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Stochastic Spline-Collocation Method for Constrained Optimal Control

Problem Governed by Random Elliptic PDE

Benxue Gong Liang Ge Tongjun Sun Wanfang Shen and W.B. Liu

Abstract. In this paper, we investigate a stochastic spline-collocation approximation scheme

for an optimal control problem governed by an elliptic PDE with random field coefficients. We

obtain the necessary and sufficient optimality conditions for the optimal control problem and

establish a scheme to approximate the optimality system through the discretization with respect

to the spatial space by finite elements method and the probability space by stochastic spline-

collocation method. We further investigate Smolyak approximation schemes, which are effective

collocation strategies for smooth problems that depend on a moderately large number of random

variables. For more general control problems where the state may be non-smooth with respect

to the random variables in some areas, we adopt a domain decomposition strategy to partition

the random space into smooth and non-smooth parts and then apply Smolyak scheme and spline

approximation respectively. A priori error estimates are derived for the state, the co-state and

the control variables. Numerical examples are presented to illustrate our theoretical results.

1. Introduction

In recent years, there are increasing interests in modeling uncertainty in many complex physical

and engineering systems, such as uncertain parameters, coefficients, forcing term, and boundary

conditions. It is well known that these systems can be described by stochastic partial differential

equations(SPDEs). Since stochastic PDEs are conveniently used in many areas, such as fluid flows

in porous media,chemistry, transport of pollutants in groundwater and oil recovery processes,

the numerical solutions for Stochastic PDEs have been a main subject of growing interest in the

scientific community([4]-[22]).

The well-known Monte Carlo (MC) method is the most commonly used method for simulating

stochastic PDEs and for dealing with the statistic characteristics of the solution [4, 5]. Although

MC method only needs to do repetitive deterministic simulations, it is a rather computationally

expensive method for the reason that the statistic convergence rate is relatively slow, especially

when there are large amounts of computations in the deterministic systems. Another alternative to
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the Monte Carlo method is the so-called stochastic Galerkin method[9, 15] for solving stochastic

PDEs with random fields input data. This method allows us to utilize standard approximations

in space(finite elements, finite volumes, spectral or h-p finite elements, etc.) and polynomial

approximation in the probability domain, either on full polynomial spaces [16, 20, 21], tensor

product polynomial spaces [17, 18, 19], or on piecewise polynomial spaces [6, 7, 8, 17]. By

applying stochastic Galerkin method, we can utilize the regularity of the solution and acquire faster

convergence rates. However, in general, this technique requires to solve a system of equations that

couples all degrees of freedom when approximating the stochastic systems.

Due to this issue, the stochastic collocation method has gained much attention recently in the

computational community [10, 11, 12, 13, 20], which was originally introduced in [10,20]. In

principle, stochastic collocation method consists of a Galerkin approximation in physical space and

a collocation in the zeros of suitable tensor product orthogonal polynomials (Gauss points) in the

probability space[10]. Compared with stochastic Galerkin methods, this method solves uncoupled

deterministic PDEs at the collocation points that are trivially parallelizable, as in the Monte

Carlo method. This method also can treat efficiently the case of dependent random variables by

introducing an auxiliary density ρ̂. And this method deals easily with unbounded random variables

such as Gaussian or exponential variables. Hence, stochastic collocation is an attractive method

for computing solutions of stochastic PDEs with random field input data.

In many applications, optimization of physical and engineering systems can be formulated as

optimal control problems that are constrained by PDEs. Computational methods for deterministic

optimal control problems constrained by PDEs have been well developed and investigated for sev-

eral decades([1]-[3],[23]-[29]). Recently efficient numerical methods for optimal control problem

governed by stochastic PDEs are becoming a new hot topic. Comparison with the deterministic

optimal control, efficient computation of stochastic optimal control problems constrained by sto-

chastic PDEs is still in its infancy, see the very recent work([30]-[37]). Based on the work([6]-[22]),

[30] dealed with optimal control governed by random steady PDEs with deterministic Neuman-

n boundary control, and the existence of an optimal solution and of a Lagrange multiplier were

demonstrated. The authors also proposed the stochastic finite element solution of the optimality

system and estimated its error through the discretizations with respect to both spatial and random

parameter spaces. In [31], one-shot stochastic finite element methods were used to find approxi-

mate solutions with ‘pure’ stochastic control function as well as ‘semi’ stochastic control function

for an optimal control problem constrained by stochastic steady diffusion problems. In [32] and

[33], stochastic optimal control governed by stochastic elliptic PDEs with deterministic distributed

control function were introduced, and the authors proved the existence of the optimal solution,

established the validity of the Lagrange multiplier rule and obtained stochastic optimality system.

Computationally, the numerical solutions of the optimality system were given by the stochastic

finite element method. In [34], the author proposed framework combines space-time multigrid

methods with sparse-grid collocation techniques to solve nonlinear parabolic optimal control prob-

lems with random coefficients for unconstrained control. In [35], we studied an optimal control

problem governed by an elliptic PDE with random field in coefficients and constrained control,

and obtained the necessary and sufficient optimality conditions by applying the well-known Lions’
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lemma. Then a stochastic finite element approximation scheme is applied and the a priori error

estimate for the state, the co-state and the control variables is derived. In [36] a stochastic finite

element approximation scheme and the a priori error estimate for the state, the co-state and the

control variables were developed for an optimal control problem governed by an elliptic integro-

differential equation with random coefficients. Furthermore in [37], stochastic finite element is

applied to an optimal control problem governed by a parabolic PDE with random field in its coef-

ficients, and a priori error estimates for the state, the co-state and the control variables have been

given. However, to our best knowledge, there has been a lack of results about stochastic colloca-

tion approximation for optimal control problem governed by random elliptic PDE with constrained

control and possible non-smoothness in the probability space.

In this paper, we develop a stochastic spline-collocation method for an optimal control problem

governed by an elliptic PDE with random field in its coefficients. We divide the computational

area of probability space into two parts and apply Smolyak and lower order spline approximations

in different areas. The outline of the following paper is as follows: in Section 2, we introduce some

function spaces and the stochastic optimal control problem. By applying the well-known Lions’

lemma to the optimal control problem, we obtain the necessary and sufficient optimality conditions.

In Section 3, we introduce the stochastic collocation method and Smolyak approximation schemes

for the optimal control problem. We give a priori error estimates for the state, the co-state and the

control variables. Numerical examples are presented to illustrate our theoretical results in Section

4.

