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Trial Wavefunctions for ν = 1
2
+ 1
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Quantum Hall bilayer systems at filling fractions near ν = 1
2 + 1

2 undergo a transition from a compressible

phase with strong intralayer correlation to an incompressible phase with strong interlayer correlations as the

layer separation d is reduced below some critical value. Deep in the intralayer phase (large separation) the sys-

tem can be interpreted as a fluid of composite fermions (CFs), whereas deep in the interlayer phase (small separa-

tion) the system can be interpreted as a fluid of composite bosons (CBs). The focus of this paper is to understand

the states that occur for intermediate layer separation by using trial variational wavefunctions. We consider two

main classes of wavefunctions. In the first class, previously introduced in Möller et al. [Phys. Rev. Lett. 101,

176803 (2008)], we consider interlayer BCS pairing of two independent CF liquids. We find that these wave-

functions are exceedingly good for d & ℓ0 with ℓ0 the magnetic length. The second class of wavefunctions

naturally follows the reasoning of Simon et al. [Phys. Rev. Lett. 91, 046803 (2003)] and generalizes the idea of

pairing wavefunctions by allowing the CFs also to be replaced continuously by CBs. This generalization allows

us to construct exceedingly good wavefunctions for interlayer spacings of d . ℓ0, as well. The accuracy of the

wavefunctions discussed in this work, compared with exact diagonalization, approaches that of the celebrated

Laughlin wavefunction.

I. INTRODUCTION

In bilayer quantum Hall systems at filling fraction ν =
1
2
+ 1

2
, at least two different quantum states of matter are

known to occur, depending upon the spacing d between the

layers.1 For large enough spacing, the two layers interact very

weakly and must be essentially independent ν = 1
2

states,

which can be described as compressible composite fermion

(CF) Fermi seas.2 So long as the distance between the two lay-

ers is very large, there are very strong intralayer correlations

but very weak interlayer correlations (although, as we will dis-

cuss below, even very weak interlayer correlations may cre-

ate a pairing instability at exponentially low temperatures3).

Conversely, for small enough spacing between the two layers

the ground state is known to be the interlayer coherent “111

state”, which we can think of as a composite boson (CB), or

interlayer exciton condensate,4 with strong interlayer correla-

tions and intralayer correlations which are weaker than those

of the composite fermion Fermi sea.1 While the nature of

these two limiting states is reasonably well understood, the

nature of the states at intermediate d is less understood and has

been an active topic of both theoretical3,5–16 and experimental

interest.17–27 Although there are many interesting questions

remaining that involve more complicated experimental situa-

tions, within the current work we always consider a zero tem-

perature bilayer system with zero tunnelling between the two

layers and no disorder. Furthermore, we only consider the sit-

uation of ν = 1
2
+ 1

2
where the electron density in each layer is

such that n1 = n2 = B/(2φ0) with φ0 = hc/e the flux quantum

and B the magnetic field. Finally we assume that electrons

are fully spin-polarized, we neglect the finite extension of the

wave functions in the z-direction, and we always assume that

the magnetic field is precisely perpendicular to the plane of

the sample.

Our main focus in this work is on the nature of the tran-

sition between interlayer 111 (CB) state and the intralayer

Fermi liquid (CF) state. Currently, contradictory conclusions

about the nature of the transition may be drawn from the lit-

erature. The experiments are complex and are frequently hard

to interpret (and may require assumptions beyond the simpli-

fying assumptions made in the current paper). While some

of the experiments17–22 point towards a continuous transition

between two phases, it is not clear whether this could actually

be a first order transition smeared by disorder.8 There is no

doubt, however, that a notable change of behavior takes place

in the approximate vicinity of d/ℓ0 ≈ 1.7 with ℓ0 =
√

φ0/B

as the magnetic length.

