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Neutral Fermion Excitations in the Moore-Read state at ν = 5/2

Gunnar Möller,1 Arkadiusz Wójs,1,2 and Nigel R. Cooper1
1TCM Group, Cavendish Laboratory, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom

2Institute of Physics, Wroclaw University of Technology, 50-370 Wroclaw, Poland

(Dated: September 24, 2010)

We present evidence supporting the weakly paired Moore-Read phase in the half-filled second
Landau level, focusing on some of the qualitative features of its excitations. Based on numerical
studies, we show that systems with odd particle number at the flux Nφ = 2N −3 can be interpreted
as a neutral fermion mode of one unpaired fermion, which is gapped. The mode is found to have
two distinct minima, providing a signature that could be observed by photoluminescence. In the
presence of two quasiparticles the same neutral fermion excitation is shown to be gapless, confirming
expectations for non-Abelian statistics of the Ising model with degenerate fusion channels 1 and ψ.

Previous studies of the ν = 5/2 quantum Hall ef-
fect [1] have accumulated mounting evidence in favor of
the Moore–Read state [2–4] of weakly paired composite
fermions (CFs) [5]. Because of its potential application
in topological quantum computation [6], scrutinizing the
physical realization of this phase at ν = 5/2 is a great
challenge of fundamental and technological importance
[6–8]. Theoretically, the main evidence comes from adia-
batic connection [9, 10] and significant overlaps of the ex-
act ground state in finite model systems with the Moore-
Read (MR) state [4] or more general weakly paired wave
functions [9]. The key expectation is that that, by exten-
sion, the quasiparticles of this gapped topological phase
are described by the same underlying (Ising) conformal
field theory and obey non-Abelian statistics.

In this Letter, we provide an approach that tests the
qualitative properties of the ν = 5/2 quasiparticles di-
rectly, using numerical analysis in the spherical geome-
try [11]. Our results support the predictions of Moore
and Read [2], without reference to any trial wave func-
tion. First, as a consequence of the pairing, it is expected
that odd-numbered configurations should be disfavored
[3]. We investigate this effect for a selection of simple
two-body Hamiltonians such as the Coulomb interaction
in the second Landau level (LL). (We focus on qualitative
features, and exclude detailed modeling of effects such as
finite width [12] or LL mixing [13, 14], and assume full
spin polarization [15–17].) We show that systems with
odd particle number at the flux of the MR ground state
possess a dispersing band of low-lying excitations which
we interpret as a neutral fermion (NF) mode arising from
an unpaired electron. This NF mode has an energy gap
∆NF of the order of the charge gap ∆c [18]. Second, we
study the energetics of a NF in the presence of charged
quasiparticles (QPs): positive quasiholes (QHs) or neg-
ative quasielectrons (QEs). In this case, our thermody-
namic extrapolations of the energy are consistent with a
gapless NF. This confirms one of the core features of the
non-Abelian statistics of the MR state: the topological
degeneracy of two possible fusion channels 1 and ψ of a
pair of two distant QPs, corresponding to the absence
or presence of an additional fermion. Furthermore, we

determine the NF dispersion and propose an experiment
to probe it directly. We also give the first evidence that
the QHs and QEs of the ν = 5/2 state (for microscopic
two-body Hamiltonians) fuse in the ψ channel.

For our studies, we perform exact diagonalizations of
model Hamiltonians for N ≤ 20 spin-polarized, quasi
two-dimensional (2D) electrons on a sphere of radius R
pierced by Nφ = 2N − σ magnetic flux quanta. The MR
Pfaffian state is at the shift of σ = 3. We consider three
model Hamiltonians: First, the Coulomb interaction HC

in the second LL, as defined by the pseudopotential co-
efficients either for a 2D layer of effective width w = 0
or w = 3λ (λ being the magnetic length). Second, a
modified Coulomb interaction H1, with the short-range
pseudopotential V1 (for pairs with relative angular mo-
mentum m = 1) increased by δV1 = 0.04e2/λ. This
increase in V1 is known to yield maximum overlap with
the MR Pfaffian [9, 19], and was found to mimic LL mix-
ing [20] in the perturbative analysis of Bishara-Nayak
[14, 21]. Third, and finally, the “Pfaffian (Pf) model”
given by the projector on triplets of minimal relative an-

gular momentum (m = 3), HPf =
∑

i,j,k P
(3)
ijk . Though

we focus on the Pfaffian state, the particle-hole symmetry
of the two-body interactions HC , H1 makes our conclu-
sions equally valid for its conjugate, the “anti-Pfaffian”.