2. Model problem

2.1 Function spaces and notations. Let D ⊂ R
d be a convex bounded polygonal spatial

domain with boundary ∂D and 1 ≤ d ≤ 3. Denote by B(D) the Borel σ-algebra generated by the

open subset ofD. Let (Ω,F ,P) be a complete probability space, where Ω is a set of outcomes, F is a

σ-algebra of events and P : F → [0, 1] is a probability measure. Let ξ = ξ(ω) = (ξ1(ω), · · · , ξN (ω))

with independent components ξi(ω), i = 1, · · · , N ∈ N. Let Γi = [ai, bi] = ξi(Ω) ⊂ R be a bounded

interval for i = 1, · · · , N and ρi : Γi → R+ be the probability density functions of the random

variables ξi(ω), ω ∈ Ω. Then we can use the joint probability density function ρ(ξ) =
∏N

i=1 ρi(ξi)

for random vector ξ with the support Γ =
∏N

i=1 Γi ⊂ R
N . On Γ, we have the probability measure

ρ(ξ)dξ.

Remark (unbounded random variables). By using a similar approach in [10], we can deal

with unbounded random variables, such as Gaussian or exponential ones. For simplicity, here we

only focus our study on bounded random variables.

Let L2
ρ(Γ) denote the probabilistic Hilbert space[38], in which the random processes based

upon the random variables ξ have finite second moments. The inner product of this Hilbert space

is given by

(X,Y )L2
ρ(Γ)

=

∫

Γ

X(ξ)Y (ξ)ρ(ξ)dξ, ∀ X, Y ∈ L2
ρ(Γ),

where we have used independence of the random variables to allow us to write the measure as

product of measures in each random direction. We similarly define the expectation of a random
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process X ∈ L2
ρ(Γ) as

E[X(ξ)] =

∫

Γ

X(ξ)ρ(ξ)dξ,

and we refer to the expectation of the powers E[Xi(ξ)] as the ith moment of the random process.

Additionally, we define the mapping f : (x, ξ) ∈ D × Γ → R to be a set of random processes,

which are indexed by the spatial position x ∈ D. Such a set of processes is referred to as a random

field [39] and can also be interpreted as a function-valued random variable, because for every ξ ∈ Γ

the realization f(·, ξ) : D → R is a real valued function on D.

For a vector-space W on D, let the class L2
ρ(Γ;W ) denote the space of random fields whose

realizations lie in W for a.e (almost every) ξ ∈ Γ. If W is a Banach space, a norm on L2
ρ(Γ;W ) is

induced by ||f(x, ξ)||2L2
ρ(Γ;W )) = E[‖f(x, ξ)‖2W ]; for example, on L2

ρ(Γ;L
2(D)) we have

||f(x, ξ)||2L2
ρ(Γ;L

2(D)) = E[‖f(x, ξ)‖2L2(D)] =

∫

Γ

∫

D

(f(x, ξ))2ρ(ξ)dxdξ,

which denotes the expected value of the L2(D)-norm of the function f(x, ξ). Similarly, we have

the norm

||f(x, ξ)||2L2
ρ(Γ;H

1(D)) = E[‖f(x, ξ)‖2H1(D)] =

∫

Γ

∫

D

{(f(x, ξ))2 + |∇f(x, ξ)|2}ρ(ξ)dxdξ.

2.2 Model problem. In this paper, we consider the following control problem governed by

a random elliptic equation with a constrained control:

(2.1) min
u∈K

J (u) = min
u∈K

E
[1
2

∫

D

|y − yd|2dx+
α

2

∫

D

|u|2dx
]

subject to

(2.2)





−∇ · [a(x, ξ)∇y(x, ξ)] = u(x), x ∈ D, ξ ∈ Γ,

y(x, ξ) = 0, x ∈ ∂D, ξ ∈ Γ.

where J is a cost functional, y : D̄ × Γ → R is the state variable, yd : D̄ × Γ → R is a given

target solution, a : D × Γ → R is a random function that will be determined below, u : D → R is

a deterministic control, α is a positive constant measuring the importance between two terms in

J . The operator ∇ means derivatives with respect to the spatial variable x ∈ D only. Here, K is

a closed convex subset in the control space L2(D). In the following context, we will discuss some

different cases on the choice of K.

Although the objective functional J in (2.1) contains stochastic function y subject to (2.2),

its outcome is deterministic by using the expectation E. If we denote by B(D) the Borel σ-algebra

generated by the open subsets of D, then a is assumed measurable with respect to the σ-algebras

B(Γ⊗D). To ensure regularity of the solution y, we assume that there are positive constants amin

and amax such that

(2.3) amin ≤ a(x, ξ) ≤ amax, a. e. (x, ξ) ∈ D × Γ.

Then, under the assumption (2.3), we know that there exists a unique weak solution y for (2.2)[17].

In the following, we set the state space Yρ = L2
ρ(Γ;H

1
0 (D)), the control space U = L2(D). To

present the weak formulation of equation (2.2), we introduce the following bilinear forms:
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(2.4) A[y, v] =

∫

Γ

∫

D

a∇y · ∇vρdxdξ, ∀ y, v ∈ Yρ,

and

(2.5) [u, v] =

∫

Γ

∫

D

uvρdxdξ, ∀ u ∈ U, v ∈ Yρ,

(2.6) (u,w) =

∫

D

uwdx, ∀ u, w ∈ U.

Then, we can easily obtain the weak formulation of (2.1)-(2.2) as follows:

(2.7) min
u∈K

J (u) = min
u∈K

E
[1
2

∫

D

|y − yd|2dx+
α

2

∫

D

|u|2dx
]

subject to

(2.8) A[y, v] = [u, v], ∀ v ∈ Yρ.

Under the assumption (2.3) and from [1, 32], we know that there is at least one solution of

(2.7)-(2.8).

2.3 Stochastic optimality system. In order to set up suitable finite element approximation

of (2.7)-(2.8) and obtain the error estimates, it is essential to derive the optimality conditions

for the above constrained optimal control problem. In [32, 33], the authors used the infinite

dimensional Lagrange multiplier theory which is quite complex to apply to study the stochastic

control problems with un-constrained control. Furthermore, it is not trivial to extend the infinite

dimensional Lagrange multiplier theory into our cases. In this paper, we use a different approach

which is much simpler and widely used in the literature [25, 29] to study the optimal control

problem (2.7)-(2.8), and we will explain in the following.

It is well-known that according to Lions’ theorem [1], the PDE-constrained optimal control

problem (2.7)-(2.8) has a unique minimizer , which satisfies the following variational inequality:

(2.9) J ′(u)(w − u) ≥ 0, ∀ w ∈ K.

Here, the directional derivative of functional J at u ∈ K along the direction w ∈ K is defined by

(2.10) J ′(u)(w) = lim
t→0+

J ′(u+ tw)− J ′(u)

t
.

