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We investigate extrinsic wormhole-like twist defects that effectively increase the genus of space in lattice

versions of multi-component fractional quantum Hall systems. Although the original band structure is distorted

by these defects, leading to localized midgap states, we find that a new lowest flat band representing a higher

genus system can be engineered by tuning local single-particle potentials. Remarkably, once local many-body

interactions in this new band are switched on, we identify various Abelian and non-Abelian fractional quantum

Hall states, whose ground-state degeneracy increases with the number of defects, i.e, with the genus of space.

This sensitivity of topological degeneracy to defects provides a “proof of concept” demonstration that genons,

predicted by topological field theory as exotic non-Abelian defects tied to a varying topology of space, do exist

in realistic microscopic models. Specifically, our results indicate that genons could be created in the laboratory

by combining the physics of artificial gauge fields in cold atom systems with already existing holographic beam

shaping methods for creating twist defects.

PACS numbers: 73.43.Cd, 71.10.Pm, 05.30.Pr

Introduction. Extrinsic defects embedded in topologically

ordered phases of matter [1–5] may acquire exotic properties

[6–22]. Genons [11, 12], named after their ability to effec-

tively increase the genus of space thus enhancing the topo-

logical degeneracy, are particularly intriguing representatives

of this idea and can be visualized as twist defects at the ends

of branch cuts connecting separate “world sheets” of differ-

ent components in the host system. Importantly, the linkage

of genons to the topology of space and the underlying topo-

logical order establishes them as powerful tools to overcome

the long standing challenge of accessing topological orders

on surfaces with tunable genus. It also imparts them with

nontrivial quantum dimensions and braiding statistics that are

significantly different from those of intrinsic quasiparticles of

the host system [12], thus enabling fault tolerant topologi-

cal quantum computation [23, 24] even in Abelian host states

without this capability and extending our knowledge of topo-

logical order. However, while the beautiful idea of genons is

based on topological field theory [11, 12] and corroborated

by complicated exactly solvable models [6, 10, 16], its actual

relevance to realistic microscopic models has remained open.

In this Letter, we fill this void by presenting the first evi-

dence of genons in a microscopic lattice model which can fa-

vor lattice fractional quantum Hall states, i.e., fractional Chern

insulators [25, 26], and naturally host defects. With a scheme

to offset the negative influence of defects on the band struc-

ture, we obtain compelling results that explicitly demonstrate

the remarkable fingerprint of genons — the nontrivial depen-

dence of the topological degeneracy on the number of de-

fects which effectively tune the genus of space to high num-

bers. Our results provide a deep insight into the physical re-

alization of genons in simple lattice models involving only

single-particle hopping and onsite two-body interactions, thus

opening the experimental accessibility of topological orders

φ

Figure 1. Our model is equivalent to two square lattice layers (blue

and red) where each plaquette is pierced by an effective flux φ (up-

per left panel). We only plot nearest-neighbor hopping for simplic-

ity. Defects are introduced through branch cuts (transparent grey)

where the particles switch layer (green). We study systems with up to

two such branch cuts, corresponding to topologies resembling worm-

holes, as displayed in the bottom panels.

on high-genus surfaces.

Model. We consider particles in a two-dimensional square

lattice with two internal degrees of freedom (referred to as

“layers” for convenience) σ =", # on each lattice site and an

effective magnetic flux φ piercing each elementary plaquette

(Fig. 1). We introduce Z2 twist defects [12] into the lattice

such that a particle’s layer index is flipped when it moves

around such a defect once. It is helpful to imagine that the

layer flipping occurs precisely when a particle hops across a

branch cut that we take to connect a pair of defects in a straight

line (Fig. 1). We thus formulate the tight-binding Hamiltonian

as

H0 =
X

j,k,σ

t(zj , zk)a
†
j,Fnjk (σ)

ak,σ, (1)
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Figure 2. Band structure for a Lx ⇥ Ly = 12 ⇥ 12 lattice with

