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ABSTRACT

�is paper introduces MYRA, an open-source Java framework that

provides the implementation of several ant colony optimization clas-

si�cation algorithms. �e algorithms are ready to be used from the

command-line or can be easily called from custom Java code. �e

framework is implemented using a modular architecture, therefore

algorithms can be easily extended to incorporate di�erent proce-

dures and/or use di�erent parameter values. �e paper gives par-

ticular a�ention to the common architecture from which the algo-

rithms are built on, highlighting the shared classes among the di�er-

ent implemented algorithms. �e source code and documentation of

MYRA are available for download at h�ps://github.com/febo/myra.
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1 INTRODUCTION

�e advances in computer technologies, allowing the storage of

virtually any kind of data, have led to an exponential growth of

available information and, consequently, to an increased interest

in (semi-)automated data analysis techniques. �e research area

concentrated in applying computation models to extract knowledge

from real-world structured data is called data mining [5]. One of

the most studied data mining tasks in the literature is the classi�-

cation task. In essence, the classi�cation task consists of learning

a predictive relationship between input values and a desire out-

put. Each instance (data point) is described by a set of a�ributes

(features)—referred to as predictor a�ributes—and a class a�ribute.
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Given a set of instances, a classi�cation algorithm aims at creating

a model, which represents the relationship between predictor at-

tributes values and class values, capable of predicting the class of

an instance based on the values of its predictor a�ributes.

Since the goal of a classi�cation algorithm is to �nd the best pre-

dictivemodel, a classi�cation problem can be cast as an optimisation

problem. A wide range of techniques have been used to design

classi�cation algorithms—e.g., statistical algorithms, arti�cial neu-

ral networks, evolutionary algorithms, ant colony optimization,

among others. A good collection of machine learning algorithms

for classi�cation task can be found in the Waikato Environment for

Knowledge Analysis (WEKA) workbench [6], probably the most

popular open source data mining tool.

Ant colony optimization (ACO) [4] is a metaheuristic inspired

by the behaviour of real ant colonies. Many ant colonies are able

to cooperate to perform complex tasks despite the lack of a central

control mechanism and a relative simple individual behaviour—e.g.,

there are ant species with limited or no vision that are able to �nd

the shortest path between the nest and a food source. All interaction

between individual ants, and between the environment, is accom-

plished in an indirect way by dropping pheromone on the ground

to create a pheromone trail. Trails with higher pheromone concen-

tration are more likely to be followed by ants. Since the shorter

trail is traverse faster, its pheromone concentration is higher, which

eventually will result in the colony converging to using predomi-

nantly the shorter path. ACO algorithms mimic the behaviour of

ant colonies to perform a global search, where the search is guided

to be�er regions of the search space based on the quality of the

solutions. In the context of the classi�cation task in data mining,

ACO algorithms have the advantage of performing a �exible robust

search for a good combination of predictor a�ributes, less likely to

be a�ected by the problem of a�ribute interaction [7].

Parpinelli et al. [24] proposed the �rst ACO algorithm for clas-

si�cation, called Ant-Miner, to create IF-THEN classi�cation rules.

�e IF part corresponds to the antecedent of the rule and it con-

tains (a�ribute, value) terms representing tests on a�ributes’ val-

ues; the THEN part corresponds to the consequent of the rule

and it contains a class value prediction. An instance that satis-

�es all terms in the antecedent of a rule is said to be covered by

the rule and it has the class value in the consequent of the rule

predicted. A�er the introduction of Ant-Miner, research on ACO

classi�cation algorithms a�racted greater a�ention—the original

Ant-Miner paper has more than 990 citations according to Google

Scholar—and a large number of variations have been proposed

in the literature [14]. While the vast majority ACO algorithms

for classi�cation are focused on creating classi�cation rules, there

https://github.com/febo/myra
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are also works focused on creating decision trees [2, 22], hierar-

chical classi�cation [18, 21], learning bayesian network classi�ers

[25] and training arti�cial neural networks [1]. Despite the large

number of publications proposing ACO classi�cation algorithms,

the algorithms’ implementations are not publicly released in most

cases. �e few exceptions to the best of our knowledge are Ant-

Miner (h�ps://sourceforge.net/projects/guiantminer/), AntMiner+

[13] (h�p://www.antminerplus.com) and PSO/ACO2 [10] (h�ps:

//sourceforge.net/projects/psoaco2)—although PSO/ACO2 is not

a pure ACO algorithm, since it combines an ACO and a particle

swarm optimization procedures.