Applying the above theory to our control problem, we have the following theorem:

Theorem 2.1.[35] The optimal control problem (2.7)-(2.8) has a unique solution (y, u) ∈
Yρ × K. Furthermore, a pair (y, u) is the solution of (2.7)-(2.8) iff there is a co-state variable

p ∈ Yρ, such that the triplet (y, p, u) satisfies the following optimality system:

(2.11)





A[y, v] = [u, v], ∀ v ∈ Yρ,

A[p, q] = [y − yd, q], ∀ q ∈ Yρ,

[p+ αu,w − u] ≥ 0, ∀ w ∈ K ⊂ U.

It is known that the inequality in (2.11) is just the necessary and sufficient optimality condition.
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The explicit solution of the variational inequality in (2.11) depends heavily on the choice of

the joint probability density ρ and the convex set K. In the simple case, if the joint probability

density ρ is uniform on Γ, we can have the following explicit solutions for some cases[1, 25]. For

example,

Case I: Let K be given by

(2.12) K = {u ∈ L2(D) : u(x) ≥ 0, a.e. x ∈ D}.

Then, the solution is

(2.13) u(x) = max
{
0,− 1

α
E[p(x, ξ)]

}
, a.e. x ∈ D.

Case II: Let K be given by

(2.14) K = {u ∈ L2(D) :

∫

D

u(x) ≥ 0 }.

Then, the solution is

(2.15) u(x) = − 1

α
E[p(x, ξ)] +max

{
0,

1

α
Ep
}
, a.e. x ∈ D,

where Ep =

∫
D
E[p(x, ξ)]dx∫

D
dx

.

Case III: Let K be given by

(2.16) K = {u ∈ L2(D) : c ≤ u(x) ≤ d, a.e. x ∈ D},

where constants c, d ∈ R and c < d. Then, the solution is

(2.17) u(x) =





c, if E[p(x, ξ)] + αu(x) > 0,

− 1

α
E[p(x, ξ)], if E[p(x, ξ)] + αu(x) = 0,

d, if E[p(x, ξ)] + αu(x) < 0,

a.e. x ∈ D.

Also, we can rewrite the solution as

(2.18) u(x) = Proj[c,d]{−
1

α
E[p(x, ξ)]}, a.e. x ∈ D,

where Proj[c,d] denotes the projection mapping from R onto [c, d].

3. Stochastic spline-collocation method and Smolyak approximation

To present the discretization of the optimality system (2.11), a stochastic collocation scheme

and the Smolyak approximation scheme will be formulated in this section. The reason for consid-

ering a spline-collocation scheme is that in general a(x, ·) is not globally smooth, and thus we need

to refine some non-smooth areas in the sample space while applying the Smolyak approximation

in the smooth areas.
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3.1 Semi-discrete approximation scheme. First of all, we consider finite element spaces

defined on spatial domain D ⊂ R
d[32]. Let {Th}h>0 be a family of regular triangulation of D such

that D̄ = ∪τ∈Th
τ̄ . Let hs = maxτ∈Th

hτ , where hτ denotes the diameter of the element τ and Nh

is the number of all the nodes. Consider two finite element spaces Vhs ⊂ H1
0 (D) and Whs ⊂ L2(D),

consisting of piecewise linear continuous functions and piecewise constants on {Th}, respectively.
Let Kh = Whs

∩K, then the semi-discrete scheme of optimal control problem (2.7)-(2.8) can be

formulated as follows:

(3.1) min
uh∈Kh

Jh(uh) = min
uh∈Kh

E
[1
2

∫

D

|yh − yd|2dx+
α

2

∫

D

|uh|2dx
]

subject to

(3.2) A[yh, vh] = [uh, vh], ∀ vh ∈ Vhs × L2
ρ(Γ).

Similarly, following from [1] that the optimal control problem (3.1)-(3.2) has a unique solution

(yh, uh) ∈ (Vhs × L2
ρ(Γ))×Kh. Furthermore, a pair (yh, uh) is the solution of (3.1)-(3.2) iff there

is a co-state variable ph ∈ Vhs
× L2

ρ(Γ), such that the triplet (yh, ph, uh) satisfies the following

optimality system:

(3.3)





A[yh, vh] = [uh, vh], ∀ vh ∈ Vhs
× L2

ρ(Γ),

A[ph, v̂h] = [yh − yd, v̂h], ∀ v̂h ∈ Vhs × L2
ρ(Γ),

[ph + αuh, wh − uh] ≥ 0, ∀ wh ∈ Kh.

It is known that the inequality in (3.3) is just the necessary and sufficient optimality condition.

According to the result of finite element approximation[35], we have

(3.4)

‖y − yh‖L2
ρ(Γ;H

1
0 (D)) + ‖p− ph‖L2

ρ(Γ;H
1
0 (D)) + ‖u− uh‖L2(D)

≤ 1√
amin

inf
v∈Vhs×L2

ρ(Γ)

(∫

Γ×D

ρa|∇(y − v)|2
) 1

2

+
1√
amin

inf
v∈Vhs×L2

ρ(Γ)

(∫

Γ×D

ρa|∇(p− v)|2
) 1

2

+ C‖u− uh‖L2(D)

≤ Chs

{
‖y‖L2

ρ(Γ;H
2(D)∩H1

0 (D)) + ‖p‖L2
ρ(Γ;H

2(D)∩H1
0 (D)) + ‖u‖H1(D)

}
.

3.2 Spline-collocation approximate scheme and convergence analysis. In this sec-

tion, we investigate the piecewise Lagrange interpolation approximation in consideration of the

oscillatory nature of high-degree interpolation polynomials. For Γi = [ai, bi], i = 1, 2, · · · , N, let

ai = ξi,0 < ξi,1 < ξi,2 < · · · < ξi,ji = bi, be a partition of interval [ai, bi], let hi,j = ξi,j − ξi,j−1, 1 ≤
j ≤ ji, hi = max1≤j≤jihi,j , for convenience, suppose hi,j < 1. Let Ii,j = [ξi,j−1, ξi,j ], 1 ≤ j ≤ ji,

then Γi =
⋃ji

j=1 Ii,j . Thus, if f ∈ Cν(Γi;H
1
0 (D)) and ν is big enough to keep the regularity of f

with respect to ξi, in every subinterval Ii,j , we approximate f by using the ki,j−order Lagrange

polynomials on ki,j + 1 nodes ξi,j−1 = ξ0i,j < ξ1i,j < ξ2i,j < · · · < ξ
ki,j

i,j = ξi,j , as follows:

Ii(f)(ξ) =

ki,j∑

s=0

f(ξsi,j)l
s
i,j(ξ), ξ ∈ Ii,j .
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Where

lsi,j(ξ) =

ki,j∏

r=0,r 6=s

ξ − ξri,j
ξsi,j − ξri,j

.

