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ABSTRACT

Ant-Miner Mixed A�ributes (Ant-MinerMA) was inspired and built

based on ACOMV, which uses an archive-based pheromone mod-

el to cope with mixed a�ribute types. On the one hand, the use

of an archive-based pheromone model improved signi�cantly the

runtime of Ant-MinerMA and helped to eliminate the need for

discretisation procedure when dealing with continuous a�ributes.

On the other hand, the graph-based pheromone model showed

superiority when dealing with datasets containing a large size

of a�ributes, as the graph helps the algorithm to easily identify

good a�ributes. In this paper, we propose an automatic design

framework to incorporate the graph-based model along with the

archive-based model in the rule creation process. We compared

the automatically designed hybrid algorithm against existing ACO-

based algorithms: one using a graph-based pheromone model and

one using an archive-based pheromone model. Our results show

that the hybrid algorithm improves the predictive quality over both

the base archive-based and graph-based algorithms.
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1 INTRODUCTION

Ant Colony Optimization (ACO) [2] was originally designed to

solve optimization problems in discrete search spaces, where so-

lutions are de�ned by the path taken by each ant. A graph-based
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pheromonemodel is used to guide the ants in a discrete search space,

where solution components are represented by nodes of the graph.

Recently, Liao et al. [7] proposed the Ant Colony Optimization

for Mixed Variables (ACOMV), a new approach for ACO to handle

mixed variables (continuous and discrete) optimization problems.

ACOMV uses an archive-based pheromone model to guide the ants

in the mixed variables search space, employing di�erent sampling

strategies according to the variable type.

Ant-Miner [18] uses the principles behind the ACO meta-heuris-

tic to build classi�cation rules in data mining context. �e best

quality ant deposits pheromone on each used node as an indica-

tion of the current best a�ributes. �is allows ants to learn and

select the most e�ective a�ributes to use in rule creation. Originally

proposed to handle data mining problems with discrete a�ributes,

Ant-Miner was subsequently extended to handle continuous at-

tributes in [15, 16]. Recently, this work has been further extended

to handle continuous, categorical and ordinal a�ributes in the Ant-

MinerMA algorithm [4]. Ant-MinerMA achieves this feature by

using an archive-based model to cope with the various types of at-

tributes presented by the classi�cation problem at hand, improving

signi�cantly the runtime when dealing with continuous a�ributes.

In this paper we propose a framework to incorporate the graph-

based model of Ant-Miner in the rule creation process, along with

the archive-based model. �e graph-based model allows the al-

gorithm to select the best a�ributes when creating classi�cation

rules, while the archive allows the algorithm to deal with di�erent

a�ributes types.

�e remainder of this paper is organised as follows. We begin by

reviewing the Ant-Miner algorithm in Section 2. We then present

our automatically con�gurable approach in Section 3. Computa-

tion results are presented in Section 4, and conclusions and future

directions are discussed in Section 5.

2 BACKGROUND

In this section, we will discuses the two main approaches for ap-

plying ACO in classi�cation problems. We �rst review the original

graph-based approach employed in Ant-Miner algorithm. �en, we

present an overview of the archive-based algorithm Ant-MinerMA.

2.1 Graph-based Pheromone Model

Graph-based approaches started with Ant-Miner [18], which was

limited to discrete datasets only. Continuous a�ributes were dis-

cretised in a pre-processing stage and used as nominal a�ributes.

Ant-Miner uses a graph-based approach to extract IF-THEN classi�-

cation rules from data. Let r be a rule, each rule is a n-dimensional

vector of terms tn that are joined by ANDs, such as IF t1 AND t2
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. . . AND tn THEN class. Each term ti consists of a tuple (a�ribute,

operator, value) and the class is the value predicted by the rule.

�e Ant-Miner construction graph consists of a fully connected

graph. Let ai be a nominal a�ribute and vi j be the j-th value of ai
a�ribute. For j = 1, ...,Di , where Di is the number of values in the

domain of a�ribute ai . Each vi j is added as a node (ai , =, vi j ) to

the graph. Suppose an ant l is creating a rule rl . It starts with an

empty rule at node x and probabilistically chooses to visit a node y

based on the amount of pheromone and heuristic information. �is

process is repeated until the ant cannot add more nodes to the rule.

Martens et al. [13] reviewed several extensions of Ant-Miner.