Theoretically, the situation has also remained unclear. Sev-

eral theoretical works6,28,29 found indications of a first order

transition near d/ℓ0 ≈ 1.3, whereas others have found no indi-

cation for a first order transition and evoke a continuous evo-

lution of correlations,10 and indications of a continuous tran-

sition occuring near d/ℓ0 ≈ 1.6.30

Description of the phases that occur in the bilayer system

has also been quite a challenge. Some very influential works

have pointed to the possibility that a number of exotic phases

could be lurking within this transition as well.3,9–11,14,31 In

particular, it has been suggested3,11,12 that the bilayer CF

Fermi sea is always unstable to BCS pairing from weak in-

teractions between the two layers (due to gauge field fluctu-

ations). Some of these works11,12 further concluded that the

pairing of CFs should be in the px− ipy channel, which would

be analogous to the pairing that occurs in single layer CF sys-

tems to form the Moore-Read Pfaffian state32,33 from the CF

Fermi sea. However, these works did not provide any numer-

ical evidence supporting these claims.

Recent work by the current authors13 has shed considerable

light on the subject. In this work, compelling numerical evi-

dence was given that for d/ℓ0 & 1 the ground state is well de-

scribed as a CF-BCS paired phase, although the pairing chan-

nel is px + ipy rather than the previously predicted px − ipy.

Explicit pairing wavefunctions were shown to have extremely
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high overlaps with the exact ground state for small systems.

This work will be described in more detail below.

A somewhat different approach has also been proposed by

some of the present authors and collaborators34 in order to

understand the transition between the phase at large d and the

111, or CB phase at small d. In that work, a set of trial wave-

functions was constructed to attempt to describe the crossover.

This theory (to be discussed in depth below) provides an in-

tuitive picture for the transition from the CF-liquid product

state to the 111-state in terms of an energy trade-off between

intralayer interaction energy and interlayer interaction energy.

At large layer separation d, CFs fill a Fermi sea. These CFs

can be thought of as electrons bound to a pair of correlation

holes within the same layer. At small layer separation the 111-

state can be thought of as a condensate of interlayer excitons

or composite bosons. These composite bosons are formed by

electrons bound to a correlation hole in the opposite layer,

which is in fact a true hole of charge +e, just as a Laugh-

lin quasihole on top of a ν = 1 quantum Hall liquid. Addi-

tionally, CBs carry a single correlation hole in the same layer.

Within the theory of Ref. 34, at intermediate d wavefunctions

were introduced with some density of CFs having particle-

hole binding within the layer and some density of CBs having

particle-hole binding between layers. As the distance d be-

tween the layers is continually reduced, the CFs are continu-

ally replaced by CBs and the intralayer correlation is replaced

by interlayer correlations.

While physically appealing, this description of the transi-

tion is clearly incomplete in that it considers CFs and CBs

as independent types of particles, though in reality all of the

electrons must be identical. Both the CFs and CBs consist of

electrons bound to correlation holes or vortices, or with “flux

attached” in the Chern-Simons language. The difference be-

tween the CBs and CFs is whether they are bound to correla-

tion holes in the opposite layer (CBs) or only within the same

layer (CFs). However, nothing prevents electrons from break-

ing free from their correlation holes and becoming bound to

a different correlation hole — which could then change the

identity of a particle from a CB to a CF and vice versa. Indeed,

whenever two composite bosons in opposite layers approach

the same coordinate position, they can “trade” their accompa-

nying correlation holes (vortices or flux quanta), and emerge

as two composite fermions. In terms of a second quantized no-

tation, with ψ representing a composite fermion annihilation

operator, and φ representing a composite boson annihilation

operator, such scattering processes would be described by an

interaction term

λk1,k2,k3,k4
ψ†
↑,k1

ψ†
↓,k2

φ↑,k3
φ↓,k4

+ h.c. (1)

with ↑ and ↓ representing the two layers and λ as a coupling

constant (and h.c. denoting the hermitian conjugate). If the

bosons happen to be condensed, there is a large expectation

for the CBs to be in a k = 0 state. Invoking momentum con-

servation, the most dominant such interaction term is then of

the form

λk ψ†
↑,k1

ψ†
↓,−k1

〈φ↑,k=0φ↓,k=0〉 + h.c. (2)

which we immediately recognize as a pairing term for the

composite fermions. Thus we see that the mixed CF-CB pic-

ture is quite closely linked to the idea of CFs forming a CF-

BCS state.