Let Mi,j = maxξ∈Ii,j f
(ki,j+1)(ξ),Mi = max1≤j≤ji Mi,j and ki = min1≤j≤ji ki,j , then, by interpo-

lation error formula, we get
∣∣∣f(ξ)− Ii(f)(ξ)

∣∣∣ ≤ Mi

(ki + 1)!
(hi)

ki+1,

Now, in the multivariate case N > 1, for f ∈ Cν(Γ;H1
0 (D)), we define the full tensor product

interpolation formulas

I(f)(ξ1, ξ2, ..., ξN ) = (I1 ⊗ I2 ⊗ · · · ⊗ IN )(f)(ξ1, ξ2, ..., ξN )

=

k1,r1∑

s1=0

· · ·
kN,rN∑

sN=0

f(ξs11,r1 , ξ
s2
2,r2

, ..., ξsNN,rN
)

N∏

i=1

lsii,ri(ξi), (ξ1, ξ2, ..., ξN ) ∈ I1,r1 × I2,r2 × · · · × IN,rN .

We then have the interpolation error estimate

∣∣∣f(ξ1, ξ2, ..., ξN )− I(f)(ξ1, ξ2, ..., ξN )
∣∣∣ ≤ C

N∑

i=1

Mi

(ki + 1)!
(hi)

ki+1,

where C is a constant independent of ki, hi.

Next, we consider a finite dimensional space defined on Γ ⊂ R
N . Let P(Γi) be the set of all

the functions which is linear spanning in the subinterval Ii,j of lsi,j , 0 ≤ s ≤ ki,j , 1 ≤ j ≤ ji, and

let P(Γ) =
⊗N

i=1 P(Γi). Combining spaces Vhs
,Whs

and P(Γ) together, we define tensor product

finite element space on D × Γ. We will use Yh,q = Vhs

⊗
P(Γ) for the finite element space of the

state variable y and co-state variable p, Uh = Whs
for the control variable u and let Kh = Uh ∩K

be the finite element space of the convex set K. Then, the optimal control problem (2.7)-(2.8) can

be formulated as follows:

(3.5) min
uh∈Kh

Jh(uh) = min
uh∈Kh

E
[1
2

∫

D

|yh,q − yd|2dx+
α

2

∫

D

|uh|2dx
]

subject to

(3.6) A[yh,q, vh,q] = [uh, vh,q], ∀ vh,q ∈ Yh,q.

In the following, for convenience, we set ji = 1, ki,j = k, i = 1, 2, · · · , N, to any vector of

indexes [s1, · · · , sN ] we associate the global index

n = s1 + (k + 1)(s2 − 1) + (k + 1)2(s3 − 1) + · · ·+ (k + 1)N−1(sN − 1),

here we also denote the point [ξs11,1, ξ
s2
2,1, · · · , ξsNN,1] ∈ Γ by ξn, and set ln(ξ) =

∏N
i=1 l

si
i,1, let Nq =

(k + 1)N .

Let ρ̂ : Γ → R
+ be an auxiliary probability density function which can be seen as the joint

probability of N independent random variables; i.e., it factorizes as

(3.7) ρ̂(ξ) =

N∏

n=1

ρ̂n(ξn), ∀ ξ ∈ Γ, and such that ‖ρ
ρ̂
‖L∞(Γ) ≤ +∞.
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For any continuous function g : Γ → R, we introduce the quadrature formula Eq
ρ̂ [g] approximating

the integral

∫

Γ

g(ξ)ρ̂(ξ)dξ as follows:

(3.8) Eq
ρ̂ [g] =

Nq∑

k=1

ωkg(ξk), ωk =
N∏

n=1

ωkn
, ωkn

=

∫

Γn

l2kn
(ξ)ρ̂n(ξ) dξ.

For simplicity, we denote Ẽ[g] = Eq
ρ̂ [
ρ

ρ̂
g] for a given continuous function g(ξ), ∀ ξ ∈ Γ.

Replacing the integrals over Γ in (3.6) by the quadrature formula (3.8), the collocation method

for the optimal control problem (3.5)-(3.6) is:

(3.9) min
uh∈Kh

Jh(uh) = min
uh∈Kh

Ẽ

[1
2

∫

D

|yh,q − yd|2dx+
α

2

∫

D

|uh|2dx
]

subject to

(3.10) Ẽ
[
(a∇yh,q,∇vh,q)L2(D)

]
= Ẽ

[
(uh, vh,q)L2(D)

]
, ∀ vh,q ∈ Yh,q.

Then, the discrete solution yh,q in D × I1,r1 × I2,r2 × · · · × IN,rN has the form

yh,q =

Nh∑

j=1

k1,r1∑

s1=0

· · ·
kN,rN∑

sN=0

ys1,s2,...,sNj,r1,r2,...,rN
φj(x)

N∏

i=1

lsii,ri(ξi).

Letting yh,q =
∑Nh

i=1

∑Nq

n=1 yinφi(x)ln(ξ) ∈ Yh,q, uh ∈ Kh, we choose vh,q(x, ξ) = φj(x)lm(ξ)(j =

1, 2, ..., Nh;m = 1, 2, ..., Nq) as the test functions in (3.10), where φi(x), φj(x) ∈ Vhs
and ln(ξ), lm(ξ)

is the Lagrange basis function. Then, from (3.10) we have

(3.11) Ẽ
[
(a(x, ξ)∇

( Nh∑

i=1

Nq∑

n=1

yinφi(x)ln(ξ)
)
,∇(φj(x)lm(ξ)))L2(D)

]
= Ẽ

[
(uh, φj(x)lm(ξ))L2(D)

]
.

Here, the left of (3.11) is

∫

D

Nq∑

s=1

a(x, ξs)∇
( Nh∑

i=1

Nq∑

n=1

yinφi(x)ln(ξs)
)
∇φj(x)lm(ξs)ρ(ξs)ωsdx

=

∫

D

a(x, ξm)∇
( Nh∑

i=1

yimφi(x)
)
∇φj(x)ρ(ξm)ωmdx.

The right of (3.11) is

∫

D

Nq∑

s=1

uhφj(x)lm(ξs)ρ(ξs)ωsdx =

∫

D

uhφj(x)ρ(ξm)ωmdx.

From the above two equations, (3.11) is equivalent to

(3.12)

∫

D

a(x, ξm)∇
( Nh∑

i=1

yimφi(x)
)
∇φj(x) =

∫

D

uhφj(x)dx.