φ = 1/2. (a) The spectrum {✏n} of H0. Without defects (M = 0),

✏1, · · · , ✏144 are exactly degenerate at zero energy. With one branch

cut [M = 1, white dashed line in (b)] at (5.5, 2.5 ! 8.5), the orig-

inal band structure is distorted, with two nearly degenerate clusters

(✏1, ✏2) and (✏144, ✏145) having the largest deviation. (b) The lattice

site weight of eigenvectors 1,  2,  144,  145 ofH0 for the same de-

fects as in (a). All of them are strongly localized near the defects. The

eigenstates with less energy deviation from the original band struc-

ture, for example,  3,  4,  142,  143, are less localized (not shown

here). (c) The spectrum {✏Rn } ofH0+V withR = 0, 1, and 2 and the

same defects as in (a). ✏R1 , · · · , ✏
R
145 which we must flatten (shaded

in gray) becomes more degenerate for larger R, with the flatness

(✏R2φLxLy+M+1−✏
R
2φLxLy+M )/(✏R2φLxLy+M −✏R1 ) ⇡ 0.6, 3.1, 9.4

for R = 0, 1, 2.

where a†j,σ (aj,σ) creates (annihilates) a particle in layer

σ at lattice site zj = xj + iyj , and Fnjk(σ) accounts

for njk flips of the initial spin σ when a straight line

from zk to zj intersects with njk branch cuts. The hop-

ping coefficient from zk to zj is designed as t(zj , zk) =

(−1)x+y+xye−
π
2
(1−φ)|z|2e−iπφ(xj+xk)y [27, 28], where z =

zj − zk = x + iy. Such a hopping is local in the sense

that t(zj , zk) follows a super-exponential decay. We focus

on φ = 1/q with integer q, for which a unit cell contains q
sites in the x-direction. Without defects, H0 has a Z2 sym-

metry associated with exchanging two layers and corresponds

to two decoupled Kapit-Mueller models [27] in the Landau

gauge, thus its lowest band contains two copies of an exactly

flat band with Chern number C = 1.

The effective topology of our model strongly depends on

the number of branch cuts (Fig. 1). If each layer has a torus

geometry, a branch cut plays the role of a wormhole connect-

ing two tori [11], hence M branch cuts effectively lead to a

single surface with genus g =M +1. In the following, we ar-

range all branch cuts in the y-direction without loss of gener-

ality [29], denoting the branch cut connecting a pair of defects

at (X1, Y1) and (X1, Y2) as (X1, Y1 ! Y2) [33].

Single-particle spectra and defect-induced localized states.

We diagonalize H0 on a periodic lattice L of Lx ⇥ Ly sites

to analyze the effect of defects on the band structure [34].

Without defects, the lowest 2φLxLy single-particle levels are

exactly degenerate at zero energy. This flatness is seriously

distorted by M pairs of defects, and we identify 4M lev-

els with a significant deviation from the original band struc-

ture: 2M of them (levels ✏1, ..., ✏2M ) drop below the original

lowest band, and another 2M (✏2φLxLy−M+1, ...✏2φLxLy+M )

move into the original lowest band gap. Moreover, they form

nearly degenerate clusters respectively. An example of the

band structure for M = 1 is shown in Fig. 2(a). We further

examine the eigenvectors of these 4M levels. Remarkably,

they are all strongly localized near the defects [Fig. 2(b)], and

the localization becomes weaker or completely disappears for

other levels with less deviation from the original band struc-

ture. This localization enables us to do a controlled tuning of

the deviated energies by local potentials near the defects with-

out significantly distorting the rest of the band structure, as we

explain below.

Higher genus flat bands. The effectively increased genus

does not guarantee that defects in our model can be thought

as genons. We must show that topological phases can be sta-

bilized on the high-genus surfaces created by these defects,

and that they display defect-enhanced topological degener-

acy. Tuning deviated single-particle energies to recover a flat

lowest band is necessary for reaching this goal. We consider

Nb =
k
2 (2φLxLy) bosons interacting via (k+1)-body onsite

repulsions

Hint =
X

i∈L,σ=↑,↓

: ni,σni,σ · · ·ni,σ : (2)

