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Abstract Holonomic function theory has been success-

fully implemented in a series of recent papers to efficiently

calculate the normalizing constant and perform likelihood

estimation for the Fisher–Bingham distributions. A key

ingredient for establishing the standard holonomic gradient

algorithms is the calculation of the Pfaffian equations. So

far, these papers either calculate these symbolically or apply

certain methods to simplify this process. Here we show the

explicit form of the Pfaffian equations using the expressions

from Laplace inversion methods. This improves on the imple-

mentation of the holonomic algorithms for these problems

and enables their adjustments for the degenerate cases. As

a result, an exact and more dimensionally efficient ODE is

implemented for likelihood inference.

Keywords Bingham distributions · Fisher–Bingham

distributions · Directional statistics · Holonomic functions

1 Introduction

The Fisher–Bingham distribution is defined as the condi-

tional distribution of a general multivariate normal distribu-
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tion on a unit sphere. In particular, for a p-dimensional mul-

tivariate normal distribution with parameters µ and Σ , the

corresponding density function with respect to dS p−1(x), the

uniform measure in the p − 1- dimensional sphere S p−1, is

f (x) = 1

C

(

Σ−1

2
,Σ−1µ

)e− x⊤Σ−1 x
2 +x⊤Σ−1µdS p−1(x)

∝e− (x−µ)⊤Σ−1(x−µ)
2 1(x⊤x = 1)

where

C

(

Σ−1

2
,Σ−1µ

)

=
∫

S p−1

e− x⊤Σ−1 x
2 +x⊤Σ−1µdS p−1(x)

is the normalizing constant. Since multiplication by any

orthogonal transformation induces isometry in S p−1,

C

(

Σ−1

2
,Σ−1µ

)

= C

(

∆−1

2
,∆−1 Oµ

)

where ∆ = diag(δ2
1, δ2

2, . . ., δ2
p) and the orthogonal matrix

O ∈ O(p) are obtained from the singular value decompo-

sition of Σ = O⊤∆O. Similarly, we can also choose the

particular O such that entries of ∆−1 Oµ are non-negative.

Hence, without loss of generality, we can assume that the

covariance parameter is diagonal, and therefore, a more effi-

cient parametrization of dimension 2p can be used for the

normalizing constant

C(θ, γ ) =
∫

S p−1

e
∑p

i=1(−θi x2
i +γi xi )dS p−1(x)
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with θ = (θ1, θ2, . . . , θp) = diag(∆−1

2
), i.e. θi = 1

2δ2
i

and

γ = (γ1, γ2, . . . , γp) = ∆−1 Oµ. Note the slight incon-

sistency in notation as we write C(diag(θ), γ ) = C(θ, γ ).

The special case of γ = 0 corresponds to the Bingham

distributions studied separately in Wood (1993); Kume and

Wood (2007); Sei and Kume (2015). Despite the fact that

these distributions are part of the exponential family (see

e.g. Mardia and Jupp 2000), maximum likelihood estimation

ultimately involves numerical routines for approximating the

normalizing constant term C(θ, γ ). The method of Kume and

Wood (2005) relies on the saddlepoint approximation which

is known to be not only very close to the exact value with lit-

tle computational cost but also numerically stable. However,

recently there has been a renewed interest in this problem

with the implementation of the holonomic gradient method

(HGM), which in theory is exact since the problem of calcu-

lating C is mathematically characterized via a solution of an

ODE (see e.g. Nakayama et al. 2011; Hashiguchi et al. 2013;

Sei et al. 2013; Koyama 2011; Koyama and Takemura 2016;

Koyama et al. 2014 and Koyama et al. 2012).

In particular, the HGM approach generates exact solu-

tions if the corresponding ODE is numerically stable and

the dimensionality of the parameters is not extremely large.

Please note that, in the relevant literature, numerically unsta-

ble ODE’s are called stiff (see eg 10.6 in Zarowsky 2004).

Koyama et al. (2014) focus on the numerical efficiency of

HGM implementation by expressing the corresponding Pfaf-

fian equations (see Sect. 4) in terms of some elementary

matrices Ri and Qi . Note that HGM is applicable not only

to C but also any holonomic function. See Chapter 6 of Hibi

(2013) for more details.

The contribution in this paper is threefold. Firstly, by

expanding the Laplace transform in Eq. (1) in partial frac-

tions, we obtain the Pfaffian equations explicitly in terms of

only two vector parameters θ and γ , each of length p. This

makes the differential structure of these functions more trans-

parent and the implementation of the holonomic algorithm

more dimensionally and computationally efficient, since at

most 2p parameters are needed for the normalizing constant

and there is no need to use symbolic algebra packages for

generating the Pfaffians explicitly.

Secondly, by imposing some constraints on θi and γi , our

approach is easily applied to many important sub-classes

within the Fisher–Bingham family (such as the Bingham,

Watson and Kent distributions). In fact, the general methodol-

ogy of HGM algorithms does not automatically apply to these

situations because the Pfaffian equations become degener-

ate. In particular, the corresponding ODE is stiff if some

eigenvalues of ∆ coalesce. Therefore, special attention for

cases with various multiplicities in parameters is practically

useful in the model selection process. Our explicit Pfaffian

expressions, however, require minimal adjustments for these

degenerate cases. The special case of Bingham distribution

appearing when all γi ’s are zero is considered separately by

Sei and Kume (2015). However, in this paper our approach

is more general and accommodates all possible variations in

the parameter space. Therefore, we can easily perform model

selection within the Fisher–Bingham family based on the

standard likelihood ratio tests. If we only need to evaluate the

normalizing constant and the first-order derivatives at these

degenerate points, the HGM with respect to the radius param-

eter can be applied as Koyama et al. (2014) and Koyama

and Takemura (2016) suggested. However, if we also have

to evaluate higher-order derivatives (e.g. standard errors for

MLE) or apply the ODE along any general curve and not just

as radial rescaling of parameters, the Pfaffian system in our

paper is necessary.

Finally, while many papers focus on the normalizing con-

stant, there has not been much interest in the estimation of

the orthogonal component O from the real data. For p = 3,

this problem is tackled in Kent (1982) where a closed form

solution is shown for a very useful family of spherical dis-

tributions. However, for general p such a solution is not

available. We combine the holonomic gradient method for

the normalizing constant with that of a particular solution on

orthogonal matrices O so that a maximum likelihood esti-

mator is evaluated. This method is shown to work well in

both simulated and real data examples, but special care is

needed in the general setting for the Fisher–Bingham distri-

butions due to multimodality of the likelihood function for

these members of the curved exponential family.

The paper is organized as follows. We start with gen-

eral remarks about the Fisher–Bingham normalizing constant

where we provide a simple univariate integral representation.

We then give a brief introduction to the holonomic gradient

method which characterizes the the evaluation of C(θ, γ ) as

a solution of an ordinary differential system of equations.

The explicit expressions for the Pfaffian equations needed

for such ODE in the case of the Fisher–Bingham integral

are given in the next section where degenerate cases with

multiplicities on the parameters are specifically addressed.