Ant-Miner2 [10] added a somewhat simpler heuristic function us-

ing density estimation, while Ant-Miner3 [9] modi�ed the rule

update mechanism and increased exploration by means of a dif-

ferent transition rule. Ant-Miner+ [14] extended Ant-Miner with

a class-based heuristic information, where an ant pre-selects the

predicted class value and extracts a rule accordingly. It also employs

a di�erent pheromone initialization and update procedure based on

MAX–MIN Ant System (MMAS) [21], and copes with ordinal

a�ributes by using a simpli�ed construction graph.

cAnt-Miner was proposed by Otero et al. [15, 16], where a dy-

namic entropy-based discretisationmethod is proposed for handling

continuous a�ributes during the rule construction process. �e use

of the minimum description length principle in cAnt-Miner allow

construction of discrete intervals with lower and upper bounds.

cAnt-Miner’s pheromone model added a node for each continuous

a�ribute. When a node representing a continuous a�ribute is se-

lected, the dynamic discretisation procedure is used to choose an

operator and value to create a term in the form (ai ≤ vi j ), (ai > vi j )

or (v1i j < ai ≤ v2i j ).

cAnt-MinerPB was proposed by Otero et al. [17], which included

a new strategy to create a list of rules. Each ant would create a

complete list of rules at each iteration, rather than just one rule at a

time. One important characteristic of the new strategy is that ants

are guided by the quality of a complete list of rules, allowing the

algorithm to cope be�er with the problem of rule interation. Ant-

MinerPAE proposed by Yang et al. [22] extended cAnt-MinerPBby

incorporating a principal of a�raction and exclusion of pheromone.

�e graph-based pheromone model has been heavily researched

since the introduction of Ant-Miner. An alternative approach of

extending Ant-Miner is the implementation of a hybrid approach,

such as PSO/ACO2 [5]. �e main motivation is to combine the

strength points of both PSO and ACO approaches: PSO is known to

cope well with continuous-valued a�ributes, while ACO naturally

handles nominal-valued ones.

2.2 Archive-based Pheromone Model

Ant-MinerMA proposed by Helal and Otero [4], is an Ant-Miner

mixed-a�ributes approach for classi�cation rule discovery. Ant-

MinerMA was inspired by the ACOMV algorithm to handle mixed

a�ributes types at the same time, eliminating the need of a discreti-

sation—either as a pre-processing or dynamically—when handling

a continuous a�ribute, and also coping with ordinal a�ributes. An

archive is used to sample conditions for the creation of the rules,

instead of using ants to traverse a construction graph.

Ant-MinerMA starts by initializing the solution archive with R

random generated rules (solutions). Each solution Sj is associated

with weight w j related its quality Q (Sj ), where w j is calculated

using a Gaussian function. In each iteration, an ant creates a single

rule using an ACOMV procedure. Once m new rules have been

created, wherem is the number of ants, they are added into the

solution archive. �e R and m rules are sorted based on quality

of solutions and them worst ones are removed from the archive.

�e procedure to create a new rule is repeated until the maximum

number of iterations has been reached, or a restart procedure is

applied to avoid early stagnation.

During rule creation, the procedure probabilistically decides

which terms to include using a discrete sampling procedure on the

archive to sample an enable �ag to determine if the term should be

included or not. If the term is enabled, a discrete sampling procedure

is used to choose to choose an operator. Finally, the value of each

a�ribute is then determined: if the a�ribute type is continuous, a

continuous sampling procedure is used; if the a�ribute is ordinal, a

continuous sampling procedure is used and the result is rounded

up to the nearest index to preserve the natural order of the a�ribute

values; categorical terms are determined using a discrete sampling

procedure.

�e sampling of continuous values is handled by ACOMV using

ACOR [19], where each ant i probabilistically chooses one solution

from the archive based on their weight and samples a new solution

around the chosen solution using a normal probability density

function. �e ordinal sampling works exactly as the continuous,

with the di�erence that the real value is rounded to the nearest

valid index. �e categorical sampling procedure was �rst proposed

in ACOMV [19]. Given a categorical variable x that has t possible

values, each ant has to choose vi—where vi ∈ {v1,v2, . . . ,vt }—

according to a weight calculated based on two components: the �rst

component biases the sampling towards values that are used in high-

quality solutions but do not occur very frequently in the archive;

the second component biases the sampling towards unexplored

values for the given a�ribute.

�e Ant-MinerMA approach, which is the only Ant-Miner varia-

tion using an archive-based pheromone model to the best of our

knowledge, has shown competitive results with cAnt-Miner algo-

rithm. �e archive-based pheromone model improved signi�cantly

the runtime, since it eliminates the need for a discretisation pro-

cedure. On the other hand, the graph-based pheromone model

showed superiority when dealing with datasets that have a large

number of a�ributes, as the graph allows the algorithm to easily

identify good a�ributes to use.

3 AUTOMATIC DESIGN OF ANT-MINERMA

As discussed in the previous section, both graph-based and archive-

based pheromone models have their merits. Combining concepts

from both approaches could potentially lead to improved runtime

and a be�er capacity to handle datasets with a large number of

a�ributes.