As discussed above, our numerics indicate that CF pairing

occurs in the px+ ipy channel. An equivalent statement is that

the two–CF pair wavefunction acquires a phase of +2π as two

paired electrons in opposite layers are taken in a clockwise

path around each other. We will further argue that this is the

only pairing symmetry that is compatible with coexistence of

CFs and CBs. The argument rests on the fact that for the 111

wavefunction, taking any electron around any other electron

in the opposite layer will result in a +2π phase. As will be

further illustrated below, compatibility of CBs that make up

the 111 state with the CFs that compose the p-wave paired CF

state requires that these phases match, and will require that the

p-wave pairing is of px + ipy type.

In the current work, we construct explicit wavefunctions

for interlayer paired CF states. As in BCS theory, the shape

of the pairing wavefunction is treated in terms of a set of

(a very small number of) variational parameters. As previ-

ously discussed in Ref. 13 we find that for interlayer spacings

d & ℓ0 our trial states are exceedingly good representations of

the ground state. However, at spacings below d ≈ ℓ0 we find

that the simple paired CF states are no longer accurate. We

then return to the above described idea of CF-CB mixtures.

With only one additional variational parameter representing

the probability that an electron is a CB versus being a CF, we

obtain a family of wavefunctions that nearly match the exact

ground state for all values of d/ℓ0.

The general structure of this paper is as follows. In section

II, we will discuss in detail the particular wavefunctions to be

studied. First, in section II A we review the composite fermion

Fermi liquid in single layer systems, and focus on some par-

ticular aspects that help us construct bilayer states with paired

CFs, previously introduced in Ref. 13, in section II B. We

then turn to the discussion of the interlayer coherent 111-state

in section II C and how it too can be interpreted as both a state

of composite bosons (CBs) and as a paired state. In section

II D we discuss the merging of the physics of CBs with that

of the paired CF states to yield a mixed fluid wavefunction

which incorporates both types of physics. Crucially, we show

in this section that px + ipy is the only pairing symmetry of

CFs that can coexist with CBs. We note that wavefunctions

discussed in section II D include the mixed CB-CF wavefunc-

tions of Ref. 34 as a special case.

Having constructed a family of variational wavefunctions,

we proceed to test the validity of this approach based on nu-

merical calculations on the sphere presented in section III.

Data from Monte-Carlo simulations of the paired CF and

mixed fluid wavefunctions is compared with data obtained

from exact numerical diagonalizations of the Coulomb Hamil-

tonian for model systems of up to 14 electrons in sections III A

and III B. In section III C, we discuss the properties of the

various trial states via the occupation of CF orbitals and in

analogy to a BCS superconductor. Section III D is devoted

to a discussion of order parameters that characterize the sys-

tem. In Section IV we further discuss our undestanding and
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interpretation of our results. We also briefly discuss a num-

ber of issues including the effects of finite temperature, layer

density imbalance, tunneling between the layers, and electron

spin. Consequences for electronic transport are also analyzed.

Finally we discuss the expected transport properties of the

phases we describe. In section V we conclude and briefly

summarize our results.

We have relegated to the appendices a number of details

that are not in the main development of the paper. In Ap-

pendix A, we discuss in detail how to adapt the mixed fluid

wavefunctions to obtain a representation on the sphere. More

numerical results for a restricted class of wave functions, cor-

responding to filled CF shells on the sphere, are discussed in

Appendix B. Further details about the procedure applied for

the optimization of trial states are elaborated in Appendix C.

Finally, Appendix D discusses some properties of the two-

electron correlation functions in the bilayer system.