We then focus on the implementation of the proposed MLE

approach for both degenerate and non-degenerate cases of

Fisher–Bingham distributions so that some log-likelihood

ratio test can be used for choosing the appropriate model.

2 Laplace inversion representation

2.1 General case

Based on the key result in Proposition 1 from Kume and

Wood (2005), one can easily derive that

C(θ , γ ) = 2π p/2

p
∏

i=1

θ
−1/2
i e

∑p
i=1

γ 2
i

4θi fr (1)
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where fr (1) is the density at point 1 of r =
∑p

i=1 y2
i ,

while yi are independent normal random variables as yi ∼
N (

γi

2θi
, 1

2θi
) with θi = 1

2δ2
i

and γi = µi

δ2
i

> 0. Since the

random variable r takes non-negative values, the Laplace

transform of its density is the same as its moment generating

function (with a sign switch in its argument) which in our

parametrization is:

L(t) = e

∑p
i=1

γ 2
i

4(θi +t)
− γ 2

i
4θi

∏p

i=1

√
1 + t/θi

.

Applying the inverse Laplace transform

fr (1) = 1

2π i

∫

iR+t0

L(t)et dt = 1

2π i

∫

iR+t0

e

∑p
i=1

γ 2
i

4(θi +t)
− γ 2

i
4θi

∏p
i=1

√
1 + t/θi

et dt,

for any −t0 < min(θ), implies

C(θ, γ ) =
∫

S p−1

e
∑p

i=1(−θi x2
i +γi xi )dS p−1(x) =

∫

iR+t0

A(γ , θ)et dt

(1)

where

A(γ , θ) = 2π p/2

2π i

p
∏

i=1

e

γ 2
i

4(θi +t)

√
θi + t

.

Equation (1) establishes the general Fisher–Bingham

normalizing constant in terms of an univariate complex inte-

gration. In particular, it is easily seen from (1) and the

definition of A(γ , θ) that for any c ∈ R

C(θ, γ ) = C(θ , |γ |) and C(θ − c, γ ) = C(θ , γ )ec (2)

where |γ | is the vector of absolute values of γ . Therefore,

without loss of generality we can assume that both vector

parameters θ and γ have non-negative entries.

2.2 Degenerate cases

Constraints on the parameter values θ and γ could lead

to degeneracy in the corresponding ODE. For statistical

inference however, some model constraints in the Fisher–

Bingham distributions are necessary for practical use. Such

models induce constraints on θ and γ for the corresponding

normalizing constants as follows (c.f. Mardia and Jupp 2000,

Table 9.2):

– Bingham distribution is generated if γ is set to zero.

– Fisher–Watson if θ2 = θ3 = · · · = θp and γ3 = γ4 =
· · · = γp = 0

– Kent distributions if γ2 = γ3 = · · · = γp = 0 and
∑p

i=1 θi = pθ1

– von Mises–Fisher if θ1 = θ2 = · · · = θp

– Bingham–Mardia if θ2 = θ3 = · · · = θp and γ2 = γ3 =
· · · = γp = 0

– Watson if θ2 = θ3 = · · · = θp and γ1 = γ2 = · · · =
γp = 0

Note that property (2) implies that θi can be assumed

strictly positive. Alternatively, this property implies that we

can also fix one entry θi to a fixed value and hence reduce

the dimension by one, but we will not concern ourselves

here with that. Of the models mentioned above, degeneracy

appears in the corresponding ODE if one or two of the fol-

lowing scenarios occur:

(a) some entries in θ coincide.

(b) some entries in γ are zero.

In order to accommodate scenario (a), let us assume that

we have l distinct values such that each θi has multiplicity ni ,

i.e. n1 +n2 + . . .+nl = p. Let us index the corresponding ni

entries of γ as γ1,i , . . ., γni ,i . From the integral representation

of

C(θ, γ ) = 2π p/2

2π i

∫

iR+t0

l
∏

i=1

e

∑ni
r=1

γ 2
r,i

4(θi +t)

(θi + t)ni /2
et dt,

it is clear that its value depends on only the summation terms
∑ni

r=1 γ 2
r,i and not on the particular values γ 2

r,i . This implies

that for scenario (b), we can work with
∑ni

r=1 γ 2
r,i = γ 2

i

and perform the required differentiation only with respect to

this particular γ1,i = γi =
√

∑ni

r=1 γ 2
r,i , while the other γ 2

r,i

remain zero. As a result,

C(θ, γ ) = 2π p/2

2π i

∫

iR+t0

l
∏

i=1

e

γ 2
i

4(θi +t)

(θi + t)ni /2
et dt, (3)

and without loss of generality, we can focus on evaluating (3)

with l distinct θi , while (1) is derived from above if ni = 1

for all i . In the remainder of the paper, we will focus on

evaluating C(θ, γ ) as in (3) where θ has l distinct values.

3 Holonomic gradient method

In this section, we briefly review the framework of the

holonomic gradient methods. See Nakayama et al. (2011),
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Hashiguchi et al. (2013), Sei et al. (2013), Koyama (2011),

Koyama et al. (2014) and Koyama et al. (2012) for details

and further information.

Let Θ be an open subset of the d-dimensional Euclidean

space. Denote the partial derivative ∂/∂αi by ∂i . A function

c(α) of α ∈ Θ is called holonomic if there exists a finite-

dimensional (say r -dimensional) column vector g = g(α)

consisting of (possibly c(α) and higher-order) partial deriva-

tives of c(α) such that g satisfies

∂i g(α) = P i (α)g(α), i = 1, . . . , d, (4)

where P i (α) is a r × r -matrix of rational functions of α. For

example, the trigonometric function c(α) = sin α is holo-

nomic since it satisfies

∂

(

c

∂c

)

=
(

0 1

−1 0

)(

c

∂c

)

,

where ∂ = ∂/∂α, d = 1 and r = 2. It is known that the

normalizing constants of the von Mises–Fisher, Bingham and

Fisher–Bingham distributions are holonomic.

The Eq. (4) is called the Pfaffian equation of g. This

equation essentially states that higher- order derivatives of

g(α) are linear combinations of its entries while involving

the Pfaffian matrices as rescaling constants. For example, the

second-order derivative is

∂i∂ j g = ∂i (P j g) = (∂i P j )g + P j (∂i g)

= (∂i P j )g + P j P i g

= (∂i P j + P j P i )g.

Assume that a numerical value of the vector g(α(0)) at

some point α(0) ∈ Θ is given. The holonomic gradient algo-

rithm evaluates g(α(1)) at any other point α(1). Here the term

gradient refers to the gradient of g(α).

Let ᾱ(τ ), τ ∈ [0, 1], be a smooth curve in Θ such that

ᾱ(0) = α(0) and ᾱ(1) = α(1). Denote ḡ(τ ) = g(ᾱ(τ )).

Then, it is easily shown that ḡ(τ ) is the solution of the ODE

d

dτ
ḡ(τ ) = K(τ ) ḡ(τ ) (5)

where

K(τ ) =
d

∑

i=1

dᾱi (τ )

dτ
P i (ᾱ(τ )) ḡ(0) = g(α(0))

In particular, ḡ(1) = g(α(1)).