�ere are a number of design questions when building a frame-

work to combine both archive-based and graph-based pheromone

models. Ant-MinerMA uses the archive pheromone model to sam-

ple rule term components, such as the a�ribute, the operator and
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Algorithm 1: High-level pseudocode of Ant-MinerMA+G

Data: training data

Result: list of rules

1 RuleList← {}

2 while TrainingData.Size() <MaxUncovered do

3 A← Generate Random Rules

4 while t ¡ MaxIterations and not Restarted do

5 At ← {}

6 while i ¡ number of ants do

7 Ri ← Create New Rule (Section 3.1)

8 Ri ← Prune(Ri ) (Section 3.2)

9 i ← i + 1

10 At ← Ri

11 end

12 A← UpdateArchive(At ) (Section 3.3)

13 A← UpdateGraph(At ) (Section 3.3)

14 t ← t + 1

15 if stagnation() then

16 Restart(A) (Section 3.3.3)

17 Restarted← True

18 end

19 end

20 Rbest ← BestRule(A) (Section 3.2)

21 RuleList← RuleList + Rbest
22 TrainingData← TrainingData − covered(Rbest )

23 end

24 return RuleList

the value; ants in cAnt-Miner traverse the graph-based pheromone

model to create rules, using the pheromones deposited on each node

as an indication of the current best a�ributes-value pairs, and in

the case of continuous a�ributes, they use a dynamic discretisation

procedure based on the entropy measure.

�e design questions that we are interested in this work are:

(1) Should the archive pheromone model be used only for contin-

uous values, or should it also be used for nominal and ordinal

values?

(2) Should the operator be selected using the archive pheromone

model, or should it be added to the graph pheromone model?

(3) How should both pheromone models be updated?

Instead of following a manual approach of testing each possible

con�guration of Ant-MinerMA, which would require large amount

of human and computational time, we propose the use of an auto-

mated algorithm con�guration tool to obtain a high-performing

Ant-MinerMA variant. We are inspired by the work of Lopez and

Stützle [12], which used I/F-Race [1, 11] to deal with the automatic

design and con�guration of parameters to obtain a multi-objective

ant colony optimization algorithm. In order to use an automatic

con�guration tool, we created a framework of design algorithmic

components from which new variants of Ant-MinerMA could be

generated.

On a high level, Ant-MinerMA+G starts with an empty list of rules

and iteratively adds the best rule found along the iterative process

while the number of uncovered training examples is greater than

a maximum uncovered value. It uses the same rule creation loop

Table 1: Algorithmic components of the proposed Ant-

MinerMA+G.

Design components

Ordinal a�ributes:





1: Using ordinal with range condition

2: Using Ordinal without range condition

3: Not using ordinal

Operator selection:
{

2: Using archive for sampling conditions

1: Using graph for choosing conditions

Categorical a�ributes:





1: Archive sampling

2: Archive sampling and not equal condition

3: Using graph for choosing categorical value

Prune �ality Function:

See Table 2

Selection �ality Function:

See Table 2

Pheromone limits:
{

1: Max-Min limits

2: No limits

Archive top rule updates graph pheromone model:





1: First iteration a�er the archive is created

2: At the end of each iteration

3: Never updates

Updating graph pheromone model with:
{

1: Best iteration rule

2: All rules added to the archive

Value used to update graph pheromone model:
{

1: Weight of the rule in the archive

2: �ality of the rule

Pheromone restart:
{

1: Restart both the pheromone models

2: No restart

as Ant-MinerMA. Algorithm 1 shows the high-level pseudocode of

the Ant-MinerMA+G algorithm.

�e following subsections present the di�erent design approa-

ches that were implemented in Ant-MinerMA+G—a summary of

the algorithmic components are shown in Table 1. We divided

the design approaches into several algorithmic components and

grouped them into three main categories: (1) rule construction; (2)

pheromone model; and (3) quality function con�gurations.

3.1 Rule Construction

A crucial design decision when combining both pheromone models

is de�ning each pheromone model’s contribution in solution cre-

ation. �is problem is exacerbated by the fact that there are two

di�erent ways to create a solution and we want to �nd the opti-

mal approach between both construction methods. �e following

sections will show di�erent algorithmic approaches for operator,

ordinal and categorical a�ributes selection. Note that we do not

consider using a graph-based model to select continuous a�ributes

values, since this would involve using a discretisation procedure.
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�e basic framework of Ant-MinerMA+G consists of a fully con-

nected construction graph. Let ai be an a�ribute, i = 1, ...,n where

n is the number of a�ributes; each a�ribute is added as a node

(ai ) to the graph. Suppose an ant l is generating a rule rl . It starts

with an empty rule at node i and probabilistically chooses to visit

a node j based on the amount of pheromone on the edge Ei j . For

the value selection, we will always use the archive model to sample

the continuous value using a continuous sampling procedure on

the subset of the archive rules that a term enabled using the same

a�ribute and operator.

3.1.1 Ordinal a�ributes. Ant-MinerMA+G framework implemen-

ts a procedure for ordinal a�ribute, where it uses the continuous

sampling procedure from ACOMV on the indexes of the ordinal

values. �is was based on ACOMV approach to bene�t from the

natural order of the ordinal a�ribute values. �e possible conditions

used for Ant-MinerMA+G ordinal a�ributes are {ai ≤ v , ai > v ,

v1 < ai ≤ v2)}—the la�er is referred to as RANGE. Ant-MinerMA+G

framework implements three possible approaches to handle ordinal

a�ributes:

(1) Sampling from three possible operators {≤, >, RANGE};

(2) Sampling from two possible operators {≤, >};

(3) Handling ordinal a�ributes as categorical a�ribute without

any special treatment—i.e., conditions are always in the

form ai = v .

