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Bayesian nonparametric methods in
econometrics

by Jim Gri�n, Maria Kalli and Mark
Steel
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The use of Bayesian nonparametrics has seen a rapid development since the work of Escobar and West

(1995) showed that Markov chain Monte Carlo methods could be used to make inference in Bayesian

nonparametric models. Subsequently, there has been the development of a huge number of models, priors

and related computational methods. This has allowed Bayesian nonparametric methods to be applied to

a range of statistical modelling problems. This paper provides an excellent introduction to the application

of these methods to problems in areas such as clinical trial design, survival analysis and clustering of

proteins. This motivates density estimation, nonparametric regression and nonparametric spatial mod-

elling. The ability of Bayesian nonparametric methods to combine the �exibility of nonparametrics with

the simplicity of the Bayesian modelling framework (such as hierarchical structure, automatic dimension

penalisation and simple combination of di�erent models) leads to attractive modelling approaches to

applied problems. The authors concentrate on problems in medical statistics. Another applied area

where Bayesian nonparametric approaches can play an important role is (�nancial) econometrics. In

contrast to the data described in this paper, �nancial and economic data are typically collected over

time at di�erent frequencies which vary from intra-day (ultra high frequency), to daily (high frequency),

monthly, quarterly, and annually, where the latter two mostly relate to business cycle data at the level

of national or international economies.

The modelling challenge with �nancial and economic data is capturing their distributional characteristics

(stylised facts), some of which di�er depending on the frequency, as well as their time dependence, and

this is just in the univariate case. Moving from univariate to multivariate, one needs to consider the

dynamic relationships between such variables, and how to adequately model the transition mechanism.

These relationships are rarely well described by simple parametric models. This has lead to a huge

interest in classical nonparametric procedures which avoid making strong distributional assumptions.

Traditionally, there has been less work in Bayesian nonparametric modelling, re�ecting the relative lack

of familiarity of econometricians and �nancial economists with Bayesian nonparametric methods and

their computational complexity, but we note a steady increase in interest over the last ten years. We

�rmly believe that Bayesian nonparametric methods will play an important role in developing econometric

models with excellent forecasting performance.

Much of the initial Bayesian nonparametric work in economics is reviewed in Gri�n et al. (2011) and we

focus on more recent developments which concentrate on density estimation within a volatility model or

in the context of portfolio management, long memory models, models for the term structure of interest

rates and vector autoregressive models.

1 Volatility modelling

Modelling of the distribution of �nancial time series, yt, observed at regularly spaced times t = 1 . . . , n,
is important for measuring risk. A starting point for many models is the stochastic volatility model of

Taylor (1986)

yt = e(ht/2)εt,

ht = γ + φht−1 + ηt,
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where the εt's (the innovations) and ηt's are i.i.d. N(0, 1) and N(0, σ2
η) random variables respectively.

The SV model allows the log volatility to evolve, ensuring that the variance remains positive without

need for further constraints. The latent process ht can be interpreted as the random and uneven �ow of

information in the �nancial markets, and φ as the persistence in volatility.

Jensen and Maheu (2010) used the traditional DPM to model the unconditional distribution of returns

by

p(yt) =
∞

∑
j=1

wjN(yt|µj, λ−2
j eht)

where µj andλ−2
j eht are the mean and variance associated with the jthcomponent, and wj are the stick-

breaking weights. The conditional volatility ht|ht−1 is generated from a normal distribution with mean

φht−1 and variance σ2
η , the parameters µj , λ−2

j
iid∼ G(·) and G(·) ∼ DP(G0, M). The authors choose

a normal-gamma as their base measure G0(µj, λ−2
j ) and refer to this model as SV-DPM.

They compared the SV-DPM to the SV with normal with Student-t innovations on a sample of daily

asset returns over a period of 26 years, and showed that the predictive density of the SV-DPM model

displays both negative skewness and high kurtosis, which are two of the 'stylised facts' of asset returns.