II. WAVEFUNCTIONS FOR THE QUANTUM HALL

BILAYER

In this section we review the various trial wavefunctions

that we will be studying throughout this paper. To the expe-

rienced reader the discussion of the composite fermion liquid

(section II A) and the 111 state (section II C) will be mostly

review. This material is nonetheless included in depth to em-

phasize a few key points that guide our reasoning.

For simplicity, in this section we will consider infinite-sized

systems on a planar geometry so that we can write wave-

functions in the usual complex coordinate notation. Here and

in the following, zi = xi + iyi is the complex representation

of the coordinates of particle i (with the overbar represent-

ing the complex conjugate), and the usual Gaussian factors of

e−∑i zi z̄i/(2ℓ0)
2

are understood to be included in the measure of

the Hilbert space and will not be written explicitly for simplic-

ity of notation. For bilayer states, we note coordinates in the

second layer as w j, using the same complex representation.

In section III below, we will convert to considering wavefunc-

tions on the sphere, where we actually perform our numerical

calculations. The changes required to adapt our theory to the

spherical geometry are discussed in Appendix A.

A. Composite Fermion Liquid

For bilayer systems at infinite layer spacing, the interlayer

interaction vanishes and the two layers can be considered as

independent ν = 1
2

systems. For such single layer ν = 1
2

sys-

tems, the composite fermion approach2 has been remarkably

successful in describing a great deal of the observed physics.

In this picture,2,35 the wave function for interacting electrons

in magnetic field B is written in terms of the wavefunction

for free (composite) fermions in an effective magnetic field

B = B− 2nφ0 with the density of electrons n. Each fermion

is also attached to two vortices (or correlation holes) of the

wavefunction (Jastrow factors) resulting in the following type

of wavefunction:

ΨCF = PLLL ∏
k<p

(zp − zk)
2 det [φi(z j, z̄ j)] . (3)

where φi are the orbitals for free fermions in the effective mag-

netic field B, and PLLL is the projection operator that projects

to the lowest Landau level. The determinant in equation (3)

above describes a Slater determinant of electrons at zi filling

states given by the orbitals φi.

For the special case ν = 1
2

the CFs experience zero effective

field and behave similarly as electrons at zero field, forming a

Fermi sea.2,36,37 For an infinitely extended plane, plane waves

form a basis of single particle orbitals for particles in zero

effective magnetic field such that

φi(z j) = eiki·r j . (4)

Since k ·r = 1
2
(kz̄+ k̄z) (with k being the complex representa-

tion of the vector k) and the projection on the LLL transforms

z̄ → −2 ∂
∂ z

, the plane wave factors become translation opera-

tors under projection.38 This yields

Ψ 1
2
= A

{

∏
i< j

(

[zi + ℓ2
0ki]− [z j + ℓ2

0k j]
)2

∏
i

eik̄izi/2

}

, (5)

where A is the antisymmetrizing operator that sums over all

possible pairings of the zi’s with the k j’s, odd permutations

added with a minus sign. We see that the fermions are still

bound to zeros of the wavefunction, but the positions of the ze-

ros (correlation holes) are moved away from the electrons by a

distance ℓ2
0k, which is given in terms of “momentum” k. In or-

der to minimize the Coulomb energy, these distances should

be minimized, but simultaneously, all the ki have to be dif-

ferent or the wavefunction will vanish on antisymmetrization.

Thus, to minimize potential energy, the ki’s fill up a Fermi sea

of minimal size. This is how the potential energy becomes

the driving force for establishing the Fermi sea. Although

this naive picture of charged dipole dynamics is not strictly

true in the way that it is presented here,39 there are several

ways to more rigorously embody this type of dipolar Fermi

sea dynamics in a theory of the lowest Landau level, which

give credibility to this type of simplified argument.40–42

Unfortunately, the projection P in Eq. 3 is exceedingly dif-

ficult to implement numerically for large systems. To circum-

vent this problem, Jain and Kamilla43 proposed a rewriting of

the composite fermion wavefunction as

ΨCF = ∏
k<p

(zp − zk)
2 det

[

φ̃i(z j)
]