with integer k ≥ 1 [35]. In this setup, the ground state without

defects is two copies of model Zk Read-Rezayi (RR) states on

the lattice, residing in the lowest 2φLxLy exactly degenerate

eigenstates of H0 with filling fraction ⌫ = Nb/(2φLxLy) =
k/2 [36, 37]. Adding M pairs of defects effectively deforms

the topology to a single g = M + 1 surface but should not

change ⌫ in the thermodynamic limit. Hence in that case

the most promising candidate for the underlying topological

phase is the Zk RR state on a single g = M + 1 surface. In

the continuum, such a state resides in Ns exactly degenerate

single-particle states in the lowest Landau level, with

Ns = 2Nb/k − (1− g), (3)

where ⌫ = limNb→∞Nb/Ns = k/2, and the extra offset 1−g
is related to the topological “shift” [38, 39]. Consequently, in

our lattice model with M pairs of defects, Eq. (3) combined

with Nb = k
2 (2φLxLy) and g = M + 1 requires a flat band

consisting of the lowest Ns = 2φLxLy +M single-particle

eigenstates ofH0 to host the Zk RR state. However, this set of

eigenstates corresponds to a residual flat band plus all signif-

icantly deviated levels [Fig. 2(a)]. As the emergence of FQH
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Figure 3. Defect-enhanced topological degeneracy for Abelian sys-

tems at ⌫ = 1/2 with two branch cuts [33]. (a) The energy spectra

of various system sizes. The eight quasi-degenerate ground states

are highlighted by the cyan shade. (b) The y-direction spectral flow

for Nb = 6, Lx ⇥ Ly = 4 ⇥ 3, φ = 1/2. The eight ground

states (blue +) never mix with excited states (gray 4). (c) The

PES (blue) for Nb = 8, Lx ⇥ Ly = 6 ⇥ 4, φ = 1/3 in the

NA
b = 4 sector and the corresponding quasihole excitations (red)

for Nb = 4, Lx ⇥ Ly = 6 ⇥ 4, φ = 1/3. The number of states

below the gaps (indicated by gray }) are identical in both spectra.

liquids requires a hierarchy of energy scales such that inter-

actions dominate the band dispersion of the low-energy band,

we must first flatten this large band dispersion to amplify the

interaction effect before a topological state can be realized.

Fortunately, this can be readily achieved by local potentials

owing to the strong localization of the deviated states near

defects [Fig. 2(b)]. A simple candidate of such a local po-

tential [29] is V = −P2φLxLy+M
n=1 ✏nTR(| nih n|), where

✏n’s and  n’s are the eigenvalues and eigenvectors of H0 re-

spectively, and TR denotes the truncation at a radius R around

each defect. The dominant terms in V exactly correspond to

the deviated levels, because others staying at ✏n = 0 have no

contributions. As expected, a very small R is already suffi-

cient to do the flattening very well, with negligible influence

on the pertinent eigenvector subspace. In Fig. 2(c), we show

the band structure of H0 + V with M = 1 and R = 0, 1, 2 re-

spectively. The degeneracy between the lowest 2φLxLy +M
energy levels indeed becomes better with the increase of R,

with the flatness significantly increased to ⇡ 9.4 for R = 2.

The corresponding eigenvectors of H0 + V have a total 99%
overlap with those of H0 for R = 1 and R = 2.

Defect-enhanced topological degeneracy. After ensuring

that a new lowest flat band can be recovered, we are now in the

position to examine whether interactions can stabilize the Zk

RR states in the single high-genus surfaces created by defects,

characterized by the defect-enhanced topological degeneracy

D [40]. We project the interaction Hint, which is assumed to

be small relative to the band gap, to the lowest 2φLxLy +M
eigenstates of H0 [41] and neglect their energy dispersion for

large numerical efficiency. This procedure is similar to the

band projection in the flat-band limit extensively used to study

fractional Chern insulators without defects [42].

