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ARTICLE

A Bayesian Solution to the Conflict of Narrowness

and Precision in Direct Inference

Christian Wallmann1

� The Author(s) 2017. This article is an open access publication

Abstract The conflict of narrowness and precision in direct inference occurs if a body of

evidence contains estimates for frequencies in a certain reference class and less precise

estimates for frequencies in a narrower reference class. To develop a solution to this

conflict, I draw on ideas developed by Paul Thorn and John Pollock. First, I argue that

Kyburg and Teng’s solution to the conflict of narrowness and precision leads to unrea-

sonable direct inference probabilities. I then show that Thorn’s recent solution to the

conflict leads to unreasonable direct inference probabilities. Based on my analysis of

Thorn’s approach, I propose a natural distribution for a Bayesian analysis of the data

directly obtained from studying members of the narrowest reference class.

Keywords Reference class problem � Direct inference � Statistical syllogism � Imprecise

probabilities � Expected frequency � Specificity � Natural distribution

1 Introduction

In direct inference, the probability that a certain individual belongs to a target class is

equated with the relative frequency of the target class in a suitable reference class (Venn

1888; Reichenbach 1949; Pollock 1990; Kyburg 1961). For instance, from the premises

that (1) Roland is male Austrian and that (2) 27.3% of male Austrians smoke, it follows by

direct inference that Roland smokes with probability 0.273. Knowledge of frequencies in

narrower reference classes to which the individual belongs defeats the above direct

inference. If we add the premises that (3) Roland is 32 years old and that (4) 35.7% of male

Austrians aged 32 smoke, then it follows by direct inference that Roland smokes with

probability 0.357. The single-case probability here is the rational degree of belief or the
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rational credence of an agent that entertains the relevant body of evidence. In what follows,

I will call it direct inference probability. The direct inference probability expresses the

agent’s lack of knowledge and uncertainty regarding Roland’s smoking status. It is not a

physical probability, i.e., it does not express objective randomness in the world. For the

sake of brevity, I often will not mention ‘target class’ or ‘frequency’ explicitly. For

instance, instead of speaking of ‘the estimate for the frequency of the target class in the

narrower reference class’, I will be speaking of the ‘estimate for the narrower reference

class’.

As pointed out by numerous authors, striving for narrow reference class and striving for

precise estimates of frequencies in reference classes are competing aims (Venn 1888;

Reichenbach 1949; Kyburg and Teng 2001). Narrower reference classes should be pre-

ferred in direct inference, because frequencies of the target class in narrower reference

classes are more relevant to the direct inference probability. However, narrower reference

classes have less members. Hence, it is harder to take a sufficiently large sample of

individuals that belong to a narrow reference class. As a result statistical estimates for

frequencies of the target class in a narrow reference class are often less precise. As the

pioneer of reference class reasoning John Venn puts it

[...]; but whilst cautioning us against appealing to too wide a class, it seems to

suggest that we cannot go wrong in the opposite direction, that is in taking too

narrow a class. And yet we do avoid any such extremes. John Smith is not only an

Englishman; he may also be a native of such a part of England, be living in such a

Presidency, and so on. An indefinite number of such additional characteristics might

be brought out into notice, many of which at any rate have some bearing upon the

question of vitality. Why do we reject any consideration of these narrower classes?

We do reject them, but it is for what may be termed a practical rather than a

theoretical reason. Now many of the attributes of any individual are so rare that to

take them into account would be at variance with the fundamental assumption of our

science, viz. that we properly concerned only with averages of large numbers (Venn

1888, p. 220).

Simply rejecting these narrower reference classes is a luxury we often cannot afford. In

personalized medicine, for instance, the narrowest reference class for which reliable

statistics can be compiled is often not narrow enough. Probabilistic relationships between

the narrowest reference class for which reliable statistics can be compiled and the target

class are often not strong enough to be useful for medical diagnosis and prediction

(Manolio et al. 2009; Salari et al. 2012).

Hence, often a body of evidence contains estimates for frequencies in a certain reference

class and less precise estimates for frequencies in a narrower reference class. In this case I

say that a conflict of narrowness and precision obtains. To provide the rational degree of

belief in face of a conflict of narrowness and precision amounts to solving it. What should

our degree of belief that Roland smokes be if our body of evidence, for instance, contains

in addition to (1) Roland is male Austrian and Roland is 32 years old and (2) 27.3% of

male Austrians smoke, also that (3) the frequency of 32 year old male Austrians that smoke

is between 20 and 50%?

To develop a new solution to the conflict of precision and narrowness, I draw on ideas

developed by Paul Thorn and John Pollock. To determine direct inference probabilities,

Thorn (2012, 2016) and Pollock (1990, 2011) consider arbitrary subsets of the broader

reference class. I show that Thorn’s approach leads to unreasonable direct inference

probabilities and propose a remedy.
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The paper is organised as follows. In Sect. 2, I present Kyburg and Teng’s approach to

direct inference. I argue that it leads to unreasonable direct inference probabilities. In

Sect. 3, I present Thorn’s and Pollock’s approaches to direct inference. I then show that

Thorn’s solution to the conflict of narrowness and precision leads to unreasonable direct

inference probabilities. I also analyse the causes for the failure of Thorn’s solution. In

Sect. 4, I propose a new Bayesian solution to the conflict of precision and narrowness that

employs a natural prior.

2 Kyburg and Teng’s Approach to Direct Inference

In this section, I present Kyburg and Teng’s solution to the conflict of narrowness and

precision. I argue that the resulting direct inference probabilities are often unreasonable.

Instead of only considering the case of point-valued information, Kyburg and Teng also

consider interval-valued information about frequencies in reference classes. Let T be a

target class, R;R0
;R1; . . .;R5 be reference classes, and c an individual. Suppose that

freqðT jRÞ 2 ½x; y� states that the relative frequency of individuals in R that are also T lies in

the interval [x, y]. Finally, assume that PROB(A) is the rational degree of belief that the

proposition A is true. Following Kyburg and Teng, I call two intervals [x, y] and [u, v]

conflicting if and only if neither one is a subset of the other, i.e., if and only if ½x; y� 6� ½u; v�
and ½u; v� 6� ½x; y�. Kyburg and Teng (2001) propose the following reference class rules.