A natural choice of ᾱ(τ ) is the segment ᾱ(τ ) = (1 −
τ)α(0) + τα(1) connecting α(0) and α(1) with the constant

derivative vector dᾱi (τ )
dτ

= α
(1)
i − α

(0)
i . The holonomic gra-

dient algorithm is described as follows:

Input α(0), g(α(0)), α(1) and a sufficiently small number

δ > 0.

Output g(α(1)).

Algorithm

1. Solve the ODE (5) over τ ∈ [0, 1] numerically by

a Runge–Kutta method so that the solution is attained

within a required accuracy.

2. Return ḡ(1).

Note that the standard numerical routines for solving (5) are

highly accurate and available in most computer packages.

More specifically, the rk function in the deSolve package of

R provides the required solution for a given accuracy.

As shown later in Sect. 5, the holonomic gradient method

is used for maximum likelihood estimation via some gradient

descent scheme, where the orthogonal matrix O can some-

how be treated independently from the normalizing constant.

As a result, we only need the Pfaffian equations for diago-

nal covariance matrices when the corresponding ODE has

dimension 2l.

4 Explicit Pfaffians and HGM for Fisher Bingham

The parameters of Sect. 2.2 for the most general Fisher–

Bingham case are α = (θ , γ ), i.e. dim(Θ) = 2l where l is

the number of distinct values of θi . Using properties (2), we

can assume here that θi and γi are allowed to vary freely as

positive values, while the smallest entry of θ can be fixed to

0. As a direct consequence of differentiating (1) and the fact

that
∑p

i=1 x2
i = 1,

l
∑

i=1

∂C(θ, γ )

∂θi

= −C(θ , γ ). (6)

This equation implies that partial derivatives
∂C(θ ,γ )

∂θi
are suf-

ficient for evaluating C(θ , γ ) where the vector g has length

r = 2l and is defined as

g(θ , γ )=
(

∂C(θ, γ )

∂θ1
· · · ∂C(θ, γ )

∂θl

∂C(θ, γ )

∂γ1
· · · ∂C(θ, γ )

∂γl

)

(7)

where the first-order partial derivatives above are easily seen

from (1) or (3), to depend on γ and θ as

∂C(θ, γ )

∂θi

=−
∫

iR+t0

(

ni

2(θi + t)
+

γ 2
i

4(θi + t)2

)

A(γ , θ)et dt

(8)
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and for γi �= 0

∂C(θ, γ )

∂γi

=
∫

iR+t0

γi

2(θi + t)
A(γ , θ)et dt. (9)

In this case, the corresponding ODE as in (5) is seeking the

solution of some vector curve g(α) of dimension 2l and the

required normalizing constant is simply minus the sum of

the components of this vector as in (6). The left side of the

Pfaffian equations (4) is clearly
∂ g
∂θi

and
∂ g
∂γi

, which are actu-

ally the second-order derivatives
∂2C(θ ,γ )
∂θi ∂γ j

. In other words,

the Pfaffian equations (4) are stating identities such that these

second-order derivatives of C(θ , γ ) are linearly dependent on

the first-order ones and Pfaffian entries. Therefore, in order

to establish explicitly the Pfaffian equations for g we need to

consider such particular relationships between the first- and

second- order derivatives of C(θ, γ ). They are stated in the

following theorem:

Theorem 1 If θi �= θ j and γi �= 0 �= γ j , the Pfaffian equa-

tions (4) for the general Fisher–Bingham distribution are

generated by

∂2C(θ , γ )

∂θi∂θ j

= −

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

n j

2(θ j −θi )
+ γ 2

j

4(θ j −θi )
2

ni

2(θi −θ j )
+ γ 2

i

4(θi −θ j )
2

n j γi

4(θ j −θi )
2 + γi γ

2
j

4(θ j −θi )
3

ni γ j

4(θi −θ j )
2 + γ 2

i γ j

4(θi −θ j )
3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

T
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∂C(θ ,γ )
∂θi

∂C(θ ,γ )
∂θ j

∂C(θ ,γ )
∂γi

∂C(θ ,γ )
∂γ j

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(10)

∂2C(θ , γ )

∂θ j∂γi

=

⎛

⎜

⎜

⎝

γi

2(θi −θ j )

− n j

2(θ j −θi )
− γ 2

j

4(θ j −θi )
2

γi γ j

4(θi −θ j )
2

⎞

⎟

⎟

⎠

T
⎛

⎜

⎜

⎜

⎝

∂C(θ ,γ )
∂θ j

∂C(θ ,γ )
∂γi

∂C(θ ,γ )
∂γ j

⎞

⎟

⎟

⎟

⎠

(11)

∂2C(θ , γ )

∂γi∂γ j

=
( γ j

2(θ j −θi )

− γi

2(θ j −θi )

)T
⎛

⎝

∂C(θ ,γ )
∂γi

∂C(θ ,γ )
∂γ j

⎞

⎠ (12)

∂2C(θ , γ )

∂γi∂θi

= −
l

∑

i �= j=1

∂2C(θ, γ )

∂θ j∂γi

− ∂C(θ, γ )

∂γi

(13)

∂2C(θ , γ )

∂2θi

= −
l

∑

i �= j=1

∂2C(θ, γ )

∂θi∂θ j

− ∂C(θ, γ )

∂θi

(14)

∂2C(θ , γ )

∂2γi

= −∂C(θ , γ )

∂θi

− ni − 1

γi

∂C(θ , γ )

∂γi

(15)

where
∂2C(θ ,γ )
∂θ j ∂γi

and
∂2C(θ ,γ )
∂θi ∂θ j

in (13) and (14) can be given in

terms of first-order derivatives using (11) and (10).

The proofs of these identities which are in “Appendix” rely

on results from partial fractions.

Note also that as the Pfaffian matrices are defined in terms

of the pairwise differences θi − θ j , one can easily see that

the ODE solution for C(θ , γ ) satisfies properties (2).

As a corollary to the theorem, the differential equation

for the well-known von Mises–Fisher distribution is derived

from (6) and (15) as:

∂2C(0, γ1)

∂2γ1
+ p − 1

γ1

∂C(0, γ1)

∂γ1
− C(0, γ1) = 0.

where l = 1, n1 = p and θ = 0. The expression

γ
p
2 −1

1 C(0, γ1) satisfies equation 9.6.1 in Abramowitz and

Stegun (1972) for the modified Bessel functions and is con-

sistent with the known expression for these cases (see 9.3.4

in Mardia and Jupp 2000).

Two types of Pfaffians

The Pfaffian matrices will be of two types: Pi and Pi+l for

i = 1, 2, . . . , l since the vector g in (7) with parameters

α = (θ , γ ) implies gi = ∂C(θ ,γ )
∂θi

and gi+l = ∂C(θ ,γ )
∂γi

. Each

Pi or Pi+l will be of dimension 2l ×2l, with all but two rows

having at most 4 nonzero entries. The explicit expressions

are found in “Appendix”

For a curve ᾱ with constant derivative, the matrix func-

tion K of (5) will be a linear combination of the 2l Pfaffian

matrices.