This leads to solve a sequence of uncoupled problems of the form

(3.13)

∫

D

a(x, ξ)∇yh(ξ) · ∇vhdx =

∫

D

uhvhdx, ∀ vh ∈ Vhs ,
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collocated in the points ξm.

Similarly, if we introduce the Lagrange interpolant operator Iq : C0(Γ; H1
0 (D)) → P(Γ)⊗

H1
0 (D), such that

Iqv(ξ) =
Nq∑

s=1

v(ξs)ls(ξ), ∀ v ∈ C0(Γ; H1
0 (D)),

then we have simply yh,q = Iqyh.
According to Lions’ lemma[1], we have the following theorem similar to theorem 2.1.

Theorem 3.1. The control problem (3.9)-(3.10) has a unique pair solution (yh,q, uh) ∈
Yh,q ×Kh. Furthermore, a pair (yh,q, uh) is the solution if and only if there is a co-state variable

ph,q ∈ Yh,q, such that {yh,q, ph,q, uh} ∈ Yh,q × Yh,q ×Kh satisfies the following system

(3.14)





Ẽ
[
(a∇yh,q,∇vh,q)L2(D)

]
= Ẽ

[
(uh, vh,q)L2(D)

]
, ∀ vh,q ∈ Yh,q,

Ẽ
[
(a∇ph,q,∇v̂h,q)L2(D)

]
= Ẽ

[
(yh,q − yd, v̂h,q)L2(D)

]
, ∀ v̂h,q ∈ Yh,q,

Ẽ
[
(ph,q + αuh, wh − uh)L2(D)

]
≥ 0, ∀ wh ∈ Kh ⊂ Uh.

Proof. Let Jh(uh) = g(yh,q(uh)) + j(uh), where

g(yh,q(uh)) = Ẽ
[1
2

∫

D

|yh,q(uh)− yd|2dx
]
, and j(uh) = Ẽ

[α
2

∫

D

|uh|2dx
]
.

Applying the Lions’ lemma, the optimal condition reads

(3.15) j′(uh)(wh − uh) + (g(yh,q(uh)))
′(wh − uh) ≥ 0, ∀ wh ∈ Kh.

It is clear that

(3.16)

j′(uh)(wh − uh) = lim
t→0+

1

t
Ẽ
[α
2

∫

D

[
|uh + t(wh − uh)|2 − |uh|2

]
dx
]

= Ẽ
[∫

D

αuh(wh − uh)dx
]
= Ẽ

[(
αuh, wh − uh

)
L2(D)

]

and

(3.17)

(
g(yh,q(uh))

)′
(wh − uh) = lim

t→0+

1

t

(
g
(
yh,q(uh + t(wh − uh))

)
− g(yh,q(uh))

)

= lim
t→0+

1

2t
Ẽ
[∫

D

[
|yh,q(uh + t(wh − uh))− yh,q(uh)|2

+ 2(yh,q(uh + t(wh − uh))− yh,q(uh), yh,q − yd)
]
dx
]

=Ẽ
[ ∫

D

y′h,q(uh)(wh − uh) · (yh,q − yd)dx
]
= Ẽ

[(
y′h,q(uh)(wh − uh), yh,q − yd

)
L2(D)

]
.

Next, let us differentiate the state equation (3.10) at uh in the direction wh − uh. By (3.10), we

have

(3.18)
1

t
Ẽ

[(
a(∇yh,q(uh+t(wh−uh))−∇yh,q(uh)),∇vh,q)L2(D)

]
= Ẽ

[
(wh−uh, vh,q)L2(D)

]
, ∀ vh,q ∈ Yh,q.
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Taking limit in (3.18) as t → 0, we obtain

(3.19) Ẽ
[(
a∇y′h,q(uh)(wh−uh),∇vh,q)L2(D)

]
= Ẽ

[
(wh−uh, vh,q)L2(D)

]
, ∀ wh ∈ Kh, vh,q ∈ Yh,q.

Define the co-state ph,q ∈ Yh,q satisfying

(3.20) Ẽ
[
(a∇ph,q,∇v̂h,q)L2(D)

]
= Ẽ

[
(yh,q − yd, v̂h,q)L2(D)

]
, ∀ v̂h,q ∈ Yh,q.

Letting vh,q = ph,q in (3.19) and v̂h,q = y′h,q(uh)(wh − uh), we have

(3.21)

Ẽ
[
(wh − uh, ph,q)L2(D)

]
= Ẽ

[(
a∇y′h,q(uh)(wh − uh),∇ph,q)L2(D)

]

= Ẽ
[(
y′h,q(uh)(wh − uh), yh,q − yd

)
L2(D)

]

=
(
g(yh,q(uh))

)′
(wh − uh).

By (3.15)-(3.16) and (3.21), the optimality condition reads

(3.22) J ′
h(uh)(wh − uh) = Ẽ

[
(ph,q + αuh, wh − uh)L2(D)

]
≥ 0, ∀ wh ∈ Kh,

where ph,q is defined in (3.20).This completes the proof. �

Theorem 3.2. Let (y, p, u) be the solution of the optimal control problem (2.11) and

(yh,q, ph,q, uh) be the solution of the discretized problem (3.14), respectively. Then the follow-

ing error estimate holds:

(3.23)

‖y − yh,q‖L2
ρ(Γ;H

1(D)) + ‖p− ph,q‖L2
ρ(Γ;H

1(D)) + ‖u− uh‖L2(D)

≤ Chs

{
‖y‖L2

ρ(Γ;H
2(D)∩H1

0 (D)) + ‖p‖L2
ρ(Γ;H

2(D)∩H1
0 (D)) + ‖u‖H1(D)

}
+

N∑

i=1

Qi +Ri

(k + 1)!
(hi)

k+1.

where Qi, and Ri are derived similar to Mi, by using yh, ph to substitute f .

Proof. According to the deduction of (3.11)-(3.13), we have yh,q = Ipyh, ph,q = Ipph.
By interpolation error formula, and notice that yh and ph have the same regularity as the exact

solution y and p with respect to ξi, we have

(3.24) ‖yh − yh,q‖L2
ρ(Γ;H

1(D)) + ‖ph − ph,q‖L2
ρ(Γ;H

1(D)) ≤ C

N∑

i=1

Qi +Ri

(ki + 1)!
(hi)

k+1,

then combining (3.4) and (3.24), we can get theorem 3.2. This completes the proof. �

A disadvantage of piecewise Lagrange interpolation approximation is that there have no differ-

entiability at the endpoints of the subintervals, which means that the interpolating function is not

smooth. In this case, often Qi, and Ri will in fact depend on the size ki. In fact they often become

explosive when ki are getting smaller, and this makes the error estimates useless. An alternative

procedure is to use spline interpolation approximation, in particular, when the function f has a

certain degree of smoothness, we will obtain a better approximation effect by using spline function

approximation. The most common spline interpolation is called cubic spline interpolation.
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If function S satisfying: (1) S ∈ Ck−1[ai, bi]; (2) S is polynomial which degree is no more than

k on subinterval Ii,j = [ξi,j−1, ξi,j ], 1 ≤ j ≤ ji, then, S is called a k−degree spline function with

ξi,1, ξi,2, · · · , ξi,ji as the node. Given a function f defined on [ai, bi], if S satisfying:

S(ξi,j) = f(ξi,j), j = 1, 2, · · · , ji,

then S is called k−degree spline function of f .