Criterion of Precision Suppose that [x, y] and [u, v] and ½x; y� � ½u; v� are not

conflicting and that R0 � R. If freqðT jRÞ ¼ ½x; y� and freqðT jR0Þ ¼ ½u; v�, then

PROBðc 2 TÞ ¼ ½x; y�.

Criterion of Specificity Suppose that [x, y] and [u, v] are conflicting and that

R0 � R. If freqðT jRÞ ¼ ½x; y� and freqðT jR0Þ ¼ ½u; v�, then PROBðc 2 TÞ ¼ ½u; v�.

Combination of competing reference classes Suppose that R1 6� R2 and R2 6� R1. If

freqðT jR1Þ ¼ ½x; y� and freqðTjR2Þ ¼ ½u; v�, then PROBðc 2 TÞ ¼ ½minfx; ug;
maxfy; vg�.

The Criterion of Precision requires that in the case of non-conflicting intervals the more

precise interval should be preferred. For instance, if R0 � R, freqðTjRÞ ¼ ½0:3; 0:5�,
freqðT jR0Þ 2 ½0:25; 0:7�, and c 2 R0, then PROBðc 2 TÞ ¼ ½0:3; 0:5�. The Criterion of

Specificity states that in the case of two conflicting intervals the narrower reference class

should be preferred. For instance, if R0 � R , freqðTjRÞ ¼ ½0:4; 0:6�, freqðT jR0Þ 2 ½0:5; 0:8�,
and c 2 R0, then PROBðc 2 TÞ ¼ ½0:5; 0:8�. The combination rule demands that PROBðc 2
TÞ is located in the convex hull of the intervals for the competing reference classes. For

instance, if freqðT jR1Þ ¼ ½0:3; 0:5�, freqðT jR2Þ ¼ ½0:4; 0:7�, c 2 R1 and c 2 R2, then

PROBðc 2 TÞ ¼ ½0:3; 0:7�.
If a body of evidence contains information for many different reference classes, the

criteria of specificity and precision may interact. For such complex direct inference sce-

narios Kyburg and Teng (2001) suggest to sharpen the body of evidence before drawing

any direct inference. They propose the following procedure to sharpen a body of evidence.

In a first step, they apply the Criterion of Specificity to the whole body of evidence. This

step rules out all intervals that are conflicting with the interval for the most specific

reference class. In a second step, they apply the Criterion of Specificity to the second most

specific reference class in the remaining set. They iterate this procedure until for any two
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remaining reference classes R0 � R the intervals are not conflicting. Application of the

Criterion of Precision yields the tightest of these intervals. Finally, they apply the com-

bination rule to the remaining competing reference classes. The following example illus-

trates this procedure. Suppose that c belongs to the reference classes R1;R2;R3;R4;R5. Our

body of evidence contains the following information about frequencies in those reference

classes.

freqðT jR1 ^ R2 ^ R3 ^ R4 ^ R5Þ ¼ ½0:2; 0:8�
freqðT jR1 ^ R2 ^ R3 ^ R4Þ ¼ ½0:19; 0:6�
freqðT jR1 ^ R2 ^ R3Þ ¼ ½0:4; 0:8�
freqðT jR1 ^ R2Þ ¼ ½0:2; 0:3�
freqðT jR1Þ ¼ ½0:21; 0:22�

First, freqðT jR1 ^ R2 ^ R3 ^ R4 ^ R5Þ ¼ ½0:2; 0:8� rules out freqðT jR1 ^ R2 ^ R3 ^
R4Þ ¼ ½0:19; 0:6� by specificity. Second, freqðT jR1 ^ R2 ^ R3Þ ¼ ½0:4; 0:8� rules out

freqðT jR1 ^ R2Þ ¼ ½0:2; 0:3� and freqðT jR1Þ ¼ ½0:21; 0:22� by specificity in the remaining

set. The remaining set ffreqðT jR1 ^ R2 ^ R3 ^ R4 ^ R5Þ ¼ ½0:2; 0:8�; freqðT jR1 ^ R2 ^
R3Þ ¼ ½0:4; 0:8�g consists of two non-conflicting intervals. freqðT jR1 ^ R2 ^ R3 ^ R4 ^
R5Þ ¼ ½0:2; 0:8� is ruled out by precision. Hence, PROBðc 2 TÞ ¼ ½0:4; 0:8�. I now argue

that Kyburg and Teng’s approach leads to unreasonable direct inference probabilities. First,

their overemphasis on the fact that two intervals conflict leads to unstable inference.

Minimal changes in reference class probabilities may lead to huge changes in the direct

inference probability. Consider, for instance, the reference class information freqðT jR0Þ ¼
½0:2; 0:6� and freqðTjRÞ ¼ 0:2. The Criterion of Precision leads to PROBðc 2 TÞ ¼ 0:2.

Consider now the small change from freqðT jRÞ ¼ 0:2 to freqðT jRÞ ¼ 0:19. The Criterion

of Specificity yields PROBðc 2 TÞ ¼ ½0:2; 0:6� rather than PROBðc 2 TÞ ¼ 0:2. This

instability carries over to more complex bodies of evidence. If, for instance, in the above

example freqðT jR1 ^ R2 ^ R3 ^ R4Þ ¼ ½0:19; 0:6� is replaced by freqðT jR1 ^ R2^
R3 ^ R4Þ ¼ ½0:2; 0:6�, then PROBðc 2 TÞ ¼ ½0:21; 0:22�.1

Second, Kyburg and Teng treat all values in the interval of all possible frequencies

equally. However, in practice, these values are estimated from a sample. Values within the

center of those intervals maximize the likelihood of the observed sample. To determine the

direct inference probability, positions of points within the interval should therefore be

taken into account (see also Sect. 4.2). In the above example, if obtained by a sample, the

maximum likelihood estimate for freqðT jR0Þ lies in most cases in the center of the interval

[0.2, 0.6]. Hence, the sample of the narrower reference class provides evidence against the

value freqðTjR0Þ ¼ 0:2. Hence, it is unreasonable to extrapolate the frequency 0.2 from the

broader reference class to the narrower reference class. As a consequence, Kyburg and

Teng’s approach may lead to irrational decisions (Stone 1987, pp. 253–254). Stone con-

siders the case in which the Ace Urn Company places balls ordered into urns. We get the

following information.