3.1.2 Categorical a�ributes. Ant-MinerMA+G implements a pro-

cedure for categorical a�ribute, where it use the discrete sampling

procedure from ACOMV on the indexes of the categorical value

on the archive rules. �e only possible condition used for Ant-

MinerMA+G categorical a�ributes is ai = v . Ant-MinerMA+G frame-

work implements three possible approaches to handle categorical

a�ributes:

(1) �e archive pheromone model is used to sample the value;

(2) �e archive pheromone model is used to sample the value

and only of two possible operators {=, ,};

(3) �e graph pheromonemodel is used for categorical values—

each categorical node has the form (a�ribute, =, value) and

there is a node for each value in the domain of the a�ribute

(refer to section 2.1).

3.1.3 Operator configurations. Ant-MinerMA+G uses the archive

to sample operators using a discrete sampling procedure. �e frame-

work has two possible approaches to handle operator selection:

(1) �e archive pheromone model is used to select the operator

according to the a�ribute type, similar to Ant-MinerMA

procedure;

(2) �e graph pheromone model is used to select the operator.

In this case, each node of the graph consists of a pair (at-

tribute, operator). Let ac be a categorical a�ribute, each

a�ribute will be associated with the equal operator and

added as a node to the graph, such as (ac , =). Let ar be a

continuous a�ribute, each a�ribute will be associated with

three operators and three nodes will be added to the graph,

such as (ar , ≤), (ar , >) and (ar , RANGE). Finally, let ao be

an ordinal a�ribute, each a�ribute will be associated with

two operators and two nodes will be added to the graph,

such as (ao , ≤) and (ao , ≥).

Table 2: Rule qualify function used for pruning and selec-

tion procedures.

Functions Parameter

Precision (P) -
T P

T P+FP

Con�dence Coverage (CC) -
T P

T P+FP +
T P
SM

Cost measure (CM) c = 0.437

(c ×T P ) − ((1 − c ) × F P )

Fmeasure (FM) β = 0.5
(1+β 2 ) . T P

T P+FN .

T P
T P+FP

β 2
.

T P
T P+FN .

T P
T P+FP

Jaccard (J) -
T P

T P+FP+FN

Klosgen (K) ω = 0.4323

(T P+FPS )ω .( T P
T P+FP −

T P+FN
S )

Laplace (L) k = number of classes
T P+1

T P+FP+k

MEstimate (ME) m = 22.466
T P+m .

T P
S

T P+FP+m

Relative Cost Measure (RCM) cr = 0.342

cr × T P
T P+FN − (1 − cr ) × FP

T N+FP

Precision Inverted (PI) -
(FP+TN )−FP
(S )−(T P+FP )

MEstimate Inverted (MEI) m = 22.466
(FP+TN )+m×T P+FNS

(S )−(T P+FP+m )

Laplace Inverted (LI) k = number of classes
(FP+TN )−FP+1
(S )−(T P+FP+k )

Sensitivity and Speci�city(SS) -
T P

T P+FN ×
TN

TN+FP

3.2 �ality Function Con�gurations

�e quality function con�gurations in the rule creation process typ-

ically represent a trade o� between consistency and coverage—i.e.,

they prefer rules that cover as few negative and as many positive

instances as possible [3, 6]. A quality function is used in two di�er-

ent places in this process: (i) in evaluating rule re�nements in the

pruning process, where it bias the selection of re�nements of the

current rule to be explored; (ii) in rule evaluation, where it bias the

selection of the rules that are added to the list of rules.

Stecher et al. [20] argued that these tasks should be treated sep-

arately and be evaluated with separate functions. Rule re�nements

function in Ant-MinerMA+G are used in the pruning procedure,

while rule selection functions are used in the archive sorting and

selection of rules to added to the model. We implemented thirteen

di�erent functions, presented in Table 2. For the parametric rule

quality functions, we used the default parameter values proposed

in [6]—these are shown in the ‘Parameter’ column in Table 2. We

use a series of shorthand to condense the equations, as below:

• TP (True Positives): �e number of instances covered by

a rule that belong to the class predicted by the rule;
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Table 3: I/F-Race con�gurations of Ant-MinerMA+G, where the starred con�gurations values are found in Table 1.

