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Abstract

This paper seeks to understand and test empirically the relationship between group size and

informal risk sharing. Models of informal risk sharing with limited commitment and grim-trigger

punishments upon deviation imply that larger groups provide better insurance. However when

subgroups of households can credibly deviate, so that sustainable informal arrangements ought

to be coalition-proof, the relationship between group size and the amount of insurance is unclear.

Building on Genicot and Ray (2003), we show that this relationship is theoretically ambiguous.

We then investigate it empirically using data on the size of the sibships of the household head and

spouse in rural Malawi. To identify the relevant potential risk sharing group, we exploit a social

norm among the main ethnic group in our sample - that the wife’s brothers play a key role in

ensuring her household’s wellbeing. We find that households where the wife has many brothers

are poorly insured against crop loss events. We fail to uncover a similar relationship for the

wife’s sisters, ruling out that our findings are driven by wives with many siblings (e.g. brothers)

simply having poorer extended family networks. A simple calibration exercise indicates that the

threat of coalitional deviations can explain our empirical findings.
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1 Introduction

Risk is a salient feature of daily life in rural areas of developing countries. These contexts are also

characterised by market imperfections such as weak enforcement (also known as limited commit-

ment), costly monitoring, poor infrastructure, and weak government capacity; which lead to missing

or incomplete insurance and credit markets, and an absence of government social safety nets to help

mitigate the effects of risk.1 Instead, households rely on a variety of informal mechanisms, such

as (informal) transfers and loans from relatives and friends, to deal with the consequences of risk

(Besley, 1995). Such mechanisms are usually based on social ties and groups, such as family or

friendship, which are typically more effective in overcoming the aforementioned market imperfec-

tions (Rosenzweig, 1988a, Rosenzweig and Stark, 1989, Fafchamps and Lund, 2003, Fafchamps

and Gubert, 2007, Angelucci et al., Forthcoming).2 A sizeable literature finds that these informal

mechanisms are remarkably effective in helping households share risk, though they are unable to

perfectly protect household wellbeing. Recent work however, mainly theoretical, suggests that cer-

tain features of these groups are likely to influence how effective they are in providing risk sharing

(Bloch et al., 2008, Jackson et al., 2012).

This paper aims to study how one important characteristic of informal risk sharing groups – their

size (or number of households in the group) – affects the amount of risk sharing achieved. We

first establish theoretical predictions, and then test these predictions empirically in a setting char-

acterised by almost no formal enforcement mechanisms. Theoretically, in an environment where

informal arrangements need to be self-sustaining, two forces are at play in influencing the rela-

tionship between group size and risk sharing: on the one hand, when households are sufficiently

patient and interactions are repeated, larger groups allow for more diversification of shocks, leading

to higher gains from sharing risk. On the other hand, as shown in the seminal paper by Genicot

and Ray (2003), when arrangements need to be robust to deviations by sub-groups, larger groups

can be destabilised by smaller subgroups that are large enough to provide significant levels of risk

sharing, meaning that stable groups that can sustain risk sharing are bounded from the top. This

suggests that the relationship between group size and risk sharing is unclear. We extend the set-up

of Genicot and Ray (2003) and use simulations to show that the relationship between group size

and risk sharing is theoretically ambiguous. The exact nature of the relationship between group

size and risk sharing is therefore an empirical question.

Conceptually, it is important to distinguish between the actual and potential risk sharing group.

Empirically, the former poses several challenges: first, it is difficult to measure accurately,3 and

1A sizeable literature considers the implications of these imperfections on risk sharing: Kocherlakota (1996),
Foster and Rosenzweig (2001), Ligon et al. (2003) and Dubois et al. (2008) consider the implications for the imperfect
enforceability of contracts, while Ligon (1998) and Attanasio and Pavoni (2011) study issues related to moral hazard,
and Kinnan (2014) highlights the importance of hidden income.

2For example, relatives have several opportunities to interact with one another, thus reducing the costs of monit-
oring each others’ actions. Moreover, they could use strategies such as shame or even ostracism (both of which are
typically not feasible for formal insurance and credit providers to use) to punish renegers in informal arrangements.

3For example, self reports are subject to strategic behaviour as shown by Comola and Fafchamps (2017).
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second, it is endogenous since individuals sort into groups on the basis of unobserved characterist-

ics and shocks that are also correlated with risk sharing. To partially overcome this, much prior

literature has taken the risk sharing group to be a village (e.g. Townsend, 1994; 1995). Though

readily observable in many socio-economic datasets, this definition is likely to be too broad, es-

pecially since villages can have 500 or more households. We instead focus on the sibship of the

household head and spouse, a group that is predetermined.4 To reflect the fact that not all members

of this group will actually share risk amongst each other, in what follows, we refer to it as ‘potential

group size’.

In the context we study – Mchinji, Malawi – the instrumental role of the family in risk sharing

has been documented in the anthropology and sociology literatures (Phiri, 1983; Munthali, 2002;

Mtika and Doctor, 2002; Peters et al., 2008). This is also supported by our data, where the vast

majority (80%) of transfers received by a household are from family members. Thus, the number

of siblings of the head and the spouse are a relevant proxy for ‘potential group size’ in this setting.

Moreover, historical and well-documented social norms in Mchinji confer an important role on the

wife’s brothers (relative to her sisters) in ensuring her household’s wellbeing. Whilst an individual’s

sibship size is predetermined, it may still be correlated with unobserved factors that are related with

risk sharing. The norms not only allow us to obtain a more fine grained measure of potential group

size, but also provide us with an important dimension of heterogeneity that helps allay concerns

around omitted variable bias. In particular, we can use the wife’s sisters, distinct from brothers,

to construct placebo tests to help build confidence that our findings are not driven by omitted

variables associated with larger families.

To investigate the empirical relationship between group size and informal risk sharing, we utilise a

rich longitudinal dataset which includes information on household consumption, crop loss (incidence

and intensity), and the number of living siblings of the head and spouse (referred to interchangeably

as husband and wife respectively). We consider how well protected a household’s consumption is

to idiosyncratic crop losses – an important source of risk in our predominantly agricultural setting

– given the size of its extended family. Given the social norms previously discussed, we define

groups separately according to relationship to the husband or wife (that is, we consider groups such

as brothers of husband, brothers of wife, etc.). The correlation between changes in log household

consumption and the incidence (and intensity) of household crop loss provides a measure of risk

sharing (see for instance Townsend, 1994; Mace, 1991; Attanasio and Szekely, 2004). We find that

households in which the wife has many brothers achieve worse risk sharing in response to crop losses

compared to households in which the wife has fewer brothers. A similar pattern, though slightly

weaker, is found for households where the husband has many sisters.

A concern is that these findings could be due to the fact that households where the wife has many

brothers (or husbands have many sisters) are poorer, and therefore more vulnerable to shocks.

4A large literature has documented the importance of the extended family for risk sharing in developing countries.
See for example, Rosenzweig, 1988a,1988b; Stark and Lucas, 1988; Rosenzweig and Stark, 1989; Foster and Rosenz-
weig, 2001; Fafchamps and Lund, 2003; Fafchamps and Gubert, 2007; Witoelar, 2013; Angelucci et al., Forthcoming.
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However, the fact that we fail to uncover a similar relationship among households where the wife

(husband) has many sisters (brothers), alleviates this concern. Of course, such a comparison would

form a valid placebo test only if households where the wife (husband) has many sisters (brothers)

are similar to those where the wife (husband) has many brothers (sisters). We confirm this is the

case, by testing directly for differences in the age, education and ethnicity of these household types.

Additional robustness checks indicate that the findings are unlikely to be explained by households

with larger numbers of siblings being more vulnerable to crop losses; or by increased competition

for production resources, specifically land, among families with many male siblings.

Lastly, we confirm that our empirical findings are compatible with Genicot and Ray (2003). To do

so, we calibrate the theoretical model using, where available, values from the data. The calibrated

model yields similar patterns between risk sharing and group size as those found in the data,

indicating that the threat of coalitional deviations can explain our findings.

The paper contributes to a number of strands of literature. It relates to a small literature invest-

igating the relationship between risk sharing and group size. A number of studies show that the

optimal risk sharing groups are likely to be small in the presence of coalitional deviations (Genicot

and Ray, 2003, Dubois, 2006 and Chaudhuri et al., 2010) and transaction costs (Murgai et al.,

2002). However, when households can choose the risks they face, and when they have heterogenous

risk preferences, larger groups may become stable, as shown theoretically by Wang (2015).

It also relates to the literature investigating risk sharing in the presence of coalitional deviations.

Recent contributions have been extended theoretically Genicot and Ray (2003) to characterise the

optimal risk sharing contract when current transfers depend on past transfers and shocks (Bold

(2009)); and to allow for savings, and for the availability of formal and informal risk sharing

institutions (Bold and Dercon, 2014). Bold and Dercon (2014) also implement an empirical test of

the model using data from funeral insurance groups in Ethiopia. However, they do not consider

the relationship between risk sharing and group size.

Finally, the paper contributes to the literature investigating the role of extended families in risk

sharing in developing countries. Recent work has documented that market imperfections influence

transactions and informal risk sharing arrangements within the family. For example, Foster and

Rosenzweig (2001) document that limited commitment, tempered by altruism, is at play in rural

India, while DeWeerdt et al. (2014) show that asymmetry of information among spatially dispersed

extended family networks affects interhousehold transfer decisions in rural Tanzania. Baland et al.

(2016) document that transfers among siblings in Cameroon follow a system of reciprocal credit,

where older siblings support the education of younger siblings, with the expectation that the younger

siblings will reciprocate later.5Our analysis complements this literature by considering how the size

of extended family networks affects informal risk sharing.

The paper is structured as follows. Section 2 lays out the conceptual framework, and shows that

the relationship between the amount of risk shared and group size is theoretically ambiguous when

5This literature also finds that social pressure to make transfers among kin leads to less optimal investment
decisions, especially for women (Jakiela and Ozier, 2016).
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coalitions can deviate. Section 3 provides details on the data, and the social context, focusing

particularly on norms governing extended family relationships in rural Malawi. Section 4 discusses

the empirical specification; while Section 5 displays our main results and robustness checks. Section

6 outlines findings of the model calibration. Section 7 concludes.

2 Conceptual Framework

We consider optimal risk sharing in environments subject to imperfect enforceability of contracts.

This assumption matches well our empirical setting – rural Malawi – where formal enforcement

mechanisms are rarely available. We draw on the set-up in Genicot and Ray (2003), GR hereon,

and add to their analysis by considering explicitly (using numerical simulations) the relationship

between the extent of risk sharing and potential group size.

Households are part of a potential risk-sharing group (in our case, the family) of size n. The size

of the potential risk sharing group is exogenously set. Households face a risky endowment, that

takes on two values: h or l; h ≥ l. The probability of drawing an endowment h in any period is

π; 0 ≤ π ≤ 1. Households are ex-ante identical, risk averse and gain utility from consumption.