�is paper introduces MYRA, a freely available, open source,

object-oriented so�ware framework for ACO classi�cation algo-

rithms, wri�en in Java. �e framework provides the implementa-

tion for several ACO classi�cation algorithms: Ant-Miner, cAnt-

Miner [19, 20], cAnt-MinerPB [23], Unordered cAnt-MinerPB [16,

17] and Ant-Tree-Miner [22]. MYRA has generated 8,950 downloads

to date, since its �rst version released in 2008. �e framework has

been through two major refactorings—the last one on June 2015—in

order to improve its modularity and computational time. �e most

recent version is 4.5 and it is the one discussed in this paper. �e

paper gives particular a�ention to the common architecture from

which the algorithms are built on, highlighting the shared classes

among the di�erent implemented algorithms. While the framework

has been exclusively used to design classi�cation algorithms, there

are architectural and design elements that can be used in the de-

sign of ACO algorithms for other problems. MYRA source code,

documentation and a binary package are available for download at

h�ps://github.com/febo/myra, licensed under the Apache License

(version 2.0).1 �e framework is self-contained—only depends on

standard Java libraries—and requires Java version 1.7+. Javadoc is

used throughout the source code and Apache Maven2 is used to

manage the framework’s build, reporting and documentation. Note

that this paper does not provide a discussion of the results achieved

by the algorithms—a detailed statistical analysis can be found in the

algorithms’ original publications, where they have been compared

against state-of-the-art algorithms from the literature.

�e reminder of the paper is structured as follows. Section 2 dis-

cusses the core ACO classes of the framework. Section 3 discusses

the implementation of ACO classi�cation algorithms included in

MYRA. Instructions on how to run the algorithms and visualise

their output are given in Section 4. Finally, Section 5 presents

conclusions and future development ideas.

2 ACO ALGORITHMIC COMPONENTS

In this section, we discuss the core ACO classes present in MYRA

and the rationale for their design choice. ACO algorithms have three

main caracteristics [12]: (i) they are population-based algorithms,

wherem ants create solutions to the problem at hand, mimicking a

colony of ants; (ii) solutions are created by a probabilistic procedure,

where solution components are selected based on pheromone and

heuristic information values; (iii) pheromone values are updated

1Previous MYRA 1.x, 2.x and 3.x versions can be found at h�ps://sourceforge.net/
projects/myra/. Readers interested in hierarchical classi�cation algorithms [18, 21]
(MYRA 3.x) should check this repository.
2h�p://maven.apache.org

1. Initialise();

2. while termination condition not met do

3. ConstructAntSolutions();

4. ApplyLocalSearch();

5. UpdatePheromones();

6. end while

Figure 1: High-level pseudocode of an ACO algorithm.

at each iteration using the quality of the candidate solutions as

(positive) feedback.

Figure 1 presents the high-level pseudocode of an ACO algorithm.

�ere are four main operations:

(1) Initialise: this procedure is responsible to initialise all data

structures (e.g., pheromone values, heuristic information)

and parameters of the algorithm;

(2) ConstructAntSolutions: this procedure mimics the move-

ment of arti�cial ants over the construction graph to create

candidate solutions. Solutions are created in a probabilistic

fashion, where solution components are selected based on

pheromone and heuristic information values—the higher

the values, the more likely is the selection probability;

(3) ApplyLocalSeach: this is an optional procedure used to

further re�ne candidate solutions. Its main purpose is

to introduce small modi�cations to solutions in order to

explore neighbouring solutions. Modi�cations that lead to

a decrease in quality are usually discarded;

(4) UpdatePheromones: this procedure updates the pheromone

associated with solution components. �ere are two stages

in the update: (i) pheromone values are decreased due to

evaporation, allowing ants to forget choices made at earlier

stages of the search; (ii) pheromone values of the best

candidate solution(s) are updated to increase the selection

probability of good components (positive feedback).

�e basic structure of an ACO algorithm, shown in Figure 1, is rep-

resented by the Scheduler class (package myra) in the framework.