Con�gurations
AntMinerMA

1 2 3 4 5 6

Local Search 0.893 0.412 0.487 0.118 0.112 0.964

Convergence 0.109 0.715 0.231 0.754 0.216 0.808

Archive Size 47 105 9 54 108 12

Max Iterations 1648 757 1442 719 704 1820

Uncovered Instances by model 16 10 14 19 7 9

Minimum covered by rule 11 10 15 10 17 8

Ant Colony Size 26 9 86 36 34 74

Stagnation Limit 26 78 32 82 15 18

Prune�ality J CC CM LI SS J

Selection�ality SS SS SS SS SS SS

Ordinal a�ributes* 1 2 3 2 1 1

Conditions* 1 1 1 1 1 1

Categorical A�ributes* 2 3 2 2 3 2

Top Rule updating the Graph Pheromone* 2 2 1 3 2 2

Updating the Graph Pheromone* 1 2 2 1 1 2

�e Value Graph Pheromone Model* 1 1 1 1 1 1

Restart* 2 2 2 2 2 2

Pheromone Type* 2 2 2 1 2 2

Pheromone Initial NA NA NA 2.491 NA NA

Evaporate Factor NA NA NA 0.809 NA NA

Pheromone Best NA NA NA 0.917 NA NA

Table 4: Training datasets.

Dataset Size Ordinal Categorical Continuous

ionosphere 351 0 0 34

dermatology 366 33 0 1

cylinder-bands 540 2 14 19

annealing 898 0 29 9

credit-g 1000 11 2 7

MiceProtein 1080 0 3 77

HillValley 1212 0 0 100

eb 45781 0 1 2

adult 48842 0 8 6

SkinNonSkin 245057 0 0 3

• FP (False Positives): �e number of instances covered by

a rule that do not belong to the class predicted by the rule;

• TN (TrueNegatives): �e number of instances not covered

by a rule that do not belong to the class predicted by the

rule;

• FN (FalseNegatives): �e number of instances not covered

by a rule that belong to the class predicted by the rule;

• S (TP + FP + TN + FN): �e total number of training in-

stances.

3.3 Pheromone Models Con�gurations

�ere are three con�gurations regarding how the pheromone mod-

els are used in Ant-MinerMA+G.

3.3.1 Graph Pheromone Model. Ant-Miner extensions used dif-

ferent graph pheromone update procedures. One of the most com-

mon update procedures based on theMAX–MIN Ant System

(MMAS) [21]. In the Ant-MinerMA+G framework, there are two

approaches for updating the graph pheromone model:

Table 5: Testing datasets.

Dataset Size Ordinal Categorical Continuous

breast-tissue 106 0 0 9

iris 150 0 0 4

wine 178 0 0 13

parkinsons 195 0 0 22

glass 214 0 0 9

breast-l 286 4 5 0

heart-h 294 3 3 7

heart-c 303 3 3 7

liver-disorders 345 0 0 6

breast-w 569 0 0 30

balance-scale 625 4 0 0

credit-a 690 4 4 6

pima 768 0 0 8

MolecularBiology 3189 0 60 0

ChoralsHarmony 5665 0 13 1

Mushroom 8124 0 22 0

PenDigits 10992 0 0 16

Magic 19020 0 0 10

CardClients 30000 7 2 14

Nomao 34465 0 29 89

bank-additional 41188 0 10 10

connect4 67557 0 42 0

diabetes 101766 2 34 11

ForestType 581012 0 44 10

PokerHand 1025010 5 0 5

(1) MMAS, where the parameters are shown in Table 8;

(2) Ant-Miner, where the pheromone associated with each

term occurring in the rule created by an ant is increased

in proportion to the quality of the rule in question; the

pheromone associated with each term that does not occur
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Table 6: Average predictive accuracy (average [standard deviation]) over 15 runs of tenfold cross-validation. �e last row of

the table shows the average rank of the algorithm. �e best value of a given dataset is shown in bold.

Ant-MinerMA+G

Dataset 1 2 3 4 5 6 Ant-MinerMA cAnt-Miner

breast-tissue 64.81 [0.94] 63.35 [0.83] 66.07 [0.76] 65.83 [0.72] 65.84 [0.63] 66.93 [0.68] 60.24 [0.97] 64.24 [0.24]

iris 94.98 [0.22] 94.80 [0.27] 94.40 [0.26] 95.16 [0.20] 95.02 [0.17] 95.33 [0.13] 93.60 [0.31] 94.27 [0.11]

wine 92.61 [0.50] 93.05 [0.39] 92.00 [0.32] 92.69 [0.39] 92.72 [0.49] 93.34 [0.47] 90.78 [0.40] 93.52 [0.07]

parkinsons 83.77 [0.58] 86.06 [0.49] 84.71 [0.72] 82.40 [0.57] 84.39 [0.48] 84.09 [0.57] 86.29 [0.64] 85.22 [0.40]

glass 67.52 [0.39] 68.72 [0.56] 65.04 [0.57] 66.42 [0.66] 63.15 [0.77] 68.27 [0.49] 63.24 [0.50] 59.18 [0.32]

breast-l 71.95 [0.39] 73.73 [0.42] 72.24 [0.26] 72.94 [0.41] 70.23 [0.31] 72.54 [0.38] 71.46 [0.34] 76.17 [0.11]

heart-h 60.90 [0.39] 61.81 [0.30] 60.08 [0.38] 59.47 [0.48] 59.67 [0.43] 60.39 [0.51] 64.37 [0.29] 64.81 [0.33]