This implies that for situations where some θi and θ j coa-

lesce, the matrix K will have intolerably large entries due

to the presence of 1
(θ j −θi )

r for r = 1, 2, 3 in the Pfaffian

matrices. In these cases, stiffness in the corresponding ODE

could appear. These situations are generally addressed by

reparametrizing or changing the integrating curve

ᾱ(τ ) along which K remains manageable. For example,

the choose of integrating path along some radial direction as

suggested in Koyama et al. (2014) and Koyama and Take-

mura (2016) seems to work well. The default setting in our

implementation is based on the same path so that

θ̄i (τ ) = τθi γ̄i (τ ) =
√

τγi

starting from a small τ0 so that g(α(τ0)) is accurately

evaluated as a starting point for the ODE. For example,

using the curve above for a choice of close entries for

θ = (1, 2.9999, 3, 3.0001) and γ = (1, 1, 1, 1) the method

works well by providing within 0.53 seconds a value for

C(θ, γ ) = 2.9753553. Note that the saddlepoint approxima-

tion provides the value 2.942742 in 0.001 seconds. This is not

surprising since, while SPA is very fast, the proposed method

relies on a potentially computationally expensive step of eval-

uating the starting value of g at a sufficiently small τ0 so that

to guarantee the required accuracy at the target value τ = 1.

In general, our method could require a careful choice of both
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the starting values and the integration path so that the ODE

is does not have numerical problems. However, our imple-

mentation with the radial curve described as not failed in the

examples that we have considered.

One can easily see that the Pfaffian values do not become

degenerate even if all γi become zero (except cases when

ni > 1); therefore, a possible starting value for carrying out

the numerical evaluation for general C(θ , γ ) or g(θ , γ ) could

be the corresponding derivatives of the Bingham normalizing

constant at g(θ , γ = 0) (evaluated as in Sei and Kume 2015),

and then stemming from this point in R2l , a second integra-

tion curve can be defined ending at the required g(θ , γ ).

In cases of ni > 1, we can use the power series derived

by Kume and Walker (2009) and Koyama et al. (2014) as a

starting value of g(θ , γ ).

5 MLE optimization using the gradient approach

If the observed data are collected in a matrix X =
(x1, x2, . . ., xn) of dimension p×n, such that A =

∑n
i=1 xi x⊤

i

n

and B =
∑n

i=1 xi

n
, the corresponding likelihood function is

log L

(

Σ−1

2
,Σ−1µ, X

)

= −n log C

(

Σ−1

2
,Σ−1µ

)

−
n

∑

i=1

(

x⊤
i

Σ−1

2
xi − x⊤

i Σ−1µ

)

= −n log C

(

∆−1

2
, γ

)

− ntr

(

AO⊤ ∆−1

2
O − OBγ ⊤

)

= −n
(

log C(θ, γ ) + tr(AO⊤diag(θ)O + OBγ ⊤)

)

with Σ−1 = O⊤∆−1O, C(Σ−1

2
,Σ−1µ) = C(∆−1

2
, γ ), γ =

∆−1Oµ and ∆−1

2
= diag(θ), while without loss of generality

one can replace O with −O as this does not affect O⊤∆−1O

but switches the sign of OBγ ⊤.

Therefore, maximizing log L(Σ−1

2
,Σ−1µ, X) is equiva-

lent to minimizing

log C(θ , γ ) + tr(AO⊤diag(θ)O + OBγ ⊤). (16)

Since values of θ can be shifted so that its smallest value

becomes 0 and O can allow forγ to have non-negative entries,

we can optimize (16) on θ ≥ 0 with min(θ) = 0 and γ ≥ 0

by iteratively updating the parameters which increase the

likelihood value such that:

1. for a fixed O, consider the optimization problem on θ

and γ which is performed in 2l dimensions including the

ODE for the HGM implementation.

2. by keeping these values θ andγ fixed, we can then find the

optimal O by minimizing or decreasing only the quadratic

part of the likelihood tr(AO⊤diag(θ)O +OBγ ⊤).

In order to establish a gradient descent approach for the first

step, we only need the partial derivatives of log L(θ , γ , O)

as follows:

∂ log L(θ , γ , O)

∂θ
= ∂C(θ , γ )

∂θ

1

C(θ , γ )
+ diag(OAO⊤)

(17)

∂ log L(θ , γ , O)

∂γ
= ∂C(θ, γ )

∂γ

1

C(θ , γ )
+ B⊤O⊤ (18)

where
∂C(θ ,γ )

∂θ
1

C(θ ,γ )
and

∂C(θ ,γ )
∂γ

1
C(θ ,γ )

are the output of our

holonomic gradient algorithm implementation for the Pfaf-

fian equations shown earlier. In its general form, the second

optimization needs special care as it is a non standard opti-

mization problem in O(p). We show below an adopted

gradient method which addresses this problem and therefore

completes the MLE optimization. In fact, two special cases

that do not require our optimization in O(p) are:

• Bingham distribution, i.e. γ = 0, here the orthogonal

component of the SVD decomposition of A is optimal

• Kent distributions for p = 3 where approximate MLE

is used and the problem is conveniently reduced to an

optimization in O(2) after the third column vector of

O is chosen independently such that the 3-dimensional

vector B coincides with a fixed axis (see Kent 1982, Sect.

4).

5.1 Optimization in O

In particular, we need to find the optimal Ô such that

Ô = argmin
O∈O(p)

tr(AO⊤diag(θ)O + OBγ ⊤)

In fact, this problem is equivalent to

Ô = argmin
O∈O(p)

∣

∣

∣

∣

∣

∣

∣

∣

diag(
√

θ)OA1/2 + A−1/2Bγ ⊤diag

(

1√
θ

)
∣

∣

∣

∣

∣

∣

∣

∣

2

This is the weighted Procrustes optimization problem con-

sidered in Chu and Trendafilov (1998). The authors there

adopt an ODE approach to this problem as a simple adaption

of continuous gradient optimization. We show in the fol-

lowing the gradient descent version in discrete time which

can be immediately implemented within a unified MLE
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optimization procedure for the Fisher–Bingham family of

distributions. Note that, provided we allow in the likelihood

optimization the sign of one of the components in γ to vary,

the optimal matrix O can be allowed to be a rotation matrix,

i.e. O = ev where v is skew symmetric, i.e. v+v⊤ = 0.

Proposition 1 A necessary condition for O to be an optimal

orthogonal matrix is that

A = diag(θ)OAO⊤ − OAO⊤diag(θ) + γ B⊤O⊤

is symmetric.