In the most realistic k = 1 case, we find compelling ev-

idence that defects lead to a ⌫ = 1/2 Laughlin state on ef-

fective high-genus surfaces. Without defects, the ground state

is two copies of ⌫ = 1/2 Laughlin states on the torus with

D = 2 ⇥ 2 = 4. Although we still get D = 4 with one pair

of defects, consistent with the ⌫ = 1/2 Laughlin state on a

single g = 2 surface, a nontrivial enhancement of D from 4
to 8 occurs for two pairs of defects (g = 3), characterized by

eight approximately degenerate ground states for various sys-

tem sizes [Fig. 3(a)]. These states are separated from other

excited states by an energy gap which is significantly larger

than the ground-state splitting, and the splitting is reduced rel-

ative to the gap as the system size – and thus the separation

of defects – is increased. The eight ground states never mix

with other excited states under twisted boundary conditions

[28] [Fig. 3(b)], which confirms the robustness of topological

degeneracy. In order to further corroborate their topological

nature, we compute the particle entanglement spectra (PES)

[42–44] to probe the quasihole excitation property. We find a

clear gap in the PES, at the number of levels matching the

corresponding counting of quasihole excitations [Fig. 3(c)]

[29, 42]. Our results unambiguously indicate that the ground

state with M pairs of defects is the ⌫ = 1/2 Laughlin state on

a single g = M + 1 surface with degeneracy Dk=1
M = 2M+1.

While the inclusion of a local potential V is crucial for ob-

taining topological degeneracies, the specific choice thereof

is less crucial for larger systems stemming from their topo-

logical origin [29].

The effect of defects is even more intriguing at higher k’s

with non-Abelian host states. For k = 2, the ground state

in the absence of defects is two copies of Moore-Read (MR)

states on the torus, with D = 9 for even Nb/2 and D = 1
for odd Nb/2. Strikingly, in this case, unlike the situation of

k = 1, one pair of defects already leads to a nontrivial en-

hancement of D to 10 for all even Nb, which becomes better

for larger system sizes and is robust under twisted boundary

conditions [Figs. 4(a) and (c)]. By adding another pair of de-

fects, D is further enhanced to 36 [Figs. 4(b) and (d)], with a

faster growth rate than the k = 1 case. The dependence of the

topological degeneracy on the number of defects convincingly

suggests that, by introducing M pairs of defects for k = 2,

the ground state evolves to the ⌫ = 1 MR state on a single

g =M + 1 surface with degeneracy Dk=2
M = 2M (2M+1 + 1)

[45]. The enhancement of the topological degeneracy is also

observed for k = 3, where D is increased from 16 to 20 by

adding M = 1 pair of defects [Fig. 4(e)], consistent with the

⌫ = 3/2 Z3 RR state on a single g = M + 1 surface with

degeneracy Dk=3
M = 2[(5 +

p
5)M + (5−

p
5)M ] [45].

The topological phases with defect-enhanced ground-state

degeneracy strongly indicate that the defects in our model

are indeed genons. In particular, each of them carries a dis-

tinct nontrivial quantum dimension d = limM→∞(DM )
1

2M

from that of intrinsic quasiparticles of the host state. At
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Figure 4. Defect-enhanced topological degeneracy for non-Abelian

systems. The approximately degenerate ground states, together with

the degeneracy D, are highlighted by the cyan shade. (a) The energy

spectra at ⌫ = 1 with one pair of defects [33]. (b) The energy spectra

at ⌫ = 1 with two pairs of defects [33]. (c) The y-direction spectral

flow for Nb = 10, Lx ⇥ Ly = 3 ⇥ 5, φ = 1/3 with the same

branch cut as in (a). (d) The y-direction spectral flow for Nb =
10, Lx ⇥ Ly = 3⇥ 5, φ = 1/3 with the same branch cuts as in (b).

(e) The energy spectrum at ⌫ = 3/2 with one pair of defects [33].

⌫ = 1/2, we have non-Abelian genons with d =
p
2, although

the Laughlin state only has Abelian quasiparticles. More

saliently, genons at ⌫ = 1 in our model have d = 2 thus allow-

ing for universal quantum computation, while the quasiparti-

cles of MR state itself cannot [12, 24]. At ⌫ = 3/2, we obtain

genons with even higher quantum dimension d = (5+
p
5)1/2.

These differences, together with the projective braiding statis-

tics of defects [12], open the possibility that genons are more

powerful tools for topological quantum computation than or-

dinary quasiparticles.