heart-c 55.59 [0.53] 55.99 [0.30] 55.97 [0.25] 55.64 [0.38] 55.99 [0.39] 55.36 [0.36] 56.94 [0.54] 57.42 [0.32]

liver-disorders 61.44 [0.48] 63.76 [0.61] 64.41 [0.53] 62.47 [0.41] 62.97 [0.22] 61.89 [0.60] 63.13 [0.49] 62.26 [0.18]

breast-w 93.58 [0.26] 93.22 [0.33] 93.29 [0.22] 91.67 [0.20] 93.75 [0.22] 93.48 [0.19] 93.53 [0.22] 94.28 [0.11]

balance-scale 73.56 [0.31] 74.38 [0.28] 73.30 [0.23] 73.34 [0.32] 74.97 [0.35] 74.00 [0.32] 80.10 [0.22] 68.34 [0.08]

credit-a 85.29 [0.19] 85.59 [0.15] 85.08 [0.18] 85.10 [0.20] 85.30 [0.16] 85.01 [0.17] 85.19 [0.22] 85.74 [0.11]

pima 73.81 [0.39] 73.51 [0.27] 74.45 [0.20] 72.80 [0.30] 73.63 [0.37] 72.75 [0.42] 75.30 [0.21] 67.45 [0.07]

MolecularBiology 84.09 [0.37] 69.92 [0.65] 83.46 [0.39] 79.46 [0.58] 83.66 [0.49] 84.52 [0.36] 56.09 [0.20] 81.31 [0.74]

ChoralsHarmony 61.42 [0.12] 60.44 [0.12] 62.18 [0.11] 61.31 [0.12] 60.16 [0.13] 62.51 [0.10] 64.14 [0.15] 60.66 [0.11]

Mushroom 97.46 [0.15] 97.05 [0.20] 98.89 [0.08] 96.82 [0.23] 93.98 [0.17] 98.52 [0.10] 99.71 [0.02] 95.10 [0.27]

PenDigits 82.15 [0.16] 81.07 [0.31] 86.18 [0.23] 79.21 [0.25] 85.76 [0.15] 86.28 [0.14] 71.56 [0.30] 56.92 [0.03]

Magic 80.65 [0.06] 81.35 [0.14] 81.74 [0.08] 80.10 [0.19] 81.31 [0.06] 80.61 [0.17] 82.67 [0.05] 70.41 [0.01]

CardClients 81.42 [0.12] 81.18 [0.10] 81.44 [0.04] 80.82 [0.12] 81.55 [0.05] 81.07 [0.11] 81.80 [0.02] 80.63 [0.00]

Nomao 88.74 [0.28] 89.76 [0.26] 90.99 [0.23] 86.84 [0.28] 88.68 [0.26] 90.77 [0.10] 87.77 [0.05] 90.66 [0.02]

bank-additional 90.60 [0.02] 90.32 [0.03] 90.74 [0.02] 90.41 [0.02] 90.57 [0.04] 90.62 [0.03] 89.49 [0.02] 89.87 [0.01]

connect4 67.90 [0.04] 67.42 [0.06] 69.51 [0.08] 67.72 [0.06] 67.49 [0.04] 68.37 [0.06] 68.18 [0.02] 67.83 [0.01]

diabetes 56.01 [0.03] 54.09 [0.03] 55.87 [0.05] 56.10 [0.03] 54.24 [0.05] 55.89 [0.07] 55.92 [0.09] 54.17 [0.13]

ForestType 68.92 [0.17] 67.25 [0.27] 69.51 [0.53] 67.02 [0.21] 69.09 [0.21] 69.15 [0.33] 68.38 [0.07] 63.07 [0.07]

PokerHand 50.23 [0.01] 50.25 [0.01] 51.39 [0.04] 51.56 [0.04] 51.74 [0.03] 50.24 [0.00] 52.01 [0.04] 50.20 [0.00]

Average Rank 4.52 4.6 3.68 5.52 4.44 3.88 4.08 5.28

in the rule is decreased by normalizing all the pheromones

values a�er the update.

3.3.2 Updating Pheromone Models. �e level of interaction be-

tween the two pheromone models could range from no interaction

at all, to close interaction between them, as below:

(i) Archive top rule updates graph pheromone model:

(1) In the �rst iteration a�er the archive is created;

(2) At the end of each iteration;

(3) Never updates the graph pheromone.

(ii) �e graph pheromone model is updated with:

(1) �e best iteration rule;

(2) All rules that have been added to the archive.

(iii) �e value used to update the graph pheromone model:

(1) �e weight of the rule in the archive;

(2) A value proportional to the quality of the rule.

3.3.3 Restart procedure. �e restart procedure resets both phe-

romone models to the start point without forge�ing the best-so-far

solution in the archive. It is used to avoid premature stagnation

of the algorithm. �e reset procedure is triggered (only once) by

observing a number of consecutive iterations without improvement

on the quality of the best rule so far. It works by randomly initial-

izing the archive and rese�ing graph pheromone values to their

initial value.