Proof (see “Appendix”). ⊓⊔

In our case however, we can implement the gradient approach

in the orthogonal group by taking as a possible new update

for O some rotation along the curve

Oev̂t where v̂ = A − A
⊤ (19)

Clearly, this curve reduces to a single point only if A is sym-

metric, i.e. O is a critical point. We can use this fact as a

stopping criterion in our gradient optimization. We proceed

in a similar way to obtain the second derivative, and it can be

shown that a necessary condition that a particular critical O

is a local minimum is

tr(A + 2OAO⊤diag(θ))(v2)⊤+2tr(AO⊤v⊤diag(θ)vO)≥0

∀v = −v⊤

5.2 Algorithm for finding the MLE

We now have all the ingredients to establish our gradient

approach for the MLE of the Fisher–Bingham distributions.

Algorithm

For a given initial set of estimates θ , γ and O, we perform

the updates as follows:

1. θ̂ = θ + ∂ log L(θ , γ , O)

∂θ
δθ

where
∂ log L(θ ,γ ,O)

∂θ
is as in (17) and δθ is a real number

such that log L(θ̂, γ , O) > log L(θ , γ , O).

2. γ̂ = γ + ∂ log L(θ̂, γ , O)

∂γ
δγ

where
∂ log L(θ̂ ,γ ,O)

∂γ
is as in (18) and δγ is a real number

such that log L(θ̂, γ̂ , O) > log L(θ̂ , γ , O).

3. Ô = ev̂t0 O

where v is calculated as in (19) and t0 is chosen such that

log L(θ̂, γ̂ , Ô) > log L(θ̂, γ̂ , O).

4. We stop when the derivatives in steps 1 and 2 and v̂ are

practically zero.

Note, however, that if we wanted to fit the Bingham dis-

tribution, i.e. γ is assumed to be zero, then there is no need

to implement step 3 above as the optimal O in this case is

simply the one for which A = 0 that is OAO⊤ is diagonal.

5.3 Numerical evidence

In Nakayama et al. (2011), the authors illustrate the gen-

eral methodology of holonomic gradient method by focusing

on two data sets: one from the area of astronomy and the

other one from the magnetism. We revisit the first data set in

order to confirm that our method gives the same MLE results.

We also want to make use of our different parametrization

which deals with the sub-classes of Fisher–Bingham family

to perform statistical inference to choose the most appropriate

model. The second data set considered is previously used in

the paper of Arnold and Jupp (2013) where a statistical model

of orthogonal frames is introduced. Particular recordings of

three orthogonal axis related to individual earthquake events

in New Zealand are grouped in three data sets. Each triplet

of orthogonal axes in R
3 related to a particular earthquake

event gives rise to a direction orthogonal to the horizontal

plane. Observations of these directions can allow modelling

by Bingham distributions c.f Arnold and Jupp (2013). So we

have three classes of directional data where Bingham distri-

butions are considered appropriate. In particular, a Bayesian

modelling approach to fitting Bingham distributions to such

data is also considered in Fallaize and Kypraios (2014). We

will show below that in fact the best modelling choice among

the sub-classes of Fisher–Bingham family is indeed the Bing-

ham distribution.

Astronomy data

For this data set in our parametrization, the components A

and B are as follows:

A =

⎛

⎝

0.312 0.029 0.071

0.029 0.360 0.046

0.071 0.046 0.327

⎞

⎠ B =

⎛

⎝

0.006

0.005

0.076

⎞

⎠

Fitting the Fisher–Bingham distribution to these data, we get

the following MLE values

θ̂FB =

⎛

⎝

0

0.708(0.576)

1.416(1.469)

⎞

⎠ γ̂ FB =

⎛

⎝

0.122(0.124)

0.087(0.087)

0.197(0.196)

⎞

⎠

ÔFB =
(

−0.511(−0.510) −0.612(−0.613) −0.605(−0.604)

−0.490(−0.489) 0.785(0.784) −0.380(−0.383)

0.706(0.708) 0.102(0.100) −0.700(−0.699)

)

where the values in brackets are the MLE estimates using

the saddlepoint approximation for the normalizing constant.
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The optimal likelihood value rescaled by −n as defined

in (16) is 2.457746 = log 11.67846 which is same as the

value reported in Nakayama et al. (2011). The correspond-

ing quantity for the saddlepoint approximation is 2.463414.

We fitted to this data set the Kent distribution and the MLE

of the corresponding quantities using HGM (and saddlepoint

approximation) are

θ̂ K =

⎛

⎝

0

−0.703(−0.783)

0.703(0.783)

⎞

⎠ γ̂ K =

⎛

⎝

0.099(0.098)

0

0

⎞

⎠

ÔK =
(

−0.461(−0.463) 0.774(0.775) −0.435(−0.429)

0.493(0.495) 0.631(0.628) 0.599(0.601)

−0.738(−0.735) −0.062(−0.066) 0.672(0.674)

)

with 2.465478 and 2.471299 being the corresponding values

of function (16) at these optimal points. Since the difference

in the number of parameters between these models is 8−5 =
3, we can apply the log-likelihood ratio test, under the null

hypothesis of the Kent model

H0 : 2n (log L(ΘK ) − log L(ΘFB)) ∼ χ2
3

where log L is (the rescaled log-likelihood by −n) defined in

(16) and ΘFB and ΘK represent the MLE estimates for the

full Fisher–Bingham and Kent, respectively. The sample size

is n = 168, and the value of likelihood ratio statistic is there-

fore 2 ∗ 168 ∗ (2.465478 − 2.457746) = 2.597952 which

suggests that there is not enough evidence supporting the full

Fisher–Bingham distribution model here. The same conclu-

sion holds for the saddlepoint approximation quantities.

Earthquake data

The three axes of interest for an earthquake event are the

directions of compressional axis P; tensional axis T, while

the null axis A is defined as A = P × T. For these data

sets, the first two axes tend to be horizontal, and therefore,

the third axis points vertically. These axial data are shown in

Fig. 1 and are split into three groups of particular interest. The

Fig. 1 The planar projections on the horizontal plane of the frame of

orthogonal axes (P A T) related to earthquake records. The left plot

shows the data for earthquakes in Christchurch prior to 22 February

2001, the middle plot those recorded post 22 February 2001, and the

third plot refers to earthquake records in South Island. The point +
in each plot denotes the mode of the Bingham distribution fitted to

directions of axis A

key assumption in modelling these data sets is that observed

directions of axis A follow a Bingham distribution on the

sphere of dimension 2.