Household utility is increasing, concave and twice-continuously differentiable. There is no storage

technology, and neither formal credit nor insurance is available.

To cope with the consequences of risk, households can make and receive transfers following a transfer

rule that depends on the number of households in the group that receive the high endowment shock:

When a household receives h, and k − 1 other households also receive h, each household receiving

h sends a transfer tk to a common pool, which is then shared equally among those receiving l.

Consumption for households receiving h is thus h− tk, while that for those receiving l is l+
ktk

n− k
.6

Households observe the endowments, consumption and transfers made and received by all other

households in the group. However, this setting is subject to the imperfect enforceability of contracts.

Thus, the transfer arrangement needs to be self-sustaining. In particular, it needs to be such that

no individual or sub-group wants to deviate from the arrangement, i.e. it should be coalition-proof.

The specific definition of coalition-proofness is as in Bernheim et al. (1987), which places a further

restriction that sub-groups that deviate should themselves be robust to further deviations. Thus,

arrangements need to be self-sustaining to deviations that are themselves credible.

Given the transfer rule, and the coalition-proofness condition, and focusing on stationary arrange-

ments, the optimal risk sharing arrangement (i.e. transfer in each state) can be recovered from the

following optimisation problem (expressed in per-period terms):

max
tk

v(t, n) = pnu(h) + (1− p)nu(l) +
n−1
∑

k=1

p(k, n)

[

k

n
u(h− tk) +

n− k

n
u(l +

ktk

n− k
)

]

(1)

6Note that the transfer rule makes use of the fact that the group-level aggregate budget constraint for each period
must be satisfied.
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subject to

(1− δ)u(h− tk) + δv(t, n) ≥ (1− δ)u(h) + δv∗(s) ∀ s ≤ k (2)

where δ is the discount factor, and v∗(s) is the per-period expected utility a household could get by

deviating to a stable sub-group of size s, and sharing risk in this sub-group in all subsequent periods.

The incentive compatibility constraints in Equation (2) imply that the transfer arrangement should

be such that the per-period discounted utility for households that achieve a good shock in the

current period and make a transfer tk to the common pool, and expect to achieve future expected

utility of v(t, n) is greater than the utility it can achieve from deviating in a sub-group s where

it consumes h this period and shares risk with the sub-group s in the future thus attaining an

expected future utility of v∗(s).7

When no incentive compatibility constraint binds, the first-best allocation, which equalises con-

sumption for all households within the group for each state of the world, is achieved. By contrast,

in autarky, when no risk sharing occurs, households consume their own endowment in each period,

achieving a per-period expected utility of pu(h) + (1− p)u(l).

Based on this set-up, GR show that a stable risk sharing arrangement may fail to exist for many

group sizes, even for high values of the discount factor.8 Moreover, they show that the size of

stable risk sharing groups is bounded from above: essentially, large groups are not stable in the

presence of coalitional deviations, since households receiving a good shock can deviate to form sub-

groups within which they can still benefit from group-based insurance in the future. Thus, in larger

groups, the outside option may potentially be better than in smaller groups (depending on the sizes

of possible stable sub-coalitions). Thus, the transfer made by those receiving h will be lower than

in arrangements sustained by ostracising a deviator to autarky in the future. This is because those

receiving h need to be induced to remain in the group rather than deviate to a sub-group, which

could provide higher utility than autarky. In some cases, no positive transfer may exist, leading to

the non-existence of a stable risk sharing arrangement.9

Our contribution, relative to GR, is to show within the same set-up that the relationship between the

amount of risk sharing and potential group size is ambiguous. The fact that a stable arrangement

7 This formulation considers deviations by individuals that receive a good shock only. Genicot and Ray (2003)
argue that it is necessary and sufficient to check only the enforcement constraints for stable subsets of individuals
receiving a good shock when considering symmetric stationary strategies. Those receiving a bad shock (who are
recipients of transfers in this state) could be induced to join a subgroup of individuals receiving a good shock only
under very special circumstances. In particular, there needs to be some coordination failure (or belief of this) among
households receiving a bad shock for some household in this group to be tempted to join the deviating group of
households with good shocks.

8In models where the risk sharing arrangement is sustained by ostracising individuals who deviate (i.e. deviating
individuals revert to autarky in future periods), a stable arrangement may fail to exist when the discount factor is
low. When arrangements need to be coalition-proof, however, a stable arrangement may fail to exist even if the
discount factor is sufficiently high.

9When arrangements can be non-stationary, a larger group could be stable. This is because only a sub-set, rather
than all, of potential deviators need to be compensated to remain in the risk sharing arrangement. Nonetheless, GR
show that the size of the largest stable group will still be bounded from the top (though it could be larger than the
largest stable group under stationary arrangements).
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may not exist for many group sizes, complicates this exercise.10 In particular, it is not possible to

study this analytically. We instead use numerical simulations to shed light on the relationship.

We need to take a stand on how risk is shared in potential groups of size n where no stable risk

sharing arrangement exists. One possibility is that households remain in autarky. However, this is

not very satisfactory, especially since within this set-up, households can deviate from an autarky

punishment by cooperating with subgroups of households. Thus, given that households are ex-ante

identical in this setting, a natural assumption is that in cases where no stable arrangement exists

for a potential group of size n, the potential group randomly partitions into stable subgroups in a

manner so as to maximise the sum of expected utility,

n
∑

i=1

∑

s∈S

ns ∗ s ∗ vi(t, s) (3)

where S is the set of stable coalitions (or groups), and i indexes households in the group.11 In

other words, we assume that there exists a social planner who chooses a combination of stable

sub-groups such that the sum of expected utility (as in Equation (3)) is maximised, and then

randomly sorts households into these sub-groups.12,13 We can then calculate the expected utility of

a household in the unstable potential group of size n as the weighted average of the expected utilities

associated with the combination of stable subgroups (the actual risk sharing group) that maximises

the potential group’s expected utility, with weights calculated as the probability of being randomly

assigned to a particular sub-group. To be precise, the household’s weighted average expected utility

is:

∑

s∈S:s stable

πsvi(t, s) (4)

where πs is the probability of being in the stable group s. This is the social planner’s objective

function. The value of this function increases as fluctuations in a household’s consumption fall: a

larger stable group will have a higher value of vi(t, s) since (i) the probability of states where all

households receive the same shock falls with group size, and so there is more scope for risk sharing;

and (ii) households have concave utility.

10Moreover, as indicated by GR, the existence or not of a stable arrangement for groups of size greater than 2 is
sensitive to parameter values.

11This need not be the only way by which the group partitions, particularly when households are allowed to be
heterogenous. For example, partitions could emerge endogenously as in Ambrus et al. (2014), who allow for different
transfers to be made between pairs of households embedded in a network.

12In doing so, we assume that unstable potential groups are arranging themselves in a manner so as to generate
the highest possible insurance for their members.

13Since households are ex-ante identical, we assume that the social planner places equal weight on each household
when deciding how to allocate households in unstable groups to stable subgroups. However, this assumption can be
relaxed easily to allow for arbitrary planner weights. However, note that the transfer rule, and thus expected utility,
vi(t, s), will be the same for all households.
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Table 1: Stable groups
Group Size Parameter Set A

1
2
3
4 ×
5 ×
6 ×
7 ×
8 ×
9 ×
10 ×

Simulations To simulate the model, we make some assumptions about the functional form of

the utility function, and the parameter values. In the examples we show here, we use the same

parameter values as in GR (Example 2).14 Utility is assumed to be of the constant relative risk

aversion form:

u(c) =
c(1−ρ) − 1

(1− ρ)

where ρ is the coefficient of relative risk aversion. n is assumed to be 10, which matches the largest

group size in our data (see Section 3 below). ρ is assumed to be 1.6, δ = 0.83, h = 3 and l = 2 as in

GR. Finally, the probability of receiving the high endowment, p = 0.4. With this set of parameter

values, only sub-coalitions of size 1, 2 and 3 are stable, as reported in GR and documented in Table

1.

Given this set of stable sub-groups, we evaluate the model’s implications on the relationship between

the extent of risk sharing and potential group size; as well as those for welfare. Risk sharing is

measured using a standard measure used in the literature (e.g. Townsend, 1994), which can also

be derived from the model. The measure makes use of the fact that under perfect risk sharing,

the ratio of marginal utility of consumption across states should move one-to-one with changes in

aggregate resources, and hence be unaffected by idiosyncratic shocks. With CRRA utility, this

implies that ∆log(cigt) will be uncorrelated with (negative) idiosyncratic shocks, which we will

denote as ∆shockigt, when risk is perfectly shared through the transfer arrangement. A negative

correlation implies that risk is not perfectly shared, with the magnitude providing an indication of

the extent of risk sharing: the closer it is to 0, the higher the amount of risk sharing. Welfare is

measured using the planner’s expected utility as in (4).

In order to document the relationship between potential group size and the extent of risk sharing,

14We use these parameter values so as to illustrate what happens to the extent of risk sharing in a documented case
where only a small number of potential group sizes is stable. In Section 6, we illustrate the patterns of risk sharing
and potential group size that emerge when we set the parameter values to match our data.
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we use the simulated data to estimate:

∆log(cigt) = λ0 +

N
∑

n=1

θn∆shockigt ∗ 1(Sig = n) + τgt +∆ǫigt (5)

where ∆log(cigt) is the change in log consumption for household i of potential group g between t

and t− 1, shockigt = 1[yigt = l] is an indicator of whether household i from group g drew the low

income realisation, l, at time t, τgt are potential group-time fixed effects, and ǫigt is an error term.

Perfect risk sharing implies that θn = 0.

Figure 1: Potential Group Size, Risk Sharing and Welfare - example from Genicot and Ray (2003)
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Notes: The Figure shows the relationship between risk sharing (left) and potential group size; and weighted average
expected utility (right) and potential group size

Figure 1 displays the relationship between the risk sharing measure and potential group size (left

panel) and welfare and potential group size (right panel). The Figures indicate that households

are best insured and achieve the highest expected utility when the potential group size is 3, which

corresponds to the largest stable group size. For larger potential group sizes, both risk sharing

and weighted expected utility fluctuates in a zig-zag pattern. This zig-zag pattern is a result of

the integer constraint and of our assumption of how households sort into stable groups when the

potential group is not stable. To see how, in a potential group of size 4, one household would be in

autarky, while the other three households could cooperate together in a stable group. Hence, the

expected utility of a household is made of the utility of being in a stable group of 3 with probability

0.75, and being in autarky with probability of 0.25. And consequently, the expected utility of a

household belonging to a potential group of size 4 is smaller than that of a household belonging to

a potential group of size 3. When the potential group is of size 6, two stable groups of size 3 are

formed, and hence households enjoy the same average utility (right panel) as when the potential

group is of size 3, which creates the zig-zag pattern (we explain below why a similar pattern doesn’t

emerge for the risk sharing measure).15

15A detailed overview of the calculations that yield the Figure is in Appendix A.1.
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Something to note about the zig-zag pattern described above is that the household expected utility

is never higher than the utility of a household whose potential group coincides with the largest stable

group (size 3 in the example above). Hence, the average expected utility across potential group

sizes which are larger than the largest stable group is always smaller than the average expected

utility of households whose potential group coincides with the largest stable group.

