
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Corfield, David (2017) Expressing ‘The Structure of’ in Homotopy Type Theory. Synthese
. ISSN 0039-7857.

DOI

https://doi.org/10.1007/s11229-017-1569-7

Link to record in KAR

http://kar.kent.ac.uk/63390/

Document Version

Publisher pdf

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/189717337?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Synthese

https://doi.org/10.1007/s11229-017-1569-7

S.I. : FOUNDATIONS OF MATHEMATICS

Expressing ‘the structure of’ in homotopy type theory

David Corfield1

Received: 27 April 2016 / Accepted: 13 September 2017

© The Author(s) 2017, corrected publication February 2018. This article is an open access publication

Abstract As a new foundational language for mathematics with its very different

idea as to the status of logic, we should expect homotopy type theory to shed new

light on some of the problems of philosophy which have been treated by logic. In

this article, definite description, and in particular its employment within mathemat-

ics, is formulated within the type theory. Homotopy type theory has been proposed

as an inherently structuralist foundational language for mathematics. Using the new

formulation of definite descriptions, opportunities to express ‘the structure of’ within

homotopy type theory are explored, and it is shown there is little or no need for this

expression.

Keywords Structuralism · Definite description · Homotopy type theory · Mathematics

1 Introduction

Homotopy type theory has recently been proposed as a new foundational language

for mathematics (UFP 2014). This system possesses many novel features compared

to the traditional set theoretic foundations, not least the way it integrates logic within

itself. Set theory is standardly formulated as a first-order axiomatic theory whose

domain ranges over sets and which is equipped with a binary membership relation.

Homotopy type theory (henceforth HoTT), on the other hand, is given largely by

type formation rules, and rules for the introduction and elimination of terms. Logic,

B David Corfield

D.Corfield@kent.ac.uk

1 Department of Philosophy, University of Kent, Canterbury, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11229-017-1569-7&domain=pdf
http://orcid.org/0000-0003-0432-3221

Synthese

in the shape of a form of propositional and predicate logic, comes built into the

type theory, arising from the application of its rules to a certain class of types. Were

HoTT ever to take the place of the formal languages currently employed by analytic

philosophers, it would involve a significant change of outlook. HoTT possesses the

resources to derive, as matters simply arising from its conception of identity, results

about homotopy groups of spheres and about group representations, topics normally

seen as pieces of advanced mathematics. Were its ‘modal’ and ‘linear’ variants to

become accepted too, this extended logic would also have the resources to speak

about Noether’s theorem, relating symmetries to conservation laws, and also about

geometric quantization (Schreiber 2014, 2016).

Whether we take it as an extended logic, or consider it to entail that logic is to be

subsumed within mathematics, an early consideration as to how to engage philosoph-

ically with HoTT will be to revisit what thinkers took to be promising applications

of previous forms of logic. One of the first applications by Russell of his ‘new logic’

(Russell 1905) was the analysis of definite descriptions. It seems fitting then to see

what the latest ‘new logic’ can bring to this question. We will find that a reasonable

way to approach this topic casts light on mathematicians’ usage of ‘the’ in a gener-

alized sense, as when they say ‘the product of two groups’, apparently without there

being a unique way to construct such a product.

In the second half of the paper, I shall apply this account of definite description to the

phrase ‘the structure of A’, for a general type A. Awodey (2014) claims that, through

its so-called ‘Univalence Axiom’, HoTT captures what is essentially right about the

structuralist position. Shulman (forthcoming) agrees, describing it as a ‘synthetic the-

ory of structures’, in the sense that nothing can be said about mathematical entities

defined within it except structurally. We should not expect then to need to, or even to

be able to, construct something substantially different from A when contemplating its

structure. This is indeed what we find.

It is important to note that naming conventions have not been definitively settled

yet. Some people have looked to distinguish Univalent Foundations from HoTT, but

for the purposes of this article, I shall be working on the understanding that HoTT is

a variety of intensional Martin-Löf dependent type theory with higher inductive types

and satisfying the Univalence Axiom. I shall be referring to all of these ingredients in

the course of this article as we need them.1

2 Definite descriptions

2.1 A sketch of dependent type theory

Attempting to make philosophical use of HoTT to a general audience presents an

immediate problem in that familiarity with the system cannot be assumed. Were one

looking to introduce first-order logic and set theory to a similarly uninitiated audience,

it would be reasonable then to illustrate the former and naïve aspects of the latter in

1 This is in line with the ‘HoTT Book’ (UFP 2014), which provides the most detailed account of the system

in a reasonably accessible way. See also Shulman (2017) for an alternative, excellent introduction.

123

Synthese

terms couched in everyday language, rather then heading straight into pure formal set

theory. I shall adopt a similar stategy here, noting that for the most part the discussion

of even the underlying dependent type theory has been in terms of its providing a

formal language for mathematics. It is worth observing, however, that there are several

treatments of natural language in terms of dependent type theory, one of the best and

most thoroughgoing of which is Ranta (1994), many of whose ideas are still relevant,

I believe, when passing to HoTT. Even so, for dependent type theory or indeed HoTT

to play a central role in philosophy of language or metaphysics, further interpretative

work would be necessary.

For example, at the core of a type theory, naturally enough, we find ‘types’. In the

mathematical case, these are constructed by certain formation rules. What must be

established is (i) what it is to be an element of a type, A, and (ii) what it is for two

elements of A to be equal.2 We find then a commitment to the principle that any named

element or variable will always appear as belonging to a specified type. I can never

ask then whether some term belongs to a proposed type, but will employ expressions

such as a : A, where A is a type that has already been given. Either I am declaring

some entity to belong to a type, or I am deriving this from rules which force the type

ascription.

The distinction to be found in philosophy of language as to the different identity cri-

teria employed when speaking of an airline serving n people in a year and yet carrying

m passengers translates to a difference between the types Person and Passenger .

The difference between the identities involved in ‘I just saw the same car that bumped

into yours yesterday’ and ‘I drive the same car as you’ again points to different types

being under consideration. How best to consider types as sorts or kinds in the world

is perhaps still to be established.

We also need the idea of one type depending on another type. So in mathematics

we may have a collection of types indexed by the natural numbers, such as the type

of n × n matrices over a given field. In natural language we might consider the type

of players playing for a team t , as t varies over some type of teams. We express

this as

t : T eam ⊢ Players(t) : T ype.

These dependent types are sets, in a sense to be defined later, but we can have examples

where they are propositions, such as

t : T eam ⊢ Plays in U K (t).

Quantification then takes place in these dependent type situations, where we find

that domains of variation are the indexing types. This relies on the type formation of

dependent sum and dependent product. For the dependent type B(x) depending on

x : A,

2 I shall use the expressions ‘element’ and ‘term’ as near synonyms, the latter being appropriate when

syntactical considerations are in greater focus.