Discussion. In this work, we condense the beautiful idea

of genons from topological field theory into a recipe for realis-

tic microscopic lattice models. We identify a number of differ-

ent lattice genons in both Abelian and non-Abelian host states

based on their numerically observed defect-enhanced ground-

state degeneracy, which can be thought of as adding genons

into the system. The key ingredients of our proposal are al-

ready experimentally available and their combined synthesis

is plausibly within reach — especially for coupled Laughlin

states emerging from a particularly simple onsite two-body

interaction. Artificial gauge fields generated by lattice shak-

ing techniques are compatible with multiple internal degrees

of freedom as we require. The long-range hopping, which is

chosen for theoretical elegance and numerical efficiency, is

in fact not essential for the existence of lattice genons [29].

Hence the already realized Hofstadter model in optical lat-

tices [46, 47] can serve as an eminently promising candidate

platform for creating genons, while its higher Chern bands

provide an additional variety of host quantum Hall liquids

[48, 49]. In particular, a recent realization [50] based on a

quantum gas microscope already allows single-site address-

ing, and could be combined with holographic beam shaping

methods [51] that provide a natural route towards producing

the branch cuts and local potentials necessary to realize lat-

tice genons as we envision. Furthermore, a time-dependent

control over the locations of such branch cuts would enable

braiding experiments that may directly probe their exchange

statistics.
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Short-range tight-binding Hamiltonian. In the main text,

we use a tight-binding Hamiltonian with local but long-range

hopping for theoretical elegance. Now we show that we can

obtain similar results with only short-range hopping.

First, we only keep the nearest-neighbor (NN) and next-

nearest-neighbor (NNN) hopping in the tight-binding model,

Eq. (1) in the main text. Thus, we obtain a new tight-binding

model with short-range hopping

H 0
0 =

X

j,k,σ

t0(zj , zk)a
†
j,Fnjk (σ)

ak,σ, (S1)

where t0(zj , zk) = (−1)x+y+xye−
π
2
(1−φ)|z|2e−iπφ(xj+xk)y

for |z|2  2 and t0(zj , zk) = 0 for |z|2 > 2. The meanings of

the symbols are the same as those in the main text.

Although the exact flatness of the lowest 2φLxLy eigen-

states in the absence of defects is lost due to the hopping trun-

cation, we still find that defects have almost the same effect on

the band structure of H 0
0 as that on H0 shown in the main text

[Figs. S1 and S2]. The energies of some eigenstates localized

near the defects deviate from the original bands, and the dis-

persion of the lowest 2φLxLy+M eigenstates can be reduced

by a local potential V = −
P2φLxLy+M

n=1 ✏nTR(| nih n|)
with negligible influence on the pertinent eigenvector sub-

space of H 0
0, where ✏n’s and  n’s are now the eigenvalues

and eigenvectors of H 0
0 respectively. One can notice that such

a flattening procedure works better for smaller φ, as shown in

Figs. S1 and S2.

We diagonalize the interaction projected onto the lowest

2φLxLy+M eigenstates ofH 0
0 to examine the topological de-

generacy at various filling fractions. Strikingly, we can get the

expected topological degeneracy even though we have trun-

cated the hopping [Fig. S3].

Second, let us further truncate the hopping range to include

only the nearest-neighbor terms of the conventional Harper-

Hofstadter model [S1–S3], with the same type of defects

added. Remarkably, the defect-enhanced eight-fold Laughlin

degeneracy of projected interactions remains stable for small

flux density φ even in this case [Fig. S4]. These results imply

that the long-range hopping is indeed not necessary for the

realization of lattice genons, thus facilitating their experimen-

tal realization. A realization based on the nearest-neighbor

Harper-Hofstadter model would provide an additional range

of host states to explore, as single layers can be chosen to re-

alize higher Chern number C bands that support a series of

hierarchy states at filling factors ⌫ = r/(kCr+1), with r 2 Z

and k even (odd) for bosons (fermions) [S4].