Interestingly, the risk sharing measure (left panel) is lower for the potential group sizes of 6 and

9 than the potential group of size 3, whilst they enjoy the same expected utility. This highlights

the difference between measuring welfare and measuring risk sharing against idiosyncratic shocks.

Whilst welfare is affected by all states of nature, including those with aggregate shocks, only states

of nature in which it is possible to share risk contribute to the risk sharing measure (and hence the

need to include τgt in Equation (5) to account for aggregate shocks at the potential group level).

When the potential group is of size 3, if all group members draw the same income realization

(aggregate shock), there is no scope to share risk but this does not contribute to the identification

of θ3 because of τgt, which absorbs the effect of the aggregate shock. For a potential group is of size

6, households will sort into two groups of 3, say group A and group B. With positive probability,

there will be states where all households in group A experience the same income draw, while those

in group B have a mixture of low and high income draws. Contrary to the potential group was 3, the

inability of group A to share risk contributes to the identification of θ6 because not all households

in the potential group of 6 drew the same income level. In other words, because the shock was not

an aggregate one, there were risk sharing possibilities in the potential group of 6 which were not

exploited because they divided in two groups of 3.

As it is clear from the above discussion, what is driving the results is that households sort themselves

into groups, which are smaller than the potential group. Although coalitional deviations is a natural

way to obtain this endogenously, the same result would be achieved if households create small risk

sharing groups for some exogenous reason. Indeed, other models might also imply that the size

of the optimal risk sharing group is smaller than the whole potential group. The presence of

coordination costs that are increasing in group size could also yield a similar pattern, as shown by

Murgai et al. (2002).16

To be noted, though, and documented by GR, is that the stability of groups is sensitive to parameter

values. In particular, changing the parameters ρ, p, h and l a little can change which group sizes are

stable.17 This is displayed in Figure 7 in the appendix, which plots the two measures of the degree

of risk sharing for different levels of h and l. The values of these variables have been selected so as to

have the same average endowment, but different variances. A higher variance implies a greater need

for insurance. The Figure indicates that as the need for insurance increases, larger potential groups

become stable, and these groups achieve better risk sharing than smaller potential groups. This is

best displayed by the line corresponding with the highest need for insurance (l = 1.0; h = 4.5), and

16However, to our knowledge, no work has characterised the relationship between the extent of risk sharing and
potential group size.

17From the repeated games literature, it is well known that groups of size 2 can be unstable for low levels of the
discount factor, δ. The instability noted here for larger groups arises even when δ is high.
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is the lowest line in the left panel of Figure 7. This line increases monotonically up to potential

group size 7. By contrast, when the need for insurance is low (l = 2.2; h = 2.7), a case depicted

by the top-most line in the left panel of Figure 7, no potential group of size > 1 is stable.18

3 Context and Data

Our empirical setting is Malawi, one of the world’s most impoverished countries, ranking 173rd out

of 182 countries on the Human Development Index. Over 80% of its population lives in rural areas,

with subsistence agriculture providing the main source of income for a substantial proportion.

Infrastructure in rural areas is very weak, with just one in sixteen households having access to

electricity, and one in five households having access to piped water.19 The main crops grown are

maize, tobacco and ground nuts. Agriculture is mainly rain-fed, so agricultural production and

associated income are highly dependent on unpredictable weather. Access to formal insurance and

financial products and services is low, with only 3% of adults holding an insurance product and less

than 20% a formal bank account.20 Instead social connections, particularly family, are important

for sharing risk.

3.1 Data Description and Sample Selection

We use data from the Mai Mwana - IFS Economic Survey, a longitudinal survey collected in

collaboration with the authors in Mchinji District to evaluate two randomised health interventions,

a volunteer infant feeding counselling intervention and a women’s group intervention.21 The survey

interviewed approximately 3,000 women aged 17-43 and their households living in approximately

600 villages across the Mchinji District. It collected detailed information on household consumption,

adverse events, individual labour supply, health indicators, assets and demographics, and, guided

by this research question, information on extended family networks within and outside the village.

There are two waves of data, in 2008-09 and 2009-10. The longitudinal nature of the data allows

us to better control for household-level unobserved variables that are correlated with our measure

of potential group size, crop losses, and risk sharing.

We restrict the analysis to the following sample: (i) households living in control areas, (ii) households

where the main respondent was resident in the same village over both surveys, (iii) households

where the main respondent in our survey was either the head or the spouse, and (iv) villages with

more than 1 household surveyed. Restriction (i) is imposed since the interventions could have

altered risk sharing arrangements within the village, by for instance, altering social interactions or

18Average expected utility is nonetheless higher in this case (even in autarky) since the variance of the endowment
is much lower.

19Source: Malawi Population and Housing Census (2008).
20Source: Finscope Malawi (2009).
21See Lewycka et al. (2013) and Fitzsimons et al. (2014) for findings of the related impact evaluation. The data

are available to download at http://discover.ukdataservice.ac.uk/catalogue?sn=6996
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improving community cooperation (particularly in the case of the women’s groups).22 Restriction

(ii) is imposed to allow us to correctly account for village-level aggregate shocks.23 We impose

restriction (iii) to ensure that we are studying the networks of individuals with relatively similar

intrahousehold bargaining power in the sample. Finally (iv) is imposed because we control for

village fixed effects.

Table 2 displays descriptive statistics of our analysis sample. It contains approximately 524 house-

holds living in 102 villages. Note that we recode the male member of a couple (where available)

to be the head, while the female member is designated to be the spouse. Both the head and

spouse have low levels of education on average, with approximately 16% (7.4%) of household heads

(spouses) having some secondary schooling. Husbands are older than their wives by on average

around 5 years. Households have on average just over 5 members, and most own their own dwelling

and land. However the quality of housing is very poor, with extremely limited access to water and

sewage infrastructure.

3.2 Defining the Risk Sharing Group

We here discuss how we define the potential risk sharing group. As noted above, formal financial

markets are all but absent in Mchinji, and there was no government safety net in place at the time

of the surveys.24 Evidence from the anthropology and sociology literature indicates that social

connections, and in particular, the extended family, play a critical role in helping households deal

with the consequences of risk and adverse events. For instance, Trinitapoli et al. (2014) documents

the role of older siblings in protecting educational investments of younger siblings, while Peters

et al. (2008) and Munthali (2002) document the instrumental role of the family in fostering and

taking care of children orphaned by HIV/AIDS. We also find support for this in our data. In

particular, in response to a question on who they expect to receive informal monetary transfers,

loans or gifts from in the event of an income loss due to adverse idiosyncratic events (displayed in

Table 3), households expect to receive support from 2 family members and 1 friend, at the median.

The average indicates the opposite pattern, though this is driven by a small number of households

who can turn to a large number of friends.25

Our data also allows us to look at the actual amounts of transfers, loans or gifts (monetary or

in-kind) given to and received from family and friends (Table 4) in the year prior to the survey.

The data indicates, on average, households give an annual amount of around 375 MK to family,

and receive on average 321 MK. Their transactions with friends are much lower, by a magnitude

of two and a half times, with 113 MK given on average and 87 MK received from friends. These

22Fitzsimons et al. (2016) find suggestive evidence of this.
23Around 18% of the survey main respondents in the data migrated to another village between 2008-09 and 2009-

10. The primary reason for migration was marriage. In additional analysis, we checked whether migration was
systematically related with the crop loss, and found no evidence of this.

24A cash transfer program, the Mchinji Cash Transfer, was being piloted in a small number of villages in Mchinji
at the time of the survey. Less than 3% of households in our sample report receiving the transfer.

251% of households report being able to turn to 10 or more friends in case of an adverse event.
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Table 2: Sample Descriptives

Variable N Mean Std. Dev.

Husband has no education (yes=1) 477 0.140 0.348
Husband has some primary (yes=1) 477 0.222 0.416
Husband has completed primary (yes=1) 477 0.478 0.500
Husband has at least some secondary (yes=1) 477 0.159 0.366
Husband’s years of education 477 5.157 3.514
Wife has no education (yes=1) 524 0.256 0.437
Wife has some primary (yes=1) 524 0.273 0.446
Wife has completed primary (yes=1) 524 0.397 0.490
Wife has at least some secondary (yes=1) 524 0.074 0.263
Wife’s years of education 524 3.435 3.229
Age of Husband 478 37.464 10.110
Age of Wife 524 32.648 8.843
Household size 524 5.708 2.123
# of kids < 6 years 524 1.403 0.958
# of kids aged 6-12 years 524 1.187 1.031
# individuals aged > 12 years 524 3.115 1.347
Household owns dwelling (yes=1) 524 0.937 0.243
Household owns land (yes=1) 524 0.840 0.367
Household has good floor (yes=1) 524 0.099 0.299
Household has good roof (yes=1) 524 0.210 0.408
# of sleeping rooms 524 2.076 1.017
Household has access to piped water (yes=1) 524 0.078 0.269
Household has improved latrine (yes=1) 524 0.073 0.260

Notes to Table: The table includes households resident in the same village over both rounds of the Mai Mwana - IFS
survey, and where the main respondent was married, and either the head or spouse of her household. Data for some
husbands is missing if they are not living in the household at the time of the survey, but are still married to the wife.

Table 3: Number of potential sources of support following adverse idiosyncratic event
Source of Support Mean Median Std.

Dev

Family 1.69 2 1.68
Friends 1.94 1 2.31
N 1048

Notes to Table: This table shows the number of different individuals with a specific social relationship that a
household expects to receive help from if it experiences an income loss as a result of an idiosyncratic adverse event.
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Table 4: Transfers Given to and Received From Family and Friends
Source of Support Support Given Support Received Support Given + Received

Mean Std. Dev Mean Std. Dev Mean Std. Dev

Family 375.11 1485.83 321.22 1567.91 696.78 2378.13

Friends 113.59 677.72 87.65 599.74 201.24 919.48

N 1048 1048 1048

Notes to Table: This table shows the amounts given to (left panel), received from (middle panel), and given to and
received from (right panel) individuals with a specific social relationship by the household in the year prior to the
survey for wave 1 and between surveys for wave 2. All amounts are in Malawi Kwacha. The exchange rate at the

time of the survey was around US$1 = 140 MK.

pieces of evidence thus confirm that the extended family is a critical source of risk sharing in this

setting. Given the importance of family for risk sharing, we define ‘potential group size’ based on

family.