The MLEs for the Bingham distributions parameters fitted

to the three data sets of directions of axis A shown in Fig. 1

are as follows:

θ̂ B =

⎛

⎝

0

5.059

3.804

⎞

⎠ ÔB =

⎛

⎝

0.008 0.054 −0.999

0.428 0.902 0.052

0.904 −0.428 −0.016

⎞

⎠

θ̂ B =

⎛

⎝

0

5.094

2.941

⎞

⎠ ÔB =

⎛

⎝

0.044 0.012 −0.999

0.522 0.852 0.033

0.852 −0.523 0.031

⎞

⎠

θ̂ B =

⎛

⎝

0

0.784

−1.025

⎞

⎠ ÔB =

⎛

⎝

0.583 0.808 −0.087

−0.750 0.494 −0.439

−0.312 0.321 0.894

⎞

⎠

We also fitted Fisher–Bingham distributions to these

three clusters of directions, and the corresponding values of

the corresponding χ2
3 test statistics and their p values are

0.4889717(0.9213075), 3.885764(0.2740667) and 1.630983

(0.6523852). These results suggest that the Bingham distri-

bution assumption is reasonable for these data sets. One of

the referees mentioned correctly that the Bingham distribu-

tion is in fact appropriate for axial data. This means that if

the data points undergo independently some axial rearrange-

ment, (namely independent sign changes to each individual

coordinates), the likelihood will not change under Bingham

but will do so for the Fisher–Bingham case. Therefore, the

model choice that we perform here is to only illustrate numer-

ically that our HGM implementation here works for a given

axial arrangement of these data points, and alternative mod-

els like the matrix Fisher distributions as suggested by the

referee could be better modelling strategies for these orthog-

onal frames.

6 Concluding remarks

In this paper, we provide explicitly the Pfaffian system for the

normalizing constant of the Fisher–Bingham distributions

including the degenerate cases. Such explicit expressions

have not only theoretical interest but also improve on the

implementation of the current methods used for the MLE

of these models. We reduce the dimensionality of the ODE

equation as we need to operate at a dimension not more

than twice the number of distinct values of θi . The standard

HGM so far does not account for multiplicities among θi ’s

or γi = 0. We can also perform exact MLE inference by

using gradient optimization methods for the optimal orthog-

onal component O as in weighted Procrustes optimization.

Note, however, that optimization in O shown in Sect. 5.1 is
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only local and rank(B⊤γ ) = 1 might imply many optimal

solutions. For the Bingham distribution, namely γ = 0 case,

the optimal matrix O does not depend on θ as that is defined

such that
∑n

i=1 Oxi (Oxi )
⊤ is diagonal. The numerical exam-

ples indicate that when carefully implemented, the method

is highly accurate and performs well in real applications.

Its implementation can fail sometimes since the correspond-

ing ODE does not perform well numerically. This can be

addressed by changing the ODE, namely, by altering either

the starting point and/or the integrating path as discussed in

the last paragraph of Sect. 4. The default choice of the curve

which is used in our implementation in R works well in many

tests. As indicated in our first real data example, the MLE

using the saddle point approximation is with some excep-

tions, not far from the our MLE. One can start the HGM

from this solution. This hybrid approach could in princi-

ple reduce the regions of the numerical search and could

be seen as a way of calibrating the saddle point approxima-

tion. Our proposed method clearly generalizes that given in

Koyama et al. (2014) since it offers explicit expressions for

the Pfaffian equations for all Fisher–Bingham distributions

including those with degeneracies in the parameters. Finally,

since the saddle point approximation method is numerically

stable, practically accurate and immediately available, the

HGM could be used as a refinement to this approximation.
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7 Appendix

The results of Theorem 1 rely heavily on Lemma 1 which is

stated after some initial remarks.

Remark 1 One can easily notice that

∫

iR+t0

1

(θi + t)
A(γ , θ)et dt = 2

γi

∂C(θ , γ )

∂γi

and

∫

iR+t0

1

(θi + t)2
A(γ , θ)et dt =−4ni

γ 3
i

∂C(θ, γ )

∂γi

− 4

γ 2
i

∂C(θ , γ )

∂θi

,

and therefore, these elementary functions

∫

iR+t0

1

(θi + t)r
A(γ , θ)et dt r = 1, 2

are actually representing the first-order derivatives
∂C(θ ,γ )

∂θi

and
∂C(θ ,γ )

∂γi
.

In what follows, we will show that based on the theory of

partial fractions,
∂C(θ ,γ )

∂θi
and

∂C(θ ,γ )
∂γi

can be used to express

the integrals above even for r = 3, 4 which will then derive

the expressions for the second-order derivatives. This is the

basis of the following methodology for obtaining the Pfaffian

equations.

For example, using (8) and (9) the second-order deriva-

tives generate these expressions:

For i �= j

∂2C(θ , γ )

∂θi∂θ j

=
∫

iR+t0

(

ni

2(θi + t)
+

γ 2
i

4(θi + t)2

)

×
(

n j

2(θ j + t)
+

γ 2
j

4(θ j + t)2

)

A(γ , θ)et dt

(20)

∂2C(θ , γ )

∂γi∂γ j

=
∫

iR+t0

γiγ j

4(θi + t)(θ j + t)
A(γ , θ)et dt (21)

∂2C(θ , γ )

∂γi∂θ j

=
∫

iR+t0

(

n j

2(θ j + t)
+

γ 2
j

4(θ j + t)2

)

× −γi

2(θi + t)
A(γ , θ)et dt (22)

and for i = j ,

∂2C(θ , γ )

∂2θi

=
∫

iR+t0

(

2ni + n2
i

4(θi + t)2
+

(2 + ni )γ
2
i

4(θi + t)3
+

γ 4
i

16(θi + t)4

)

×A(γ , θ)et dt (23)

∂2C(θ , γ )

∂2γi

= −∂C(θ , γ )

∂θi

− ni − 1

γi

∂C(θ, γ )

∂γi

(24)

∂2C(θ , γ )

∂γi∂θi

=
∫

iR+t0

−
(

(ni + 2)γi

4(θi + t)2
+

γ 3
i

8(θi + t)3

)

×A(γ , θ)et dt (25)

Remark 2 If i = j it is clear, however, that nonzero terms γi

give rise to

∫

iR+t0

1

(θi + t)r
A(γ , θ)et dt r = 3, 4
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in the second-order derivatives, while for γi = 0 such terms

vanish.

Remark 3 The second-order derivatives
∂2C(θ ,γ )
∂θi ∂θ j

,
∂2C(θ ,γ )
∂γi ∂γ j

and
∂2C(θ ,γ )
∂γi ∂θ j

for i �= j can be given in terms of only this

pair of basis functions

∫

iR+t0

1

(θi + t)r
A(γ , θ)et dt r = 1, 2

which from Remark 1 are obtained in terms of
∂C(θ ,γ )

∂θi
and

∂C(θ ,γ )
∂γi

. This is easily seen if applying the integration with

respect to A(γ , θ)et dt and by using the following basis

decomposition:

Lemma 1 If θi �= θ j and γi �= 0 �= γ j , then

(

A

θi + t
+ B

(θi + t)2

) (

C

θ j + t
+ D

(θ j + t)2

)

= a

θi + t
+ b

(θi + t)2
+ c

θ j + t
+ d

(θ j + t)2
(26)

and

∫

iR+t0

(

A

θi + t
+ B

(θi + t)2

) (

C

θ j + t
+ D

(θ j + t)2

)

A(γ , θ)et dt

= − 4b

γ 2
i

∂C(θ , γ )

∂θi

− 4d

γ 2
j

∂C(θ , γ )

∂θ j

+

+
(

a
2

γi

− b
4ni

γ 3
i

)

∂C(θ , γ )