, (6)

where

φ̃i(z j) = J−1
j PLLL [φi(z j, z̄ j)J j] , (7)

with J j = ∏k 6= j(zk − z j) and the φi chosen such as to repre-

sent wavefunctions corresponding to a filled Fermi sea.44 This

form, while not strictly identical to the form of Eq. 3, is ex-

tremely close numerically and has equally impressive overlaps
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with exact diagonalizations43 and is therefore an equally good

starting point for studying composite fermion physics. How-

ever, in contrast to the form of Eq. 3, the form of Eqs. 6 and

7 are comparatively easy to evaluate numerically and there-

fore allow large system quantum Monte-Carlo calculations.43

In this paper, we have used this type of approach.

In order to obtain a wavefunction for the bilayer system at

ν = 1
2
+ 1

2
and infinite layer separation, a simple product state

of two composite fermion liquids (CFL) is appropriate.

Ψ(d → ∞) = |CFL〉⊗ |CFL〉 (8)

At finite layer separation, however, correlations between the

layers are expected to exist and have been suspected to resem-

ble a paired state.3,11,12,31,45 As we will see below, the product

state (8) may be regarded as a particular paired state when-

ever the Fermi-surface is inversion symmetric with respect to

k = 0, i.e., the center of the Fermi-sea. In these cases, for

each particle in layer one occupying a state with momentum

k, there exists its partner in layer two occupying a state with

momentum −k.

B. Paired CF bilayer state

We now consider how to write a trial wavefunction for an

interlayer paired composite fermion state, which we suggest

should be an accurate description of the bilayer system when

the spacing between the layers is large. The material in this

section is mostly a review of material introduced in Ref. 13.

As a starting point, let us take the well known BCS wavefunc-

tion in the grand canonical ensemble46

|Ψ〉= ∏
k

(

uk + vk eiϕ a
†
k↓a

†
−k↑

)

|0〉 (9)

with the normalization |uk|2+ |vk|2 = 1 and where a
†
k↑ creates

a particle in layer ↑ with momentum k. Note that the u’s and

v’s are properly understood here as variational parameters of

the BCS wavefunction. Next, we rewrite this wavefunction in

an unnormalized form by multiplying all factors by u−1
k and

defining gk = vk/uk, so

|Ψ〉= ∏
k

(

1+gk eiϕ a
†
k↓a

†
−k↑

)

|0〉. (10)

Finally, we project to a fixed number 2N of particles

(i.e, switch to canonical ensemble) by integration over
∫

dϕ exp(−iNϕ) such that we retain exactly N pair creation

operators. This yields

|Ψ〉= ∑
{k1,...,kN}

∏
ki

gk a
†
ki↓a

†
−ki↑|0〉. (11)

In the first quantized language, we can write

Ψ = det
[

g(ri↓,r j↑)
]

(12a)

where g is the Fourier transform

g(ri↓,r j↑) = ∑
k

gk eik·(ri↓−r j↑). (12b)

Note that the exponential factor of the Fourier transform can

be regarded as a product of two basis functions φk(r) = eikr

on the plane, i.e.

eik·(ri↓−r j↑) = eik·ri↓e−ik·r j↑ = φk(ri↓)φ−k(r j↑). (13)

With this in mind, similar paired wavefunctions can be writ-

ten for more general geometries with arbitrary basis functions.

In the following, we construct paired states for composite

fermions in the bilayer system (denoting particles in the upper

layer as z and those in the lower layer as w). As in section II A

we will multiply our fermion wavefunction with composite-

fermionizing Jastrow factors and project to the lowest Landau

level yielding

Ψ = PLLL ∏
i< j

(zi − z j)
2
∏
i< j

(wi −w j)
2 det [g(zi,w j)]

≡ PLLL det
[

Jzz
i Jww

j g(zi,w j)
]

, (14)

where we have defined “single particle” Jastrow factors

Jzz
i = ∏

k 6=i

(zi − zk) (15a)