We now analyze the excitation spectra of these Hamil-
tonians. A typical set of raw data is shown in Fig. 1 for
N = 15 particles. Here we first focus on Figs. 1(d-f), in
which we confirm the existence of a dispersive mode asso-
ciated with a single fermionic QP for finite systems with
an odd N [3]. All these three spectra feature a ground
state at nonzero angular momentum within a low-lying
band of collective excitations. Empirically, we find that
this well-separated band extends up to the angular mo-
mentum L = N/2, as seen most clearly for HPf. The
minima of the dispersion are far below the continuum.
Eigenstates within the band are spaced by ∆L = 1, as
expected for a single mobile NF in the background of an
underlying quantum liquid.

In Fig. 2 we collected data from energy spectra for
different N ≤ 19 to estimate the NF dispersion, which
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is compared to the magnetoroton mode in Fig. 2(c). To
reduce finite-size effects, for each N we used polynomial
interpolation of our data to locate the wave vector k0
and the energy E0 corresponding to the minimum of the
dispersion. We find that k0(N) is essentially constant,
and the minimum E0 is well described by E0(N) ≃ ∆NF+
β/N , converging to a finite NF gap ∆NF measured with
respect to the MR ground state energy [22]. Subtracting
the finite-size scaling, our data reduce to one well-defined
curve (most accurately for HPf).

The shape of the NF mode varies significantly between
our model Hamiltonians. A general feature emerging for
all spectra is a NF dispersion with two minima [these are
best seen in panel (c)]: a deeper “NF1” near k0λ ≃ 1
and a more shallow “NF2” near kλ ≃ 2. The dispersion
of HC shows strong finite-size effects, which we interpret
as a consequence of the proximity to a phase transition
into a charge-density wave phase [19]. Indeed, H1 which
is known to yield a state well inside the weakly paired
phase also produces cleanly defined dispersions, particu-
larly for the NF. (The magnetoroton dispersion forHC or
H1 – not shown – has stronger finite-size effects than the
NF, as it involves two interacting QPs instead of one.)
Comparing different panels, it is remarkable that as soon
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FIG. 1. (color online) Energy spectra (bare interaction en-
ergy E versus angular momentum L) of N = 15 electrons
in a half-filled second LL, interpreted in terms of the neutral
fermion (NF) excitation in the Pfaffian (Pf) ground state.
Different values of the magnetic flux are: Nφ = 26 (top), 27
(center), and 28 (bottom), corresponding to the NF with ad-
ditional pair of charged quasielectrons (QEs), NF alone, and
NF with additional pair of charged quasiholes (QHs), respec-
tively. Different interactions are: HC = pure Coulomb (left),
H1 = Coulomb with an additional enhancement of the m = 1
pair pseudopotential (center), and HPf = three-body Pfaffian
Hamiltonian with the only triplet pseudopotential at m = 3
(right). Labels indicate squared overlaps |〈HC/1|HPf〉|

2 for
the low-lying bands.

as the two minima of the NF dispersion actually form
(which for H1 seems to require δV1 & 0.02e2/λ), they re-
main located at virtually unchanged wave vectors, while
the bandwidth depends significantly on the particular
model (e.g., on δV1). The NF1 lies slightly below the
Fermi surface of CFs, i.e. k0 ≃ kF (for a half-filled LL
of spinless fermions, kF = 1/λ). This confirms the ex-
pectation of Bogoliubov theory, that in a weakly paired
phase of CFs, and for weak coupling, the minimum is
close to kF [4]. The presence of the second minimum
NF2 is more surprising. It could arise as a superposition
of a NF with additional magnetoroton excitations. How-
ever, the combined energy for a NF and magnetoroton
is found to be larger than NF2. Tentatively, this feature
could be related to a bound state of these objects. In
any case, we conclude that NF2 cannot decay into a NF
and a magnetoroton, so it is a genuine feature of the NF
dispersion describing a long-lived excitation, and can be
tested in experiment.

