Methods KNN(k=1) Gradient
Boosting

Random
Forest†

SVM(linear) SVM(rbf) Correlation CNN†

Top-1 Accuracy 0.779±0.011 0.617±0.008 0.645±0.007 0.819±0.004 0.746±0.003 0.717±0.006 0.884±0.005

Top-3 Accuracy 0.780±0.011 0.763±0.011 0.753±0.010 0.903±0.006 0.864±0.006 0.829±0.005 0.953±0.002

Top-5 Accuracy 0.780±0.011 0.812±0.010 0.789±0.009 0.920±0.003 0.890±0.007 0.857±0.005 0.963±0.002
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(d) Failed, partially matching

Fig. 3 Examples of successful and unsuccessful mineral species classifications. In each plot, the top spectrum which is marked in red is a test

sample. The three spectra below were the top-3 predictions given by the CNN among which the correct one was highlighted in green. The prediction

scores were also shown in each plot which reflect the confidence level of predictions.

5



Table 3 Test accuracy of the compared machine learning methods on raw dataset with or without baseline correction methods

Methods KNN(k=1) Gradient
Boosting

Random
Forest†

SVM(linear) SVM(rbf) Correlation CNN†

Raw 0.429±0.011 0.373±0.019 0.394±0.016 0.522±0.011 0.434±0.012 0.310±0.007 0.933±0.007

Asymmetric Least Squares 0.817±0.010 0.773±0.009 0.731±0.019 0.821±0.012 0.629±0.016 0.777±0.013 0.927±0.008

Modified Polynomial 0.778±0.007 0.740±0.016 0.650±0.016 0.785±0.014 0.629±0.016 0.734±0.013 0.920±0.008

Rolling Ball 0.775±0.009 0.737±0.008 0.689±0.018 0.795±0.011 0.624±0.013 0.730±0.010 0.918±0.008

Rubber Band 0.825±0.007 0.792±0.015 0.741±0.009 0.806±0.015 0.620±0.010 0.789±0.010 0.911±0.008

IRLS 0.772±0.010 0.710±0.008 0.675±0.007 0.781±0.011 0.614±0.010 0.711±0.011 0.911±0.008

Robust Local Regression 0.741±0.009 0.694±0.008 0.667±0.012 0.759±0.013 0.600±0.013 0.696±0.011 0.909±0.007

are almost identical to those of the test sample Russellite. In Fig-

ure 3(d), only the main peaks were matched correctly. These plots

demonstrate that the CNN was capable of matching the peaks

characteristic of a particular species even when the prediction did

not agree with the correct label.
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(a) Ten raw spectra where baselines can be clearly observed.
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Fig. 4 Spectra of a mineral, hydroxylherderite, from RRUFF raw

database and corresponding baseline corrected ones by asymmetric

least squares.

3.2 Unified Raman Analysis using CNN

The results in Section 3.1 have shown that CNN was able to

achieve significantly better accuracy compared to other conven-

tional machine learning methods on the baseline-corrected spec-

tra. Recall that conventional machine learning methods such

as SVM and Random Forest are not capable of handling Raman

signals which are not properly baseline corrected, and therefore

require explicit baseline correction in their processing pipelines.

However, robust baseline correction is a challenging problem, es-

pecially for a fully automatic system1. On the other hand, in a

variety of applications, CNN has been shown to be very success-

ful as an end-to-end learning tool since it can process the data

and learn features automatically, avoiding hand crafted feature

engineering32. Therefore, we evaluated the proposed CNN and

and the other classification methods using both raw and baseline

corrected spectra. Specifically, we were interested in the perfor-

mance of CNN on raw data compared to the previous state-of-the-

art spectral classification methods for which baseline correction

was included.

For this set of experiments, we selected another dataset from

the RRUFF database which contains raw (uncorrected) spectra

for 512 minerals and six widely-used baseline correction meth-

ods: modified polynomial fitting1, rubber band3, robust local re-

gression estimation33, iterative restricted least squares, asymmetric

least square smoothing6, rolling ball2. We used implementations

of these methods in the R packages baseline34 and hyperSpec35.

An example of raw spectra and corresponding baseline corrected

ones by asymmetric least squares is shown in Figure 4. We fol-

lowed the training and evaluation protocol as described in sec-

tion 2.3. The results are reported in Table 3.

For the conventional classification methods, used as a compar-

ison in our work, PCA was adopted to reduce dimensionality and

extract features, except for Random Forest where we found that

PCA decreased the performance. This is indicated in the table by

†. The number of principal components were determined such

that 99.9% of total variance was retained. One can see that CNN

on the raw spectra achieved an accuracy of 93.3% which is sig-

nificantly better, t(50) = 77.14, p < 0.001, than the second best

method, KNN with rubber band baseline correction, that achieved

an accuracy of 82.5%.

There are a few remarks which are worth highlighting. Firstly,

it is not a surprise that baseline correction greatly improved the

performance of all the conventional methods by 20% ∼ 40%. On

other hand, CNN’s performance dropped by about 0.5% ∼ 2.5%

when combined with baseline correction methods. This may in-

dicate that CNN was able to learn more efficient way of handling

the interference of the baselines and to retain more discriminant

information than using an explicit baseline correction method.

The advantage of CNNs in achieving high accuracy of classifica-

tion while requiring minimal preprocessing of spectra opens new

possibilities for developing highly accurate fully automatic spec-
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trum recognition systems.

Besides the two datasets from the RRUFF database, we also

validated the proposed method on another (independent) dataset

which includes both baseline corrected and uncorrected spectra.

The additional dataset, which we refer to as Unipr-mineral36,

comprises spectra for 107 minerals, 163 spectra in total. The

same training, evaluation protocol, and network architecture

were used. Results for this dataset are presented in Table 4 and

show that CNN is significantly more accurate than the second best

method (t (50) = 4.20, p < 0.001).

4 Conclusion and Future Work

In this paper, we have presented a deep convolutional neural net-

work solution for Raman spectrum classification which not only

exhibits outstanding performance, but also avoids the need for

spectrum preprocessing of any kind. Our method has been vali-

dated on a large scale mineral database and was shown to outper-

form other state-of-the-art machine learning methods by a large

margin. Although we focused our study on Raman data we be-

lieve the method is also applicable to other spectroscopy and spec-

trometry methods. We speculate that this may be achieved very

efficiently by exploiting basic similarities in the shape of spectra

originating from different techniques and fine tuning our network

to address new classification problems. This process is known as

transfer learning and has been demonstrated previously in many

object recognition applications.
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