123

Synthese

• The dependent sum (sometimes known as dependent pair)
∑

(x :A) B(x) has as

elements pairs (a, b), where a : A and b : B(a). In the case of the teams above,

this amounts to pairs of (team, player in that team) or of (team, proof that it plays

in the UK).

• The dependent product,
∏

(x :A) B(x), has as elements maps, f , defined on A, such

that f (a) : B(a). In the case of teams above, this amounts to a choice of one player

from each team or a proof that each team plays in the UK.

Quantification is associated to the second example in each case where the dependent

type is a proposition. The dependent sum being inhabited amounts to the existence of

a team that plays in the UK, and the dependent product being inhabited amounts to all

teams playing in the UK.

The difference with an untyped setting is very apparent when we look to express

something with multiple quantifiers, such as ‘Everyone sometimes finds themselves

somewhere they don’t want to be’. In type theory there will be dependency here

separately on types of people, times and places, and not variation over some universal

domain, requiring conditions that specify that some entities in the domain be people,

times or places.

Göran Sundholm’s resolution of the puzzle of the farmer sentence is perhaps illu-

minating here (Sundholm 1986):

• If a farmer owns a donkey, then he beats it.

The problem here is that we expect there to be a compositional account of the meaning

of this sentence, in particular, one where the final ‘it’ appears in the representation. At

first glance it appears that an existential quantifier is involved because of the indefinite

article, and yet a beginner’s attempt to use one is ill-formed, the final y being unbound:

∀x(Farmer(x)&∃y(Donkey(y)&Owns(x, y)) → Beats(x, y)).

The alternative in standard first-order logic is to rephrase the sentence as something

like: ‘All farmers beat any donkey that they own’, and then to render it formally as

∀x(Farmer(x) → ∀y(Donkey(y)&Owns(x, y) → Beats(x, y))).

But now we have radically transformed the original sentence, and the ‘it’ does not seem

apparent. Sundholm showed how we could have our cake and eat it, a compositional

and faithful account of the sentence using the resources of dependent type theory:

∏

(

z :

(

∑

(x : Farmer)
∑

(y : Donkey)Owns(x, y)))Beats(p(z), p(q(z)
))

.

Elements of the dependent sum of donkeys owned by farmers are pairs formed of a

farmer and then a pair formed of a donkey and a warrant that the donkey is owned by

that farmer. From such an element, z, we project to the first component of the pair, p(z),

to extract the farmer and then project to the first component of the second component,

p(q(z)), for the donkey, so at to be able to express the beating of one by the other.

It is this last term that is being referred to in natural language as ‘it’. An element of

123

Synthese

the whole dependent product, which will establish the truth of the proposition, will

provide a proof of the relevant beating for any such z. Now let us turn to definite

description.

2.2 Definite description in natural language

We use ‘the’ in a number of somewhat related ways:

• The Prime Minister of the United Kingdom is right-handed.

• The Romans invaded Britain in 43 AD.

• The platypus is a nocturnal creature.

For the purposes of this note, I shall be considering its use in definite descriptions, as

in the first of the examples above, where ‘the’ is followed by a singular noun, perhaps

restricted in some way, since this seems to be the case with both Russell’s ‘the present

King of France’ and ‘the structure of A’. I consider this to be the case also in standard

mathematical statements such as

• The cyclic group of order 6 has an element of order 3.

Where this last case may give the appearance of employing the kind of general ‘the’

used in ‘the platypus’ above,3 we shall see that it is correctly taken as a case of

specifying by restriction one item from a collection.

There are a range of subtleties to the use of ‘the’ within the singular terms of natural

language, see for example Vendler (1967a, Ch. 2) who dwells on implicit restrictions

from beyond the context of a sentence. For instance, it may be the case that an entity

has been described in a previous sentence, in which case to produce the full expression

we may have to insert a redundancy:

• Yesterday, I bought a car. The car is green.

• Yesterday, I bought a car. The car I bought yesterday is green.

Since our primary goal is to study mathematical usage, these subtleties of ellipsis need

not detain us.

Now two related forms of such a use of ‘the’ present themselves:

1. ‘The A’, where A is a type of a certain kind. For example, the donkey owned by

John as an element of the type Donkey owned by John.

2. ‘The f (a)’, where a : A and f : B A, for some types A and B (B A being the

type of functions from A to B). For example, the mother of Julius Caesar as an

element of the type Woman, ‘mother of’ having already been formed as belonging

to the type of functions from Person to Woman, and ‘Julius Caesar’ as belonging

to Person.

The former is properly formed when there is a unique individual of the type A. This

may come about by forming a singleton type from an existing type, such as ‘Donkey

3 I thank an anonymous referee for making this claim, even though I consider it false.

123

Synthese

owned by John’ from the type ‘Donkey’. As we have seen, such types may be formed

within the type theory using dependent sums. In the case of ‘the donkey owned by

John’, if indeed it is a singleton, then there will be one pair formed of an element of

the main type, here a donkey, along with a warrant that the specified condition holds,

here a proof that it is owned by John.

In case (2), the fact that f is a function forces the existence and uniqueness of f (a),

such as in the expression ‘the colour of my front door’, where ‘colour of’ is a map from

some type of (monochrome) objects to the type of colours. A simple extension would

allow B to depend on A, so f (a) : B(a), as in the captain of team(a): Player(a),

for some team a : T eam. In either case, we might form a singleton subtype, such as

‘Colour which is the colour of my front door’, and in this way, we can reduce to (1),

‘the A’ for some type A.

2.3 Intensional type theory and definite description for types which are not sets

Where I have been considering singleton types as though they are sets with one element,

types in HoTT, as a variety of intensional type theory, need not be sets, but may

be ‘mere propositions’ or may be ‘higher groupoids’ (UFP 2014, Chap. 3). These

distinctions concern what is called the truncatedness or homotopy level of the type, a

concept which relies on an important feature of HoTT, namely its identity types. As

we have seen, variables and terms in a dependent type theory always appear with their

associated types. We never ask of a term the type to which it belongs since its type is

always explicitly declared. When we have a type already formed and two elements of

that type, there is a type formation rule that allow us to form a new type of identities

between these elements. So A : T ype, a, b : A ⊢ I dA(a, b) : T ype. No restrictions

are placed on such identity types, in the sense that it is not required that two elements, p

and q, of I dA(a, b) be identical. Indeed, we can form a further type, I dI dA(a,b)(p, q),

and then iterate this process.