Further anthropological evidence allows us to further refine the potential group, in addition to

motivating a robustness check to rule out any lingering endogeneity concerns relating to this defin-

ition. Within the family, customs are such that a wife’s brothers should play an important role in

ensuring the well-being of her family. The predominant ethnic group in our sample, the Chewa, are

a matrilineal and matrilocal ethnic group (Richards, 1950, Phiri, 1983, Mtika and Doctor, 2002).

Under matrilineal traditions, society confers a special role on an individual’s maternal family, res-

ulting in a close bond between siblings, even after marriage. Moreover, a woman’s brothers play a

crucial role in supporting her family: her eldest brother is responsible for ensuring access of a wo-

man’s family to production resources, healthcare, and other items important for household welfare.

As a result, children will consult with their maternal uncles as they are responsible for arranging

marriages, ensuring the children have access to adequate land and other productive resources, as

well as health care (Phiri, 1983, Mtika and Doctor, 2002).

The literature indicates that some practices may be less relevant today, while other aspects of mat-

riliny have proven to be remarkably resilient over time. For instance, the practice of matrilocality

– whereby the husband moves to the wife’s home after marriage – has waned somewhat in Mchinji,

with about a half of couples in our sample living in the husband’s village of birth when interviewed,

and the other half living in the wife’s village of birth. At the same time however, children are

still considered to ‘belong’ to their mother’s matriline, and the maternal relatives become their key

caretakers following her death Munthali (2002).

In terms of risk sharing arrangements, data on interhousehold transfers from the Family Transfers

Project (collected as part of the Malawi Longitudinal Study of Families and Health26) indicates that

a wife’s brothers remain an important source for, and recipient of, transfers in a household: 33%

(41%) of couples report having received (given) a material transfer from (to) the wife’s brothers in

the past growing season, a period of around 3-5 months. Moreover, they are less likely to receive

26The Malawi Longitudinal Study of Families and Health is a longitudinal cohort study collecting data on a range
of socio-economic and health variables in 3 areas of Malawi, including Mchinji District. Data is available on around
4,000 individuals from 1998-2012.

14



material transfers from a wife’s sisters (26% report receiving a material transfer), and transfers

received are of lower magnitude (351 MK on average is received from brothers, compared to 119

MK from sisters).27 The evidence thus suggests that the brothers of the wife are likely to still play

an important role in risk sharing for the household.28 We thus define the potential risk sharing

group to be the number of brothers (and separately, sisters) of the husband and wife.

3.3 Crop Losses

3.3.1 Measuring Crop Losses

Unexpected crop losses provide our measure of shocks in the analysis.29 Such crop losses could occur

as a result of pests, variation in weather (the effects of which could vary within a village by the

type of soil, and other characteristics of the land), and other such factors. The first (second) survey

collected information on whether the household experienced any crop loss in the year preceding

the survey (since the first survey); and if so, the household head was asked to estimate how much

revenue was lost as a result.30 We use this information to construct two measures of crop loss:

the first is a dummy variable equal to 1 if the household experienced a crop loss event, thereby

measuring the incidence of a crop loss; the second is potential revenue lost normalised by a measure

of ‘permanent’ consumption, thereby capturing the intensity of the crop loss.31

Crop losses are prevalent in this setting, as is evident from Table 5: Around 24% of households in

our sample experienced a crop loss over the 2-year period, losing on average, just over 3,700 MK.

This amount corresponds to around one third of average monthly household food consumption.

Among those who experienced a loss, the average loss is around 13,000 MK, or 125% of average

monthly household consumption. More crop losses were observed in the year prior to the 2008-09

survey than the 2009-10 one, and the losses experienced were also larger.

Finally, there is some persistence in crop losses among those who experienced a loss. From Table 6,

we see that around 8% of households experience a crop loss in both survey rounds, which is higher

than what we would expect if crop losses were independently distributed.32

27These figures come from 220 observations, and are not adjusted for the number of siblings, or other variables.
28Importantly, the norm does not imply that sisters cannot help each other, or their brothers. Our empirical set-up

allows for the possible asymmetry in risk-sharing relationships that could be generated by the norm. In Section 5.2.3,
we consider an extension of the theoretical framework that allows for this asymmetry and the social norm.

29Crop losses have been used as a measure of adverse events by studies, e.g. Beegle et al. (2006).
30The questions were: “In the last year (since the last survey) did this household suffer from a bad harvest or crop

loss?” and “How much potential revenue was lost as a result of the loss?”
31Households that experience larger losses may be wealthier and better able to build up buffer stocks to deal with

the consequences of risk, in which case we would erroneously conclude that households are well insured. To deal with
this, we normalise the potential revenue lost by a measure of the household’s permanent consumption. Household
permanent consumption is measured as the component of household consumption predicted by the education of the
female main respondent as in 2004. We also experimented with using household asset holdings in 2004 and quality
of house in 2004, in addition to the education of the female main respondent, to predict household consumption.
A concern with using past household assets, however, is that they may be correlated with a household’s ability to
currently smooth consumption, particularly if crop loss events are persistent. Results using this measure are available
on request.

32Under the assumption that the crop loss distributions for the two years are independent, the probability of
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Table 5: Crop Losses, By Year

N Mean Std Dev

Overall Sample
Crop loss incidence 1048 0.242 0.429
Income lost (’000s MK) 1044 3.756 19.337

2008-09
Crop loss incidence 524 0.303 0.460
Income lost (’000s MK) 524 5.536 26.310

2009-10
Crop loss incidence 524 0.181 0.386
Income lost (’000s MK) 520 1.962 6.891

Notes to Table: Sample includes households resident in the same village across the two surveys, and where the main
respondent was married at the time of the survey and either the head or spouse of the head.

Table 6: Persistence of Crop Losses

Crop Loss in 2009-10
No Yes Total

Crop Loss in 2008-09

No 312 53 365
[59.54] [10.11] [69.66]

Yes 117 42 159
[22.33] [8.02] [30.34]

429 95 524
[81.87] [18.13] [100]

Notes to Table: Sample includes households resident in the same village across the two surveys, and where the main
respondent was married at the time of the survey and is either the head or spouse of the head. Percentages in each category

displayed in parentheses, underneath number of households.

3.3.2 Are crop losses idiosyncratic within the village?

The objective of the paper is to investigate how the amount of idiosyncratic risk shared by a

household varies with the size of its extended family. For our tests to have sufficient power, we

require that there is sufficient variation within villages in the incidence of crop losses.33 Such

variation may arise as a result of differences in land quality, with some plots more resilient than

others to poor weather; some crop varieties more resilient to poor weather; or due to localised

pests or crop diseases. Note that there was no drought or widespread flooding in Mchinji over the

survey period. Nonetheless, we investigate the amount of idiosyncratic variation in our data. To do

experiencing a crop loss in both survey rounds is the product of the probability of experiencing a crop loss in 2008-09
and the probability of experiencing a crop loss in 2009-10, which equates to around 5.4% of households.

33As we will show below, ideally we would like to be able to control for within-group shocks. However, we are
unable to do this since we do not observe information on all members of the group. Controlling for aggregate village
shocks allows us to partially account for common shocks experienced by group members in the village.
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Figure 2: Variation in crop loss incidence within villages
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Notes to Figure: The Figure plots a histogram for the proportion of households in each village that experienced a crop loss in
wave 1 of the survey (left panel) and in wave 2 (right panel). For legibility of the graph, a peak at 0 with magnitude 10 has

been omitted.

this, Figure 2 displays histograms of the within-village variation in the incidence of a crop loss, for

each round of data. We see from the Figure that there are a number of villages with idiosyncratic

variation in the incidence of crop losses.

3.4 Measuring extended family networks

To investigate the relationship between the extent of risk sharing and the size of the extended family,

we collected information in the survey on the numbers of siblings of the main respondent and her

spouse. Data were collected on the numbers of siblings in the village and the number alive34, and

on the location of residence of the respondent’s mother and mother-in-law. We use the numbers of

siblings as the measure of potential group size. The two surveys – conducted approximately one

year apart – captured similar numbers of siblings for a large part of our sample. However, there

were some discrepancies in a sizeable minority (˜30%) of observations, which could not be explained

34The exact wording of the questions was as follows: Please tell me how many of the following categories of relatives
are currently alive, regardless of where they live:

1. Sisters 2. Sisters-in-law 3. Brothers 4. Brothers-in-law
Please tell me how many of the following categories of relatives are currently living in this village:
1. Sisters 2. Sisters-in-law 3. Brothers 4. Brothers-in-law
Note that in our survey, sisters-in-law and brothers-in-law were translated in a manner so as to capture the siblings

of one’s spouse.
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Table 7: Any Family Links
Any Any Sibling Any Sibling Any Links

Sibling Link of Link of Husband Wife
Link Husband Wife Brothers Sisters Brothers Sisters

Alive 0.996 0.971 0.985 0.908 0.908 0.941 0.933
[0.003] [0.008] [0.005] [0.013] [0.013] [0.011] [0.012]

In Same Village 0.819 0.666 0.531 0.534 0.517 0.418 0.437
[0.021] [0.024] [0.028] [0.025] [0.022] [0.021] [0.030]

Notes to Table: The table includes households resident in the same village over both survey rounds, and where the main
respondent is married, and is either the head or spouse of her household.

by naturally occurring changes (e.g. deaths or divorce), and thus point towards reporting errors.

To mitigate effects of such errors, we take the average of the reported information in both surveys

as the preferred measure of potential group size. Moreover, we use information from the household

roster, along with this data, to construct measures of the number of siblings of the husband and

wife living outside the household.

Tables 7 and 8 provide some descriptive statistics of sibling networks in this context. Virtually

all households have a sibling link outside the household, and a lower, though sizeable proportion

(˜82%), has siblings within the same village. Households have on average 9 siblings outside the

household, of whom close to 3 are within the same village. The high numbers of siblings (relative

to Western contexts) reflects the high fertility rates in Malawi: the Total Fertility Rate35 in rural

areas was estimated to be around 7.6 in 1984, falling slightly to 6.7 by 2000. At the individual

level, almost all husbands and wives have a living sibling, though roughly one-third of husbands

and nearly half of wives do not have a sibling in the same village. On average, wives have more

living siblings (˜5) than husbands (˜4.4), but both have similar numbers of siblings in the same

village.

These patterns are in line with post-marital living patterns in this context. As mentioned already,

though the Chewa were traditionally matrilocal, this seems to be waning in Mchinji, with roughly

half of the wives in our sample moving to their husbands’ village after marriage. Thus, roughly

half the wives in our sample has a sibling in the same village, while two-thirds of husbands have a

sibling in the same village. In terms of the type of sibling link, husbands and wives have similar

numbers of brothers and sisters alive (around 2-3 of each type on average), though they each have

slightly more brothers than sisters living in the same village. The table also indicates that they

have, on average, much fewer siblings of either type in the village compared to outside the village.