The predictive densities of two parametric models did not capture these characteristics. In terms of

out-of-sample predictive performance the log-predictive scores of the SV-DPM were better than those

of the two parametric SV models.

Delatola and Gri�n (2011), also use the stick-breaking representation of the DPM to model the distri-

bution of asset returns using a stochastic volatility model. They use the Kim et al. (1998) linear state

space representation of a stochastic volatility (SV) model where

y?t = ht + zt for t = 1, . . . , n.

y?t = log y2
t (the log of the squared returns), ht = φht−1 + σηηt, is the log-volatility at time t, and

zt = log(ε2
t ). Both εt and ηt have zero mean and unit variance, and they are independent. In order to

proceed to inference, Kim et al. (1998) suggest a mixture of normals to approximate the distribution of

zt whereas Delatola and Gri�n (2011) consider a DPM. Their simulated examples show that this choice

leads to narrower credible intervals when compared to the parametric method. In addition their model's

out-of-sample predictive performance is superior to that of Kim et al. (1998).

Kalli et al. (2013) use a stick-breaking mixture to model the conditional distribution of asset returns.

Their choice captures key 'stylised facts' of returns, speci�cally the heavy-tails and asymmetry of their

distribution, the time varying volatility, and the 'leverage-e�ect' (the negative correlation between returns

and volatility). They adopt a generalised autoregressive conditional heteroskedastic (GARCH) (Bollerslev,

1987) model for the conditional distribution. In contrast to a stochastic volatility model where ht follows

a latent stochastic process, GARCH models assume the ht process can be modelled as a deterministic

function of the asset returns (yt's). Kalli et al. (2013) model the innovations using a general stick-

breaking prior where k(.|θ) is a scaled uniform density, instead of the usual normal distribution. This

allows for uni-modalilty, asymmetry and heavy tails of the innovation distribution.
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Under their stick-breaking representation, the in�nite mixture of uniforms for modelling the innovations'

distribution has the following hierarchical setup:

yt = σt εt, εt ∼ U(−θdt e
−λ, θdt e

λ) for t = 1, . . . , n

Pr(dt = j) = wj, θj ∼ G0(·) for j = 1, 2, . . .

w1 = v1, wj = vj ∏
`<j

(1− v`) and vj ∼ Be(aj, bj)

where G0 is a standard exponential distribution, and λ is the skewness parameter. The distribution of

εt is therefore,

fv,θ(εt) =
∞

∑
j=1

wj U(−θdt e
−λ, θdt e

λ)

and the conditional return distribution is:

fG,λ(yt|ht) =
∞

∑
j=1

wj U(yt| − θdt σt e−λ, θdt σt eλ)

where the volatility σ2
t is modelled using the GARCH(1,1), the GJR-GARCH(1,1) (Glosten et al., 1993)

and the EGARCH(1,1) (Nelson, 1991). These choices of model allow the leverage e�ect to be modelled.

Delatola and Gri�n (2013) and Jensen and Maheu (2014) consider alternative approaches for extending

their nonparametric SV models to account for the leverage e�ect.

Kalli et al. (2013) used a simulated GARCH(1,1) to compare the estimates of their modelling approach

to those of the parametric and DPM alternatives and found it to be superior both in terms of intervals

and mean integrated squared error. They compared their model with the three GARCH-type volatility

speci�cations to the SV models of Jensen and Maheu (2010) and Jacquier et al. (2004) and showed that

their out-of-sample performance was superior.

The recent work of Jin and Maheu (2016) focuses on estimating the conditional distribution of realised

covariance (RCOV) matrices. These are daily volatility measures of the correlation between di�erent

assets which are estimated using ultra high frequency intraday data. The RCOVs theoretical underpinning

is based on Andersen et al. (2003), and it is viewed as the quadratic variation of semi-martingale processes.