Jww
i = ∏

k 6=i

(wi −wk). (15b)

In order to handle the projection numerically, we follow the

recipe of Jain and Kamilla (7) discussed above, bringing the

Jastrow factors inside the determinant and projecting individ-

ual matrix entries. This prescription applies to the bilayer case

in a similar manner as for the single layer case (since the to-

tal Hilbert space of the bilayer system may be represented as

a direct product of the space for each layer and projection in

one space does not affect the other). We then obtain the final

paired wave function:

ΨCF-BCS = det [gF(zi,w j)] (16a)

where

gF(zi,w j) = ∑
k

gk Jzz
i Jww

j φ̃k(zi) φ̃−k(w j). (16b)

We denote the projected CF orbitals φ̃ as defined in equation

(7) above. By convention, the single particle Jastrow factors

Ji are kept inside the function gF so that gF(zi −w j) is actually

a function of all of the z’s and w’s through the J’s.44 The sub-

script F here has been chosen to indicate that these are paired

composite Fermions. Note that in the above expressions k

may stand for a general set of orbital quantum numbers (this

will be important for spherical geometry where the free wave-

functions are spherical harmonics rather than plane waves).

The gk’s defining the shape of the pair wavefunction are

variational parameters, analogous to the usual u’s and v’s.

These parameters must be optimized to obtain a good wave-

function, although the optimal solution will certainly depend

on the layer separation d. We also note that the expression

(16) can describe pairing in arbitrary pairing channels depend-

ing upon the choice of gk and the basis set {φk}. As a general
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definition, when the pair wavefunction has the short distance

form

g(zi,w j) ∝ (zi −w j)
l ×h(|zi −w j|), (17)

with h(0) 6= 0, we say this is l-wave pairing. However, note

that g(z,w) should asymptotically approach zero for |z−w|→
∞, such that the pair wavefunction can be normalized. We

also frequently use the atomic physics nomenclature where

l = 0 is termed s-wave, l = 1 is the p-wave, and so forth.

Furthermore, l = +1 is denoted as px + ipy pairing, whereas

l = −1 is px − ipy pairing. (Unfortunately, in the literature

“px + ipy” is used to denote either chirality). Note that the

pairing symmetry is independent of whether we move the Jzz

and Jww factors inside or outside of the function gF.

The choice of the pairing channel l affects the precise value

of the flux Nφ = 2(N − 1)+ l at which the trial state (16) oc-

curs. For systems with finite N, we can thus distinguish the

different possible pairing channels by studying the flux Nφ

for which the groundstate of the system is incompressible as

a function of system size N. Such a study has been under-

taken in depth in Ref. 13 and it was found clearly that px+ ipy

pairing is supported by the numerical data. As the effective

interaction of composite fermions derives from the interac-

tion of the underlying electrons in a non-trivial manner, the

pairing channel realized in the bilayer system was not reliably

predicted by various theoretical approaches.3,11,31

A case of particular interest is when the variational param-

eters gk are defined as follows:

gk =

{

anything nonzero, |k| ≤ kF

0, otherwise
(18)

It is easy to show that this choice of variational parameters

recovers the product state of two composite fermion liquids

(Eq. 8).

C. 111-state

When the spacing between the two layers becomes small,

the bilayer system forms an interlayer coherent state. A num-

ber of different approaches have been used to understand this

state and a large amount of progress has been made using a

mapping to an iso-spin easy-plane ferromagnet.29,47 In this

work, however, we will follow the Laughlin approach of con-

sidering trial wavefunctions in a first quantized description.

When the distance between the two layers becomes zero, the

exact ground state wavefunction of ν = 1
2
+ 1

2
is known to be

the so-called 111-state29,48

Ψ111 = ∏
i< j

(zi − z j)∏
k<l

(wk −wl)∏
r,s

(zr −ws), (19)

where again we use z to represent particles in the upper layer

and w to represent particles in the lower layer. In contrast

to the CF state, (19) contains only one Jastrow factor between

particles in the same layer so that the wavefunction is properly

antisymmetric under exchange of particles in the same layer.