4 COMPUTATIONAL RESULTS

Our computational experiments were computed using 35 publicly

available dataset from the UCI Machine Learning Repository [8].

�e datasets were divided into two sets: a training set (shown in

Table 4) and a testing set (shown in Table 5).

In the �rst part the experiments, our goal is automatically design

a be�er variant for Ant-MinerMA algorithm using the proposed con-

�gurable framework Ant-MinerMA+G discussed in Section 3 using

automatic con�guration method I/F-Race. I/F-Race is a state-of-the-

art automatic con�guration method to deal with continuous, cate-

gorical, and discrete parameters. I/F-Race generates new candidate

con�gurations and performs races to discard the worst-performing

ones. Within a single race of I/F-Race, candidate con�gurations run

on one instance at a time and a Friedman test followed by a post-test

analysis is applied to discard con�gurations that show a su�cient

statistical evidence that they perform worse than the remaining

ones. A�er only a small number of con�gurations remain in the

race, the race stops. A new race starts with the best con�gurations

previously found and with new candidate con�gurations generated

from the best con�gurations using a simple probabilistic model.

�e automatic con�guration process stops a�er reaching a given

maximum budged, usually speci�ed as a maximum number of runs

or a time limit.

López-Ibáñnez and Stutzle [12] showed that fully con�guring the

design components and ACO parameter se�ings has an advantage.

�is may be due to interaction between the design components and



Automatic Design of Ant-Miner Mixed A�ributes for Classification Rule Discovery GECCO ’17, July 15-19, 2017, Berlin, Germany

Table 7: Average runtime over 15 runs of tenfold cross-validation. �e last row of the table shows the average rank of the

algorithm. �e best value of a given dataset is shown in bold.

Ant-MinerMA+G

Dataset 1 2 3 4 5 6 Ant-MinerMA cAnt-Miner

breast-tissue 1.19 1.34 1.41 1.97 1.36 0.86 0.38 0.67

iris 0.48 0.94 0.86 1.04 0.93 0.75 0.28 0.49

wine 1.13 1.19 1.13 1.46 1.16 0.85 0.56 0.56

parkinsons 1.18 1.51 1.68 1.73 1.58 1.36 0.78 2.87

glass 1.51 2.11 2.15 3.09 1.93 2.00 0.50 2.66

breast-l 1.17 1.12 1.82 1.90 1.55 1.11 0.54 1.28

heart-h 1.66 2.37 3.02 3.70 2.33 2.47 0.72 12.61

heart-c 2.05 2.60 3.21 3.44 2.60 3.03 0.76 10.91

liver-disorders 1.36 1.87 2.21 2.59 1.81 1.52 0.47 1.81

breast-w 3.04 2.64 4.25 4.07 3.31 2.64 2.31 5.40

balance-scale 1.12 1.33 2.12 2.09 1.55 1.34 0.50 5.95

credit-a 2.44 2.24 4.43 4.06 3.16 2.56 1.10 11.57

pima 2.46 2.59 3.61 3.43 2.74 2.60 0.93 3.69

MolecularBiology 23.96 52.34 32.47 23.29 63.77 26.95 12.50 345.10

ChoralsHarmony 148.98 102.07 258.18 284.83 100.44 229.80 11.56 6320.00

Mushroom 11.08 4.91 25.36 22.28 4.60 19.60 9.09 11.56

PenDigits 173.83 107.12 294.15 176.00 164.38 251.87 23.92 135.79

Magic 198.34 145.74 199.70 197.71 161.93 158.76 25.56 155.07

CardClients 458.64 188.10 830.95 409.17 445.07 546.12 106.17 1060.10

Nomao 564.90 310.67 846.17 804.15 391.73 433.15 2440.88 779.77

bank-additional 240.03 121.20 338.18 307.17 242.78 355.86 185.27 1970.72

connect4 1263.02 878.05 4304.96 1405.23 1475.85 2950.35 1259.82 14380.04

diabetes 4043.66 4723.35 7208.30 2470.67 9669.81 6363.74 4374.27 313685.51

ForestType 49580.33 29274.07 72685.69 35223.81 64891.29 59500.34 40367.47 52746.55

PokerHand 6109.91 3415.63 11183.90 10218.68 6755.00 7442.81 2647.72 27872.59

Average Rank 3.32 3.32 6.6 5.92 4.6 4.4 1.6 6.24

ACO parameter se�ings. We therefore followed a similar approach,

where I/F-Race optimises both the design components and ACO

parameter se�ings—these are shown in Table 8. �e con�guration

budget is set to 10000 runs. We perform �ve independent repetitions

of the con�guration process using the accuracy as the evaluation

criterion. �e best con�guration found in each of the �ve runs

were then used as seed candidates for a �nal I/F-Race con�guration

process. �erefore, we created six di�erent con�gurations through

six independent I/F-Race processes. �e datasets used by the I/F-

Race is shown in Table 4. It is important to note that the testing

datasets are not used to evaluate the con�gurations.