35This captures the average number of children that would be born to a woman over her lifetime if she were to
experience the exact current age-specific fertility rate through her lifetime, and if she were to survive from birth to
the end of her reproductive life.
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Table 8: Numbers of Family Links
# of Sibs # of Sibs # of Sibs Number of
of Husband of of Husband Wife
+ Wife Husband Wife Brothers Sisters Brothers Sisters

Alive 9.418 4.422 5.162 2.281 2.267 2.519 2.740
[0.172] [0.098] [0.113] [0.064] [0.068] [0.069] [0.079]

In Same Village 2.945 1.571 1.498 0.893 0.788 0.811 0.748
[0.127] [0.081] [0.086] [0.057] [0.044] [0.050] [0.052]

Notes to Table: The table includes households resident in the same village over both survey rounds, and where the main
respondent was married, and either the head or spouse of her household.

4 Empirical Model

Our objective is to understand how the amount of risk shared in the face of crop losses varies with

the size of a household’s family network. To do so, we require a measure of risk sharing, which

can be computed in the available data. One measure implied by the model (assuming utility of

the constant relative risk aversion form) is the deviation of changes in log consumption from the

first-best allocation. Under the first-best allocation, where every group is stable, each household

will consume an equal share of pooled resources. This means that changes in household-level log

consumption should move one-to-one with aggregate group resources, and be uncorrelated with

household-level idiosyncratic shocks. Following Townsend (1994), full risk sharing would be tested

in our context using the following regression:

∆log(civt) = α0 + α1∆(cropivt) + ∆Xivtγ + µvt +∆ǫivt (6)

where ∆log(civt) is the change over time in log consumption for household i in village v at time t,

∆(cropivt) indicates the change in crop loss incidence or intensity for household i between t and

t− 1, where the crop loss incidence and intensity are measured as explained in Section 3.3, µvt are

village-time fixed effects, and ǫivt is an error term.36 Full risk sharing is consistent with α1 being

zero, while a negative value would imply a rejection of full risk sharing.

Because our main interest is to test for risk sharing according to the size of the household’s family

network (potential group), we augment the above regression with interactions between ∆cropivt

and dummy variables for each potential group size in the data:

36In Appendix C we show how the regression above can be derived from the Townsend (1994) regression that uses
changes in income instead of ∆(cropivt).
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∆log(civt) = α0 + α1∆(cropivt) +

N
∑

n=1

βn∆cropivt ∗ 1(Siv = n) + ∆Xivtγ

+

N
∑

n=1

λn∆cropivt ∗ 1(Fiv = n) + µvt +∆ǫivt (7)

The term 1(Sivt = n) takes the value of 1 if the household has n brothers or sisters of the

head or spouse and 0 otherwise. ∆Xivt captures changes in household characteristics, such

as household demographics, that could also affect changes in log consumption. The term
N
∑

n=1

λn∆cropivt ∗ 1(Fiv = n) controls for direct effects of total sibship size of the husband or wife.

µvt denote village-time dummies which capture village-level aggregate shocks. The coefficients of

interest are βn, while the sum of the coefficients α1 +
N
∑

n=1

βn ∗ 1(Siv = n) indicates how well pro-

tected a household’s consumption is against idiosyncratic crop losses. In line with the prevailing

social norms in this context, which indicate that a woman’s brothers have an important role in

helping out their sisters’ households, we conduct the empirical analysis separately for the brothers

and sisters of the head of a household and his spouse.

Ideally, we would like to control for group-level aggregate shocks, rather than just village-level

aggregate shocks. However, we are unable to do so since we do not observe the crop losses or

consumption of all members of the potential group. As a result, the group-level aggregate shock

is an omitted variable, which will bias the estimates of interest if it is correlated with potential

group size or with crop loss incidence. To assess the consequences of this, we run some simulations

where we generate data from a data generating process similar to that implied by the model in

Section 2 (parameterised using values similar to those in the data), and use these to shed light on

the direction and magnitude of the resulting omitted variable bias. The findings of this exercise

are provided in Section 5.2.

We include changes in crop loss, rather than crop loss in levels, as a measure of idiosyncratic shock

for the following reason: assume we used the crop loss incidence between periods t and t+1 as the

shock measure. The concern with this is that, in the absence of perfect risk sharing, a household

may already have low consumption at period t if it experienced a crop loss between periods t − 1

and t. Moreover, assume it experiences another crop loss between t and t+1, and its consumption

remains low at time t+1, resulting in little or no change in ∆log(chvt). The household would then

erroneously appear to be perfectly insured. Failing to account for this would lead to the erroneously

conclusion that households are perfectly insured since their consumption does not respond to a crop

loss. For this reason, we define the shock measure as the difference in incidence (or intensity) of a

crop loss between periods t− 1 and t and between t and t+ 1.37

37We look at this more formally in Appendix C. A further issue with focusing on incidence of rather than changes in
crop losses is that we do not account for other risk faced by the household, which may affect both their consumption
smoothing and the shocks they experience. To assess the importance of this issue in our context, we estimated
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This specification can shed light on the shape of the relationship between our measure of risk sharing

and the size of a household’s potential group. However this approach, which is fully non-parametric

in the number of siblings, may not have sufficient power to identify statistically significant effects. To

improve power, we divide potential group size into three bands, the cutoffs of which are motivated

by the findings from the nonparametric regression above, and use the following specification for the

empirical analysis:

∆log(civt) = α0 + α1∆(cropivt) +

G
∑

g=1

βn∆cropivt ∗ 1(NSg,iv = 1) + ∆Xivtγ

+

N
∑

n=1

λn∆cropivt ∗ 1(Fiv = n) + µvt +∆ǫint (8)

where 1(NSg,iv = 1) is a term that takes value 1 if the household’s network size is within the cutoffs

associated with band g, and 0 otherwise; and the rest of the variables are as defined above.38

5 Results

5.1 Main Specification

We first estimate Equation (7), separately for the brothers and sisters of the husband and wife.

Figures 3 and 4 plot the coefficients from these regressions. We have extremely limited power

in these specifications, and thus suppress the confidence intervals for these coefficients from the

Figures. Despite the limitations in power, these Figures shed light on the possible shape of the

relationship between informal risk sharing and potential group size in our data.

specifications controlling for other idiosyncratic shocks experienced by the household (business shocks, theft, and
marriage break-up) and found it made little difference to the key coefficients of interest.

38The exact cutoffs for the different bands are defined in Section 5.
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Figure 3: Risk Sharing by Number of Brothers and Sisters of Husband
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Changes in log consumption in response to a crop loss

Notes to Figure: The figures plot the correlation between changes in log consumption and household crop loss
incidence (left panel) and intensity (right panel) for households with different numbers of brothers (top panel) and
sisters (bottom panel) of the husband. The coefficient for zero brothers or sisters is normalised to 0, and lower

values of the coefficient indicate worse risk sharing.
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Figure 4: Risk Sharing by the Number of Brothers and Sisters of Wife
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Changes in log consumption in response to a crop loss

Notes to Figure: The figures plot the correlation between changes in log consumption and household crop loss
incidence (left panel) and intensity (right panel) for households with different numbers of brothers (top panel) and
sisters (bottom panel) of the wife. The coefficient for 0 brothers or sisters is normalised to 0, and lower values of the

coefficient indicate worse risk sharing.

From the Figures, we can see that there are differences in the amount of consumption smoothing

in the face of crop losses, by the size and types of family relations. In particular, Figure 3 indicates

positive changes in log consumption (implying better protection of consumption) the larger the

number of brothers of the husband, and worse consumption smoothing the larger the number of

sisters of the husband. For the siblings of the wife, the Figures indicate that the consumption

of households where the wife has a small number of brothers is almost perfectly smoothed, but

worsens as the number of brothers increases. By contrast, no such relationship is seen for the wife’s

number of sisters.

The analysis above suggests that there are nonlinearities in the relationship between the amount of

risk shared in response to crop losses, and the number of brothers and sisters of a household’s head

and spouse. Moreover, in line with the social norms in our setting, the effects vary by type of sibling.

In particular, for brothers of the wife, and sisters of the husband, there is an initial improvement

in consumption smoothing with network size, before worsening. However, we do not have sufficient

power to obtain statistically significant estimates. To gain power, we thus pool together the number

of siblings of a particular type into 3 groups: those with 0 siblings of a particular type, those with

1-2 siblings of that type, and those with 3 or more siblings of that type. These cutoff values are

in line with the evidence presented in Figures 3 and 4, while also ensuring that each group has
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sufficient sample size to improve power. Table 9 presents the results for this specification, with our

two measures for the crop loss shock: incidence and intensity. The top left panel displays the results

pertaining to the brothers of the husband, while the top right panel displays these for the brothers

of the wife. The bottom panel displays the results for the sisters of the husband (left panel) and

wife (right panel).

The regression coefficients indicate that households where the wife has more than 3 brothers ex-

perience much worse risk sharing following crop losses than those where she has fewer than 3 (i.e.

0 or 1-2) brothers. We detect no such relationship for the brothers of the husband. This finding is

replicated across both our measures of crop losses - incidence and intensity. The coefficient estim-

ates indicate that households where the wife has more than 3 brothers cut their consumption by

approximately 26% when hit by a crop loss, while the intensity measure indicates that a crop loss of

a magnitude equivalent to a month’s consumption leads to a reduction in household consumption

of approximately 18%.

The bottom panel of the table indicates worse risk sharing (significant only for the intensity measure)

among households where the husband has any sisters, as can be evidenced by the positive coefficient

on the interaction term for no sisters, and the negative coefficient on the interaction term for more

than 3 sisters. No similar pattern is found for the sisters of the wife or the brothers of the husband.

The absence of any significant differences in risk sharing by the number of sisters of the wife is

consistent with the evidence showed in Subsection 3.2 which indicated that sisters of the wife are

less important for risk sharing. However, it is not implied by the model of Section 2, which assumes

that all agents are ex-ante identical. In Section 5.2.3, we extend the model to include two types

of agents as well as the social norm and consider whether this extended model can explain this

finding.

5.2 Robustness

The analysis in the previous subsection indicates that households where the wife (husband) has

many brothers (sisters) achieve worse risk sharing following an idiosyncratic crop loss. In this

section, we report on various exercises undertaken to ascertain the robustness of this finding. In

particular, we rule out that this finding is a result of unobserved common group shocks, or because

larger networks are poorer, or because there is higher competition for resources among networks

with many males, or because larger networks are more vulnerable to crop losses.