1. The Ace Urn Company orders a proportion of .51 red balls;

2. The proportion of red balls ordered by the Taiwan Division is somewhere in [.01, .52].

1 In this case, freqðT jR1 ^ R2 ^ R3 ^ R4Þ ¼ ½0:2; 0:6� remains in the body of evidence after carrying out step

1. In a second step, freqðT jR1 ^ R2 ^ R3Þ ¼ ½0:4; 0:8� is removed from the body of evidence. Therefore,

freqðT jR1 ^ R2Þ ¼ ½0:2; 0:3� and freqðT jR1Þ ¼ ½0:21; 0:22� remain in the body of evidence. Applying pre-

cision, we obtain PROBðc 2 TÞ ¼ ½0:21; 0:22�.
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An agent draws a ball from an urn which is labeled by ‘‘Ace Urn Company-Made in

Taiwan’’. What is the probability that the agent will draw a red ball? Kyburg and Teng’s

approach leads to the direct inference probability 0.51. Suppose a brilliant chef offers us a

very delicious meal, if either (1) we guess the correct color of the ball or (2) we roll a fair

die and it comes up 6. We have the choice. I agree with Stone that we should choose the

first option and guess ‘‘black’’. Kyburg and Teng, however, recommend ‘‘red’’.

3 Subset Approaches

For determining direct inference probabilities, Pollock (2011) and Thorn (2016) consider

arbitrary subsets of the broader reference class. In this section, I present Thorn’s solution to

the conflict of narrowness and precision. I show that and why it leads to unreasonable

direct inference probabilities. Finally, I argue that Pollock’s approach to direct inference

encounters the very same problems.

3.1 Thorn’s Epistemic Utility Argument

Thorn (2016) gives the following epistemic utility argument for equating the direct

inference probability with the expected frequency in the narrowest reference class. Denote

by ‘Sc’ the conjunction of all properties that the individual c is known to have. Suppose

that we assign to all individuals d1; . . .; dn with the properties Sc the same direct inference

probability Probðdi 2 TÞ ¼ vi ¼ v. Thorn calls such a policy principled. Let Vðdi 2 TÞ 2
f0; 1g be the truth value of the proposition di 2 T . Assume that we measure epistemic

inaccuracy by the average squared deviation of the predicted values from the true values

S ¼
1

n

X

n

i¼1

ðv� Vðdi 2 TÞÞ2:

Then S is minimised if and only if v ¼ freqðT jScÞ. Hence, setting the direct inference

probability to the frequency in the narrowest reference class maximises epistemic accuracy

in the class Sc. Thorn (2016) shows that this result holds for a much more general class of

accuracy measures (so-called proper scoring rules).

Often, however, freqðT jScÞ will be unknown. In these cases, the expected value of

freqðT jScÞ maximises expected accuracy in the class Sc (Thorn 2016). Thorn calls the

expected value of freqðT jScÞ expected frequency. Following Thorn, we denote it by

‘E½freqðT jScÞ�’. For this reason he entertains the following direct inference rule:

If R0 is the narrowest reference class the individual c is known to belong to and

E½freqðT jR0Þ� ¼ r, then PROBðc 2 TÞ ¼ r.2

This concludes the presentation of Thorn’s argument. Thorn (2016) himself identifies and

discusses four non-trivial assumptions in his argument. First, the expected frequency in the

narrowest reference class minimises expected inaccuracy only if accuracy is measured by

proper scoring rules. If epistemic inaccuracy is measured by the absolute deviation

S0 ¼ 1
n

Pn
i¼1 jv� Vðdi 2 TÞj, then the expected frequency in the narrowest reference class

2 Note that Thorn’s argument does not justify the following version of the principle of the narrowest

reference class: If we know that Dc;Bc;Cc; freqðT jBÞ ¼ r; freqðT jB ^ CÞ ¼ s, then PROBðc 2 TÞ ¼ s. The

additional assumption E½freqðAjB ^ C ^ DÞ� ¼ s is needed.
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does not minimise S0. Second, the expected frequency in the narrowest reference class

minimises expected inaccuracy only if we make predictions about all individuals with Sc.

Third, expected accuracy is relative to the distribution employed to calculate the expected

accuracy. Maximising expected accuracy is only a legitimate aim if the distribution is

empirically accurate, i.e., if it matches the relative frequencies in the world. Fourth, even if

the distribution employed to calculate the expected frequency is accurate, one needs to care

about expected accuracy.

Thorn’s assumptions are by no means uncontroversial. Below, I discuss ways in which

they may fail. For Thorn’s second assumption, two alternatives seem to be at least equally

plausible. We could aim to make the best decision for the single-case c 2 T or we may

require maximum accuracy in the class of all individuals for which predictions are being

made. In both cases setting PROBðc 2 TÞ ¼ freqðT jScÞ does not maximise accuracy.

Regarding the third assumption I show in Sect. 4.1 that Thorn’s distribution to determine

the expected value and expected accuracy is inaccurate. Finally, clearly, expected accuracy

is of main importance in the long-run—but should it be of importance in the short-run?

Opinions are divided here. On the one hand, Pollock claims that many single-cases add up

to a long-run. For this reason, they should not receive special treatment.

People sometimes protest at this point that they are not interested in the general case.

They are concerned with some inference they are only going to make once. They

want to know why they should reason this way in the single case. But all cases are

single cases. If you reason in this way in single cases, you will tend to get them right

(Pollock 2011, p. 32).

On the other hand, Williamson does not require that direct inference probabilities

maximise expected accuracy. His direct inference probabilities should minimise worst-case

expected loss (Williamson 2013). Minimising worst-case loss is a cautious strategy.3

A detailed discussion of Thorn’s assumptions goes beyond the scope of the present

paper. In what follows I mainly show that Thorn’s third assumption is violated. His

distribution employed to calculate expected accuracy is inaccurate. Hence, maximising

accuracy relative to Thorn’s distribution is the wrong thing to do.