Informally, mere propositions are taken to be types for which any two terms are

equal. There may be no such terms, in which case the proposition is false, but if there

is a term, in which case it is true, then there is only one term. Similarly a type is a set

if its corresponding identity types are mere propositions, so that an answer to whether

two terms are the same is just ‘yes’ or ‘no’. A type is a groupoid if its identity types

are sets, a 2-groupoid if its identity types are groupoids, and so on.4 Note that this

hierarchy of levels is cumulative in the sense that a type which is a mere proposition

(−1-type) is also a set (a 0-type), a groupoid (1-type), and so on. Indeed any m-type

is also an n-type for n ≥ m.

On the face of it then, given two sets, A and B, we might imagine that the type of

products of A and B would form a groupoid rather than a set, there being a set of ways

that two constructed products are isomorphic. To count as such a product, any such

4 The expression n-groupoid comes from algebraic topology. They arise, for example, when considering

a topological space, a collection of points in the space, paths between pairs of points, paths between paths

with the same endpoints, and so on. But they may also be treated ‘algebraically’ as corresponding to a

special kind of n-category, where the morphisms, morphisms between morphisms, etc., are all invertible

up to some weak equivalence (see Corfield 2003, Chaps. 9 and 10).

123

Synthese

type must be equipped with projections to A and to B, which satisfy certain conditions.

It would appear then that both the obvious product composed of ordered pairs, A × B,

and the type of reverse pairs B × A with the projection from second place to A and

from first place to B would represent a product of A and B. Using the convention of

naming a type by the kind of its elements, we have Product (A, B) as the type whose

elements are sets which behave as a product of A and B should. The identity type

I dProduct (A,B)(A × B, B × A) might then appear to contain a non-singleton set of

elements in which case Product (A, B) is not a set.

However, it is well known that mathematicians will say ‘the product of two sets’.

Category theory has explained how to think of this case as one where, when a construc-

tion has been defined by a universal property, it does not matter which representative

one takes as product. This is because there is a canonical isomorphism between any

two representatives as given by the universal construction. Indeed, for A and B objects

in a category C, ‘the’ product of A and B is defined as an object, P , with arrows (pro-

jections), p1 : P → A and p2 : P → B, such that for any object Q of C equipped with

maps, f to A and g to B, there is a unique arrow t : Q → P , such that f = p1 ◦ t and

g = p2 ◦ t . An early exercise in category theory has one demonstrate that given two

such products, P1 and P2, there are unique arrows in each direction between them,

which when composed in each order yield identity maps. This establishes that P1

and P2 are isomorphic, and canonically so as the isomorphism derives from specified

unique arrows.

Category theory and type theory work hand-in-hand here. The universal nature of

the product construction applied to all homotopy types as described by the former

is perfectly captured in the combination of the four rules of type formation, term

introduction, term elimination and computation (UFP 2014, Sect. 1.5). Due to the

conditions of the definition of ‘Product’, there is in fact only a single element of the

identity type I dProduct (A,B)(A × B, B × A), namely, the map which reverses the

order of the pairs. We could say that the type of products of two sets is a groupoid in

which objects (namely, sets behaving as a product) are related coherently by unique

morphisms, or in other words that the groupoid of products is equivalent to the trivial

groupoid. Up to equivalence as a homotopy type (UFP 2014, Sect. 2.4), such a groupoid

is equivalent to a singleton set. Taking our cue from topology, we name this property

‘contractibility’, in the same way as a contractible space is equivalent to a space

composed of a single point. A type which is contractible sits at the lowest level of

the hierarchy, at level −2. That a contractible type be describable as a singleton set

or as a trivial groupoid reflects the convention stated above that the level hierarchy is

cumulative.

Naturally, there is a construction in HoTT which defines what it is for a type to

possess this property (UFP 2014, § 3.11):

X : T ype ⊢ isContr(X) ≡
∑

(x : X)

∏

(y : X)

I dX (x, y) : T ype.

To find an element of this dependent sum requires us to produce an element, say a,

of the type X , and then an element of the subsequent dependent product. To specify

123

Synthese

such an element, we are looking for a coherent5 collection of identities between a and

each element of the type. In the case of the type Product (A, B) for two sets A and B,

the type containing any type that acts as such a product, we have a representative A×B,

and for any other representative, a canonical isomorphism, such as the switching map

from A × B to B × A.

One level down, consider when X is a set in the HoTT sense. Then we find that

X is contractible precisely if we can find an element, and every element is equal to

this one. In other words, as expected, a contractible set is a singleton. On the other

hand, when X itself is a ‘mere proposition’, then contractibility amounts to X being

inhabited, and so being true.

My proposal then is that we should only form the term ‘the X ’ for a given type

X once we have established that isContr(X) is inhabited. Of course, in the con-

text of an assumption that X is contractible, we should be able to form ‘the X ’ as a

term depending on the type isContr(X), but until we have constructed an element of

isContr(X), we cannot form ‘the X ’ in an assumption-free way. In the case of the type

Present K ing of France, without the possibility of establishing unique existence

since it lacks any element, Russell’s term ‘the present King of France’ should not be

introduced in a non-hypothetical way, in which case it is not available to be used to

construct the proposition ‘The present King of France is bald.’ Rather than conjoin-

ing presuppositions into the full expression of a proposition, Martin-Löf-style type

theories, such as HoTT, form a proposition, as any type, within a context, constructed

with a valid dependency structure.6 Conditions must be in place for constructions to

be permissible.7

Now we can describe formally the rule of what we might call the introduction:

X : T ype, (x, p) : isContr(X) ⊢ the(X, x, p) ≡ x : X,

In natural language, once we have a type, A, and have established the existence of

a unique member, a, of A, we say merely ‘the A’ rather than tagging this term with

the information a and the proof that it is unique. In, say, 1780, when Louis XVI could

provide the first component of an element of isContr(Present K ing of France),

then we could introduce the term ‘the present King of France’ in a non-hypothetical

way as equal to Louis XVI. In cases in mathematics where A is not necessarily a set,

we may remain sensitive to the mode of construction of the a appearing in the element

5 There is a subtlety here that interested readers can read about in (UFP 2014, Remark 3.11.2).

6 Contexts appear on the left hand side of the symbol ‘⊢’. Ŵ ⊢ a : A expresses the judgment that a belongs

to A under the assumptions in Ŵ. Here, A and a typically depend on variables appearing in Ŵ. See UFP

(2014), Appendix, for details.