Direct observation of the NF requires a probe changing
the fermion number of the second LL. One such probe is
photoluminescence (PL), in which an electron in this LL
recombines with a photoexcited valence band hole (the
‘1,0’ or ‘1,1’ PL lines in Ref. [23]). The PL spectrum
depends on the nature of the state into which the hole
relaxes prior to recombination. Often for fractional quan-
tum Hall systems, this is an “excitonic” state in which the
hole binds a charge e to form a neutral exciton moving in
the background incompressible liquid [24]. Interestingly,
for the ν = 5/2 state there are two distinct excitonic
states [25] with different parity of the electron number
Ne [26]. Which of these two states has the lower energy
is difficult to predict: this amounts to determining the
fusion channel of four QEs in the presence of the hole.
However, if such fusion can be viewed as pairwise, then
the two pairs will fuse either both to 1 or both to ψ, giv-
ing an overall even Ne. PL recombination removes one
electron, so it leaves a final state with opposite parity to
the initial state. For an odd initialNe, recombination can
occur to the MR ground state, yielding a sharp PL line
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FIG. 2. (color online) Dispersions (energy E versus wave
vector k) of the neutral fermion (NF) collective modes of the
half-filled second LL, estimated from the systems of N ≤ 19
electrons at the magnetic flux Nφ = 2N − 3, for the different
Hamiltonians of Fig. 1. Gray dashed lines in (b) show the
evolution of ∆NF with δV1. For comparison, (c) also shows
the magnetoroton mode for HPf.
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(symmetrically broadened by disorder). For even initial
Ne, recombination leaves an odd final Ne, and so must

involve the creation of a NF. Since the excitonic state
is typically easily localized by disorder [24], the result-
ing PL spectrum will probe the density of states of the
NF band. The minima in the NF band will appear as
two asymmetrically broadened peaks [27]. Observation
of this double-peak structure in PL would allow direct
measurements of the minima of the NF band.

The evolution of the dispersion minimum NF1 as a
function of δV1, sketched as gray lines in Fig. 2(b), gives
some insight into the nature of phase transitions. At
small δV1, the NF gap ∆NF remains nonzero, so we ex-
pect the pairing nature of the phase to survive up to the
transition into a charge-density wave [19]. The collective
NF mode flattens at small δV1; however, the spectrum is
dominated by finite-size effects below V1 ≈ 0.02. At large
δV1 (approaching interactions resembling the lowest LL)
a smooth decay of ∆NF indicates a continuous weakening
of pairing (see also [9]). The minimum becomes steeper,
and the gap collapses near k ≈ kF = 1/λ, consistent with
a crossover into the CF Fermi liquid state.

We now turn to investigate the physics of a neutral
fermion in the presence of two QEs or QHs. For a pair
of QHs in the MR state (even N), HPf features a band
of zero-energy states spaced by ∆L = 2 and terminating
at L = N/2 [28]. We find that when a neutral fermion
is added to the system, low-lying states are found at the
same angular momenta [see Figs. 1(g-i)]. Empirically, we
find that quasielectron states behave similarly. First, we
identify a band of low-lying states for HPf at even N ,
again with ∆L = 2 but terminating at L = N/2− 2. For
2QE+NF configurations, a band with the same angular
momenta is obtained by removing one particle and two
flux from the system, so the lowest energy NF states can
be thought of as holelike. Figures 1 (a-c) show example
2QE+NF spectra.

In the presence of QPs the low-lying excitations are not
as well separated in the spectrum as for the NF alone, and
more significant finite-size effects are expected. Thus, we
proceed carefully in analyzing the energetics. The pres-
ence of the NF can affect the angular momentum, relative
positions, and shape of the QPs, changing their interac-
tion energy in an unknown way. Since we are unable
to subtract these effects systematically, instead we av-
erage the energy over all states in the low-energy band
associated with the two QP(+NF) excitations. Thus,
we evaluate the (properly normalized) average 〈Eα〉 ∼∑

L(2L+1)Eα(L). The energy of each eigenstate Eα(L)
is measured with respect to the ground state energy [22]
(where α indicates a set of QP numbers, α=2QE, 2QH,
2QE+NF, and 2QH+NF). For Coulomb Hamiltonians,
we apply standard corrections to the energies Eα(L), in-
cluding using rescaled magnetic length, applying an elec-
trostatic charging correction of the energies, and correct-
ing for the Coulomb interactions of QPs, δVQP, in the
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FIG. 3. (color online) Comparison of the total energies of a
pair of QEs or QHs, with and without an additional NF (see
text for the precise definition), for systems of different size
N and for the different Hamiltonians of Fig. 1. Top: ener-
gies 〈Eα〉 averaged over all 2QE/2QH (+NF) states; bottom:
energies Eprox taken for the smallest average QE–QE or QH–
QH distance. While 〈Eα〉 extrapolate to similar values with
or without NF, the differences are significant for Eprox.

excited configurations [29–31].