If f ∈ Ck+1[ai, bi], and S is k−degree spline function of f , then, we have the following inter-

polation error estimator:

(3.25) ‖ f (r) − S(r) ‖∞≤ C ‖ f (k+1) ‖∞ hk+1−r
i , r = 0, 1, · · · k,

where C is a constant independent of k, hi.

If a(x, ξ1, ξ2, · · · , ξN ) is ki+1− order continuously differentiable about ξi, i = 1, 2, · · · , N, then,

we can approximate y and p by using ki− degree spline function on i-th direction of probability

space Γ. The approximation solution obtained by spline function have better smoothness than that

of the approximate solution obtained by piecewise Lagrange interpolation approximation, and we

have the following error estimate:

(3.26)

‖y − yh,q‖L2
ρ(Γ;H

1(D)) + ‖p− ph,q‖L2
ρ(Γ;H

1(D)) + ‖u− uh‖L2(D)

≤ Chs

{
‖y‖L2

ρ(Γ;H
2(D)∩H1

0 (D)) + ‖p‖L2
ρ(Γ;H

2(D)∩H1
0 (D)) + ‖u‖H1(D)

}
.

+C

N∑

i=1

hki+1
i

(
‖ y

(ki+1)
ξi

‖∞ + ‖ p
(ki+1)
ξi

‖∞
)
.

3.3 Smolyak approximation. In this subsection, we consider the case where f is analytic.

We will develop the convergence properties of the collocation techniques by Smolyak approximation

which depends on the regularity of the solution y(x, ξ) with respect to ξ [12]. Denote Γ∗
n =∏N

j=1,j 6=n Γj , and let ξ∗n be an arbitrary element of Γ∗
n. Here we require the solution of (2.12) to

satisfy the following assumption.

Regularity assumption 3.3. ([12]) For each ξn ∈ Γn, there exists τn > 0 such that the

function y(x, ξn, ξ
∗
n) as a function of ξn, y : Γn −→ C0(Γ∗

n;H
1
0 (D)) admits an analytic extension

y(x, z, y∗n), z ∈ C, in the region of the complex plane

∑
(Γn; τn) ≡ {z ∈ C,dist(z,Γn) ≤ τn}.

Moreover, ∀z ∈∑(Γn; τn),

‖y(z)‖C0(Γ∗

n;H
1
0 (D)) ≤ λ,

with λ a constant independent of n.

For convenience, we briefly redefine the interpolation operator based on Lagrange polynomials.

We first introduce an index i ∈ N, i ≥ 1. Then, for each value of i, let {ξi1, ..., ξimi
} ⊂ Γn, n =

1, 2, ...N be a sequence of abscissas for Lagrange interpolation on Γn.
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For v ∈ C0(Γn;H
1
0 (D)), we introduce a sequence of one-dimensional Lagrange interpolation

operators Ii
mi

: C0(Γn;H
1
0 (D)) → Vmi

(Γn;H
1
0 (D)),

(3.27) Ii
mi

(v)(ξ) =

mi∑

j=1

v(ξij)l
i
j(ξ), ∀v ∈ C0(Γn;H

1
0 (D)),

where lij ∈ Pmi−1(Γn) are the Lagrange polynomials of degree mi − 1, i.e., lij(ξ) = Πmi

k=1,k 6=j
ξ−ξik
ξij−ξik

,

and

Vmi
(Γn;H

1
0 (D)) =

{
v ∈ C0(Γn;H

1
0 (D)) : v(x, ξ) =

mi∑

k=1

ṽk(x)lk(ξ), {ṽk}mi

k=1 ∈ H1
0 (D)

}
.

Now, in the multivariate case, for each v ∈ C0(Γ;H1
0 (D)) and the multi-index i = (i1, ..., iN ),m =

(mi1 , ...,miN ) ∈ N
N
+ we define the full tensor product interpolation formulas

(3.28) Ii

m
v(ξ) = (Ii1

mi1
⊗ · · · ⊗ IiN

miN
)(v)(ξ) =

mi1∑

j1=1

· · ·
miN∑

jN=1

v(ξi1j1 , · · · , ξ
iN
jN

)(li1j1 ⊗ · · · ⊗ liNjN ).

Here we follow closely the work [40] to describe the Smolyak isotropic formulas A(w, N). The

Smolyak formulas are just linear combinations of product formulas (2.5) with the following key

properties: only products with a relatively small number of points are used. Let I0
m0

= 0, and for

i ∈ N+ define

(3.29) ∆i := Ii
mi

− Ii−1
mi−1

.

Moreover, given an integer w ∈ N+, hereafter called the level, we define the sets

(3.30) X(w, N) :=
{
i ∈ N

N
+ , i ≥ 1 :

N∑

n=1

(in − 1) ≤ w
}
,

(3.31) X̃(w, N) :=
{
i ∈ N

N
+ , i ≥ 1 :

N∑

n=1

(in − 1) = w
}
,

(3.32) Y (w, N) :=
{
i ∈ N

N
+ , i ≥ 1 : w−N + 1 ≤

N∑

n=1

(in − 1) ≤ w
}
,

and for i ∈ N+ we set |i| = i1 + · · ·+ iN . Then the isotropic Smolyak formula is given by

(3.33) A(w, N) =
∑

i∈X(w,N)

(∆i1 ⊗ · · · ⊗∆iN ).

Equivalently, the above equation can be written as [41]

(3.34) A(w, N) =
∑

i∈Y (w,N)

(−1)w+N−|i|

(
N − 1

w +N − |i|

)
· Ii1

mi1
⊗ · · · ⊗ IiN

miN
.

To compute A(w, N)(v), one only needs to know function values on the ”sparse grid”

(3.35) H(w, N) =
⋃

i∈Y (w,N)

(ϑi1 × · · · × ϑiN ) ⊂ Γ,
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where ϑi = {ξi1, ..., ξimi
} denotes the set of abscissas used by Ii

mi
.If the sets are nested, i.e.,ϑi ⊂ ϑi+1,

then H(w, N) ⊂ H(w+1, N) and

(3.36) H(w, N) =
⋃

i∈X̃(w,N)

(ϑi1 × · · · × ϑiN ).