�e six con�gurations found by the independent runs of I/F-Race

are shown in Table 3. �e con�guration values are presented in Ta-

ble 1 and the keys are used in Table 3 to describe the con�gurations

found by I/F-Race.

�e resulting con�gurations did show the impact of using a graph

pheromone model, since the option of sampling operators using

the graph was used in every winning con�guration. �is provides

evidence for our �rst assumption that the graph pheromone model

works well with nominal values. Categorical a�ributes showed

interesting results as two options surfaced: (1) using the graph to

select the categorical value, which is the expected behaviour; and

(2) sampling from archive was used when we added the not equal

(,) operator. Also, using the value of the rule weight of the archive

proved to produce be�er con�gurations. �e con�guration of the

quality functions showed an interesting behaviour. While di�erent

functions were considering when pruning rules, the sensitivity and

speci�city dominated the con�guration for evaluating rules for

selection, providing a good indication of the bene�t of using this

function—it is the same function used in the original Ant-Miner.

�ose six con�gurations are evaluated on the testing datasets

(shown in Table 5) by running them 15 times in a tenfold cross-

validation (a total of 150 individual runs) on every dataset. �e

average results are shown in Table 6. For comparison, we ran the

previous version of Ant-MinerMA [4] and cAnt-Miner [16]. We also

measured the average runtime of the algorithms, shown in Table 7.

Two of con�gurations of Ant-MinerMA+G showed a higher av-

erage ranking than the original Ant-MinerMA, while most of the

con�gurations showed a higher average rank than cAnt-Miner. One

of the interesting datasets to look at is Nomao, which is one of the

largest datasets with 34465 instances and 118 a�ributes: cAnt-Miner

achieved a 90.66% accuracy, higher than Ant-MinerMA (87.77% ac-

curacy); the runtime of cAnt-Miner was 779 seconds, be�er than

Ant-MinerMA(2440 seconds). �is case was noted in [4], where

it was believed that the number of a�ributes did a�ect the Ant-

MinerMA performance. Notably, the proposed Ant-MinerMA+G

framework did show an improvement in the con�guration Ant-

MinerMA+G (3), where it achieved a be�er performance (90.99%

accuracy) and a runtime of 846 seconds, which is still lower than

Ant-MinerMA.

We performed a Wilcoxon signed rank test (shown in Table 9) to

compare the accuracy results of Ant-MinerMA+G (3), Ant-MinerMA
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Table 8: Range of parameter values in Ant-MinerMA+G.

Parameters range of Values

Local search [0.001, 1]

Convergence [0.001, 1]

Archive size [5, 150]

Maximum iterations [500, 2500]

Uncovered instances [5, 25]

Minimum covered by rule [5, 25]

Ant colony size [5, 90]

Stagnation limit [10, 100]

Initial pheromone [1, 10]

Evaporate factor [0.001, 1]

Best pheromone [0.001, 1]

Table 9: Accuracy comparison according to a Wilcoxon

signed rank test. Signi�cant di�erences at α = 0.5 are shown

in bold.

Wilcoxon Signed Rank Test p

Ant-MinerMA+G (3) vs cAnt-Miner 0.0139

Ant-MinerMA vs cAnt-Miner 0.1936

and cAnt-Miner. Ant-MinerMA+G (3) shows a signi�cant improve-

ment in terms of accuracy over cAnt-Miner (p value 0.0139), while

the baseline Ant-MinerMA could not show signi�cant improvement

in terms of accuracy over cAnt-Miner. �e results also shows that

the graph pheromone model improved the performance of the Ant-

MinerMA+G algorithm in datasets with large number of a�ributes.

5 CONCLUSION

In this paper we introduced the concept of combining the graph

pheromone model and the archive pheromone model, based on

Ant-MinerMA and cAnt-Miner algorithms. �e use of the solution

archive allows the algorithm to deal with continuous a�ributes

without requiring a discretisation procedure, while using the graph

pheromone model improves the performance of algorithm for data-

sets containing large number of a�ributes.

Instead of manually designing a new algorithm to combine both

pheromone models, we used a fully con�gurable framework Ant-

MinerMA+G using an automatic design process. I/F-Race, which is

a state of the art automatic con�guration tool, was used to generate

�ve di�erent con�gurations for the Ant-MinerMA+G algorithm.

Each one of those automatically designed preformed competitively

well against the baseline algorithms.

Our experimental results have shown that such an automati-

cally con�gured design outperforms the cAnt-Miner algorithm to

a signi�cant level, and solved the problems Ant-MinerMA faced

when dealing with datasets with a large number of a�ributes. �e

automatic framework also provides the �exibility to design an al-

gorithm speci�c a given dataset. As a future research direction, we

would investigate the automatic design of Ant-MinerMA+G for each

dataset individually. We expect that this could further improve the

predictive accuracy of the algorithm.
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