Thus, no additional determinant is needed to fix the symme-

try as was the case in the CF state. In addition, (19) includes

a Jastrow factor between particles in opposite layers. Conse-

quently, there is no amplitude for finding two particles at the

same position in opposite layers. This can be interpreted as

each particle being bound to a hole in the neighboring layer.

One can say the 111-state is composed of interlayer excitons.4

Another terminology is the Chern-Simons language where the

electrons are transformed into bosons bound to flux quanta,

where each flux quantum penetrates both layers. These “com-

posite bosons” can be thought of as an electron bound to a

vortex of the wavefunction in each layer. Condensing these

bosons gives the wavefunction ΨCB = 1 for the composite par-

ticles and the transform back to an electron wavefunction (by

reattaching the Jastrow factors) yields (19).

However, it is also useful to rewrite the 111 wavefunction

using the Cauchy identity

∏
i< j

(zi − z j)∏
i< j

(wi −w j) = ∏
i, j

(zi −w j)det
1

zi −w j

(20)

which yields

Ψ111 = det

[

1

zi −w j

]

∏
i, j

(zi −w j)
2. (21)

This notation resembles the form of a general paired bilayer

state as discussed above in section II B. This resemblance

has been noted previously,11,49 and from the form of the

1/(zi −w j) factor, it has been concluded that the pairing sym-

metry is (px − ipy).
11 Here, we would like to propose a differ-

ent interpretation. Since the Jastrow factors outside the deter-

minant cancel the apparent singularity in Eq. 21, the phase ob-

tained by taking an electron around its partner is actually +2π
rather than −2π . In fact, for the 111 state it is clear from the

explicit form (19) that as any electron is taken around another

electron in either layer, one accumulates a phase of precisely

+2π . For clarity, it is useful to move the Jastrow factors in

Eq. 21 inside the determinant. We obtain

Ψ111 = det [gB(zi,w j)] (22)

where

gB(zi,w j) =
Jzw

i Jwz
j

zi −w j

(23)

and the interlayer partial Jastrow factors are defined by

Jzw
i = ∏

k

(zi −wk) (24a)

Jwz
i = ∏

k

(wi − zk). (24b)

Here, the subscript B means that we have a pairing wave-

function for composite Bosons. This form suggests more that

gB(zi,w j) represents pairing of px + ipy type since a phase of

+2π is obtained when zi moves around w j rather than −2π .

As suggested by Ref. 11, it seems natural to have the same



6

pairing symmetry for d > ℓB and d . ℓB. This then suggests

that the relevant pairing symmetry for the composite fermions

is px+ ipy rather than px− ipy. We emphasize that it is mostly

just a matter of nomenclature whether we label the 111 state

as having px + ipy symmetry or px − ipy symmetry. This am-

biguity is a reflection of the fact that one can attach Jastrow

factors to electrons to construct new particles. Depending on

how the Jastrow factors are attached, the pairing can appear ei-

ther px + ipy or px − ipy. What is crucial, however, is that the

wavefunction always picks up a phase of +2π when zi moves

around w j — a behavior identical to that of the px+ ipy paired

CF phase. This similarity of the 111 phase and the px + ipy

paired CF phase is crucial in the next section.

D. Mixed CF-CB state

In section II B, we establish the general expression for an

interlayer-paired CF state in the bilayer (16) which we be-

lieve should yield appropriate ground state wavefunctions for

large d/ℓ0. Furthermore, in section II C we determine a way

to write the 111 (CB) state, which is exact at vanishingly small

d/ℓ0, as a paired state. Both these types of wavefunctions can

be written as determinants of pairing functions gF and gB, re-

spectively. Now, following the ideas of Ref. 34, we consider

transitional wavefunctions that include both the physics of the

CFs and the physics of the CBs. We propose the following

extremely simple generalized form

ΨCF-CB = det[G(zi,w j)] (25a)

with

G(zi,w j) = gF(zi,w j;{gk})+ cBgB(zi,w j), (25b)

where cB is an additional variational parameter representing

the relative number of CBs versus CFs. Note that as above, gF

is a function of the variational parameters {gk} which describe

the shape of the pairing wavefunction.