A Scheduler implementation is inspired by a template method de-

sign pa�ern [9], where the order of operations is de�ned but their

individual implementations are delegated to the Activity interface.

�erefore, the implementation of an ACO algorithm is de�ned by an

Activity, which is then executed by the Scheduler. A Scheduler

will execute an Activity in its run method:

public void run() {

initialise();

while (!terminate()) {

create();

search();

update();

}

}

https://sourceforge.net/projects/guiantminer/
http://www.antminerplus.com
https://sourceforge.net/projects/psoaco2
https://sourceforge.net/projects/psoaco2
https://github.com/febo/myra
https://sourceforge.net/projects/myra/
https://sourceforge.net/projects/myra/
http://maven.apache.org
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Each method on the Scheduler (initialise, terminate, create,

search and update) will delegate the call to the encapsulated

Activity object. As can be seen in the code listing, the runmethod

closely implements the pseudocode shown in Figure 1.

One motivation for decoupling the implementation of the op-

erations and the structure (order of operations) of the algorithm

is that di�erent Scheduler implementations can be used to exe-

cute the same Activity. For example, the framework includes a

ParallelScheduler that executes an Activity in a parallel fash-

ion, taking advantage of multi-threading environments—the only

requirement is that the implementation of the Activity is thread-

safe. �e Activity interface de�nes the following methods:

public interface Activity<T extends Comparable<T>> {

// creates a single solution to the problem

public T create();

// applies local search to candidate solutions

public boolean search(Archive<T> archive);

// performs the initialisation step

public void initialise();

// indicates if the algorithm should stop

public boolean terminate();

// updates the state of the activity

public void update(Archive<T> archive);

}

�e generic parameter type T is the type of the solution created

by the algorithm; and an Archive holds the solutions ordered by

quality—if adding a new solution exceeds its capacity, the new so-

lution is only added if it is be�er than the lowest solution in the

archive. �e framework provides an abstract Activity implemen-

tation, the IterativeActivity class. �is class can be used as a

base class for algorithms that are controlled by a maximum number

of iterations. It provides an implementation for the terminate and

update methods: in the terminate, it checks whether the maxi-

mum number of iterations has been reached; and in the update, it

increments the number of iterations.

�e ParallelScheduler is a subclass of the Scheduler and it

overrides its createmethod implementation. While the Scheduler

implementation creates a solution for each ant in the colony se-

quentially by iterating over the number of ants calling the create

method of the encapsulated Activity, the ParallelScheduler

uses a CountDownLatch (package java.util.concurrent) to ex-

ecute the creation in parallel. In a CountDownLatch, multiple op-

erations are executed in threads while the current (main) thread

awaits. �e rationale of using a CountDownLatch is to encapsulate

each call to the create method as a Runnable object and use a

set of threads to execute them. Note that only the create method

perform parallel operations—i.e., only the creation of solutions is

Input: Training Instances

1. RuleList← {};

2. while |Instances| > threshold do

3. Rule← LearnOneRule(Instances);

4. Instances← Instances − Covered(Rule, Instances);

5. RuleList← RuleList ∪ Rule;

6. end while

Figure 2: High-level pseudocode of the iterative rule learn-

ing process.

in parallel. �is is a straightforward way to parallelise ACO al-

gorithms and more complex strategies are likely to deliver be�er

performance gains. �e choice between the sequential Scheduler

and ParallelScheduler is done as a command-line argument, as

it is the number of executor threads.

While MYRA was not designed to be a generic ACO framework,

a Scheduler can execute any ACO algorithm, as long as it is imple-

mented as an Activity; the Archive can store any type of solution,

as long as the class representing the solution type implements the

Comparable interface so the Archive is able to maintain the order

of solutions.

3 CLASSIFICATION ALGORITHMS

�is section discusses the implementation of ACO classi�cation

algorithms included in MYRA. �e algorithms presented can be

divided into three categories in terms of their strategy to cre-

ate a classi�cation model: iterative rule learning (Ant-Miner and

cAnt-Miner), Pi�sburgh-based rule learning (cAnt-MinerPB and Un-

ordered cAnt-MinerPB) and decision tree learning (Ant-Tree-Miner).

An overview of the di�erent strategies is presented together with

the details of the algorithms’ implementations.