5.2.1 Aggregate Extended Family Shocks

As mentioned above, our data does allow us to adequately account for common shocks at the village

level but not at the extended family level. This means that we cannot perfectly control for changes in

aggregate resources at the potential group level, possibly biasing our estimates. We use simulations

to assess the magnitude and sign of this bias. We generate data under the assumption that risk is

shared according to the model in Section 2, and parameters are set to match those in our data (where
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Table 9: Main results

[1] [2] [3] [4]
∆ logcint ∆ logcint ∆ logcint ∆ logcint

Siblings of husband alive Siblings of wife alive

shock = crop shock =
Loss/Pred.
Cons

shock = crop shock =
Loss/Pred.
Cons

∆shock 0.0834 0.0002 0.0692 0.0552
[0.0784] [0.0507] [0.1046] [0.0607]

No brothers*∆shock -0.1452 -0.0649 0.0080 0.0642
[0.1519] [0.1518] [0.1568] [0.0618]

≥ 3 brothers*∆shock 0.0088 0.0488 -0.2560** -0.1703***
[0.0970] [0.0458] [0.1128] [0.0589]

N 524 519 524 519
R-squared 0.3047 0.3110 0.3181 0.3320

∆shock -0.0707 -0.0809 0.1840* 0.0704
[0.1041] [0.0491] [0.0962] [0.0516]

No sisters*∆shock 0.1488 0.1601 -0.0715 0.0391
[0.1111] [0.0993] [0.1134] [0.2345]

≥ 3 sisters*∆shock -0.1413 -0.0955* 0.0206 -0.0073
[0.0997] [0.0482] [0.1133] [0.0569]

N 524 519 524 519
R-squared 0.3089 0.3202 0.3185 0.3188

Notes: *** Significant at the 1% level; ** the 5% level; * the 10% level. Standard errors clustered
at the village level in parentheses. Regressions pool together all households where a married head
or spouse was surveyed, and who were resident in the same village for both survey rounds. All
specifications control for village-time dummies, changes in household demographics, and controls
for the number of other siblings interacted with the crop loss. “Crop” indicates whether or not a
household suffered a crop loss, while “Loss/Pred. Cons” measures the intensity of the crop loss as
the income lost normalised by predicted household consumption.
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Table 10: Simulation Results to Assess the Sign and Magnitude of the Bias from Omitting Controls
for Aggregate Extended Family Resources

Coefficients

Avg. α̂1 (Group dummies) -0.116

Simulation std. error [0.004]

Avg. α̃1 (Village dummies) -0.383

Simulation std. error [0.007]

Avg. β̂1 (Group dummies) n.a.

Simulation std. error n.a

Avg. β̃1 (Village dummies) -0.428

Simulation std. error [0.008]

Avg. β̂2 (Group dummies) -0.226

Simulation std. error [0.009]

Avg. β̃2 (Village dummies) -0.052

Simulation std. error [0.010]
Notes to Table: Data simulated to match empirical distribution of brothers of wife. Exact parameter values, and
simulation details are explained in Appendix B. l = 46475.64MK; and h = 2.25∗l. α1 is the coefficient associated with
∆crop, β1 is that associated with No sibling of that type * ∆crop; and β2 is that associated with (≥3 siblings)*∆crop.
β1 is not estimated in the specification with group dummies since the associated variable is perfectly collinear with
the group dummy.

possible). In particular, we set the group size distribution to match the empirical distribution of

brothers of the wife. Aggregate shocks happen naturally under the income process of the model

in Section 2: because there are only two income levels, the probability that all family members

have the same income realisation is strictly positive. Households’ consumption rules are estimated

numerically from the model.39 In Table 10, we assess how the coefficients on a specification similar

to regression 8 change when we control for extended family group dummies instead of village

dummies. The findings are displayed in Table 10. The table indicates that all the coefficients

are indeed biased, as expected. In terms of the sign of the bias, α1, the coefficient on the ∆crop

variable, is biased downwards. By contrast, the coefficient on ∆cropivt ∗ 1(NSg,iv ≥ 3),β2, is biased

upward. So, if anything, we are likely to be underestimating the negative effect of larger groups on

risk sharing. The underlying intuition for this is that the village dummies do a (marginally) better

job of controlling for group shocks for larger potential groups than for smaller ones. Appendix D

provides a more detailed explanation of this.

5.2.2 Are larger networks poorer?

An important concern is that our findings may be driven by unobserved factors that drive both

network size and changes in log consumption. One such set of factors relates to the fact that

households with larger family networks may be poorer. Larger families have long been observed

to be poorer in a variety of contexts. This could make them less able to provide support to other

39Full details on the simulations and estimation equation are given in Appendix B
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Table 11: Comparing characteristics of households where husband has ≥ 3 brothers with those
where he has ≥ 3 sisters

≥3 sis of husband sd ≥3 bros of husband sd p-val of diff

Husband’s Characteristics
Years of education 4.815 0.380 5.257 0.329 0.391
Age 37.865 0.923 37.269 0.814 0.632
Chewa 0.931 0.027 0.945 0.028 0.527

Wife’s Characteristics
Years of education 3.404 0.282 3.609 0.274 0.582
Age 33.685 0.839 33.027 0.663 0.525
Chewa 0.978 0.014 0.973 0.014 0.768

Notes: ** Significant at 5% level; * at the 10% level. Sample includes households where the wife
has 3 or more brothers and less than 3 sisters or 3 or more sisters and less than 3 brothers.

family members when they need it, thus leading to worse risk sharing. We provide evidence that

our results are not driven by the fact that larger families are poorer.

First, we fail to find similar results for the sisters of the wife, and for the brothers of the husband.

If the findings were being driven by a family size effect, rather than being the effect of having many

brothers, we would expect to find that households with many sisters are also less well protected from

crop loss events. Of course, this argument is only valid if households with many sisters and those

with many brothers are not different in other dimensions. To assess whether this is the case, we

test whether households where the wife has ≥ 3 brothers and < 3 sisters are different to households

with ≥ 3 sisters and < 3 brothers, focusing on dimensions that are less likely to have changed as a

result of recent shocks experienced by households. The findings from this analysis are displayed in

Tables 11 and 12 for the husband and wife respectively.

As can be seen from the tables, we find only a few differences in the small set of observable

characteristics of the husband and wife in these two types of households. In particular, there are

no significant differences in the amount of education of the husband or wife in households where

the husband (wife) has ≥ 3 brothers and those where he (she) has ≥ 3 sisters. Although males

typically have a higher level of education than females, there is no difference in education levels by

the sex composition of the individual’s sibship.40

40The differences in education levels by gender are likely to be driven by gender differences in the economic returns
to education rather than due to explicit gender discrimination by parents. To our knowledge, there is no evidence
of sex discrimination in investments in children at either the pre-natal or post-natal stage. Indeed, when we analyse
the effects of a randomised infant feeding counselling intervention in this context by gender, we find no differences in
nutritional investments in children by gender. These results are available on request.
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Table 12: Characteristics of households where wife has ≥ 3 brothers with those where she has ≥ 3
sisters

≥3 sis of wife sd ≥3 bros of wife sd p-value of diff

Husband’s Characteristics
Years of education 5.202 0.322 5.519 0.377 0.517
Age 37.487 0.807 37.404 1.051 0.954
Chewa 0.915 0.035 0.886 0.052 0.392

Wife’s Characteristics
Years of education 3.760 0.277 3.872 0.326 0.794
Age 33.241 0.592 32.456 0.925 0.489
Chewa 0.962 0.017 0.972 0.016 0.352

Notes: ** Significant at 5% level; * at the 10% level. Sample includes households where the husband
has 3 or more brothers and less than 3 sisters or 3 or more sisters and less than 3 brothers.

5.2.3 The Role of Sisters of the Wife

An interesting issue is why we don’t find a negative effect of wife’s sisters on risk sharing. Though

this finding is in line with the social norm, the model outlined in Section 2 does not speak to this

issue. To further investigate the role of sisters, we extend the original model to explicitly allow for

the social norm. Specifically, we allow for two types of agents – brothers (type m) and sisters (type

f) – and impose a social penalty (which we model as a utility loss) for brothers if they deviate in

subgroups excluding any of their sisters.41 This formulation captures the social norm that brothers

face: a ‘social penalty’ from leaving their sisters unattended. Appendix A.3 provides more details

on the model formulation.

Solving the model for the same parameter values as GR Example 2 above, we find that stable

groups tend to be more robust to adding sisters than brothers. This is apparent from Figure 5

which displays the stability status of groups of different sizes and compositions for two different

values of the social penalty. For both values of the penalty considered, we see that adding a sister

to a stable group is less likely to destabilise it compared to an additional brother. This is most

apparent when looking at combinations with 1 brother. In both panels, adding sisters (up to 4 in

total) doesn’t destabilise the group. By contrast, in combinations that include 1 sister only, adding

brothers beyond two brothers in total destabilises the group. The intuition for this pattern is as

follows: the social norm means that, on average, brothers are willing to be net givers of transfers to

their sisters. Additional sisters (to a point) can thus be induced to remain in a larger group than

would otherwise be unstable, making groups with more sisters and few brothers stable. Brothers,

by contrast, will make transfers up to a point beyond which it becomes more attractive to deviate.

This occurs when other brothers are added to their group.

41The penalty is modelled as a utility loss that is increasing in the number of sisters not in the brother’s deviating
sub-group.
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Figure 5: Stability of Potential Groups with Different Compositions, Extended Model
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Notes to Figure: This Figure shows whether or not different group compositions are stable to coalitional deviations,
when type m agents are subject to a utility loss (social penalty) a ∗ (nf − sf ) where nf = number of type f agents
(i.e. sisters), and sf = number of type f agents (sisters) in the agent’s deviating subgroup. The model parameters
are the same as in GR Example 2. Given the model parameters, a = 0.05 corresponds to around 7.5% of expected
utility in autarky; and a = 0.2 to 30% of expected utility in autarky. The lighter shade indicates stable groups and
the darker shade unstable groups.

Interestingly, we also see that more groups are stable as the social penalty increases. This is

intuitive as a higher penalty makes some deviations unprofitable. Overall, the simulations indicate

that additional sisters are less likely to destabilise potential groups than brothers, which explains

why we don’t find a negative effect of a woman’s sisters on risk sharing.

5.2.4 Number of Brothers and Competition for Resources

Another concern is that there might be more competition for production resources among families

with many males: essentially, if land is passed down to males only, and there are many males in a

particular family, each male would receive a smaller land plot, and thus would be less able to help

her sisters’ households when they face idiosyncratic shocks. The land descent system in Mchinji is a

mixed one: some households practice a patrilineal system and pass on land to males, whereas others

practice a matrilineal system and pass on land to females. We provide some suggestive evidence

to rule out this channel. In particular, though we do not have information on the landholdings

of siblings of the husband or wife, we can look at whether there are any differences in the size of

land between households where the husband has many brothers and few sisters compared to those

where the husband has many sisters but few brothers. If the patrilineal form of land descent were

more dominant in our sample (which we do not believe it to be), we would expect households where

husbands have many brothers to have smaller plots of land than households where the husband

has many sisters. Examining the data, we see that households where the husband has 3 or more

brothers and fewer than 3 sisters have on average 2.9 hectares of land, whereas those where the

husband has 3 or more sisters and fewer than 3 brothers have on average 2.7 hectares of land.