3.2 Thorn’s Solution to the Conflict of Narrowness and Precision

Consider now the conflict of narrowness and precision. Assume that c belongs to two

reference classes R0 � R. Suppose that 1) we have precise-valued information freqðT jRÞ ¼
x for the frequency in the broader reference class and that 2) we have imprecise-valued

information freqðT jR0Þ ¼ v1 _ . . . _ freqðT jR0Þ ¼ vn for the frequency in the narrower

reference class. According to Thorn’s approach (see Sect. 3.1), PROBðc 2 TÞ ¼

3 In the following example, minimising worst-case loss and maximising accuracy lead to different direct

inference probabilities. Suppose, for instance, that we only know that c belongs to the reference class E.

Suppose further that a statistical trial yields the maximum likelihood estimate m for freq(T|E), i.e., setting

m ¼ freqðT jEÞ maximises the probability of the observed outcome of the trial. Williamson recommends to

calibrate PROBðc 2 TÞ only to a certain extent with the maximum likelihood estimate m. Suppose that

½m� a;mþ a� is a x%-confidence interval for freq(T|E), where x is the confidence level at which the agent

grants that freqðT jEÞ 2 ½m� a;mþ a�. If the agent grants that freqðAjEÞ 2 ½m� a;mþ a�, Williamson’s

calibration norm locates PROBðc 2 TÞ in the interval ½m� a;mþ a�. Williamson’s equivocation norm

selects the most cautious value in ½m� a;mþ a�, i.e., whichever is the closest to 0.5, for PROBðc 2 TÞ. If
confidence intervals are wide and estimates are less precise, then Williamson’s direct inferences may differ

considerably from the maximum likelihood estimate m. For instance, if m ¼ 0:25 and a 95%-confidence

interval is [0.1, 0.4], then Williamson’s approach leads to PROBðc 2 TÞ ¼ 0:4.
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E½freqðT jR0Þ�. To determine the direct inference probability we therefore need to calculate

the expected frequency E½freqðT jR0Þ�. Thorn proposes the following method to do this.

In what follows we set V ¼ fv1; . . .; vng so that freqðTjR0Þ ¼ v1 _ . . . _ freqðT jR0Þ ¼ vn
becomes freqðT jR0Þ 2 V . According to Thorn’s Method 1, E½freqðT jR0Þ� is a weighted

average of the values in V (Thorn 2016). The weights are the probabilities that freqðT jR0Þ
has value vi, i.e., PROBðfreqðT jR

0Þ ¼ viÞ. Thorn proposes to determine these probabilities

by drawing direct inferences for the reference class R0. Since this strategy treats reference

classes as individuals and subsumes them under other reference classes, I call the resulting

direct inferences meta direct inferences.

According to Thorn, the most appropriate (meta) reference class for R0 in this case is the

set of all subsets of R that have the same size as R0 and whose relative frequency of the

target class is among the values in V. Hence, PROBðfreqðT jR0Þ ¼ viÞ ¼ freqðfS :

freqðT jSÞ ¼ vigjfS : S � R ^ jSj ¼ jR0j ^ freqðTjSÞ 2 VgÞ :¼ pi (Thorn 2016). Note that

pi ¼
zi

Pn

i¼1
zi
, where

zi ¼ freqðfS : freqðTjSÞ ¼ vigjfS : S � R ^ jSj ¼ jR0jgÞ: ð1Þ

Means to calculating the zi are well-known in finite combinatorics. In fact, the zi are

hypergeometrically distributed (see ‘‘Appendix’’ section Equation (5)). We will come back

to this in Sect. 3.4. Thorn’s reasoning can be summarized by the following two steps.

Step 1: Meta direct inference to determine the weights

Premise 1:

pi ¼ freqðfS : freqðTjSÞ ¼ vigjfS : S � R ^ jSj ¼ jR0j ^ freqðT jSÞ 2 VÞgÞ
Premise 2: R0 2 fS : S � R ^ jSj ¼ jR0j ^ freqðT jSÞ 2 Vg
Conclusion: PROBðfreqðT jR0Þ ¼ viÞ ¼ pi

Step 2: Build weighted average of possible values for the narrower reference class

E½freqðT jR0Þ� ¼
X

n

i¼1

vi � PROBðfreqðTjR0Þ ¼ viÞ ¼
X

n

i¼1

vi � pi: ð2Þ

The method generalizes then to the case jR0j 2 W where W is an arbitrary set (see Thorn

2016, Theorem 5).

To calculate PROBðfreqðTjR0Þ ¼ viÞ by the above meta direct inference is initially

plausible. If the frequency of smokers in Austria is 30% and Roland is Austrian, then the

probability that Roland smokes is 0.3. Analogously, if the frequency of subsets S of R such

that freqðT jSÞ ¼ vi is pi and if R0 is a subset of R, then the probability that freqðT jR0Þ ¼ vi
is pi. As long as no better (meta) reference class for R0 can be found, conclusions drawn by

Thorn’s approach remain plausible. In Sect. 4.1, I show that a better reference class can be

found.

Thorn illustrates Method 1 by means of the following example:

Example 1 Suppose Bill is a member of Company B. Company B has 100 members and

25 members are NCOs. Suppose also that Bill is a member of the command unit of

Company B. The command unit has 10 members. Either 20% of the command unit are

NCOs or 30% are NCOs. What is the probability that Bill is an NCO?

A Bayesian Solution to the Conflict of Narrowness and...
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The example can be formalised this way: jRj ¼ 100, freqðT jRÞ ¼ 0:25, jR0j ¼ 10 and

freqðT jR0Þ ¼ 0:2 _ freqðT jR0Þ ¼ 0:3. Following his Method 1, Thorn derives that the

probability that Bill is NCO PROBðc 2 TÞ is 0.2485.4

As Thorn correctly claims, this result does not depend much on the size of Company B.

In addition, as we will shortly see, if jR0j is sufficiently large, E½freqðT jR0Þ� does not depend
much on the size of the command unit either.

3.3 Counter-Examples to Thorn’s Method

In this section, I give some numerical examples in which Thorn’s Method 1 leads to

unreasonable direct inference probabilities.5 These examples show that the weights pi are

too extreme to serve as basis for direct inference.