A classi�cation algorithm is represented as a subclass of the

Classifier class (package myra.datamining). It aims at training

a classi�cation model (Model interface). �e Classifier class is an

abstract class—subclasses are required to implement the descrip-

tion and trainmethods. A Dataset object is given as a parameter

to the train method, representing the input (training) data. It con-

tains a collection of Instance objects, each describing the values

of the predictor and class a�ributes (Attribute class). �e train

method is responsible for executing an Activity, which represents

the ACO procedure.

3.1 Iterative rule learning

Both Ant-Miner and cAnt-Miner follow an iterative rule learning

approach to create classi�cation rules from the training data. In

this approach, a list of rules is created in a sequential covering

fashion: at each iteration a rule that covers some training instances

is created; training instances covered by the rule are removed and

the rule is added to the list; the process is then repeated until the

number of training instances is lower than a user-speci�ed thresh-

old. Figure 2 presents the high-level pseudocode of the iterative

rule learning. In Ant-Miner and cAnt-Miner, the LearnOneRule

procedure is implemented as an ACO procedure to search for the

best rule given a set of instances.
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In MYRA, the SequentialCovering class (package myra.ru-

le.irl) implements the iterative rule learning approach. �e rule

creation procedure is implemented as FindRuleActivity, which

is a subclass of the IterativeActivity class, and it is executed

by a Scheduler at each iteration of the sequential covering. Each

iteration is actually executing an independent ACO procedure to

create a classi�cation rule and, since the training instances are

di�erent, they create di�erent classi�cation rules.

�e FindRuleActivity makes use of four important compo-

nents: (1) Graph, representing the ACO construction graph from

where ants choose solution components; (2) RuleFactory, repre-

senting the probabilistic procedure to select components from the

construction graph to create a rule; (3) PheromonePolicy, repre-

senting the strategy to control pheromone values during the ACO

execution; and (4) Pruner, representing a procedure to remove

irrelevant terms from the antecedent of rules.

�e Graph (package myra.rule) is created using the informa-

tion from the predictor a�ributes. Given a set of nominal a�ributes

X = {x1, . . . ,xn }, where the domain of each nominal a�ribute xi is

a set of valuesVi = {vi1, . . . ,vidi } (where di equals to the number

of values in the domain of a�ribute xi ), the construction graph con-

sists of an almost fully connected graph. For each pair of nominal

a�ribute xi and value vi j (where xi is the i-th nominal a�ribute

and vi j is the j-th value belonging to the domain of xi ), a vertex

representing the term xi = vi j is added to the construction graph.

�en, vertices are connected by edges to every other vertex of the

construction graph, with the restriction that there are no edges

between vertices referring to the same a�ribute to avoid inconsis-

tent terms such as ‘gender = male AND gender = female’ being

included in the same rule; otherwise the rule would cover no exam-

ples. Ant-Miner only copes with nominal a�ributes, therefore any

a�empt to load a dataset with continuous a�ributes will generate

an exception. cAnt-Miner, on the other hand, can cope with both

nominal and continuous a�ributes. For each continuous a�ribute

yi , a vertex is added to the graph representing the term yi . �en,

the newly created vertex yi is connected to all previous vertices of

the construction graph. Note that the Graph class supports both

nominal and continuous vertices, therefore there is a single Graph

implementation in the framework. Each vertex has associated a

pheromone and heuristic values (as double values). Heuristic in-

formation can be speci�ed implementing the Heuristic interface.

�e RuleFactory (package myra.rule.irl) is a probabilistic

procedure to select vertices from the construction graph to create a

rule, mimicking the action of an ant traversing the graph. Each ant

starts with an empty rule—i.e., a rule with an empty antecedent—

and iteratively selects vertices to add to its partial rule based on their

values of the amount of pheromone τ and a problem-dependent

heuristic information η. �e probability of ant k selecting a partic-

ular vertex ci at each iteration of the rule construction process is

given by

pkci =
[τci ]

α · [ηci ]
β

∑

c j ∈ N k

[τc j ]
α · [ηc j ]

β
, if ci ∈ N

k
, (1)

where τci and τc j are the amount of pheromone associated with

neighbouring vertices ci and c j ; ηci and ηc j are the values of heuris-

tic information associated with neighbouring vertices ci and c j ;

N k is the feasible neighbourhood of ant k—i.e., the set of vertices

that (1) the ant k has not visited and (2) do not correspond to terms

associated with a�ributes already used by current terms in the

antecedent of ant k ; α and β are user-de�ned weight parameters

that indicate the relative importance of the pheromone and heuris-

tic information. �is process is repeated until all feasible vertices

have been visited or any vertices added to the antecedent would

make the rule cover fewer training instances than a user-de�ned

minimum value. �e la�er restriction is used to avoid too speci�c

and unreliable rules.