7 The type theorist might say that a judgment of unique existence is presupposed. Without this presup-

position, questions concerning the possession of properties simply don’t arise. This finds an early echo in

Collingwood’s An Essay on Metaphysics: “To say that a question ‘does not arise’ is the ordinary English

way of saying that it involves a presupposition which is not in fact made.” (Collingwood 1940, p. 26). In

his criticism of Russell’s account, Strawson (1950) also speaks of questions concerning the King of France

not arising (ibid., p. 330), and elsewhere of the existence and distinguishability of something answering

to a definite description as “presupposed and not asserted in an utterance containing such an expression”

(Strawson 1964, p. 85).

123

Synthese

acting as a warrant for contractibility, although we are usually less sensitive to p, the

proof of uniqueness. Syntactically there is a difference between ‘the (A, a, p)’ and

‘the (A, a′, p′), although there is a canonical identity between these terms in A. Since

isContr(X) itself is a mere proposition (UFP 2014, Lemma 3.11.4), any two of its

elements are equal.

We should specify that this rule is intended for those types which are named as

concepts whose instances are its elements. HoTT also permits the construction of so-

called ‘higher inductive types’ (UFP 2014, Chap. 6) which allows for the construction

of types in which identities behave like the path spaces of topologically (or better

homotopically) intricate spaces. A practice has begun of naming some of these higher

inductive types after the spatial properties of the type as a whole. Hence in some

discussions we find Circle, I nterval, 2-Sphere, etc. The type Circle, for example,

is defined so as to have a single element, base, and a named element in the identity

type, loop : I dCircle(base, base). It behaves as a homotopy theorist would expect a

circle to behave, for example, in terms of the type of mappings from Circle to itself

being equivalent to the integers.8 Perhaps we could say then that Circle is being used

as a shorthand for ‘the type which behaves like a circle’, and as such formed by ‘the

introduction’ from the type of types that behave like a circle.

Returning to the ‘the introduction’ rule above, now we see that contractibility makes

sense of our application of ‘the’ to an apparent groupoid such as ‘the product of two

types A and B’. One might think that there could be many ways to produce such a

product, but the universal property defining what it means to be a product ensures that

any candidate is uniquely isomorphic to any other. It is perhaps illuminating then to

consider on this reading that, strictly speaking, for a type which is a groupoid in which

every pair of elements is isomorphic, but not canonically so, we should not apply ‘the’

to the type. We see this in the mathematical construction of algebraically closing a

field, where there is a reluctance to say ‘the algebraic closure of field F’ although all

such closures are isomorphic, since they are not uniquely so (Henriques 2010).9

The case of ‘the cyclic group of order 6’ is also relevant here. We will see later how

types of structured types are defined in HoTT. Let us take it then that we have a type

of groups, Group. Now we are to pick out a subtype of this, CyclicGroupOrder6,

to which end two ways of using dependent sum present themselves. One of these

ways is to say that we have a group equipped with a specified single generator of

order 6. The second is to say that we have a group and a guarantee of the existence of

some (unspecified) single generator of order 6. For either of these two types, all of its

elements are isomorphic. However in the second case, an element, that is, a cyclic group

of order 6 but with no specified generator, has a nontrivial automorphism, as we can

see from the map sending 1 to 5 in the type formed by {0, 1, 2, 3, 4, 5} under addition

modulo 6. One should therefore show the same wariness about the employment of

8 In homotopy theory, treating spaces up to continuous deformation, one might define the circle first as a

subset of the real plane. The fundamental group of the circle will then select a point and look to distinguish

between classes of equivalent (i.e., continuously deformable) paths. In HoTT, Circle is defined as a type

equivalent to this fundamental group.

9 Conrad advises for two algebraic closures of a field “...always keep track of the choice of isomorphism.

In particular, always speak of an algebraic closure rather than the algebraic closure” (Conrad n.d.).

123

Synthese

‘the’ in that case as with ‘the algebraic closure of field F’. However, if a generator is

specified as a part of the structure, then all is well.

Similarly we could form Group6, the type of groups of order 6. This type is not

contractible since there are two connected components corresponding to the two non-

isomorphic groups, so we are not allowed to form ‘the group of order 6’. This should

indicate to us again that we are not dealing with a general form of ‘the’ as in ‘the

platypus’. There are ‘lawlike’ things we could correctly assert about all groups with

6 elements, and yet we don’t say, for example, ‘the group with 6 elements has an

element of order 3’. We don’t because there are two groups of order 6.

What of contractible, and so true, propositions, taking these in the HoTT proof-

irrevelant sense? Well here while we do not prefix ‘the’ to a proposition such as ‘it

is raining’, we certainly do say ‘the fact that it is raining’. If we wish to retain our

the introduction rule here, we might write the type as ‘Fact that such and such’.10

Then we would have ‘Fact that it is raining’ as a type, and, if it is inhabited, we would

designate its element by the term ‘the fact that it is raining’, which appears to convey

well that there is no multiplicity involved, for instance, of warrant for the assertion

of the proposition. If ‘fact’ is considered to be employable only in the case of true

propositions, then ‘state of affairs’ might provide an alternative.

Before moving on, let us clarify what may present itself as a problem under a naïve

reading of identity statements relating two definite descriptions, as in the famous case

of ‘The evening star is the morning star’. While we cannot identify terms belonging

to different types, it is reasonable to consider these types as produced by dependent

sum,

∑

(x :Star)

Shine brightly in morning(x).

Then while ‘the morning star’ corresponds to a star (or at least a celestial body), a

warrant that it shines brightly in the morning, along with a guarantee of its uniqueness

in this respect, a projection on the first component lands us in the type Star . The

evening star is treated similarly, and now the two celestial bodies can be compared

under the identity criteria for stars (as understood at the time). To put this in natural

language, we could say that the star which shines brightly in the morning is the same

star as the star which shines brightly in the evening.

In such cases of types being defined by relative clauses, we could then propose a

second rule called ‘relative the introduction’:

x : A, B(x) : T ype, ((a, b), p) : isContr

⎛

⎝

∑

(x :A)

B(x)

⎞

⎠

⊢ the A which is B((a, b), p) ≡ a : A.

10 Choosing a case from natural language as here, we encounter the considerations which gave rise to

Vendler’s advice in his (Vendler 1967) and elsewhere to distinguish between facts and propositions. HoTT

having been devised by logicians and mathematicians, the mathematical use of ‘proposition’ as theorem

has been employed.

123

Synthese

This makes better sense of how when we say, for instance, ‘The cat sitting in the basket

is Siamese’, we mean the property ‘Siamese’ to apply to elements in the Type Cat

rather than to those in Cat si t ting in the basket as a dependent sum.