First, Thorn’s Method 1 is not monotonic in the following sense. Suppose that

freqðT jRÞ ¼ 0:25. If we compare freqðT jR0Þ ¼ s _ freqðTjR0Þ ¼ t with freqðT jR0Þ ¼
s _ freqðT jR0Þ ¼ t0, where t\t0, the later may result in a lower value for E½freqðT jR0Þ�. In
Thorn’s example, with freqðT jR0Þ ¼ 0:2 _ freqðT jR0Þ ¼ 0:4, we obtain E½freqðTjR0Þ� ¼
0:266, with freqðT jR0Þ ¼ 0:2 _ freqðT jR0Þ ¼ 0:5, we obtain E½freqðT jR0Þ� ¼ 0:246, and

finally with freqðT jR0Þ ¼ 0:2 _ freqðT jR0Þ ¼ 0:6, we obtain E½freqðTjR0Þ� ¼ 0:216.

Second, assume that the possible frequencies for the narrower reference class span an

interval that contains the frequency of the broader reference class. In this case Method 1,

assigns most of the weight to the frequency closest to the frequency of the broader ref-

erence class. If freqðT jR0Þ ¼ 0:2 _ freqðT jR0Þ ¼ 0:7, we obtain E½freqðT jR0Þ� ¼ 0:203. The

weights are w1 ¼
32589
32798

and w2 ¼
209
32798

. Hence, w1

w2
¼ 155:9282297, i.e., w1 is almost 156

times as high as w2.
6

Third, assume that the possible values for the narrower reference class span an interval

that contains the frequency of the broader reference class, that |R| and jR0j are sufficiently

high, and that freq(T|R) is a possible value for freqðTjR0Þ.7 In this case the information

about the narrower reference class is ignored by Method 1. In other words: Thorn’s

approach leads to Kyburg’s Criterion of Precision (see Sect. 2). We have seen that the

Criterion of Precision is flawed. For instance, if jRj ¼ 1000 and jR0j ¼ 100, and

freqðT jR0Þ ¼ 0:2 _ freqðT jR0Þ ¼ 0:21. . . _ freqðTjR0Þ ¼ 0:39 _ freqðT jR0Þ ¼ 0:4, then

E½freqðT jR0Þ� ¼ 0:257. This value will not change if we replace the endpoint of the interval

by any value in the set f0:41; 0:42; . . .; 1g. Furthermore, this value will not change much if

we vary jR0j. If jR0j 2 ½100; 900�, then the minimum of the corresponding expected fre-

quencies is 0.249 and the maximum is 0.259. It is therefore reasonable to assume that

E½freqðT jR0Þ� 2 ½0:249; 0:259�.
Fourth, and related, consider the case in which the possible values for the narrower

reference class span an interval that does not contain the value of the broader reference

4 Step 1: freqðfS : freqðT jSÞ ¼ 0:2gjfS : S � R ^ jSj ¼ 10 ^ ðfreqðT jSÞ ¼ 0:2 _ freqðT jSÞ ¼ 0:3Þg ¼ 0:515

and freqðfS : freqðT jSÞ ¼ 0:3gjfS :: S � R ^ jSj ¼ 10 ^ ðfreqðT jSÞ ¼ 0:2 _ freqðT jSÞ ¼ 0:3Þg ¼ 0:485.

Step 2: E½freqðT jR0Þ� ¼ 0:2� 0:515þ 0:3� 0:485 ¼ 02485.
5 The numerical values are calculated by using the Matlab-code presented in the ‘‘Appendix’’ section.
6 One may think that this fact does change if we move to a higher number for jR0j. Quite the opposite is the
case: If jRj ¼ 1000 and jR0j ¼ 100, and freqðT jR0Þ ¼ 0:2 _ freqðT jR0Þ ¼ 0:4, then E½freqðT jR0Þ� ¼ 0:200.
7 Or if the closest values to freq(T|R) are symmetrical around freq(T|R).
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class. In this case, the closest value to freq(T|R) gets most weight. In many cases it gets

almost all weight. For instance, if freqðT jR0Þ ¼ 0:5 _ freqðTjR0Þ ¼ 0:7, then

E½freqðT jR0Þ� ¼ 0:507.8

Of course, many of such examples can be given, but I assume that those given here are

sufficient to show that Thorn’s Method 1 is not correct.

3.4 Diagnosis

The main reason for the fact that Thorn’s Method 1 leads to unreasonable direct inference

probabilities is this: to build the needed expected frequency, Thorn relies on relative

frequencies in arbitrary subsets of the broader reference class. Since, as I show in this

section, the variation of these relative frequencies is very small, the weights pi are extreme.

Suppose that freqðTjRÞ ¼ r, then relative frequencies freq(T|S) in subsets S � R cluster

around r (see ‘‘Appendix’’ section). Surprisingly, however, these relative frequencies are

quite uniform. If the sizes of the sets R and R0 are sufficiently large, then for almost all

subsets S � R, freq(T|S) is very close to r. In other words: The variance of the distribution

of freq(T|S) around its expected value r is small. Figure 1 illustrates this ‘‘concentration’’ or

‘‘peaking’’ property. For a more precise statement see Theorem 1 in the ‘‘Appendix’’

section. Moreover, if the sizes of the sets R and R0 are tending to infinity, then for all �[ 0

freqðfS : S � R ^ jSj ¼ jR0j ^ jr � freqðT jSÞ[ �jgÞ is tending to 0. I.e., for almost all

subsets S � R it is the case that jfreqðT jSÞ � freqðT jRÞj is smaller than every fixed number

(think of epsilon as, for instance, 1
1000000000

).9

In Example 1, for instance, the variance of the distribution of freq(T|S) is approximately

0.017. It follows that for 95% of sets S 2 fS : S � R ^ jSj ¼ jR0jg it holds that

freqðT jSÞ 2 ½0; 0:5�. Although this is a reasonable spread around 0.25, it still leads to

problem one, two and four for Thorn’s Method 1 as discussed in Sect. 3.3. Compared to

values that are smaller than 0.5, values for freqðT jR0Þ that are higher than 0.5 get almost no

weight. Worse still, since the variance of the relevant distribution is tending to zero as the

sizes of R and R0 become larger, this tendency magnifies. This ‘‘peaking’’ around the

expected value is responsible for the third problem for Thorn’s Method 1 as discussed in