The values 〈Eα〉 obtained after applying the charging
corrections are shown in Figs. 3(a-c) and reflect the total
energy of a system with two QEs or QHs, with or without
an additional NF [31]. Importantly, for odd N it contains
the energy cost for adding a NF in the presence of a pair
of QEs (∆−

NF) or QHs (∆+
NF), that includes the interac-

tion of the NF with these QPs. Since we average over all
positions of the QPs, in finite-size systems one expects a
nonzero splitting ∆±

NF between the ψ and 1 channels from
configurations with overlapping QPs. Estimates from
trial states of QHs at close separation [32] suggest that for
Coulomb interactions the splitting is≃ 0.01e2/λ ≡ ∆max.
When averaged over all possible QP positions, the con-
tribution would be significantly smaller, due in part to
its oscillatory behaviour. For finite systems, we find the
(average) splitting of fusion channels, including its finite-
size effects, satisfies ∆±

NF . ∆max. (For HPf in Fig. 3(c),
the splitting ∆+

NF vanishes by construction [28].)

If the QPs are non-Abelian Ising anyons, as in the
Moore-Read phase, then the energy splitting ∆±

NF should
scale to zero in the thermodynamic limit. The extrapola-
tions in Fig. 3(a-c) are consistent with the vanishing of
both splittings ∆±

NF (in each case, the extrapolated value
is considerably smaller than its standard deviation). Al-
though we cannot prove that the splittings vanish exactly,
we emphasize that their best estimates are at least an or-
der of magnitude smaller than the charge gap ∆c or ∆NF.
It is highly nontrivial to find a near degeneracy on this
scale. We have examined the behaviour as a function
of δV1 in our model Hamiltonian H1. We find that the
splitting remains similarly small over the same range of
interactions for which the L = 0 ground state has a large
gap and a high overlap with the Moore-Read Pfaffian [11,
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12], i.e., extending upwards in δV1 from about HC to-
wards the point of collapse of the NF gap. We take these
results as evidence that, over this range of δV1, the QEs
and the QHs in these realistic systems have non-Abelian
exchange statistics of the form of the Moore-Read phase.
To investigate which fusion channel is preferred at

short distance, we have estimated the splitting ∆±

NF for
QPs at near-coincident points. In Fig. 3(d-f), we show
Eprox = Eα(Lmax) using the low-lying 2QP / 2QP+NF
states with the largest angular momentum (and closest
separation of the QPs) [33]. In this case the odd–even
splitting opens for each of the considered Hamiltonians.
The splitting also remains in the thermodynamic limit,
revealing a slightly negative ∆±

NF, signaling a preference
for the ψ-channel [e.g., ∆+

NF = −0.0053(41) e2/λ and
∆−

NF = −0.0023(23) e2/λ for H1, and ∆+
NF = −0.15(3)

for HPf]. Previously, the splitting had been known only
for QHs, and was based on variational wave functions
[32]. Here, we report the splittings for both QE and QH
based on exact calculations in finite systems.
In conclusion, we have analyzed the neutral fermion

excitations of the ν = 5/2 state for microscopic two-
body Hamiltonians. We showed that these exhibit similar
properties to those of the Pfaffian model, for which the
Moore-Read phase is the exact ground state. The neu-
tral fermion is gapped in the ground state, but is gapless
in the presence of a pair of quasiparticles. These results
provide important evidence that the ν = 5/2 state has
the properties of the weakly paired Moore-Read phase.
Our studies also elucidate additional physical properties
of this phase: we predict that characteristic features of
the NF dispersion can appear in photoluminescence ex-
periments; and we show evidence for the nature of the
fusion of two QEs or QHs.
We acknowledge support from Trinity Hall Cambridge
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