A�er a Rule (package myra.rule) is created, it undergoes a

pruning procedure (Pruner class). �e pruning aims at removing

irrelevant terms from the antecedent of a rule, added as a con-

sequence of the probabilistically nature of the rule construction.

Terms are removed while the quality of the rule does not decreases.

�e pruning procedure can be seen as an ACO local search operator.

�ere are two pruning procedures implemented in the framework:

a greedy pruner (GreedyPruner class), which removes one-term-

at-a-time term of the rule until the rule quality decreases [24]; and a

backtrack pruner (BacktrackPruner class), which removes the last

term of the rule until the rule quality decreases [20]. �e quality of

a rule is determined using an evaluation function represented by a

RuleFunction object—the framework provides several implementa-

tions of evaluation function in the myra.rule.function package.

�e PheromonePolicy (package myra.rule.irl) is responsible

for the pheromone update and evaporation. Pheromone update

is implemented by increasing the pheromone values by a value

proportional to the quality of the iteration-best rule. Pheromone

evaporation is implemented by normalising pheromone values a�er

the update—values that have not been increased during the update

will decrease as a result of the normalisation.

At the end of the FindRuleActivity, usually controlled by a

maximum number of iterations, the best rule created by the ACO

procedure is returned to the iterative rule learning procedure. Given

the modular architecture of the framework, any of these implemen-

tation classes can be easily replaced by custom ones. �erefore, it

is straightforward to create variations of the algorithms. Figure 3

presents a simpli�ed class diagram illustrating the dependencies

among main classes used in Ant-Miner and cAnt-Miner implemen-

tation.

3.2 Pittsburgh-based rule learning

As aforementioned, the creation of each rule is an independent

execution of an ACO procedure in the iterative rule learning. In

a Pi�sburgh-based approach, a complete list of rules is created by

each ant instead of single rule. It has two main advantages when

compared to iterative rule learning: (i) it copes be�er with rule

interaction problem3; (ii) the ACO algorithm is guided by the qual-

ity of a complete list of rules. MYRA includes the implementation

of two Pi�sburgh-based classi�cation algorithms: cAnt-MinerPB
and Unordered cAnt-MinerPB. While both algorithms follow a

Pi�sburgh-based strategy, as their name suggest, they di�er on the

3�e problem of rule interaction in iterative rule learning derives from the order in
which rules are created—the outcome of a rule in�uences the rules that can be created
by subsequent iterations [8].
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model representation: cAnt-MinerPB produces a RuleList (pack-

age myra.rule), where the order of rules is important to make pre-

dictions; Unordered cAnt-MinerPB produces a RuleSet, where the

order of rules is not important. �ese algorithms are implemented

reusing many classes from the cAnt-Miner implementation—the

main di�erence is on their Activity implementation.

Ordered Rules. �e cAnt-MinerPB procedure to create a com-

plete list of rules is implemented by the FindRuleListActivity

class (package myra.rule.pittsburgh). Di�erently than the iter-

ative rule learning approach, the ACO procedure implemented by

FindRuleListActivity is responsible to create a complete list of

rules. �erefore, no multiple executions of the ACO procedure are

required. A FindRuleListActivity works in a sequential cover-

ing fashion, but rules created at each iteration do not necessarily cor-

respond to the best rule. �erefore, the LearnOneRule is replaced

by a probabilistically construction process (LevelRuleFactory

class) that is not optimised to create the best possible rule since the

list of best rules is not necessarily the best list of rules. �e quality

quality of the individual rules is not important in cAnt-MinerPB,

as long as the quality of the list of rules improves, since the entire

list is created at once and the best list is chosen to guide the ACO

search. �e FindRuleListActivity uses a LevelRuleFactory to

create rules at di�erent positions (levels) of the list. In essence, a

LevelRuleFactory works as a RuleFactory, with the di�erence

that it uses pheromone values indexes by the position of the rule—

i.e., the �rst rule uses pheromone values at index 0, the second at

index 1 and so forth. In this way, ants are able to identify good

vertices for multiple rules.