Simplified local potentials. In the main text, we use an ad-

ditional potential V = −
P2φLxLy+M

n=1 ✏nTR(| nih n|) that

is localized near the ends of branch cuts in order to restore a

flat lowest band. At R ! 1, this flattening process by V is

asymptotically exact in the sense that the lowest 2φLxLy+M
eigenstates of H0 + V will become exactly degenerate again

at zero energy and have the same eigenvectors as those of

H0. Although having an elegant mathematical form, the hop-

ping range in V depends on R. In order to facilitate real-

istic experimental implementations, we now consider a sim-

plified version of V that only contains single-site energies

and NN hopping terms: eV = ↵
P2M

n=1 TR,NN(| nih n|) +

β
P2φLxLy+M

n=2φLxLy−M+1 TR,NN(| nih n|). Here we only sum

over the 4M single-particle states with the largest deviations

from the original band structure (see Sec. III in the main text).

| ni’s are still the eigenvectors of the tight-binding Hamilto-

nian before band corrections. TR,NN truncates | nih n| not

only at the radius R around each defect, but also up to the NN

hopping. ↵ and β are parameters which we need to optimize

to pursue the flattest lowest band.

We find that eV with small R is sufficient to flatten the

lowest band, with negligible influence on the pertinent eigen-

vector subspace of the tight-binding Hamiltonian before band

corrections. As shown in Fig. S5, a flat lowest band required

by the RR state is restored by eV for H0 [Eq. (1) in the main

text] [Figs. S5(a) and (b)] as well as for the conventional Hof-

stadter model with defects at small flux density [Fig. S5(c)].

Therefore, eV , which only contains single-site and NN terms

near each defect, is potentially suitable for the experimental

realization of genons. In practice, one can even simply it fur-

ther by eliminating some terms with small coefficients from

the simplified potential eV .

Straight branch cuts used in the main text. For complete-

ness, we indicate the precise positions of branch cuts used to

generate the data in the main text. All cuts in the main text

are oriented along the y-axis, and for such branch cuts con-

necting a pair of two defects with identicalX1-coordinate and

positions (X1, Y1) and (X1, Y2) we use the more succinct no-

tation (X1, Y1 ! Y2).

For ⌫ = 1/2 with two pairs of defects (Fig. 3), two branch

cuts are located at (0.5, 0.25 ! 1.75), (2.5, 0.25 ! 1.75)
for Lx ⇥ Ly = 4 ⇥ 3; (0.5, 0.5 ! 2.5), (2.5, 0.5 !



2

2.5) for Lx ⇥ Ly = 4 ⇥ 4 and 4 ⇥ 5; (0.25, 0.25 !
1.75), (3.25, 0.25 ! 1.75) for Lx⇥Ly = 6⇥3; (0.25, 0.5 !
2.5), (3.25, 0.5 ! 2.5) for Lx ⇥ Ly = 6 ⇥ 4; and

(0.25, 0.75 ! 3.25), (3.25, 0.75 ! 3.25) for Lx ⇥ Ly =
6 ⇥ 5. For ν = 1 with one pair of defects [Fig. 4(a)], the

branch cut is located at (0.5, 0.5 ! 2.5) for Lx ⇥ Ly =
3 ⇥ 4; (0.5, 0.75 ! 3.25) for Lx ⇥ Ly = 3 ⇥ 5; and

(1.5, 0.25 ! 1.75) for Lx ⇥ Ly = 4 ⇥ 3. For ν = 1 with

two pairs of defects [Fig. 4(b)], the branch cuts are located at

(0.25, 0.5 ! 2.5), (1.75, 0.5 ! 2.5) for Lx ⇥ Ly = 3 ⇥ 4
and (0.25, 0.75 ! 3.25), (1.75, 0.75 ! 3.25) for Lx ⇥ Ly =
3 ⇥ 5. For ν = 3/2 with one pair of defects [Fig. 4(e)], the

branch cut is located at (0.25, 0.5 ! 2.5) forLx⇥Ly = 3⇥4.

Tilted branch cuts. In the main text, we have presented data

for branch cuts arranged in the y-direction, as detailed above.

In addition, we now consider more general locations of de-

fects that yield tilted branch cuts. In these general cases, we

denote the branch cut connecting a pair of defects at (X1, Y1)
and (X2, Y2) as (X1, Y1) ! (X2, Y2). In the following we

use the same tight-binding model H0 as in the main text.