Subsequently the econometric literature focused on improving this estimator in the presence of micro-

structure noise and asynchronous trading. Jin and Maheu (2016) use the Hierarchical Dirichlet Process

(HDP) of Teh et al. (2006) to capture the time dependence of the RCOV matrix. The HDP is a

distribution over multiple correlated probability measures, G1, . . . , Gr, sharing the same atom locations.

Each probability measure is generated from a DP with shared precision parameter and base measure.

To ensure the sharing of atom locations, a second DP is used on the base measure, and hence the

hierarchical set-up is:

G0 ∼ DP(M0, H), Gj ∼ DP(M, G0) for j = 1, 2, . . . .

In Jin and Maheu (2016), the base measure H is also given a HDP prior, and the base measure of that
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prior is an inverse Wishart distribution, a popular choice when modelling RCOVs. Their results show

that density forecasts for both the conditional returns distribution and the distribution of the RCOV,

based on the HDP are signi�cantly better than any parametric method. This is because the parametric

methods do not account for extreme observations in the RCOV matrices.

1.1 Portfolio allocation

The accurate modelling of the co-movement of asset returns, is key to risk management and portfolio

allocation. Multivariate GARCH (MGARCH) type models, �rst introduced by Bollerslev et al. (1988),

remain a popular choice when modelling the volatility of a portfolio as well as the volatility of the

assets within it. For an extensive literature review see Silvennoinen and Terasvirta (2009). Similar

to the univariate case these models should �exibly account for key "stylised facts" of asset returns,

the asymmetry and heavy tails of both the conditional and unconditional distribution, the time-varying

volatility and the negative correlation between volatility and returns. The GARCH-type models capture

the time-varying volatility, and the distributional choice of the innovations' distribution serves in capturing

the asymmetry and heavy-tails of the conditional and unconditional return distribution.

Jensen and Maheu (2013) depart from the popular choice of a Student-t or skewed Student-t distribution

for the innovation vector. They choose to represent this distribution via DPM where the base measure

G0 is a multivariate normal-Wishart distribution. The vector of p asset returns, yt, is assumed to be

yt = H1/2
t εt for t = 1, . . . , T

where Ht is a p × p symmetric, scale matrix, and εt the p × 1 innovation vector with an unknown

distribution G. The matrix Ht is given by

Ht = Γ0 + Γ1 � yt−1y
′
t−1 + Γ2 � Ht−1,

where Γ0 is a symmetric positive de�nite matrix, such that Γ0 = L0L′0 with L0 a lower triangular matrix.

Γ1 = γ1γ′1 and Γ2 = γ2γ′2 where γ1 andγ2 are p× 1 vectors and the symbol � denotes the Hadamard

product. This is the construction of the MGARCH where each hij,t element of Ht is only related to its

lag hij,t−1 and to past returns. The hierarchical structure of this MGARCH-DPM is

yt|µt, Σt, Ht ∼ N(H1/2
t µt, H1/2

t Σ−1
t (H1/2

t )
′
)

Ht = Γ0 + Γ1 � yt−1y
′
t−1 + Γ2 � Ht−1

µt, Σt|G
iid∼ G

G|G0, M ∼ DP(G0, M)

G0 = N −Wishart.

The MGARCH-DPM model was compared to the MGARCH with Student-t innovations using three

portfolios. Two equity portfolios (one with three assets and one with ten) and a foreign exchange

portfolio with three assets. The weights of each portfolio were chosen by the authors. The out-of-sample
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forecasting performance was compared using log-predictive scores, and the quality of the model �t using

Bayes factors. The MGARCH-DPM was at least as good as the MGARCH with t-innovations for the
foreign exchange portfolio, and performed signi�cantly better in terms of density forecasts, particularly

during the 2008 �nancial crisis, when the equity portfolios were considered.