2.4 ‘The’ for dependent types

As we have seen, as a development of Martin-Löf type theory, HoTT makes great play

of dependent types. It is worth considering, then, how ‘the’ might be introduced for

such types. Let us begin with the most familiar case where the type depended upon is

a set:

A : Set, x : A ⊢ B(x) : T ype

In this case we can form x : A ⊢ isContr(B(x)) : Prop, and it may be that we

can construct x : A ⊢ (b(x), p(x)) : isContr(B(x)), which establishes that for any

element of A, the dependent type is contractible. Then we can form a dependent ‘the’,

x : A ⊢ the(B(x), b(x), p(x)) ≡ b(x) : B(x),

expressed as ‘the B(x)’. For example, we might have a set of apartments numbered by

a set of numbers, N . Then a type depending on N could be Resident (n) for n in N . We

may subsequently learn that each apartment is single-occupied, so that Resident (n)

is a singleton set for every n. Then along with the(Resident (a)), or in more familiar

terms ‘the resident of a’, for a specific a in N , we also have the(Resident (n)) :

Resident (n) where n is a variable. We can also use so-called λ-abstraction from the

b(x) above, that is, take it as an expression of (the resident)(n), where the resident :
∏

(n:N) Resident (n) is a function of N picking out the unique resident at each abode.

This makes sense of the use of ‘the’ for a function picking out an element from

non-singleton sets, such as ‘the captain of team x’. We may think of this as x :

T eam ⊢ the captain(x) : Captain(x), where Captain(x) is the type of captains

of team x , a subtype of Player(x), or again we could take the ‘relative’ option, and

see ‘the captain(x)’ as ‘the player who is the captain(x)’. Then λ-abstraction again

produces the captain :
∏

(x :T eam) Captain(x), or more naturally in the relative sense

the captain :
∏

(x :T eam) Player(x).

As in the previous section, the above makes sense for general types as in the case

of the product of two types

X, Y : T ype ⊢ the product (X, Y) : Product (X, Y).

Again we may consider the product as an element of a dependent product,
∏

(X,Y :T ype) Product (X, Y).

A further interesting case comes from allowing dependency on types which are

not sets but rather pointed, connected groupoids or ‘delooped groups’. In effect, this

is a way of providing a context in which a given group G acts on everything con-

cerned. Corresponding to G there is a type, denoted BG, with one element, ∗, and

123

Synthese

I dBG(∗, ∗) ∼= G. Then, a dependent type V ,

∗ : BG ⊢ V (∗) : T ype,

is a type which is equipped with an action by G. The single element of BG is sent to

a type, V , in T ype, and the elements of I dBG(∗, ∗) are sent to automorphisms of V ,

respecting the composition of elements of G. Now standard rules of the type theory

provide a way for HoTT to represent constructions in the field of group representa-

tion theory, but we can also characterize simple situations in which there is inherent

ambiguity.

Imagine that we are in communication with one another and are looking sideways

on into a space in which there are three identical balls in a row, but that we are unable

to signal to each other which end of the row is which. We can describe ourselves as

working in the context BS2, where S2 is the two element group. This group acts simply

on the row, with the non-identity element reversing the order. Now I could look to use

the expression ‘the ball on the left’ to pick out one ball, but of course you cannot know

which of the two ends I mean. On the other hand, I can say ‘the ball in the middle’ and

successfully convey an intended ball. Left and right are not invariant under the group

action, whereas being in the middle is invariant in this way. ‘Middle ball’ is a type in

this context and indeed is contractible, allowing me to form ‘the middle ball’.

Another way to describe this situation is via the dependent product construction,
∏

(∗:BS2) Ball(∗). Recall that elements of a dependent product are functions from

elements of the type depended upon to the dependent type. In the case of group

actions, there is a single element, ∗, in BG, so a function in the dependent product

picks out an element of V , but one which has all of the group elements of G leaving

it invariant. In our case here, the only invariant element is the middle ball. On the

other hand, we might want to speak of being positioned in the middle or at the end.

We can do this by forming the dependent sum,
∑

(∗:BS2) Ball(∗). This collects the

orbits of that action, in other words a type formed of the elements of V , but where

whenever a group element g acts on v to give v′, there is an element equating v and

v′. Imagine here the three balls in a row and, ignoring the trivial arrows, an arrow in

each direction between the end balls, and a looping arrow at the middle ball. A little

more work is necessary to render it equivalent to a set with two elements, ‘middle’

and ‘end’, namely, truncation to the set of its connected components.

Similarly, playing noughts and crosses (tic-tac-toe), I may say ‘I like to start in a

corner’, but it would be reasonable also to say ‘I like to start in the corner’. Again, the

best way to view that latter expression is as a term in (the truncation of) the dependent

sum, since my initial play is invariant under the symmetries of the grid.11 Of course,

once I’ve broken the symmetry by playing in a corner, you can’t just say that you

would respond to my play in the corner by a play in ‘the side square’, since there’s a

difference between an adjacent and a non-adjacent such square.

Working in such ‘equivariant’ contexts, that is, in the presence of a group of symme-

tries, even though we may not be able to label unambiguously elements of a type, the

type may still be a (dependent) set, in the HoTT sense, and as such have a cardinality.

11 The dihedral group of order 8.

123

Synthese

So I can say ‘there are three balls’ in my original situation above. The similar case of

two identical balls in an otherwise empty space has generated a considerable debate

in metaphysics around the issue of how two things can be non-identical if there are no

properties to tell them apart (Black 1952). Some have argued that despite there being

no way to pick one out through communicable properties, one ball does differ from

the other in the sense that it is identical to that ball itself, while the other ball isn’t. If I

am looking on, I can distinguish ‘this ball’ from ‘that ball’, and think “this ball is this

ball and that ball is not.” However, the other party in this debate sees such a property

as illegitimate for purposes of identification.

We now see this philosophical disagreement being illuminated by the type theoretic

understanding of there being a set of cardinality two in the context BS2. I can hear

my interlocutor saying there’s one ball and there’s another, and agree with this claim.

Their mention of ‘one ball’ is a term in the context of the symmetries, ∗ : BS2 ⊢ b(∗) :

Ball(∗), it is not a ‘one’ in the absolute or empty context, where nothing appears to

the left of ‘⊢’. When they then mention a ‘different one’, I can understand them too,

this difference being invariant under the symmetry group. On the other hand, in the

empty context where I have bound the free variable, the only types available are the

dependent sum
∑

(∗:BS2)
Ball(∗), a set of cardinality 1, and the dependent product

∏

(∗:BS2) Ball(∗) which is empty. To sum up, there are ways in this framework to say:

there are two balls present, there is one kind of thing, but nothing is distinguishable.12

3 The structure of A

Philosophers of mathematics have long discussed what is meant by the expression

‘the structure of A’ for a given mathematical entity A. Famously it is possible to give

different constructions within set theory of sets which may be taken to represent the

natural numbers (Benacerraf 1965). The structure common to these constructions is

then understood by many structuralists to be what the natural numbers are, individual

numbers being places in the structure. It is also thought by some of these structuralists

that to isolate the structure of any construction there needs to be a way to abstract it

from whatever it is that ‘carries’ it, and conditions should be given for when two such

abstracted structures are the same (Shapiro 1997; Resnik 1997).