The Smolyak formula is actually interpolatory whenever nested points are used. This result has

been proved in [40].

3.4 Clenshaw-Curtis abscissas. In this subsection, we use Clenshaw-Curtis abscissas[42]

for the construction of the Smolyak formula. These abscissas are the extrema of Chebyshev poly-

nomials and, for any choice of mi > 1, are given by

ξij = − cos
(π(j − 1)

mi − 1

)
, j = 1, 2, ...,mi.

In addition, one sets ξi1 = 0 if mi = 1 and lets the number of abscissas mi in each level grow

according to the following formula:

(3.37) m1 = 1, mi = 2i−1 + 1, i > 1.

With this particular choice, one obtains nested sets of abscissas, i.e., ϑi ⊂ ϑi+1, and thereby

H(w, N) ⊂ H(w+1, N). It is important to choose m1 = 1 if we are interested in optimal approx-

imation in relatively large N , because in all other cases the number of points used by A(w, N)

increases too fast with N .

3.5 Analysis of the approximation error. In this subsection we present the error estimates

for the isotropic Smolyak approximation based on Clenshaw-Curtis abscissas.

Let σ̂n = log
(

2τn
|Γn|

+
√
1 +

4τ2
n

|Γn|2

)
, σ = 1

2 min1≤n≤N minξ∗n∈Γ∗

n
σ̂n, C = 4

e2σ−1 , µ1 = σ
1+log(2N) , δ

∗ =

(e log(2) − 1)/C̃2(σ) and η = η(w, N) = #H(w, N) be the total number of the collocation points

used in the Smolyak formula (described by (3.33)) with Clenshaw-Curtis abscissas, which is

η =
∑

i∈X(w,N)

N∏

n=1

r(in), r(i) :=





1, i = 1,

2, i = 2,

2i−2, i > 2.

C̃2(σ) := 1 +
1

log(2)

√
π

2σ
,

C1(σ, δ) :=
4C

eδσ
exp

(
δσ
{ 1

σ log2(2)
+

1

log(2)
√
2σ

+ 2
(
1 +

1

log(2)

√
π

2σ

)})
.

Theorem 3.4. (algebraic convergence)[13]. For functions yh, ph ∈ C0(Γ;H1
0 (D)) satisfy-

ing the regular assumption 3.3, the isotropic Smolyak formula (3.32) based on Clenshaw-Curtis

abscissas satisfies

(3.38)
‖yh −A(w, N)(yh)‖L∞

ρ (Γ;H1
0 (D)) + ‖ph −A(w, N)(ph)‖L∞

ρ (Γ;H1
0 (D))

≤ C1(σ,δ
∗)eσ

|1−C1(σ,δ∗)|
max{1, C1(σ, δ

∗)}Nη−µ1 .

Theorem 3.4 indicates at least algebraic convergence with respect to the number of collocation

points η.
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Theorem 3.5. (subexponential convergence)[13]. Under the same assumptions of theorem

3.4 and for w > N
log(2) , we have

(3.39)
‖yh −A(w, N)(yh)‖L∞

ρ (Γ;H1
0 (D)) + ‖ph −A(w, N)(ph)‖L∞

ρ (Γ;H1
0 (D))

≤ C1(σ,δ
∗)

eσδ∗C̃2(σ)

max{1,C1(σ,δ
∗)}N

|1−C1(σ,δ∗)|
ηµ3e

− Nσ

21/N
ηµ2

,

where

µ2 =
log(2)

N(1 + log(2N))
, µ3 =

σδ∗C̃2(σ)

1 + log(2N)
.

Theorem 3.6. Under regular assumption 3.3, let (y, p, u) be the solution of the optimal

control problem (2.11). (yh,q, ph,q, uh) is the solution of the discretized problem (3.14) by Smolyak

approximation based on Clenshaw-Curtis abscissas . Then the following error estimate holds:

‖y − yh,q‖L2
ρ(Γ;H

1
0 (D)) + ‖p− ph,q‖L2

ρ(Γ;H
1
0 (D)) + ‖u− uh‖L2(D)

≤ Chs

{
‖y‖L2

ρ(Γ;H
2(D)∩H1

0 (D)) + ‖p‖L2
ρ(Γ;H

2(D)∩H1
0 (D)) + ‖u‖H1(D)

}

+
C1(σ, δ

∗)eσ

|1− C1(σ, δ∗)|
max{1, C1(σ, δ

∗)}Nη−µ1 ,

and if w > N
log(2) , we have

‖y − yh,q‖L2
ρ(Γ;H

1
0 (D)) + ‖p− ph,q‖L2

ρ(Γ;H
1
0 (D)) + ‖u− uh‖L2(D)

≤ Chs

{
‖y‖L2

ρ(Γ;H
2(D)∩H1

0 (D)) + ‖p‖L2
ρ(Γ;H

2(D)∩H1
0 (D)) + ‖u‖H1(D)

}

+
C1(σ, δ

∗)

eσδ∗C̃2(σ)

max{1, C1(σ, δ
∗)}N

|1− C1(σ, δ∗)|
ηµ3e

− Nσ

21/N
ηµ2

.

4. Domain decomposition and numerical examples

As discussed above in real applications, a(x, ·) often has irregular points, and we can make a

small sub-domain including these points. Then, we can use lower regularity bases with compact

supports to approximate the solution in this sub-domain, while approximating it via the Smolyak

schemes as shown in Example 2. We first discuss a smooth case where a(x, ·) is analytic.
Example 1 We take space domain D = [0, 1] × [0, 1], each stochastic domain Γi is [−1, 1],

a(x, ξ1, ξ2) = 3 + ξ1 + ξ2, where ξ1 and ξ2 are uniform distributions on [−1, 1]. We consider the

following model problem:

(4.1) min
u

J (u) = min
u

(
1

2

∫ 1

−1

∫ 1

−1

∫

D

(y − yd)
2dxdξ1dξ2 +

α

2

∫ 1

−1

∫ 1

−1

∫

D

u2dxdξ1dξ2)

subject to

−∇ · (a(x, ξ1, ξ2)∇y(x, ξ1, ξ2)) = f + u, x ∈ D, ξ1 ∈ [−1, 1], ξ2 ∈ [−1, 1],

y(x, ξ1, ξ1) = 0, x ∈ ∂D, ξ1 ∈ [−1, 1], ξ2 ∈ [−1, 1].