Sect. 3.3. For instance, if jRj ¼ 1000 and jR0j ¼ 100 in Thorn’s example, then the variance

is approximately 0.002. It follows that for 95% of sets S 2 fS : S � R ^ jSj ¼ jR0jg it holds

that freqðT jSÞ 2 ½0:17; 0:33�.
I conclude that to determine the probabilities pi, Thorn uses a distribution with very low

variance. The resulting direct inference probabilities are therefore extreme. To improve

Thorn’s approach, there are two (not mutually exclusive) options. First, one may consider

special subsets of the broader reference class. The resulting distribution may then have

sufficiently high variance. In Sect. 4.1, I propose such a special class of subsets. Second, to

obtain more balanced probabilities, one may combine the distribution obtained from

considering subsets of the broader reference class with a second distribution. Indeed, that

the weights pi are solely determined by the distribution of subsets of the broader reference

class is a second cause for the failure of Thorn’s Method 1. Thorn ignores the fact that in

most cases there has been evidence that establishes which values are epistemically possible

for the narrower reference class. There has to be data or other evidence for the fact that, for

8 This fact does not change if we move to higher numbers for |R|. Quite the opposite is the case: If

jRj ¼ 1000 and jR0j ¼ 100, and freqðT jR0Þ ¼ 0:3 _ freqðT jR0Þ ¼ 0:4, then E½freqðT jR0Þ� ¼ 0:300.
9 The reason for this is that k occurs in the denominator of the variance of the distribution of freq(T|S) (see

Theorem 1 in the ‘‘Appendix’’ section).
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instance, freqðTjR0Þ ¼ 0:5 _ freqðT jR0Þ ¼ 0:7. If this evidence is quite good, then accurate

weights should be less sensitive to the distribution of subsets of the broader reference class.

In Sect. 4.2, I propose a Bayesian way to combine the probabilities obtained from the

distribution of subsets of the broader reference class with probabilities obtained form data

on the narrower reference class.

3.5 The Case of No Information Concerning the Narrower Reference Class

Suppose that no information about the frequency in the narrower reference class is

available. To determine the direct inference probability in this case, Thorn applies Method

1 to the logical truth freqðT jR0Þ ¼ 0
jR0j _ freqðT jR0Þ ¼ 1

jR0j _ . . . _ freqðT jR0Þ ¼ jR0j
jR0j. Suppose

that freqðT jRÞ ¼ r and R0 � R. Then:

E½freqðT jR0Þ� ¼
X

jR0j

i¼0

i

jR0j
PROBðfreqðTjR0Þ ¼

i

jR0j
Þ:

To determine PROBðfreqðT jR0Þ ¼ i
jR0jÞ, Thorn applies Step 1 of Method 1. Method 2 then

yields the following result (Thorn 2016),

If freqðTjRÞ ¼ r and R0 � R, then E½freqðT jR0Þ� ¼ r.

I agree that the conclusion E½freqðT jR0Þ� ¼ r is reasonable in such cases.10 However, I

think that the reasoning leading to this conclusion is faulty. To determine

E½freqðT jR0Þ� ¼ r, the set of all subsets of the broader reference class is the wrong (meta)

Fig. 1 Plot of f : f0; . . .; jRjg ! ½0; 1�; f ðsÞ :¼ PROBðXFreq ¼ sÞ

10 This is a consistency condition for direct inference: If the direct inference from R0 � R, c 2 R0 and

freqðT jRÞ ¼ r, to PROBðc 2 TÞ ¼ r should go through and if PROBðc 2 TÞ ¼ E½freqðT jR0Þ�, then

E½freqðT jR0Þ� ¼ r.
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reference class for R0. In Sect. 4.1, I will propose a more suitable (meta) reference class.

However, expected values of two different distributions may agree. By a lucky coincidence

Thorn’s approach yields reasonable direct inference probabilities in this case. In other

cases there is no such luck. Thorn’s approach yields the wrong direct inference proba-

bilities (see Sect. 3.3).

3.6 Pollock’s Approach to Direct Inference

Like Thorn, Pollock motivates his theory of direct inference by considering the distribution

of arbitrary subsets in sets.

Suppose we have a set of 10,000,000 objects. I announce that I am going to select a

subset, and ask you how many members it will have. Most people will protest that

there is no way to answer this question. It could have any number of members from 0

to 10,000,000. However, if you answer, Approximately 5,000,000, you will almost

certainly be right. This is because, although there are subsets of all sizes from 0 to

10,000,000, there are many more subsets whose sizes are approximately 5,000,000

than there are of any other size. In fact, 99% of the subsets have cardinalities

differing from 5,000,000 by less than :08%. (Pollock 2011, p. 329)

Pollock (2011) equates the direct inference probability with what he calls the

expectable value of the narrowest reference class. He calculates the expectable value

within his theory of probable probabilities. These probabilities extrapolate the combina-

torial probabilities for finite sets employed by Thorn to infinite sets. The expectable value

only exists if the variance of the distribution of arbitrary subsets tends to zero as the size of

the broader reference class tends to infinity. In Sect. 4.1, I show that the reasoning

underlying Pollock’s and Thorn’s approach to direct inference is faulty. Considering

arbitrary subsets of sets is not appropriate for determining direct inference probabilities.

Consequently, although they may be accurate in some cases, in general, one cannot trust in

the correctness of Pollock’s direct inference probabilities.

4 Remedy: Natural Distributions

In this section, I propose a new Bayesian solution to the conflict of narrowness and

precision. I argue that the meta direct inference to determine the weights (Step 1 in Thorn’s

Method 1) can be defeated. The set of all subclasses of the broader reference class R that

people actually use in direct inference is a more suitable (meta) reference class for R0 than

the set of arbitrary subsets POWðR; jR0jÞ. The probabilities obtained by this (meta) ref-

erence class yield a natural prior distribution for my Bayesian approach.