Now HoTT, it is claimed (Awodey 2014), via its so-called ‘Univalence Axiom’, cap-

tures what is essentially right about the structuralist position. By use of an ‘abstraction

principle’, Awodey defines a notion of structure through the isomorphism of types:

12 Along similar lines, but in a more intricate setting, HoTT provides an excellent way to understand general

covariance in physics (nLab xxxx). It is striking how such constructions are written into the very machinery

of the type theory. Metaphysicians have also looked to treat indiscernible quantum particles, e.g., Lowe

(Lowe 1989). To do this matter full justice along the lines of the present discussion one would need to

consider linear types, corresponding to group representations. Then a ‘linear’ (in the sense of linear logic)

version of HoTT (Schreiber 2014) should be the right framework to extend the treatment I am giving here.

123

Synthese

str(A) = str(B) ⇔ A ∼= B. (DS)

This definition is merely suggestive. Awodey is speaking informally here, which

may give rise to possible misunderstandings. A more fundamental concept than iso-

morphism in HoTT is equivalence, which can be formulated in the language of HoTT in

terms of maps with suitable properties (UFP 2014, Sect. 2.4, Chap. 4).13 Equivalence

provides the right identity criterion generally, as the Univalence Axiom pronounces.

Also, the biconditional (⇔) is not part of the syntax of HoTT. It could perhaps appear

in HoTT as a notational variant of equivalence in the case of two mere propositions,

and yet A ∼= B as a type is a variant of the type of equivalences, A ≃ B, and in general

not a mere proposition.

Awodey concludes, after a discussion of the Univalence Axiom (UA), which says of

two types that if they are equivalent as defined in HoTT, then they may be considered

equal as elements of the type of small types:

...observe that, as an informal consequence of (UA), together with the very def-

inition of “structure” (DS), we have that two mathematical objects are identical

if and only if they have the same structure:

str(A) = str(B) ⇔ A = B.

In other words, mathematical objects simply are structures. Could there be a

stronger formulation of structuralism? (Awodey 2014, p. 12)

In other words, taking HoTT as our foundation, all constructions are already fully

structural.

This conclusion seems to me to be correct, but here I shall adopt a different argument

strategy by examining whether HoTT itself can tell us a little more about such locutions

as ‘the structure of A’, ‘A and B share the same structure’ and ‘places in the structure’.

Rather than invoking the Fregean notion of an abstraction principle, as Awodey does,

I shall propose what appear to be the only plausible definitions within HoTT itself of

the relevant terms.

I shall not engage here in a close reading of the wide array of existing structuralist

positions. The main point of this section is to show that working in HoTT the kinds of

concern that date back to Benacerraf largely dissolve. With our new found ability to

express uniqueness up to canonical equivalence by definite description, the motivation

to seek some single entity commonly related to two structurally equivalent entities is

removed. Our reconstruction of ‘the structure of A’ essentially requires our generalized

‘the’, as applying not only to sets but to any types.

Two plausible options present themselves according to different naming conven-

tions for types that we saw in the previous section. Recall that we have (1) Circle as

the type which behaves like the circle, (2) Natural number or N, the type of natural

13 “In general, we will only use the word isomorphism (and similar words such as bijection, and the

associated notation (A ∼= B) in the special case when the types A and B “behave like sets”. (UFP 2014,

p. 78).

123

Synthese

numbers. An element of (1) is not a circle, where an element of (2) is a natural number.

In the case of ‘the structure of A’, then, we may mean:

1. The type which behaves like the structure of A.

2. The unique element up to equivalence of a type Structure of A.

Option (1) needs further unpacking. Perhaps we might recast it as ‘the type which

behaves structurally like A’. But then this seems to be no different from ‘A’ itself. If so,

‘the structure of’ is the identity map on types, and completely redundant. This does tally

with Awodey’s solution, where since str(A) :≡ A, we would have str(A) = str(B)

as definitionally equal to A = B, and so, trivially, equivalent:

str(A) = str(B) ≃ A = B.

Then we never need utter ‘the structure of’ again.

Let’s now pursue option (2). To be in a position to define ‘the structure of’, we will

first consider the expression ‘structure of’ as applied to a type in the system. Together

with our analysis of definite description in the previous section, we will then be able

to interpret ‘the structure of A’. Finally we consider ‘places in’ such a structure, and

extend these analyses to structured types.

So, if we agree with the analysis of Sect. 2, then to be able to say ‘the structure of

A’ by the introduction we must already have (a) formed a type ‘Structure of A’, and

(b) established that it is contractible. Now one plausible candidate for ‘Structure of A’

is the type

Structure(A) :≡
∑

(X :U)

Equiv(A, X),

where U is the type universe of small types, sometimes written T ype. This is an

eminently reasonable choice since elements of this type are types equipped with an

equivalence with A, we might say ‘types-structured-as-A’. What is required now is to

establish the contractibility of this type of such types. Intuitively this should be clear

as contraction can take place to A, as it were, along the given equivalences. But, of

course, a proof in HoTT requires use of its technical apparatus which I will briefly

sketch.

Straight off we have an element of that type to hand, namely (A, I dA). A is struc-

tured as A as witnessed by its identity map. Then to establish isContr(Structure(A))

we also need for every B : U and f : Equiv(A, B) a canonical way to identify

(A, I dA) and (B, f). What such an identity amounts to in the case of a dependent

sum is a path in the base type, here that is one in U between A and B, and a path

over this one in the total space of equivalences to A. For the former we use the path

that the univalence equivalence makes correspond to f . The effect of transporting

I dA : Equiv(A, A) in the total space will then be f ◦ (I dA) = f : Equiv(A, B).

Let us call this process of identification p.14

14 We could also work with an equivalent type: Structure(A) ≡
∑

X :U (A = X). Then Lemma 3.11.8 of

(UFP 2014) gives us contractibility.

123

Synthese

Without any obvious non-equivalent alternatives for ‘Structure of A’, let us pursue

this choice by forming the term ‘the structure of A’. In its full glory it is

the(Structure(A), (A, idA), p) ≡ (A, idA) : Structure(A).