This difference is not statistically significant, thus providing suggestive evidence that the empirical

findings are unlikely to be driven by this channel.
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5.2.5 Potential Group Size and Incidence of Shocks

A final concern is that larger extended families could be more vulnerable to crop loss events,

particularly if they are poorer. In that case, the deficiencies in risk sharing detected above may be

a consequence of poverty, rather than a breakdown of risk sharing due to unstable coalitions.

To see if this is the case, we consider how the incidence and intensity of crop losses vary with

potential group size. To do so, we regress the crop loss and intensity variables on our network size

variables, pooling data from both survey rounds. Table 13 displays these results. The table does

not indicate that households where the wife has many brothers are more vulnerable to crop loss

events compared to households where the wife has fewer brothers. Thus, we can rule out that our

finding of poor risk sharing among these households is driven by this channel. Interestingly, we find

a negative coefficient for households where the wife has 3 or more sisters: such households are less

likely to be affected by a crop loss incident, though there is no difference detected in the intensity

of the crop loss.
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Table 13: Potential group size and crop loss incidence

[1] [2] [3] [4]
crop loss in-
cidence

crop loss in-
tensity

crop loss in-
cidence

crop loss in-
tensity

Siblings of husband alive Siblings of wife alive

No brothers -0.0571 -0.0752 -0.0058 0.0012
[0.0452] [0.0721] [0.0471] [0.0902]

≥3 brothers -0.014 -0.0527 0.0033 -0.0599
[0.0262] [0.0424] [0.0275] [0.0428]

N 1131 1131 1131 1131
R-squared 0.0244 0.0200 0.0289 0.0216

No sisters 0.0036 -0.0083 -0.0290 -0.0633
[0.0548] [0.0731] [0.0522] [0.0818]

≥3 sisters -0.0075 -0.0203 -0.0628** -0.0216
[0.0285] [0.0384] [0.0314] [0.0391]

N 1131 1131 1131 1131
R-squared 0.0262 0.0198 0.0306 0.0191

Notes: *** Significant at the 1% level; ** the 5% level; * the 10% level. Standard errors clustered
at the village level in parentheses. Regressions pool together all households where a married head
or spouse was surveyed and who were resident in the same village for both survey rounds. ”Crop
loss incidence” is a dummy variable that indicates whether the household experienced a crop loss
in the previous year (or since the last survey), while ”Crop loss intensity” is the size of the crop loss
normalised by predicted household consumption.

6 Calibration

The empirical results show that households where the wife (husband) has a large number of brothers

(sisters) achieve worse risk sharing outcomes compared to households where the wife (husband)

has fewer brothers (sisters). The theory indicates that the relationship between risk sharing and

potential group size is ambiguous and sensitive to parameter values: for some combination of

parameters, larger potential groups can offer better risk sharing, while for others, they offer worse

risk sharing. To investigate whether the findings can be explained by the theory, we conduct a

calibration exercise to see if the model can reproduce the empirical findings when parameter values

are set to be similar to those in our data.

We parameterise the value of the high and low endowment as follows: From the data, we obtain

the average annual household income from agriculture for all households in the sample, ȳ. This

31



is equivalent to a weighted average of the high and low endowment states, where the low endow-

ment state is taken to be the high endowment state less the crop loss (in nominal terms, without

normalising for predicted consumption):

ȳ = p ∗ h+ (1− p)(h− crop) (9)

We obtain the values for ȳ, p and crop from the data, and use the formula 9 to back out the

values for h and l respectively. Table 14 displays the resulting parameters. In addition to these

parameters, we also need to specify a value for the coefficient of relative risk aversion, ρ and the

discount factor, δ. We set ρ = 1.5 and δ = 0.95. The value for δ, which is lower than that typically

estimated for developed countries, is within the range estimated for India by Ligon et al. (2003).42

Table 14: Parameter values for calibration
Parameter Value

h 61223.64MK
l 46475.64MK
p 0.63
δ 0.95
ρ 1.5

Note to Table: This table displays the parameter values used to calibrate the theoretical model. The values for the
high and low endowments, h and l are in Malawi Kwacha (MK). The exchange rate at the time of the survey was

roughly US$1 = 140MK.

Figure 6 plots the value for average expected utility and group size. What is striking is that weighted

expected utility increases with potential group size initially, but then falls before increasing again

in a zigzag pattern. This pattern can be explained by the fact that given the parameter values,

only groups of size 1 and 2 are stable. Larger potential groups would then sort randomly into the

smaller stable groups, for example, groups of size 3 would sort into groups of size 1 and 2. Since

expected utility under autarky is lower than in a group of size 2, this results in a drop in average

expected utility for a potential group of size 3. In fact, such an argument holds for all odd-sized

potential groups, while even-sized potential groups would sort into subgroups of 2 and attain the

same average expected utility as a group of size 2.

Importantly, the drop in expected utility when moving from a potential group of size 2 to 3 matches

the pattern found in the data, suggesting that threats of coalitional deviations may be a possible

explanation for the worse risk sharing for households where the wife has many brothers.

42This value of δ is higher than that estimated from experimental elicitation tasks such as Andreoni and Sprenger
(2012) among others. Nonetheless, we experimented with lower discount factors in the calibration; and found that
more group sizes became stable as the discount factor was lowered to δ = 0.86.
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Figure 6: Calibration Findings - Average Expected Utility and Potential Group Size
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Notes: The Figure on the left panel shows the relationship between weighted average expected utility and potential
group size, while that on the right panel shows the relationship between the risk sharing measure and potential

group size

7 Conclusion

In this paper, we study the relationship between group size and the extent of risk sharing in a

setting with limited commitment and coalitional deviations. In such environments, two forces are

at play in determining the relationship between group size and risk sharing: on the one hand, larger

groups allow for more effective diversification, and hence better risk sharing. On the other hand,

larger groups are more vulnerable to deviations by sub-groups (coalitions) of households who can

renege on the informal arrangement and continue sharing risk in the smaller subgroup. Thus, risk

sharing groups will be bounded from the top (GR). In this paper, we extend the model of GR and

use simulations to show that the relationship between risk sharing and group size is theoretically

ambiguous. The nature of this relationship is thus an empirical question.

We investigate this question empirically using data from rural Malawi, and overcome the challenge

posed by the fact that the size of the actual risk sharing group is endogenous, by considering

potential group size, and focusing on a group likely to be exogenous – siblings of the household

head and spouse. Evidence from the anthropological and sociological literatures indicate that the

extended family is a crucial risk sharing institution in the setting we study. Moreover, historical,

well-documented norms at play in this context indicate a much more important role for a wife’s

brothers, than for her sisters, in providing risk sharing. These norms highlight an important source

of heterogeneity in risk sharing patterns, and also allow us to construct placebo tests to alleviate

concerns that unobserved factors correlated both with our measures of potential group size and

with the efficiency of risk sharing, are driving our findings.

We consider how well protected a household’s consumption is to idiosyncratic crop losses – a salient

source of risk in this setting – allowing the effects to vary by the size of the family network of the

33



husband and wife (defined separately by gender of sibling). In line with the literature on informal

risk sharing, we measure the degree of risk sharing by the correlation between changes in household

log consumption and idiosyncratic crop losses (net of aggregate shocks at the village level). A first

non-parametric specification, which places no restrictions on the shape of the relationship between

the degree of risk sharing and potential group size, indicates that this relationship is non-linear.

However, these estimates are extremely imprecise.

To increase power, we divide group size into three bands, the boundaries of which are informed

by the non-parametric analysis. Estimates from this specification indicate that households where

the wife (husband) has many brothers (sisters) achieve worse risk sharing relative to households

where they have fewer brothers (sisters). We fail to find a similar relationship for the wife’s sisters

(brothers), which indicates that the relationship is unlikely to be driven by the fact that households

where the husband/wife have many siblings are poorer. Moreover, we show that these households

are not more susceptible to crop losses, suggesting that the findings are not driven by this margin

either. We also provide suggestive evidence to rule out other channels including higher competition

for production resources among extended families with many male siblings. A calibration exercise,

where we parameterise our theoretical framework using information from the data (where available),

indicates that the empirical patterns could be produced by the theory.

Thus, larger potential risk sharing groups need not yield better risk sharing outcomes, indicating

a role for governments and other actors to implement policies and mechanisms to better protect

household wellbeing, taking into account family dynamics.
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A Additional Model Results

A.1 Details of Model Simulation Calculations

In this section, we provide a step-by-step overview of the calculations that yield Figure 1 above.

Given the specific parameter values associated with this particular example, groups of size, N =
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1, 2 and 3 are found to be stable, while those of sizes, N = 4 − 10 are found to be unstable.

The social planner randomly assigns households in a group of a specific size, N to stable subgroups

of sizes s1, s2, ...sJ in a manner so as to maximise total expected utility, while ensuring that all

households are assigned to some stable sub-group. For groups of size, N = 1, 2 and 3, the social

planner has no need to reassign households to stable sub-groups of a smaller size, sj . Thus the

average expected utility for households in groups of these sizes can be recovered from Equation 4

by setting πs = 1 for its group size and 0 for all other other stable group sizes and evaluating these

equations at the optimal transfer. The calculated values are given in the Table 15 here.

Table 15: Expected Utility, and Expected Difference in Marginal Utility for Stable Groups, Example
1

Group Size Expected Utility

1 0.66206
2 0.66377
3 0.66857

For groups of other sizes, we need to solve for the combination of stable sub-groups that maximises

total expected utility when the social planner randomly assigns households to the stable subgroups.

In this example, the optimal allocation of sub-groups for a group of size 4 is 1 sub-group of size 3

and 1 sub-group 1. Since households are randomly allocated into these sub-groups, each household

has a
1

4
chance of being in the sub-group of size 1 and

3

4
of being in a group of size 3. The associated

weighted average expected utility is thus

3

4
∗ 0.66857 +

1

4
∗ 0.66206 = 0.66694

For a group of size 5, the optimal sub-groups are one of size 3 and one of size 2. Each household

now has a
3

5
chance of being in the group of size 3 and a

2

5
chance of being in a group of size 2.

The corresponding weighted average expected utility is

3

5
∗ 0.66857 +

2

5
∗ 0.66206 = 0.66665

Note that the weighted average expected utility for a group of size 5 is lower than that for a group

of size 4 because the probability of being in the higher utility sub-group of size 3 is higher in the

latter case than in the former. This probability difference off-sets the increased expected utility

from being in a sub-group of size 2 in the former case relative to being in one of size 1 in the latter

case. Table 16 summarises these calculations for groups of sizes 4 - 10 in this example.