Given the use of multiple pheromone values, a LevelPheromo-

nePolicy class is used. It updates the pheromone values in the

sameway as the PheromonePolicy fromAnt-Miner, with the di�er-

ence that it takes a RuleList object as a parameter, corresponding

to the iteration-best list of rules. Each rule in the list is used to

increment the pheromone values of its associated level. �e incre-

ment is proportional to the quality of the iteration-best list of rules,

measured by a ListMeasure—the framework provides di�erent

implementation of measures in the myra.classification.rule

package. Pheromone evaporation is implemented by decreasing the

pheromone values by a user-de�ned factor ρ. Figure 4 presents a

simpli�ed class diagram illustrating the dependencies among main

classes used in cAnt-MinerPB implementation. As can be seen, there

are many classes shared between cAnt-MinerPB and cAnt-Miner

(Figure 3) implementations.

Unordered Rules. �e Unordered cAnt-MinerPB implementation

follows a similar structure, with the di�erence that the order in

which the rules are created is not important to make predictions—

i.e., it creates a set of rules. �is is implemented by the FindRule-

SetActivity class (package myra.classification.rule.unor-

dered). Rules are created in a (non-optimised) sequential covering

fashion, as in cAnt-MinerPB. �e FindRuleSetActivity uses a

FixedClassRuleFactory to create rules for each class value. �e

pre�x ‘Fixed’ in the class name indicates that the class value of

the rule is decided in advance, before the rule is created, and it

guarantees that the algorithm will create at least one rule for each

class value. While the order of rules is not important to make

predictions, pheromone values are indexed by the position of the

AntMiner

SequentialCovering

FindRuleActivity

PheromoneUpdate

RuleFactory

Graph

«instantiate»

«use»

cAntMiner

Classifier

Pruner

«call»

Rule

«instantiate»

RuleList«instantiate»

RuleFunction

«use»

Scheduler

«use»

«call»

«use»

«use»

«use»

Figure 3: A simpli�ed class diagram illustrating the depen-

dencies among main classes used in Ant-Miner and cAnt-

Miner implementation.
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Figure 4: A simpli�ed class diagram illustrating the depen-

dencies among main classes used in cAnt-MinerPB imple-

mentation.

rule, the same way as cAnt-MinerPB. It also uses a LevelPheromo-

nePolicy to control the update of pheromone values. It should be

noted that a RuleSet is a subclass of RuleList, therefore the same

ListMeasure measures can be used to evaluate a RuleSet.

�e implementation of Unordered cAnt-MinerPB includes an

option to use a FunctionSelector (package myra.classificati-

on.rule.function) to dynamically select a RuleFunction for pru-

ning [15]. �e motivation for this is that evaluation functions
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UcAntMinerPB

FindRuleSetActivity

LevelPheromonePolicy

FixedClassRuleFactory

Graph

«use»

Classifier

Pruner

«call»

Rule

«instantiate»

RuleList

RuleFunction

«use»

Scheduler

«call»

«use»

«use»

«instantiate»

«instantiate»

«use»

FunctionSelector

«use»

RuleSet

«interface»

ListMeasure

«use»

Figure 5: A simpli�ed class diagram illustrating the de-

pendencies among main classes used in Unordered cAnt-

MinerPB implementation.

AntTreeMiner

FindTreeActivity

PheromonePolicy

TreeBuilder

Graph

«use»

Classifier

Pruner

«call»

Tree

«instantiate»

«enum»

TreeMeasure «use»

Scheduler

«call»

«use»

«use»

«instantiate»

«use»

Figure 6: A simpli�ed class diagram illustrating the depen-

dencies among main classes used in Ant-Tree-Miner imple-

mentation.

have di�erent bias and capture di�erent aspects of a rule. �e

procedure to choose an evaluation function is similar to a vertex

selection, where the pheromone associated with each function bias

the selection. Hence, the algorithm is not only identifying which

vertices are more suitable to create rules, but also the evaluation

function more suitable to prune each individual rule.