The target solution yd = sin(2πx1) sin(2πx2). The objective is to minimize the expectation of a

cost functional, and the deterministic control is constrained by the condition u(x) ≥ 0, ∀x ∈ D.
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The solutions for this problem are

p = sin(2πx1) sin(2πx2),

y = (1 + 8π2(3 + ξ1 + ξ2)) sin(2πx1) sin(2πx2),

u = max{0,− p

α
},

f = 8π2(3 + ξ1 + ξ2)(1 + 8π2(3 + ξ1 + ξ2)) sin(2πx1) sin(2πx2)− u.

In this example, because y, p have enough regularity with respect to ξ1 and ξ2, we take Clenshaw-

Curtis abscissas in every direction of the random space, and take Lagrange interpolation function

as the basis functions. On the space D, for the control u, we use the discontinuous piecewise

constant finite element; for the state y and co-state p, we use the piecewise linear finite element.

In Table 1, we present the numerical result using Smolyak approximation scheme for the above

problem. In Figure 1, we present the numerical control. Table 1 illustrates that the numerical

results are consistent with our theoretical results.

node/side/element
‖uh−u‖L2(D)

‖u‖L2(D)

‖yh,q−y‖L2
ρ(Γ,H1(D))

‖y‖L2
ρ(Γ,H1(D))

‖ph,q−p‖L2
ρ(Γ,H1(D))

‖p‖L2
ρ(Γ,H1(D))

16/33/18 1.2822 0.8754 0.9079

49/120/72 0.6591 0.4506 0.4822

169/456/288 0.2685 0.2294 0.2353

625/1776/1152 0.1184 0.1155 0.1163

2401/7008/4608 0.0567 0.0578 0.0579

Table 1. The relative error for α = 1 and w=2.

Where, the node, side and element in Table 1 are nodes and sides of triangles (element)

generated by triangulation of the space D.
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Figure 1. the solutions of control u for Example 1.
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Example 2 We take space domain D = [0, 1]× [0, 1], and each stochastic domain Γi is [−1, 1],

a(x, ξ1, ξ2) =

{
0.3− |ξ1|+ 0.3− |ξ2|+ 0.5, if |ξ1| < 0.3 and |ξ2| < 0.3

0.5, else

We consider the following model problem:

(4.2) min
u

J (u) = min
u

(
1

2

∫ 1

−1

∫ 1

−1

∫

D

(y − yd)
2dxdξ1dξ2 +

α

2

∫ 1

−1

∫ 1

−1

∫

D

u2dxdξ1dξ2)

subject to

−∇ · (a(x, ξ1, ξ2)∇y(x, ξ1, ξ2)) = f + u, x ∈ D, ξ1 ∈ [−1, 1], ξ2 ∈ [−1, 1],

y(x, ξ1, ξ1) = 0, x ∈ ∂D, ξ1 ∈ [−1, 1], ξ2 ∈ [−1, 1].

The target solution yd = sin(2πx1) sin(πx2). The objective is to minimize the expectation of a cost

functional, and the deterministic control is constrained by the condition u(x) ≥ 0, ∀x ∈ D. The

solutions for this problem are

p = sin(2πx1) sin(πx2),

y = (1 + 5π2a(x, ξ1, ξ2)) sin(2πx1) sin(πx2),

u = max{0,− p

α
},

f = 5π2a(x, ξ1, ξ2)(1 + 5π2a(x, ξ1, ξ2)) sin(2πx1) sin(πx2)− u.

In this example, since y has underivable points with respect to ξ1 and ξ2, then, we can make a

partition to Γ so that Γ = Γc ∪ Γs, where Γc = [−0.3, 0.3]× [−0.3, 0.3]. In Γc, we choose piecewise

spline function as bases functions in every direction. Otherwise, we take Clenshaw-Curtis abscissas

in every direction of Γs, and take Lagrange interpolation function as the basis functions. In our

computation, we use 25 spline points inside Γc, while use 28 Smolyak approximation collocation

for Γs. The partition is shown in Figure 2(right). On the space D, for the control u, we use the

discontinuous piecewise constant finite element; for the state y and co-state p, we use the piecewise

linear finite element. For the comparison, we also give a computation with no partition. We use

145 points with no partition shown in Figure 2(left) and the result by Smolyak approximation is

given in Table 2, with the result by spline in D × Γc combined with Smolyak approximation in

D × Γs.
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Figure 2. Colllocation points with no partition(left) and with partition (right).

‖uh − u‖L2(D) ‖yh,q − y‖L2
ρ(Γ,H

1(D)) ‖ph,q − p‖L2
ρ(Γ,H

1(D))

145 points with no partition 4.7854e-02 1.8002e+01 6.5894e-01

53 points with partition 2.9456e-02 1.4508e+01 4.0560e-01

Table 2. The absolute error for α = 1 and nodes = 625, sides = 1776, elements = 1152

It is clear that with fewer collocation points, the spline-collocation can give better atropiniza-

tion. Then, further numerical results using stochastic spline-collocation combined with Smolyak

approximation scheme is shown in Table 3 and the numerical control is given in Figure 3. It is

clear that Table 3 illustrates that the numerical results are consistent with our theoretical results.

node/side/element
‖uh−u‖L2(D)

‖u‖L2(D)

‖yh,q−y‖L2
ρ(Γ,H1(D))

‖y‖L2
ρ(Γ,H1(D))

‖ph,q−p‖L2
ρ(Γ,H1(D))

‖p‖L2
ρ(Γ,H1(D))

16/33/18 0.4783 0.8741 0.4790

49/120/72 0.2175 0.4471 0.2378

169/456/288 0.0906 0.2348 0.1155

625/1776/1152 0.0417 0.1345 0.0572

Table 3. The relative error for α = 1 and 53 points shown in Figure 2 (right).

Where, the node, side and element in Table 3 are nodes and sides of triangles (element)

generated by triangulation of the space D.
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Figure 3. the solutions of control u for Example 2.

Conclusions In this paper, we establish stochastic spline-collocation approximation scheme,

combined with Smolyak approximation scheme according to the regularity of state variable and

costate variable with respect to random variable for an optimal control problem governed by an

elliptic PDE with random field coefficients. Although the Smolyak approximation schemes are

effective collocation strategies for problems when the solutions are smooth enough with respect to

the random variables, in the actual calculation, the state or the costate often has a discontinuity

point or non-smooth points. In such cases, we can make a small sub-domain including these point,

and choose piecewise low order interpolation functions as bases functions by the stochastic collo-

cation approximation. In the rest domain, since the state and costate are smooth enough with

respect to random variable, we can take Clenshaw-Curtis abscissas in every direction of the random

space and take Lagrange interpolation function as the basis functions and Smolyak approximation

scheme. By numerical tests, we conclude that such a domain decomposition strategy works well

for the general non-smooth case.
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