With tilted branch cuts, we observe a similar effect of de-

fects on the band structure as that in the main text [Fig. S6].

Moreover, the many-body spectra of projected interactions re-

produce the expected topological degeneracy for the given

number of branch cuts [Fig. S7].

Definition of particle entanglement spectra and state

counting. PES are a useful diagnostic for topological order.

For a D-fold degenerate ground-state manifold {|Ψαi} of N
particles, we define the PES levels ξ as ξ ⌘ − lnλ, where

the λ’s are the eigenvalues of the reduced density matrix ρA
of NA particles obtained by tracing out NB = N − NA

particles from the whole system, i.e., ρA = TrBρ with

ρ = 1
D

PD
α=1 |ΨαihΨα|. A gap in the PES is expected, below

which the number of PES levels is the same as the counting of

the corresponding quasihole excitation spectrum [S5], which

in our case can be obtained from diagonalizing the interaction

Hamiltonian of NA
b particles on the same lattice size with the

same branch cuts.
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Figure S1. Single-particle spectra and defect-induced localized states with NN and NNN hopping only. We study the band structure on

a Lx × Ly = 12 × 12 lattice with φ = 1/2. (a) The single-particle spectrum {✏n} of H 0

0. In the absence of defects (M = 0), ✏1, · · · , ✏144
are no longer exactly degenerate at zero energy. With a branch cut (M = 1, white dashed line) at (5.5, 2.5 → 8.5), the original band

structure is distorted, with one nearly degenerate cluster (✏144, ✏145) having the largest deviation. (b) The lattice site weight of eigenvectors

 1,  2,  144,  145 ofH 0

0 for the same defects as in (a). All of them are strongly localized near the defects. However, the localization of  1 and

 2 is weaker than the case ofH0 in the main text, probably because now they have much less energy deviation from the original band structure.

(c) The single-particle spectrum {✏Rn } ofH 0

0+V withR = 0, 1, and 2 and the same defects as in (a). The degeneracy of ✏R1 , · · · , ✏
R
145 (shaded

in gray) becomes better for larger R, with the flatness 0.6, 2.2, 3.7 for R = 0, 1, 2.
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Figure S2. Single-particle spectra and defect-induced localized states with NN and NNN hopping only. We show the band structure on a

Lx × Ly = 12 × 12 lattice with φ = 1/3. (a) The single-particle spectrum {✏n} of H 0

0. In the absence of defects (M = 0), ✏1, · · · , ✏96 are

no longer exactly degenerate at zero energy. With a branch cut (M = 1, white dashed line) at (5.5, 2.5 → 8.5), the original band structure

is distorted, with two nearly degenerate clusters (✏1, ✏2) and (✏96, ✏97) having the largest deviation. (b) The lattice site weight of eigenvectors

 1,  2,  96,  97 of H 0

0 for the same defects as in (a). All of them are strongly localized near the defects. (c) The single-particle spectrum

{✏Rn } of H 0

0 + V with R = 0, 1, and 2 and the same defects as in (a). The degeneracy of ✏R1 , · · · , ✏
R
97 (shaded in gray) becomes better for

larger R, with the flatness 0.7, 2.2, 7.3 for R = 0, 1, 2.
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Figure S3. Defect-enhanced topological degeneracy with NN and NNN hopping only. We show the many-body spectra resulting from the

single-particle Hamiltonian H 0

0. The interactions and branch cut locations in each specific system size are the same as those used in the main

text with H0. The approximately degenerate ground states, together with the degeneracy D, are highlighted by the cyan shade. One can notice

that we get the same topological degeneracy as that in the main text.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

n

0.00

0.02

0.04

0.06

0.08

E
n
−
E

1

D = 8

Nb = 6, Lx × Ly = 6× 6,φ = 1/6

Nb = 8, Lx × Ly = 6× 8,φ = 1/6

Nb = 8, Lx × Ly = 8× 8,φ = 1/8

Figure S4. Defect-enhanced topological degeneracy in the Hof-

stadter model with defects, for the Abelian ν = 1/2 state.