∂γi

+
(

c
2

γ j

− d
4n j

γ 3
j

)

∂C(θ , γ )

∂γ j

where

b =
B

(

C(θ j − θi ) + D
)

(θ j − θi )2
= BC

θ j − θi

+ B D

(θ j − θi )2

d =
D

(

A(θi − θ j ) + B
)

(θi − θ j )2
= AD

θi − θ j

+ DB

(θi − θ j )2

a =
A

(

C(θ j − θi ) + D
)

+ C B − 2b(θ j − θi )

(θ j − θi )2

= AC

θ j − θi

+ AD − BC

(θ j − θi )2
− 2

B D

(θ j − θi )3

= A

B
b + BC

(θ j − θi )2
− 2b

(θ j − θi )
(27)

and

c =
C

(

A(θi − θ j ) + B
)

+ AD − 2d(θi − θ j )

(θi − θ j )2

= AC

θi − θ j

+ BC − AD

(θi − θ j )2
− 2

B D

(θi − θ j )3

= C

D
d + AD

(θi − θ j )2
− 2d

(θi − θ j )
, (28)

i.e.

a = −c

Note that expressions on the right-hand side for a and b in

the statement of Lemma are valid if B �= 0 �= D.

Proof of Lemma 1 The identity (26) is a direct consequence

of the theory of partial fractions. From (26), we see that

A(θi + t) + B

(θi + t)2

C(θ j + t) + D

(θ j + t)2

= a(θi + t)(θ j + t)2 + b(θ j + t)2 + c(θi + t)2(θ j + t) + d(θi + t)2

(θi + t)2(θ j + t)2

or

(A(θi + t) + B)
(

C(θ j + t) + D
)

(29)

= a(θi + t)(θ j + t)2 + b(θ j + t)2

+ c(θi + t)2(θ j + t) + d(θi + t)2

and, applying this equation for t = −θi , t = −θ j , we have

b(θ j − θi )
2 = B

(

C(θ j − θi ) + D
)

d(θi − θ j )
2 = D

(

A(θi − θ j ) + B
)

which establish the explicit expressions for b and d. After

differentiating with respect to t both sides of (29) and then

substituting t = −θi , t = −θ j consecutively, we have the

following pair of equations

−a(θ j − θi )
2 − 2b(θ j − θi ) = −A

(

C(θ j − θi )+D
)

− CB

−c(θi − θ j )
2 − 2d(θi − θ j ) = −C

(

A(θi − θ j )+B
)

− AD

which confirm the remaining expressions for a and b of the

lemma including the identity a = −c.

The second result of the lemma is direct consequence

of the first, while
∫

iR+t0

1
(θi +t)

A(γ , θ)et dt = 2
γi

∂C(θ ,γ )
∂γi

and

∫

iR+t0

1
(θi +t)2 A(γ , θ)et dt = − 4ni

γ 3
i

∂C(θ ,γ )
∂γi

− 4

γ 2
i

∂C(θ ,γ )
∂θi

⊓⊔
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Proof of Theorem 1 Applying Lemma 1 to Eqs. (20), (21)

and (22), we obtain the following three identities:

∂2C(θ , γ )

∂θi∂θ j

=
∫

iR+t0

(

ni

2(θi + t)
+

γ 2
i

4(θi + t)2

)

×
(

n j

2(θ j + t)
+

γ 2
j

4(θ j + t)2

)

A(γ , θ)et dt

= −
(

n j

2(θ j − θi )
+

γ 2
j

4(θ j − θi )2

)

∂C(θ , γ )

∂θi

−
(

ni

2(θi − θ j )
+

γ 2
i

4(θi − θ j )2

)

∂C(θ, γ )

∂θ j

−
(

n jγi

4(θ j − θi )2
+

γiγ
2
j

4(θ j − θi )3

)

∂C(θ, γ )

∂γi

−
(

niγ j

4(θi − θ j )2
+

γ 2
i γ j

4(θi − θ j )3

)

∂C(θ, γ )

∂γ j

(30)

= −

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

n j

2(θ j −θi )
+ γ 2

j

4(θ j −θi )
2

ni

2(θi −θ j )
+ γ 2

i

4(θi −θ j )
2

n j γi

4(θ j −θi )
2 + γi γ

2
j

4(θ j −θi )
3

ni γ j

4(θi −θ j )
2 + γ 2

i γ j

4(θi −θ j )
3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

T
⎛

⎜

⎜

⎜

⎜

⎝

∂C(θ ,γ )
∂θi

∂C(θ ,γ )
∂θ j

∂C(θ ,γ )
∂γi

∂C(θ ,γ )
∂γ j

⎞

⎟

⎟

⎟

⎟

⎠

(31)

since the corresponding terms are

a = ni n j

4(θ j − θi )
+

niγ
2
j − n jγ

2
i

8(θ j − θi )2
−

γ 2
i γ 2

j

8(θ j − θi )3

with

b =
n jγ

2
i

8(θ j − θi )
+

γ 2
i γ 2

j

16(θ j − θi )2

and

c = −a with d =
niγ

2
j

8(θi − θ j )
+

γ 2
i γ 2

j

16(θi − θ j )2

∂2C(θ, γ )

∂θ j∂γi

= −
∫

iR+t0

γi

2(θi + t)

×
(

n j

2(θ j + t)
+

γ 2
j

4(θ j + t)2

)

A(γ , θ)et dt

= γi

2(θi − θ j )

∂C(θ, γ )

∂θ j

−
(

n j

2(θ j − θi )
+

γ 2
j

4(θ j − θi )2

)

×∂C(θ, γ )

∂γi

+ γiγ j

4(θi − θ j )2

∂C(θ , γ )

∂γ j

(32)

=

⎛

⎜

⎜

⎝

γi

2(θi −θ j )

− n j

2(θ j −θi )
− γ 2

j

4(θ j −θi )
2

γi γ j

4(θi −θ j )
2

⎞

⎟

⎟

⎠

T ⎛

⎜

⎜

⎝

∂C(θ ,γ )
∂θ j

∂C(θ ,γ )
∂γi

∂C(θ ,γ )
∂γ j

⎞

⎟

⎟

⎠

(33)

since

b = 0 d = −
γiγ

2
j

8(θi − θ j )

and

a = −c = − n jγi

4(θ j − θi )
−

γiγ
2
j

8(θ j − θi )2

∂2C(θ , γ )

∂γi∂γ j

=
∫

iR+t0

γiγ j

4(θi + t)(θ j + t)
A(γ , θ)et dt i �= j

= γ j

2(θ j − θi )

∂C(θ, γ )

∂γi

− γi

2(θ j − θi )

∂C(θ, γ )

∂γ j

(34)

=
( γ j

2(θ j −θi )

− γi

2(θ j −θi )

)T (

∂C(θ ,γ )
∂γi

∂C(θ ,γ )
∂γ j

)

(35)

The corresponding cases of i = j , are obtained after

applying ∂
∂γi

on both sides of (6) and separating the term

∂2C(θ ,γ )
∂θi ∂γi

while using (32)