Dropping p, we find that ‘the structure of A’ is (A, idA). Notice that the compo-

nent idA is playing a role here. We should note that, having constructed the type

A, were we to construct an element g : Equiv(A, A) which is not equal to idA,

then we could equally use (A, g) to witness the contractibility of Structure(A). This

would require a modification to p, but to the extent that this component is not men-

tioned, we might equally well say that (A, g) is ‘the structure of A’, or indeed any

(B, f) : Structure(A). An element of the type is an entity, B, structured as A as

witnessed by an equivalence f . Any such element has trivial identity type with any

other, I dStructure(A)((B1, f1), (B2, f2)). This is very much like the case we described

earlier of the product of types, where we needed not just a type but also extra infor-

mation such as its projections. If I do not include the extra information, here the way,

f , that some type B is equivalent to A, then there need not be only one way that B

shows itself to be structured as A.

Now what does it mean to say that A and B have the same structure? Well one might

expect that it means to indicate an identity between two elements ‘the structure of A’

and ‘the structure of B’. As in the case of the morning star and the evening star, naively

read they are elements of different types and so not to be directly compared, but like

that example we can project to the first component, that is the type that the dependent

types are depending upon, here the universe U . Then the identity of the elements

amounts to an identity between types A and B in U , or in other words equivalence

between the types.

Alternatively, we might define a U-dependent type ‘X has the same structure as A’

≡ Equiv(A, X). Then consider by λ-abstraction the term λX.Equiv(A, X), which

in words we might say designates ‘has the same structure as A’. Now, ‘has the same

structure as B’ is an element of the same type, and we can ask for their identity type.

This can easily be shown to be equivalent to Equiv(A, B).

I mentioned another approach to definite description as the result of applying a

function, as in ‘the captain of team t’. Here we might think there is a function from the

type of types, U , to some type of structures, Structure, fibred above it. The evident

choice for Structure is

∑

(X :U)

Structure(X) ≡
∑

(X,Y :U)

Equiv(X, Y),

in which case we have a similar solution to the one above in that ‘the structure of’ is

found to be a function in
∏

(X :U) Structure(X), which sends A to 〈A, (A, idA)〉.15

15 Since the fibres are contractible, Structure is equivalent to U (UFP 2014, Lemma 3.11.9).

123

Synthese

3.1 Places in a structure

Some structuralist philosophers of mathematics have referred to ‘places’ or ‘positions’

in a structure (Resnik 1997; Shapiro 1997), for instance, to refer to particular natural

numbers in the structure that is the natural numbers. This is to indicate elements in

what results from a process which abstracts away from different presentations of the

‘same structure’. Let us see what it is possible to express within HoTT.

Well, ‘places in the structure of A’ suggests that we form a type which depends on

Structure(A). There doesn’t appear to be much choice here other than

(X, f) : Structure(A) ⊢ Places I n(X, f) ≡ X : T ype.

It would be very natural then to form the dependent product to allow the collection

of coherent choices of element of A along with their corresponding elements in each

type structured as A, according to the specified equivalence:

∏

((X, f):Structure(A))

Places I n(X, f).

We might pronounce this ‘Places in A-structured types’. This type can easily be shown

to be equivalent to A, since a choice a : A determines an element f (a) : B for each

type-structured-as-A, (B, f), and a choice of place in A-structured types delivers an

element of A when applied to (A, idA).

3.2 Types equipped with structure

Of course, we don’t just talk about plain types, but also about monoids, groups, vector

spaces, etc. Consider one of the simplest cases, the semigroup structure. This merely

requires that there be an associative binary multiplication on the type. Following

definition 2.14.1 of UFP (2014),

SemigroupStr(A) :≡
∑

(m:A→A→A)

∏

(x,y,z:A)

m(x, m(y, z)) = m(m(x, y), z).

Now a semigroup is a type together with such a structure:

Semigroup :≡
∑

(A:U)

SemigroupStr(A).

Then for a particular (A, m, a) : Semigroup, where a is a proof of the associativity

of m, we can define

Str(A, m, a) :≡
∑

((X,y,z):Semigroup)

f : EquivSemigroup((A, m, a), (X, y, z)),

123

Synthese

where EquivSemigroup requires of an element that it is an equivalence between under-

lying types and that it transports the semigroup structure correctly. Once again this

results in a contractible type as witnessed by (A, m, a, id(A,m,a)), which element we

may then call ‘the structure of the semigroup A’. Places in (A, m, a)-structured semi-

groups will again amount to A.

3.3 The complex numbers

We can put together the constructions treated above to handle the case of the complex

numbers. The issue at stake here is whether some forms of structuralism are forced to

identify the two square roots of − 1 in the field of complex numbers, i and − i , given

that the non-trivial field automorphism, conjugation, maps them to each other, that we

cannot distinguish them in terms of the real-valued polynomials they satisfy, and so

on.16

How to introduce C in type theory? Of course, there will be many ways to do so,

but we can distinguish two styles of definition, as ‘particular’ and ‘abstract’ types.17

For example, we can form a particular type of complex numbers from the bottom up

as ordered pairs of reals, with specified addition and multiplication, etc. These reals

in turn will have a particular structure depending on how they have been defined (see

Chap. 11 of UFP 2014). On the other hand, as an abstract type we can construct a type

to which C as a whole belongs, for instance, the type, A, of algebraically closed fields

of characteristic zero and cardinality of the continuum. A concrete construction of a

particular type C then becomes a proof that A is inhabited.

These specifications carry different information, the difference being very much

like that between the two ways of specifying the cyclic group of order 6 in §2.3.

In the case of the particular type, any z : C may be decomposed into its real and

imaginary parts. Now 〈0, 1〉 and 〈0,− 1〉 are two different elements, both of which

square to − 1. On the other hand, in the case where we assume C : A, we don’t

have the means to individuate the two square roots, and yet the subtype of elements

squaring to − 1 is of cardinality 2. There are two such places in the structure. A is

equivalent to BAut (C) ≡ BS2 (recall this notation from Sect. 2.4) with a non-trivial

structured auto-equivalence which exchanges the two square roots. We might con-

sider the strict condition for the use of ‘the’ in ‘the complex numbers’ to require us to

break the symmetry by specifying one root as i , although in practice mathematicians

will often say ‘C is the algebraically closed field of characteristic zero and cardi-

nality the continuum’. In any case, the situation is very much like the cyclic group

of order 6 or the two identical balls, and presents no difficulty to a type theoretic

viewpoint.

16 See, e.g., Keränen (2001, 2006) and other contributions to MacBride (2006), and Nodelman and Zalta

(2014).

17 I am indebted to Mike Shulman’s discussion ‘From Set Theory to Type Theory’ (2013).

123

Synthese

4 Conclusion

One conclusion to draw from this note is that from the perspective of HoTT, little

is gained by explicit use of the word ‘structure’ in the sense of ‘the structure of A.’