Figure 5 presents a simpli�ed class diagram illustrating the de-

pendencies among main classes used in Unordered cAnt-MinerPB

implementation. It is clear that there are many shared classes be-

tween cAnt-MinerPB (Figure 4) and the unordered version.

3.3 Decision Trees

In addition to algorithms that produce classi�cation rules as amodel,

MYRA includes the implementation of Ant-Tree-Miner, an ACO

algorithm to create decision trees. Ant-Tree-Miner follows the

traditional top-down approach, o�en referred to as divide-and-

conquer. In this approach, a decision tree is created iteratively,

from the top (root node) to the bo�om (leaf nodes). In the �rst

iteration, an a�ribute is selected to represent the root node of

the tree. �en, a branch is created for each di�erent value in the

domain of the a�ribute. Each branch represents a test on a particular

a�ribute value. �e data is then split into subsets according to

the instances’ values of the selected a�ribute—each subset is then

associated with its corresponding branch. �e a�ribute selection

is then recursively repeated for each branch created until one of

the following conditions is met: (i) all instances on a subset are

associated with the same class value; or (ii) the number of instances

in a subset is smaller than a user-de�ned minimum value. At this

point, a leaf node predicting the majority class value—the class

value associated with the majority of instances in the subset—is

added to the tree and the recursive process stops.

As can been seen, the crucial step in the top-down strategy is the

selection of a�ributes to create the nodes of the decision tree. In

other words, the problem of creating a decision tree is divided into

smaller problems of selecting an appropriate a�ribute given a subset

of data. Ant-Tree-Miner employs an ACO procedure to select at-

tributes during the decision tree construction. �is is implemented

by a FindTreeActivity (package myra.classification.tree).

�e �rst di�erence between Ant-Tree-Miner and Ant-Miner (and

variations) is the construction graph structure: vertices in Ant-Tree-

Miner’s graph represent a�ributes instead of (a�ribute, value) terms.

At each step of the tree construction procedure, an ant probabilisti-

cally selects vertex to visit based on the amount of pheromone and

the heuristic information, in the same way as Equation 1. When

an ant creates a candidate decision tree (Tree class), internal nodes

are represented by InternalNode objects and leaf nodes are rep-

resented by LeafNode objects. A Pruner class is used to remove

nodes that lead to an improvement in the quality of the tree. While

Ant-Tree-Miner uses a di�erent PheromonePolicy implementation,

since the construction graph and the solution representation are

di�erent, it works in a similar fashion: each internal node is used

to increment the pheromone values of its associated level (depth of

the node in the decision tree). �e increment is proportional to the

quality of the decision tree, measured by a TreeMeasure enum.

Given that Ant-Tree-Miner is a population-based algorithm, mul-

tiple decision trees are created at each iteration of the ACO proce-

dure. Similarly to Ant-Miner and variations, the FindTreeActivi-

ty is controlled by a maximum number of iterations. At the end, the

best Tree object created is returned as the output of the algorithm.

Figure 6 presents a simpli�ed class diagram illustrating the de-

pendencies among main classes used in Ant-Tree-Miner implemen-

tation. It should be noted that Ant-Tree-Miner implementation has

li�le overlap to the implementation of other rule-based algorithms,

apart from ACO algorithmic components discussed in Section 2.
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Table 1: Main class for the algorithms included in MYRA.

Algorithm / Main Class

Ant-Miner

myra.classification.rule.impl.AntMiner

cAnt-Miner

myra.classification.rule.impl.cAntMiner

cAnt-MinerPB
myra.classification.rule.impl.cAntMinerPB

Unordered cAnt-MinerPB
myra.classification.rule.impl.UcAntMinerPB

Ant-Tree-Miner

myra.classification.tree.AntTreeMiner

Its Graph, PheromonePolicy and Pruner are di�erent, since Ant-

Tree-Miner uses a Tree as a solution representation instead of a

list/set of rules.

4 RUNNING THE ALGORITHMS

�e framework includes main classes to run the algorithms directly

from the command-line. �ese are presented in Table 1. In order to

run the algorithms from the command-line, the following template

can be used:

java -cp myra-<version>.jar <main class> -f <file>

where <version> is MYRA jar version number (e.g., 4.5), <main

class> is the main class name of the algorithm and <file> is the

path to the a�ribute-relation �le format (ARFF)4 to be used as

training data. �e minimum requirement to run an algorithm is

a training data �le. If no training data �le is speci�ed, the list of

command-line switches is printed. Figure 7 shows the command-

line options for Ant-Miner algorithm.