∂2C(θ , γ )

∂γi∂θi

= −
l

∑

i �= j=1

∂2C(θ, γ )

∂θ j∂γi

− ∂C(θ , γ )

∂γi

= −
l

∑

i �= j=1

γi

2(θi − θ j )

∂C(θ, γ )

∂θ j

−
l

∑

i �= j=1

γiγ j

4(θi − θ j )2

∂C(θ, γ )

∂γ j

+

⎛

⎝

l
∑

i �= j=1

(

n j

2(θ j − θi )
+

γ 2
j

4(θ j − θi )2

)

− 1

⎞

⎠

∂C(θ, γ )

∂γi

Similarly, after applying ∂
∂θ j

on both sides of (6) and using

(31) we have

∂2C(θ , γ )

∂2θi

= −
l

∑

i �= j=1

∂2C(θ, γ )

∂θi∂θ j

− ∂C(θ , γ )

∂θi

=

⎛

⎝

l
∑

i �= j=1

(

n j

2(θ j − θi )
+

γ 2
j

4(θ j − θi )2

)

− 1

⎞

⎠

∂C(θ , γ )

∂θi
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+
l

∑

i �= j=1

(

ni

2(θi − θ j )
+

γ 2
i

4(θi − θ j )2

)

∂C(θ , γ )

∂θ j

+
l

∑

i �= j=1

(

γi n j

4(θ j − θi )2
+

γiγ
2
j

4(θ j − θi )3

)

∂C(θ , γ )

∂γi

+
(

γ j ni

4(θi − θ j )2
+

γ 2
i γ j

4(θi − θ j )3

)

∂C(θ, γ )

∂γ j

Finally, the equation for
∂2C(θ ,γ )

∂2γ 2
i

is

∂2C(θ , γ )

∂2γ 2
i

=
∫

iR+t0

(

1

2(θi + t)
+

γ 2
i

4(θi + t)2

)

A(γ , θ)et dt

= −∂C(θ , γ )

∂θi

− ni − 1

γi

∂C(θ , γ )

∂γi

,

with singularity at γi = 0 if ni ≥ 2.

Explicit expressions for the Pfaffians For Pi only the rows

i and i + l will have 2l nonzero entries, while the remaining

2(l − 1) rows indexed by j ∈ {1, 2, . . ., l| j �= i} and j + l

will have at most 4 nonzero entries as indicated in (10):

Pi ( j, i) = − n j

2(θ j − θi )
−

γ 2
j

4(θ j − θi )2

Pi ( j, j) = − ni

2(θi − θ j )
−

γ 2
i

4(θi − θ j )2

Pi ( j, i + l) = − n jγi

4(θ j − θi )2
−

γiγ
2
j

4(θ j − θi )3

Pi ( j, j + l) = − niγ j

4(θi − θ j )2
−

γ 2
i γ j

4(θi − θ j )3
,

and for the l − 1 rows j + l using (11) (with i and j inter-

changed) we have only 3 nonzero entries:

Pi ( j + l, i) = γ j

2(θ j − θi )

Pi ( j + l, j + l) = − ni

2(θi − θ j )
−

γ 2
i

4(θi − θ j )2

Pi ( j + l, i + l) = γiγ j

4(θi − θ j )2

The i th row of Pi can be obtained by rewriting (14):

∂2C(θ , γ )

∂2θi

= −

⎛

⎝1 +
l

∑

i �= j=1

Pi ( j, i)

⎞

⎠ gi

−
l

∑

i �= j=1

Pi ( j, j)g j −

−
l

∑

i �= j=1

Pi ( j, i + l)gi+l −
l

∑

i �= j=1

Pi ( j, j + l)g j+l ,

and therefore, the nonzero entries of Pi (i, :) are:

Pi (i, i) = −

⎛

⎝1 +
l

∑

i �= j=1

Pi ( j, i)

⎞

⎠

Pi (i, i + l) = −
l

∑

i �= j=1

Pi ( j, i + l)

Pi (i, j) = −Pi ( j, j), Pi (i, j + l) = −Pi ( j, j + l)

j ∈ {1, 2, . . ., l| j �= i} and for the i + lth row. Please note

that Eq. (13) implies that

∂2C(θ , γ )

∂θi∂γi

= −
l

∑

i �= j=1

P j (i + l, j)g j

−

⎛

⎝1 +
l

∑

i �= j=1

P j (i + l, i + l)

⎞

⎠ gi+l

−
l

∑

i �= j=1

P j (i + l, j + l)g j+l

and

Pi (i + l, j) = −
l

∑

i �= j=1

P j (i + l, j)

Pi (i + l, j + l) = −P j (i + l, j + l)

Pi (i + l, i + l) = −

⎛

⎝1 +
l

∑

i �= j=1

P j (i + l, i + l)

⎞

⎠

Similarly, one can show that for the second type Pi+l the only

nonzero elements in the rows j and j + l, for all j �= i are

Pi+l( j, j) = γi

2(θi − θ j )

Pi+l( j, i + l) = − n j

2(θ j − θi )
−

γ 2
j

4(θ j − θi )2

Pi+l( j, j + l) = γiγ j

4(θi − θ j )2

Pi+l( j + l, i + l) = γ j

2(θ j − θi )

Pi+l( j + l, j + l) = − γi

2(θ j − θi )
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as seen from (11). For the i th row

Pi+l(i, i + l) = −1 −
l

∑

i �= j=1

Pi+l( j, i + l)

Pi+l(i, j) = −Pi+l( j, j) Pi+l(i, j +l) = −Pi+l( j, j + l))

and for the (i + l)th row

Pi+l(i + l, i) = −1 Pi+l(i + l, i + l) = −ni − 1

γi

Proof of Proposition 1 Now, for a given O and some direc-

tion v, we can define a curve in the space of orthogonal

matrices which start from O: O(t) = evt O where v is

skew symmetric. Such curves clearly start from O since

evt |t=0 = I. Since
log L(θ ,O(t),γ )

∂t
= − tr(AO⊤diag(θ)O+γ B⊤O⊤)

∂t

and ∂O(t)
∂t

|t=0 = vO, −v⊤ = v we obtain

∂ log L(θ , O(t), γ )

∂t

∣

∣

∣

t=0

= −∂tr(AO⊤ev⊤t diag(θ)evt O + B⊤O⊤ev⊤tγ )

∂t

∣

∣

∣

t=0

= −tr(AO⊤v⊤ev⊤t diag(θ)evt O

+ AO⊤ev⊤t diag(θ)vevt O

+ B⊤O⊤v⊤ev⊤tγ )|t=0

= −tr(AO⊤v⊤diag(θ)O+AO⊤diag(θ)vO

+ B⊤O⊤v⊤γ )

= tr
(

v(diag(θ)OAO⊤ − OAO⊤diag(θ) + γ B⊤O⊤)

)

This derivative is zero for any skew symmetric matrix v only

if

A = diag(θ)OAO⊤ − OAO⊤diag(θ) + γ B⊤O⊤

is symmetric, i.e. A = A⊤.
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