Virbickaite et al. (2016) also consider portfolio risk, and just like Jensen and Maheu (2013) model the

innovation distribution using the DPM with the base measure G0 being the multivariate normal-Wishart

distribution. They calculate the portfolio weights assuming that the investors' objective is to minimise

the variance of the portfolio and model volatility using the asymmetric dynamic conditional correlation

model (ADCC), of Cappiello et al. (2006) combined with a GJR-GARCH model. Their model is then

applied to a portfolio with two assets, and its out-of-sample predictive performance is better than that

of parametric ADCC models.

1.2 Long memory models

All the papers reviewed so far, have focused on estimating either the conditional or unconditional dis-

tribution of asset returns in volatility models. This was done by generating the unknown innovation

distribution via a Dirichlet process prior, or a general stick breaking prior. Kalli and Gri�n (2015) take

a di�erent approach to volatility modelling. They focus on the concept of long range dependence, i.e.

the slow decay of the sample autocorrelation function, and model volatility ht as the aggregate of AR(1)

processes, see Robinson (1978); Granger (1980); Za�aroni (2004). Aggregation of such processes leads

to a class of models with long-range dependence, and the distributional choice for the autoregressive

parameter, Fφ, has an e�ect on this dependence. Kalli and Gri�n (2015) model the unknown Fφ using a

Dirichlet process prior. The DP generates discrete probability measures, and this allows the decomposi-

tion of the aggregate process into processes with di�erent levels of dependence. This models the e�ect

of uneven information �ows on volatility and can be linked to the di�erences in e�ects of di�erent types

of information (since some information may have a longer lasting e�ect on volatility than other pieces

of information). Kalli and Gri�n (2015) refer to their model as stochastic volatility with in�nite cross

sectional aggregation (SV-ICA). To construct it they �rst de�ned a suitable limiting process for cross-

sectional aggregation as the number of elements tends to in�nity and then used the Dirichlet process

prior for Fφ, the distribution of the persistence parameter φ. For more details on this modelling approach

refer to Kalli and Gri�n (2015).

The authors applied the SV-ICA model to simulated data and found that a �nite approximation to Fφ

converged to the true Fφ. They also applied the SV-ICA to sampled returns from HSBC PLC and Apple

Inc. They showed that the volatility dynamics can be decomposed into short-term, medium-term and

long-term components, and that these dynamics depend on the sector in which a company is operating,

with the banking sector exhibiting long range dependence when compared to the technology sector. The

out-of-sample predictive performance of the SV-ICA was substantially better than that of the SV models

of Jacquier et al. (2004) and Jensen and Maheu (2010).
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1.3 Interest rate yields

The modelling of interest rate yields is an important problem in economics. The yield will depend on

the length of time money is lent which is known as the maturity and yields at each maturity will also

change over time. We assume that yields are observed at p maturities in discrete time and the yield

of maturity mi at the t-th time point is denoted by yt,i. The Nelson-Siegel (Nelson and Siegel, 1987)

model expresses the yields in terms of three latent factors. We use the parameterization of Diebold and

Li (2006) who assume that

yt,i = Xt,iβt + εt,i (1)

where εt,i ∼ N(0, σ2
t ) and the latent factors are

Xt,i =

(
1,

1
λtmi

(1− e−λtmi),
1

λtmi
(1− e−λtmi)− e−λtmi

)
.

These factors can be interpreted, respectively, as the yield level (which controls long term yields),the

yield slope (which controls short-term behaviour) and the yield curvature (which controls medium term

behaviour). The parameter λt in the second and third functions, controls the rate of decay with smaller

values of λt leading to a slower decay.

A Bayesian nonparametric model can be constructed by allowing the conditional distribution of the

parameters of the Nelson-Siegel three-component model to vary over time so that

(βt, λt, σ2
t ) ∼ Gt.