4.1 Reference Classes are Exceptional Subsets

Thorn’s Step 1 in Method 1 is based on meta direct inference. To draw the relevant direct

inference, he subsumes R0 under the reference class of all subsets of the broader reference

class R. As I believe in the cogency of direct inference, in order to refute Thorn’s Method

1, the meta direct inference has to be defeated by a narrower or a competing reference class

for R0. Indeed, the set of all reference classes people actually use in direct inference is such

a narrower reference class. Let RefA(T) be the set of all reference classes with respect to the

A Bayesian Solution to the Conflict of Narrowness and...

123



target class T that are actually used in direct inference and let

p�i ¼ freqðfS : freqðT jSÞ ¼ vigjfS : S � R ^ jSj ¼ jR0j ^ freqðT jSÞ 2 V ^ S 2 RefAðTÞgÞ.

Subclass defeat for the meta direct inference to determine the weights

Premise 1: pi ¼ freqðfS : freqðT jSÞ ¼ vigjfS : S � R ^ jSj ¼ jR0j ^ freqðT jSÞ 2 VgÞ
Premise 2: R0 2 fS : S � R ^ jSj ¼ jR0j ^ freqðT jSÞ 2 Vg
Premise 3: R0 2 RefAðTÞ
Premise 4: pi 6¼ p�i
Conclusion: PROBðfreqðT jR0Þ ¼ viÞ 6¼ pi

Premise 4 is reasonable. The fact that for almost all subsets S of the broader reference class

R, freq(T|S) is close to freq(T|R) is difficult to reconcile with experience (see also

Wallmann and Williamson 2017). In practice, we often find subsets that contain a rather

different relative frequency of the target class than the original set. For instance, smoking

rates in the United States vary strongly with gender, age, education, poverty status and

many more. But according to the distribution of frequencies of all subsets, such variations

are almost impossible (see Theorem 1 in the ‘‘Appendix’’ section). In other words: Thorn’s

probabilities PROB for frequencies in narrower reference classes do not match our

observed frequencies for frequencies in narrower reference classes, i.e., they are

inaccurate. But why is this the case?

In direct inference we consider certain classes of individuals, because we believe that

they are causally related to the target class. Now, our past success in detecting causally

relevant classes and the fact that almost all subclasses of reference classes are not causally

relevant to the target class, suggest that we are quite successful in detecting ‘‘exceptional’’

subsets. Since they causally interact with the target class, these exceptional classes tend to

be difference makers, i.e., the target class and the reference class tend to be probabilisti-

cally dependent. Therefore, frequencies within sub-reference classes that we actually use in

direct inference do not cluster around a single value. They cluster around multiple values.

Hence, Premise 4 is plausible: The variance among frequencies in sub-reference classes

that we actually use in direct inference is higher than in subsets in general. Therefore, the

new weights p�i are more balanced than the pi.

We call distributions that describe how frequencies in sub-reference classes which we

actually use in direct inference are distributed natural distributions (for the concept of

natural distributions in a different context see Paris et al. 2000). We should use natural

distributions in direct inference because they yield the best long-run epistemic conse-

quences in the intended class: The class of all direct inferences that we actually draw. In

absence of further knowledge, the natural distribution maximises expected accuracy in the

class of all direct inferences that we actually draw (see Sect. 3.1).

Granted that the natural distribution is most suitable for direct inference. This fact is of

little help for drawing direct inferences in practice, if there is no way to determine the

natural distribution. How can we find out about the natural distribution? Paris et al. (2000)

discuss two ways to estimate natural distributions in general. First, by empirical experi-

mentation. We could (1) draw a sample of all direct inferences actually drawn such as

freqðT jRÞ ¼ x, (2) study direct inferences in which subclasses S � R were employed, and

finally (3) consider the frequencies freq(T|S) for such S0s. The distribution of these fre-

quencies is then an estimate for the natural distribution. Second, we may propose some

reasonable properties that natural distributions are supposed to have. For instance, we may

assume the default independence E½freqðT jR0Þ� ¼ freqðT jRÞ ¼ x.
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A detailed discussion of how to find the natural distribution is beyond the scope of the

present paper, but I think I have said enough to make three crucial points needed here.

First, in building expected frequencies of the narrowest reference classes sub-reference

classes that we actually use in direct inference (rather than arbitrary subclasses of the

broader reference class) should be considered. Second, this natural distribution differs from

Thorn’s distribution. Third, it is possible, at least in principle, to determine the natural

distribution.

4.2 A Bayesian Solution to the Conflict of Narrowness and Precision

On the one hand, in the empirical sciences, frequencies freqðTjR0Þ within reference classes

are in most cases estimated by a suitable statistical procedure from a sample of members of

R0. For instance, suppose that an observed random sample11 (with replacement) of 16 R0-

individuals contains 8 T-individuals. The likelihood for such a sample is

freqðT jR0Þ8 � ð1� freqðT jR0ÞÞ8. The likelihood is maximised for freqðTjR0Þ ¼ 0:5. The

likelihood is much smaller if, for instance, freqðT jR0Þ ¼ 0:1. On the other hand, it should

not be ignored that R0 belongs to the set of all sub-reference classes of R people actually

use. Thus, I reformulate the conflict of narrowness and precision this way.

Conflict of narrowness and precision reformulated How should the following

information be aggregated to get an estimate for the value of freqðT jR0Þ? 1) Fre-

quencies in a sample of the narrower reference class and 2) probabilities obtained

from the natural distribution of sub-reference classes of R.

I propose to assign more weight to estimates based on data than to estimates based on the

fact that the narrower reference class is a sub-reference class of the broader reference class.

Especially, if the probability estimates based on data directly about the narrower reference

and the probability estimate for the broader reference class have almost the same precision,

this is reasonable.

Data over Expectation Principle When determining an estimate for freqðT jR0Þ,
frequencies of the target class in narrower reference classes based on data should get

more weight than probabilities derived from the fact that the narrower reference class

is a sub-reference class of the broader reference class.

To satisfy the Data over Expectation Principle, I propose to use the natural distribution of

sub-reference classes in the broader reference class as prior distribution in a Bayesian

analysis of the data for the narrower reference class. If analysed within Bayesian statistics,

samples of frequencies in narrower reference classes lead to a posterior distribution for

freqðT jR0Þ. Contrary to Kyburg and Teng’s approach to direct inference, not every point in

an interval is treated equally (see Sect. 2).