We show the many-body calculations with NN hopping only for

two branch cuts at ν = 1/2. Two branch cuts are located at

(0.25, 0.5 → 3.5), (3.25, 0.5 → 3.5) for Lx × Ly = 6 × 6;

(0.25, 1.5 → 5.5), (3.25, 1.5 → 5.5) for Lx × Ly = 6 × 8; and

(1.5, 1.5 → 5.5), (5.5, 1.5 → 5.5) for Lx × Ly = 8× 8.
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Figure S5. Flattening the lowest band by a local potential eV including only single-site energies and NN hoppings. We show the band

structure on an Lx × Ly = 12 × 12 lattice with a single branch cut (M = 1) at (5.5, 2.5 → 8.5). (a) The single-particle spectrum {✏Rn }

of H0 + eV at φ = 1/2 with (R,↵,β) = (0, 0, 0) and (2, 0.8,−1.4). (b) The single-particle spectrum {✏Rn } of H0 + eV at φ = 1/3 with

(R,↵,β) = (0, 0, 0) and (2, 0.9,−1.3). (c) The single-particle spectrum {✏Rn } of HHof + eV at φ = 1/6 with (R,↵,β) = (0, 0, 0) and

(2, 1,−1.3), where HHof is the conventional Harper-Hofstadter model with added defects. One can see that, compared to the spectrum without
eV correction [(R,↵,β) = (0, 0, 0)], a flat lowest band (shaded in gray) required to stabilize the RR state is indeed established by eV , with a

flatness ratio of 3.4, 7.7 and 15.5 in (a), (b) and (c) respectively.
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Figure S6. Single-particle spectra and defect-induced localized states for tilted branch cuts. We study the band structure on a Lx ×Ly =
12 × 12 lattice with φ = 1/2. (a) The single-particle spectrum {✏n} of H0. In the absence of defects (M = 0), ✏1, · · · , ✏144 are exactly

degenerate at zero energy. With a tilted branch cut (M = 1, white dashed line) at (3, 2.5) → (8, 8.5), the original band structure is

distorted, with two nearly degenerate clusters (✏1, ✏2) and (✏144, ✏145) having the largest deviation. (b) The lattice site weight of eigenvectors

 1, 2, 144, 145 of H0 for the same defects as in (a). All of them are strongly localized near the defects. The eigenstates with less

energy deviation from the original band structure, for example,  3, 4, 142, 143, are less localized (not shown here). (c) The single-particle

spectrum {✏Rn } of H0 + V with R = 0, 1, and 2 and the same defects as in (a). The degeneracy of ✏R1 , · · · , ✏
R
145 (shaded in gray) becomes

better for larger R, with the flatness 0.6, 1.0, 8.1 for R = 0, 1, 2.
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Figure S7. Many-body spectra for tilted branch cuts. The approximately degenerate ground states, together with the degeneracy D, are

highlighted by the cyan shade. (a) ν = 1/2 with two branch cuts at (0.25, 0.5) → (0.5, 2), (2.25, 0) → (2.5, 1.5) for Lx × Ly = 4 × 3;

(0, 0.75) → (1, 2.75), (2, 0.25) → (3, 2.25) for Lx ×Ly = 4× 4; (0.25, 0.5) → (0.5, 2), (3.25, 0) → (3.5, 1.5) for Lx ×Ly = 6× 3; and

(0.5, 0.75) → (1.5, 2.75), (3.5, 0.25) → (4.5, 2.25) for Lx × Ly = 6 × 4. (b) ν = 1 with one branch cut at (0.25, 0.5) → (1.75, 2.5) for

Lx×Ly = 3×4 and (0.25, 0.5) → (1.75, 3) for Lx×Ly = 3×5. (c) ν = 1 with two branch cuts at (0.1, 0.75) → (0.4, 2.75), (1.6, 0.25) →
(1.9, 2.25) for Lx × Ly = 3 × 4 and (0.19, 0.5) → (0.31, 3.5), (1.69, 0.45) → (1.81, 3.45) for Lx × Ly = 3 × 5. (d) ν = 3/2 with one

branch cut at (0.5, 0.5) → (2, 2.5) for Lx × Ly = 3× 4.
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