A time-varying nonparametric prior, the Dirichlet process autoregressive process (DPAR), introduced by

Gri�n and Steel (2011) de�nes

Gt(B) =
∞

∑
i=1

I(τi < t)wi(t)δθi(B) (2)

where {τi}∞
i=1 follow a Poisson process with intensity η and associates the marks (vi, θi) with τi where

vi
i.i.d.∼ Be(1, M), θi

i.i.d.∼ H and

wi(t) = vi ∏
{j|τi<τj<t}

(1− vj).

The structure implies that Gt follows a Dirichlet process with parameters M and H a priori with the de-

pendence between Gt and Gt+s controlled by M and η. We will de�ne this prior as Gt ∼ DPAR(M, H; η).

Suppose that τ+
i is a time slightly larger than τi then

Gτ+
i
(B) = viδθi(B) + (1− vi)Gτi(B).

and so the random probability measure evolves by jumping at arrival times {τi}∞
i=1 with the addition of

a new atom which is given weight Vi and all other atoms being down weighted by the factor 1−Vi. The

correlation between Gt(B) and Gt+s(B) is given by ρ(s) = e−[η/(M+1)]s.

7



We model zero coupon yields obtained from the Center for Research in Security Prices (CRSP) un-

smoothed Fama and Bliss (1987) forward rates. The data set spanned January 1970 to December 2009

with maturities of 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 108 and 120 months.

M 3.56 (2.77, 4.65)
η 0.089 (0.010, 0.176)

Table 1: Model 2: Parameter estimates as posterior median followed by 95% credible interval

The estimated parameters of the DPAR prior are shown in Table 1. The posterior median of M is

relatively large (3.56) indicating that there are several distinct clusters at any given time point. The

parameter η has a posterior median of 0.089. This parameter controls the arrival times of new clusters

which would have a mean of 11.24 for this value of η. The combined e�ect of the two parameters

can be understood through the autocorrelation function which, using the posterior medians, would be

ρ(s) = e−0.0195s. These results indicate that the underlying random measure is relatively stable over the

course of the data period.

β1 β2 β3

1970 1980 1990 2000 2010
−5

0

5

10

15

1970 1980 1990 2000 2010
−10

−5

0

5

10

1970 1980 1990 2000 2010
−10

0

10

20

Figure 1: The smoothed posterior mean of EFt [βt] (solid line). NBER periods of recession are shown

with a grey band

Estimates of the mean of the time-varying factor weights are shown in Figure 1. The level parameter β1

shows rapid changes in the 1970s with a rapid drop and recovery in the mid-1970s. The 1980s onwards

show a largely decreasing value. The slope parameter β2 shows a more interesting pattern with a rapid

increase in the mid-1970s followed by a rapid decrease. The values become much more stable from

the late 1970s onwards. The pattern is cyclical with decreases in the slope associated with periods of

recession followed by increases in the next growth periods. The curvature parameter β3 also shows a

period of rapid change in the mid-1970s followed by more stable behaviour from the late 1970s onwards.

Figure 2 shows estimates of the mean of the time-varying factor loadings parameter λt and σ2
t . These

show fairly variable estimates for both λt and σ2
t . The parameter λt shows a period of rapid change in

the 1970s. Periods of recession seem to be associated with rapid drops in the value of λt. The mean

of the volatility σ2
t has some peaks in the early period up to the mid-1980s but becomes much smaller

during the late 1980s and 1990s (the period of the Great Moderation). The volatility increases again in

the 2001 recession and in the late 2000s during the �nancial crisis.
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Figure 2: The smoothed posterior mean of EFt [λt] and EFt [σ
2
t ] (solid lines). NBER periods of recession

are shown with a grey band

1.4 Multivariate macroeconomic time series models

Multivariate time series models are widely used in macroeconomic modelling to understand the dynamic

relationship between di�erent economic variables (such as unemployment, in�ation or output) in a par-

ticular economy or across di�erent economies. The vector autoregressive (VAR) model has proved to

be an important tool for analysing these types of time series. Suppose that yt is a (q× 1)-dimensional
vector of economic variables measured at time t then the simplest VAR(1) model assumes that

yt = µ + Φ(yt−1 − µ) + εt

where µ is a (q× 1)-dimensional vector, Φ is a (q× q)-dimensional matrix and εt is a (q× 1)-dimensional
multivariate normally distributed random vector with mean zero and covariance matrix Σ. The limitation
of these models are now well-understood and many people have considered regime-switching models