Let D be a sequence of observations whether certain individuals in the narrower ref-

erence class belong to the target class and lðDjfreqðT jR0Þ ¼ viÞ the likelihood of these

observations given the relative frequency of the target class in R0 is vi. Then

11 A sample is random if and only if in each draw of the sample every member of the population has the same

probability of entering the sample.
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PROBðfreqðTjR0Þ ¼ vijDÞ ¼
1

T
� p�i � lðDjfreqðT jR0Þ ¼ viÞ; ð3Þ

where T ¼
Pn

i¼1 p
�
i � lðDjfreqðT jR0Þ ¼ viÞ is a normalizing constant.

The direct inference probability is the expected value of the posterior distribution:

PROBðc 2 TÞ ¼ E½freqðT jR0Þ� ¼
X

n

i¼1

vi � PROBðfreqðTjR0Þ ¼ vijDÞ: ð4Þ

Modulo prior distribution, the posterior distribution accounts for the fact that different

values for freqðT jR0Þ explain that we observe a particular sample to a different degree. In

our example, freqðT jR0Þ ¼ 0:5 explains the fact that we observed 8 T-individuals much

better than freqðT jR0Þ ¼ 0:1. Hence, modulo prior probability, the posterior probability of

freqðT jR0Þ ¼ 0:5 is much higher than the posterior probability of freqðTjR0Þ ¼ 0:1.

Bayesian statistics has always been subject to the criticism that the posterior probability is

subjective, because it strongly depends on the prior distribution chosen. However, since it

contains the information of the frequency of the target class in the broader reference class,

the natural distribution of sub-reference classes in the broader reference class is a rea-

sonable prior distribution for freqðT jR0Þ.
Equation (3) captures core intuitions about the conflict of narrowness and precision. The

frequency in the broader reference class will influence the direct inference probability, if

there is only a small sample for the narrower reference class available (this is the case in

which the estimate for the narrower reference class is rather imprecise). As the sample size

increases, the frequency in the broader reference class will loose influence on the direct

inference probability. Again, a Bayesian line of reasoning is not viable in Thorn’s and

Pollock’s approach. The low variance of the distribution for subsets in broader reference

classes will make it almost impossible to update the prior on basis of data directly about the

narrower reference class.

5 Conclusions and Future Work

Kyburg and Teng’s approach leads to unreasonable direct inference probabilities. Thorn’s

approach and Pollock’s approach are more promising. However, as my examples in Sect.

3.3 show, Thorn’s Method 1 leads to unreasonable direct inference probabilities. For

instance, if reference classes have sufficiently many members, then it leads to Kyburg and

Teng’s unreasonable Criterion of Precision.

The main reason for this is that Thorn considers arbitrary subsets of the broader ref-

erence class. However, for almost all subsets of the broader reference class it holds that the

frequency of the target class is very close to the frequency of the target class in the broader

reference class. Consequently, the probability distribution employed to build expected

frequencies has too low variance. This point is more general and applies to any approach to

direct inference that is based on combinatorial probabilities. In particular, it applies to

Pollock’s approach to direct inference.

In addition, Thorn’s Method 1 is of limited practical applicability to diagnosis and

prediction in the empirical sciences. It is silent about the case in which a sample of the

target class in the narrower reference class is available. These samples lead to statistical

estimates for relative frequencies of the target class in the narrower reference class.

In response to these two shortcomings, I developed a new Bayesian solution to the

conflict of narrowness and precision that is based on two main assumptions. First, to
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determine expected values, instead of the distribution of frequencies in arbitrary sub-

classes, the natural distribution should be employed, i.e., the distribution of frequencies in

sub-reference classes of the broader reference class that we actually use in direct inference

should be employed. Second, probabilities obtained by the natural distribution need to be

aggregated with estimates for the frequencies of the target class in the narrower reference

class obtained from data. The resulting approach equates the direct inference probability

with the expected value of the posterior distribution in the narrower reference class. A

reasonable prior is given by the natural distribution. However, further research is needed to

determine the relevant natural distribution, i.e., to determine the p�i .
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Appendix

Let V andW :¼ fw1; . . .;wng � R be finite sets. Let P be a probability function on V. Then

a function X : V 7!W is called a discrete random variable. The distribution of X is given by

PðX ¼ wÞ :¼ Pðfv 2 VjXðvÞ ¼ wgÞ for all w 2 W . Its expected value and its variance are

given by

E½X� :¼
X

n

i¼1

Wi � PðX ¼ WiÞ;Var½X� :¼
X

n

i¼1

ðWi � E½X�Þ2 � PðX ¼ WiÞ:

The following facts are well known in combinatorics (for instance, Larsen and Marx

2012, p.110, p.143, pp.191–192).

Theorem 1 Let jRj ¼ N, jR0j ¼ k and freqðT jRÞ ¼ r.

Then XFreq: POWðR; jR0jÞ7!fmaxf0; ððjR0j þ rNÞ � NÞg; . . .;minfjR0j; rNgg: XFreqðSÞ ¼
jT ^ Sj is hypergeometrically distributed with parameters N, rN, k. I.e.,

PROBðXFreq ¼ sÞ ¼

rN

sk

� �

N � rN

k � sk

� �

N

k

� � :

The expected value of XFreq is kr and therefore E½freqðTjSÞ� ¼ E½jT^SjjSj � ¼
1
k
E½jT ^ Sj� ¼ r.

The variance of XFreq is krð1� rÞ N�k
N�1

. Hence, Var½freqðT jSÞ� ¼ 1
k2
Var½jT ^ Sj� ¼

rð1�rÞN�k
N�1

k
.

Hence,

zi ¼

rN

vik

� �

N � rN

k � vik

� �

N

n

� � ; pi ¼

rN

vik

� �

N � rN

k � vik

� �

Pn
j¼1

rN

vjk

� �

N � rN

k � vjk

� � : ð5Þ
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Here is a Matlab-code to calculate Thorn’s expected frequencies:
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