A.2 Alternative Parameter Values

Here we report the results of the simulations of the standard model with alternative values of h

and l. As the gap between h and l increases, more group sizes become stable, and the point at
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Table 16: Details of calculation for unstable groups, Example 1

Group Size
Prob. of being in

stable subgroup of size:
Weighted Avg.

EU
1 2 3

4 1
4 0 3

4 0.66694
5 0 2

5
3
5 0.66665

6 0 0 1 0.66857
7 1

7 0 6
7 0.66764

8 0 1
4

3
4 0.66737

9 0 0 1 0.66857
10 1

10 0 9
10 0.66792

which risk sharing falls moves to the right (right panel). For the simulation with h = 4.5 and

l = 1, groups up to size 7 are stable, and thus the zig-zag in the expected utility (and risk sharing

measure) appear only at very large group sizes.

Figure 7: Risk Sharing and Group Size - Other Values of h and l
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Notes: The Figure on the left panel shows the relationship between weighted average expected utility and potential
group size, while that on the right panel shows the relationship between the risk sharing measure and potential

group size

A.3 Model Extension

To better understand the finding of no effect of the number of a wife’s sisters on risk sharing, we

estimated the following model that incorporates the social norm. In particular, we allow for agents

of two types - type m (brothers) and type f (sisters). We also consider the norm to imply that

if brothers deviate from a risk sharing group containing their sisters, they face a ‘social penalty’

which generates a utility loss. This penalty is allowed to be an increasing function of the number of

sisters not in the same group as the brother. Sisters are not required to help their siblings (though

they could if they wanted to) and do not face a similar penalty in the model. Thus, type m agents
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will face a different set of incentive compatibility constraints as type f agents. We also allow the

two types of agents to make different transfers to a common pool in the same state of the world.

That is, we allow for tm(n, km, kf ) 6= tf (n, km, kf ), and consequently for the expected utility to be

different for each type of agent.

The expected utility for an agent of type j in a group of size n, with nm type m agents and nf

type f agents will be as follows:

vj(t, nm, nf ) = pnu(h) + (1− p)nu(l)+
nf
∑

km=0;kf=1

p(kf , nf )p(kmnm)

[

kj

nj
u(h− tj(n, 0, kf )) +

(nj − kj)

kj
u(l +

kjtj(n, 0, kf )

n− kf
)

]

+

nm−1
∑

km=1

nf
∑

kf=0

p(kf , nf )p(kmnm)

[

kj

nj
u(h− tj(n, km, kf )) +

(nj − kj)

kj
u(l +

kf tf (n, km, kf ) + kmtm(n, km, kf )

n− kf − km
)

]

+

nf−1
∑

km=nm;kf=0

p(kf , nf )p(kmnm)

[

kj

nj
u(h− tj(n, km, kf )) +

(nj − kj)

kj
u(l +

kf tf (n, km, kf )kmtm(n, km, kf )

n− kf − km
)

]

∀ j ∈ m, f}

Type f agents face a similar incentive compatibility constraint as in the standard model (see

equation 2):

(1− δ)u(h− tf (n, km, kf ))+ δvf (t, nm, nf ) ≥ (1− δ)u(h)+ δv∗f (sm, sf ) ∀ stable (sm, sf ) ≤ (km, kf )

(10)

Type m agents face the same incentive compatibility constraint augmented with the social penalty:

(1−δ)u(h−tm(n, km, kf ))+δvm(t, nm, nf ) ≥ (1−δ)u(h)+δv∗m(sm, sf )−a∗(nf−sf ) ∀stable (sm, sf ) ≤ (km, kf )

(11)

We formulate the penalty, a ∗ (nf − sf ) to be an increasing function of the number of sisters not

included in the deviating group.43

The model solution can be obtained from solving a social planner problem, where the planner solves

for the set of optimal transfers, t that maximizes the weighted average expected utility of the group

members:

43We assume that it takes a linear functional form. This can, of course, be easily relaxed.
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V (t, nm, nf ) =

nm
∑

i=1

λivm(t, nm, nf ) +

nf
∑

j=1

λjvf (t, nm, nf ) (12)

subject to the set of incentive compatibility constraints, Equations 10 and 11.

B Details of Simulations to Assess the Sensitivity of Parameter

Estimates to Aggregate Extended Family Shocks

A concern is that our estimates might be biased since we are unable to suitably control for group-

level shocks. We use simulations to assess the sensitivity of our parameter estimates to biases

arising from this issue. Here we provide some details on the set-up of the simulations.

1. First, we generate a set of households and assign them to groups and villages. Villages contain

multiple groups, and groups can span across multiple villages. Groups have different sizes,

with the distribution of group sizes (total, and in the village) selected to match those found

in the data.

2. We set the income process as follows: household income, yi, takes one of two possible values:

hi or li. We select the values of hi and li to obtain similar results as the empirical findings.

The probability of yi taking value hi is set to p, 0 < p < 1. Throughout, we set p = 0.55.

3. Given the values of hi, li, and other parameters, compute the set of stable group sizes and

derive the optimal transfer. We use the same consumption rule as in GR, and use the optimum

transfers to calculate consumption under different states.

4. Given the set of stable group sizes, we allocate households in a potential group of size S to

stable groups so as to maximise the total expected utility of the potential group. Since we

assume the households are all homogenous, this amounts to a random allocation of households

to stable groups.

5. We then randomly draw realisations of yi for each household.

6. Given the stable group, and the realisations of yi, we use the consumption rule computed in

(3) above to assign consumption to each household.

7. We repeat (5) and (6) to attain a panel of shock and income realisations.

8. We then run specification 13, allowing first for the term µn
t to be a group-level dummy, and

then for it to be a village-level dummy. We obtain the coefficients β1, β2 and β3.

∆log(civt) = α0 + α1∆(cropivt) + β1∆cropivt ∗ 1(NSg,iv = 1) + β2∆cropivt ∗ 1(NSg,iv ≥ 3)

+µn
t +∆ǫint (13)
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9. Repeat steps 4-8 100 times. Table 10 displays the averages of β1, β2 and β3 across the 100

simulations, with group-level dummies as well as with village dummies.

C Derivation of Risk Sharing Regression

In this Appendix, we show how the regression that we use to test for risk sharing can be derived

from the regressions used by Cochrane (1991) and Townsend (1994). The canonical regression to

test for full risk sharing is:

∆log(civt) = α0 + α2∆log(yivt) + ηvt +∆ǫivt (14)

where ∆log(civt) is the change over time in log consumption for household i in village v at time t,

∆log(yivt) is the change in income for household i between t and t− 1, , µvt are village-time fixed

effects, and ǫint is an error term. In the above regression, α2 = 0 is consistent with full risk sharing,

and α2 > 0 with rejection of full risk sharing. Let’s assume that the income process is given by:

log(yivt) = βXivt − ε ∗AnyLossivt + ϕvt

where yivt is the income of household i in village v at time t, Xivt is a vector of observed household

characteristics (e.g. demographics, etc) that determine its “permanent” income, AnyLossivt is an

indicator for whether a household suffers from a crop loss of magnitude ε, (ε > 0), in period t and

ϕvt is a village-wide shock. Taking first differences, we get:

∆log(yivt) = β∆Xivt − ε ∗∆AnyLossivt +∆ϕvt (15)

The equation above clarifies that if ∆Xivt=0 and ∆ϕvt = 0, then income only changes (∆log(yivt) 6=

0) between t − 1 and t if AnyLossivt = 0 and AnyLossivt−1 = 1 or if AnyLossivt = 1 and

AnyLossivt−1= 0. Substituting (15) in (14), we obtain:

∆log(civt) = α0 + α2β∆Xivt − α2(ε ∗∆AnyLossivt) + α2∆ϕvtηvt +∆ǫivt

which is exactly regression (6),where ε ∗∆AnyLossivt= ∆(cropivt), and α1 = −α2.

D Bias Emerging from the Omission of Potential Group-Time

Fixed Effects

In this appendix, we provide the intuition of why our parameter of interest, the interaction between

∆cropivt and the dummy variable for having 3 or more brothers is biased towards zero. To ease

exposition, we introduce different notation in this appendix, and we express the regressions without

covariates. First, we express the following regressions to test for risk sharing (ignoring covariates):
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∆log(civt) = ᾱ0 + ᾱ12∆cropivtG12 + γ̄3+∆cropivtG3+ + γ̄0∆cropivtG0 + µvt +∆ǫivt

∆log(cigt) = α̂0 + α̂12∆cropigtG12 + ˆγ3+∆cropigtG3+ + γ̂0∆cropigtG0 + µgt +∆ǫigt

where G12(G3+)[G0] is a dummy variable to whether the number of brothers is 1-2 (3 or more) [0].

The subscript i refers to household, t to time period, v to village and g to extended family group.

Note that the first regression specifies the fixed effect in terms of village (µvt), and the second in

terms of extended family groups (µgt). Hence, ᾱ12 and γ̄3+ denote the coefficients estimated using

village-time fixed effects, and α̂12, γ̂3+ denote the coefficients estimated using group-time fixed

effects. Because there might be some bias in the estimation using village-time fixed effects, it is

useful to show the relation between the estimates using village-time and group-time fixed effects:

ᾱ12 = α̂12 + bias12

γ̄3+ = γ̂3+ + bias3+

When we include village-time instead of group-time fixed effects, it will seem as if households are

worse insured. This is because there are some aggregate shocks at the group level which will not

be absorbed by the village-time fixed effects. Hence, we expect bias12 < 0 and, bias3+<0. We also

expect |bias12| > |bias3+|, because groups of size 3 or more are closer in size to village size than

those of size 1-2.

Now, let’s express the two previous regressions using the empirical formulation that we use to obtain

the main results, that is:

∆log(civt) = ᾱ0 + ᾱ12∆cropivtG12 + β̄3+∆cropivtG3+ + β̄0∆cropivtG0 + µvt +∆ǫivt

∆log(cigt) = α̂0 + α̂12∆cropigtG12 + β̂3+∆cropigtG3+ + β̂0∆cropigtG0 + µgt +∆ǫigt

Our parameter of interest is β̂3+, which measures how differently insured are households with 3 or

more brothers with respect to households with 1 or 2 brothers when group-time fixed effects are

used. However, we can only estimate β̄3+ which corresponds to the specification with village-time

fixed effects. To relate the two, note that:

γ̄3+ = ᾱ12 + β̄3+

which is equivalent to:

β̄3+ = γ̂3+ − α̂12 + bias3+ − bias12,
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which given that β̂3+ = γ̂3+ − α̂12, it can be expressed as:

β̄3+ = β̂3+ + bias3+ − bias12

Consequently, the estimate of β3+ using village-time fixed effects is equal to the estimate of β3+

using group-time fixed effects (which should be negative according to our model), plus a positive

magnitude (note that bias12 < 0, bias3+<0, and |bias12| > |bias3+|). Hence, the estimate of β3+

using village-time fixed-effects is biased towards zero, which is what we find in the simulations.
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