(which can be seen as a form of a dynamic mixture model) to more accurately capture the structure

of the data and to provide better forecasting performance. Bassetti et al. (2014) propose a Bayesian

nonparametric prior for a panel VAR model. They assume that there are r di�erent economies and that

yi,t is a vector of observations for the i-th economy at time t. They de�ne

fit(yi,t) = ∑
k

wi,kN((Iq ⊗ Xt)ϕk, Σk)

where Xt is a row vector containing lags of yi,t for all economies. The framework allows �exibility

in the conditional distribution of yi,t and allows di�erent component weights for each economy. The

introduction of indicator variables for the components of the mixture model allows inference to be made

about the regime of economy i at time t. The authors introduce a novel prior, the beta-product dependent
Pitman-Yor process, for {wi,k}r,∞

i=1,k=1, by de�ning

wi,k = vi,k ∏
l<k

(1− vi,l)

where v1,k, . . . , vr,k are dependent and have beta marginal distributions. They consider two schemes for

constructing such random variables. They apply their model to data from the US and EU economies to

better understand the dynamics of the business cycle.
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The model of Bassetti et al. (2014) uses time-invariant weights for multiple economies. Kalli and

Gri�n (2016) construct a Bayesian nonparametric model mixture of vector autoregressive models which

has time-varying weights. This extends the univariate model of Antoniano-Villalobos and Walker (2016)

and assumes that for multivariate observations yt are modelled by a mixture of VAR's

f (yt) =
∞

∑
k=1

wk(yt−1)N(µk + Φk(yt−1 − µk), Σk)

where

wk(y) =
πk N(y|µ?

k , Σ?
k)

∑∞
k=1 πk N(y|µ?

k , Σ?
k)

,

and π1, π2, . . . are given a stick-breaking prior, µ?
k and Σ?

k are the stationary mean and covariance matrix

for the VAR in the k-th component respectively. This implies that the stationary distribution and the

transition density of yt are both nonparametric mixtures of normal distributions. The model can be

estimated using the adaptive truncation method of Gri�n (2016). The authors demonstrate that this

model has much better predictive performance than a VAR model and better predictive performance

than the popular non-stationary time-varying parameter VAR model (Primiceri, 2005).

2 Normalised Random Measures with Independent Incre-

ments (NRMI models)

Most work on dependent random measures has concentrated on stick-breaking constructions. The

authors discuss NRMI models in Section 2.3 and we believe that these o�er an attractive framework

for such measures. Gri�n and Leisen (2017) de�ne a compound random measure for related random

probability measures G1(B), . . . , Gr(B) by

Gj(B) =
∑∞

k=1 mj,k Jkδθk

∑∞
k=1 mj,k Jk

where mj,k
i.i.d.∼ H are marks and η̃ = ∑∞

i=1 Jiδθi is a realisation of a directing Lévy process with intensity ν

which will often be taken to be a CRM (as described in Section 2.3). Many previously de�ned dependent

NRMI priors fall within this class and it o�ers a rich framework for extension. For example, a regression

model could be de�ned by assuming that G is indexed by a covariate x and de�ning

Gx(B) =
∑∞

k=1 mk(x)Jkδθk

∑∞
k=1 mk(x)Jk

where mk(x) are independent stochastic processes. This approach is attractive from a modelling per-

spective since the dependence between measures is modelled through a sequence of parametric models

(such as a Gaussian process for regression or an ARMA model for time series).
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