Types and structured types in HoTT just are structures that do not need to be abstracted

from an underlying set-like entity. HoTT simply is a “synthetic theory of structures”

(Shulman, forthcoming). The proper treatment of structure comes along for free and

need not be explicitly mentioned. In this sense then HoTT should be viewed very

favourably by structuralists.

If this counts as a result which closes off a certain line of enquiry, on the way to it

we have seen something more positive.

1. The analysis of the word the in terms of its introduction rule shows that HoTT has

something to teach us about the classic philosophical topic of definite descriptions.

We have seen that it provides a rationale for mathematicians’ use of a generalized

‘the’ in situations where it appears that they might be referring to more than one

entity.

2. More generally, we were able to make useful sense of several issues concerning

type and identity. HoTT promises to be an important tool for philosophers of

language and metaphysicians.

3. Our analysis of ‘the’ employed a principle that may prove of lasting importance:

(Treat all types evenly) Any time we have a construction which traditionally has

been taken to apply only to sets or only to propositions, then since in HoTT these

form just a certain kind of type, we should look to see whether the construction

makes sense for all types.

Further examples are not hard to find. If we generally take modal operators, such

as ‘it is necessarily the case that…’, to apply only to propositions, we should look

to see whether there is anything to prevent a more general construction applying

to all types.

It is surely intriguing that a newly proposed foundations for mathematics displays the

potential to speak to issues within philosophy in general, and is not confined to the

domain of philosophy of mathematics.

Acknowledgements I would like to thank Mike Shulman and Urs Schreiber for their very helpful advice,

and three anonymous referees for their suggestions.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-

tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Awodey, S. (2014). Structuralism, invariance, and univalence. Philosophia Mathematica,22(1), 1–11 https://

www.andrew.cmu.edu/user/awodey/preprints/siu.pdf.

123

http://creativecommons.org/licenses/by/4.0/
https://www.andrew.cmu.edu/user/awodey/preprints/siu.pdf
https://www.andrew.cmu.edu/user/awodey/preprints/siu.pdf

Synthese

Benacerraf, P. (1965). What numbers could not be. In P. Benacerraf & H. Putnam (Eds.), Philosophy of

mathematics: Selected readings (2nd ed., pp. 272–294). Cambridge: Cambridge University Press.

Black, M. (1952). The identity of indiscernibles. Mind, 61(242), 153–164.

Collingwood, R. (1940). An essay on metaphysics. Oxford: Clarendon.

Conrad, B. n.d. Math 121. Uniqueness of algebraic closure. http://math.stanford.edu/~conrad/121Page/

handouts/algclosure.pdf. Accessed 17 Nov 2017.

Corfield, D. (2003). Towards a philosophy of real mathematics. Cambridge: Cambridge University Press.

Henriques, A. (2010). Comment on what’s a groupoid? What’s a good example of a groupoid? (http://

mathoverflow.net/a/1161).

Keränen, J. (2001). The identity problem for realist structuralism. Philosophia Mathematica, 9, 308–30.

Keränen, J. (2006). The identity problem for realist structuralism II: A reply to Shapiro. in: MacBride (ed.)

(vol. 2006, pp. 146–63).

Lowe, E. J. (1989). Impredicative identity criteria and Davidson’s criterion of event identity. Analysis, 49(4),

178–181.

MacBride, F. (Ed.). (2006). Identity and modality. Oxford: Clarendon Press.

nLab. General covariance. https://ncatlab.org/nlab/show/general+covariance.

Nodelman, U., & Zalta, E. (2014). Foundations for mathematical structuralism. Mind, 123(489), 39–78.

Ranta, R. (1994). Type-theoretic grammar. Oxford: Clarendon Press.

Resnik, M. (1997). Mathematics as a science of patterns. Oxford: Clarendon Press.

Russell, B. (1905). On denoting. Mind, 14, 479–493.

Schreiber, U. (2014). Quantization via linear homotopy types. http://arxiv.org/abs/1402.7041.

Schreiber, U. (2016). Higher prequantum geometry. https://arxiv.org/abs/1601.05956.

Shapiro, S. (1997). Philosophy of mathematics: Structure and ontology. Oxford: Oxford University Press.

Shulman, M. (2013). From set theory to type theory. online articlehttps://golem.ph.utexas.edu/category/

2013/01/from_set_theory_to_type_theory.html.

Shulman, M. (2017). Homotopy type theory: The logic of space. https://arxiv.org/abs/1703.03007.

Shulman, M. forthcoming. Homotopy type theory: A synthetic approach to higher equalities. in Landry,

E. (ed.) Categories for the working philosopher. Oxford University Press. https://arxiv.org/abs/1601.

05035.

Strawson, P. F. (1950). On referring. Mind, 59, 320–344.

Strawson, P. F. (1964). Identifying reference and truth-values. Theoria Vol XXX, reprinted in Strawson P.

F. 1971. Logico-Linguistic Papers, London: Methuen.

Sundholm, G. (1986). Proof theory and meaning. In D. Gabbay & F. Guenthner (Eds.), Handbook of

philosophical logic (Vol. III, pp. 47–506). Dordrecht: Kluwer/Reidel.

UFP (Univalent Foundations Program). (2014). Homotopy type theory: Univalent foundations of mathe-

matics.http://homotopytypetheory.org/book/.

Vendler, Z. (1967a). Lingustics in philosophy. Ithaca: Cornell University Press.

Vendler, Z. (1967b). Causal relations. The Journal of Philosophy, 64(21), 704–713.

123

http://math.stanford.edu/~conrad/121Page/handouts/algclosure.pdf
http://math.stanford.edu/~conrad/121Page/handouts/algclosure.pdf
http://mathoverflow.net/a/1161
http://mathoverflow.net/a/1161
https://ncatlab.org/nlab/show/general+covariance
http://arxiv.org/abs/1402.7041
https://arxiv.org/abs/1601.05956
https://golem.ph.utexas.edu/category/2013/01/from_set_theory_to_type_theory.html
https://golem.ph.utexas.edu/category/2013/01/from_set_theory_to_type_theory.html
https://arxiv.org/abs/1703.03007
https://arxiv.org/abs/1601.05035
https://arxiv.org/abs/1601.05035
http://homotopytypetheory.org/book/

	Expressing `the structure of' in homotopy type theory
	Abstract
	1 Introduction
	2 Definite descriptions
	2.1 A sketch of dependent type theory
	2.2 Definite description in natural language
	2.3 Intensional type theory and definite description for types which are not sets
	2.4 `The' for dependent types

	3 The structure of A
	3.1 Places in a structure
	3.2 Types equipped with structure
	3.3 The complex numbers

	4 Conclusion
	Acknowledgements
	References