�e parameters of an algorithm can be tweaked using command-

line options. Experiments can be reproduced by se�ing the same

seed value (-s option), since ACO algorithms are stochastic and a

pseudorandom number generator is used during their execution.

Note that when running the algorithm in parallel (--parallel

option), there is no guarantee that it will have the same behaviour

even if the same seed value is used, since the thread allocation is

not controlled in the code. Figure 8 shows an example of a run

of cAnt-Miner. �e output generated includes the values of the

parameters to facilitate replicating an execution.

�e algorithms can also be executed by instantiating the cor-

responding main class and calling the train method, which is

speci�ed by the abstract Classifier class. �is method returns a

Model object that can be used to make predictions.

5 CONCLUSIONS

�is paper introduced MYRA, a Java ant colony optimization frame-

work for classi�cation algorithms. It provides the implementation

of several popular ant colony optimization algorithms. �e algo-

rithms are ready to be used from the command-line or can be easily

called from your own Java code. �ey are implemented using a

4h�p://www.cs.waikato.ac.nz/ml/weka/ar�.html

Usage: AntMiner -f <file> [-t <test file>] [options]

The minimum required parameter is a training file to

build the model from. If a test file is specified,

the model will be tested at the end of training. The

results are presented in a confusion matrix.

The following options are available:

-c <size> specify the size of the

colony

-g enables the dynamic

heuristic computation

-h <method> specify the heuristic

method

-i <number> set the maximum number

of iterations

-m <number> set the minimum number of

covered examples per rule

-p <method> specify the rule pruner

-r <function> specify the rule quality

function

-s <seed> Random seed value

-u <number> set the allowed number of

uncovered examples

-x <iterations> set the number of iterations

for convergence test

--parallel <cores> enable parallel execution in

multiple cores

Figure 7: Command-line options of Ant-Miner algorithm.

When options are not speci�ed, the algorithm is executed

using the default values.

modular architecture, so they can be easily extended to incorporate

di�erent procedures and/or use di�erent parameter values.

�e current version 4.x is a complete rewrite from version 3.x,

although it was not possible to maintain backward compatibility.

�e overall architecture of the framework is very similar, but most

data structures have changed. �e computational time has been

signi�cantly improved—tasks that used to take minutes, now are

done in seconds. In addition, there is an initial support for ant

colony optimization regression algorithms [3].

Not all algorithms and features from version 3.x are implemented

in current version. Namely, hierarchical multi-label algorithms,

support for output of predictions and the GUI interface are not

http://www.cs.waikato.ac.nz/ml/weka/arff.html
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cAnt-Miner rule induction [build v4.5]

_________________________________________________

Training file: /uci/datasets/iris/iris.arff

[Runtime default values]

-s 1490115439698

-c 60

-i 1500

-m 10

-u 10

-x 10

-p backtrack

-r sen_spe

-h gain

-d mdl

Relation: iris

Instances: 150

Attributes: 4

Classes: 3

Random seed: 1490115439698

=== Discovered Model ===

IF petal-width <= 0.8 THEN Iris-setosa

IF petal-length > 5.15 THEN Iris-virginica

IF petal-width <= 1.45 THEN Iris-versicolor

IF petal-width > 1.75 THEN Iris-virginica

IF <empty> THEN Iris-versicolor

Number of rules: 5

Total number of terms: 4

Average number of terms: 0.80

Classification accuracy on training set: 97.33%

Running time (seconds): 0.24

Figure 8: Output of cAnt-Miner when executed on the iris

data from the UCI Machine Learning repository [11].

present. �ese will eventually be refactored into a future release.

Currently the framework does not have a standard way of organ-

ising experiments—e.g., run an algorithm over multiple datasets,

perform n-fold cross-validation or visualise results of multiple runs.

Users are required to provide their own wrapper code/scripts. It

would be interesting to incorporate a facility to perform multiple

experiments into the framework. Additionally, the framework does

not provide any feedback regarding the progress of the execution

of an algorithm—this is an important future development. Another

important future development is to include MYRA as a package

into WEKA.
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