In section III and Appendix A we will translate these wave-

functions onto the spherical geometry for which we have per-

formed detailed numerics.

To elucidate the meaning of this linear interpolation be-

tween composite fermion and composite boson pairing func-

tions, it is useful to consider more carefully the physics of the

fermion pairing described by Eq. 16. Each entry in the ma-

trix gF(zi,w j) is a sum of many terms (See Eq. 16b) with each

term representing the filling of particles zi and w j into a partic-

ular pair of CF orbitals (one in each layer). Upon multiplying

out the entire determinant, each term will include precisely N

occupied CF orbitals, and as required by Pauli exclusion, no

orbital may be occupied more than once. Terms with double

occupation of the same orbital cancel out by antisymmetry of

the determinant, even for non-orthogonal basis functions φi.

The amplitude that a particular orbital is occupied is deter-

mined by the coefficients gk (Compare Eq. 11). Now, let us

consider instead the pairing function G(zi,w j) which has both

the fermionic gF terms as well as the bosonic gB terms (See

Eq. 25b). When we calculate the determinant in Eq. 25a, each

G(zi,w j) will be the sum of a term where the CB orbitals are

filled for particles zi and w j (the gB terms) and several terms

where zi and w j instead fill a pair of CF orbitals. When we

multiply out the entire determinant it results in a linear com-

bination of all possible choices of filling M CF orbitals and

N −M CB orbitals. As with the case for the paired CF wave-

function, the amplitude of different orbitals being filled is de-

termined by the coefficients gk for the fermions and cB for the

bosons.

With this reasoning, we can actually reconstruct the mixed

CB-CF wavefunctions from Ref. 34 as a special case of Eq.

25. To this end, let us fix cB to some constant value, e.g.

cB = 1, and for all other variational parameters gk let us use a

step function (analogous to Eq. 18 where we represented the

filled Fermi sea as a paired state), but with a reduced Fermi-

momentum (kF)F:

gk =

{

∞, |k| ≤ (kF)F

0, otherwise
. (26)

Where a very large gk is chosen, the corresponding state is

forced to be occupied (the resulting normalization suppresses

anything that does not include the maximal possible number

of gk terms). Due to the Pauli exclusion principle, every CF

state may be occupied only once, and consequently the par-

ticles remaining once the CF-sea is filled up to the reduced

Fermi momentum (kF)F can only occupy composite boson or-

bitals. The choice (26) results in the probability for a CF to

occupy a state with |k| ≤ (kF)F to be equal to unity, which cor-

responds to a filled shell configuration. This construction is

“equal” to the mixed CF-CB construction from Ref. 34. (By

“equal” here we mean that the two constructions are equiva-

lent up to the differences between projection prescriptions in

the original Jain construction Eq. 3 and the Jain-Kamilla con-

struction Eq. 6). In Appendix B, we show explicitly that the

filled shell states among those analyzed in Ref. 34 can be re-

produced accurately by choosing gk as in Eq. 26.

It is very useful to remind the reader that both CFs and CBs

could in principle experience effective magnetic (or Chern-

Simons) fields due to their attachment to Jastrow factors. As

in Ref. 34, we can write expressions for the effective magnetic

field Bσ seen by fermions (F) or bosons (B) in layer σ =↑ or ↓
as

B
σ
F

= B−2φ0 ρσ
F
−φ0ρB (27)

B
σ
B

= B−φ0 ρ (28)

where B is is the external magnetic field, φ0 is the flux quan-

tum, ρ = ρ↑+ρ↓ is the total density in both layers combined,

ρσ
F

is the density of CFs in layer σ and ρB = ρ
↑
B + ρ

↓
B is the

density of CBs in both layers combined. It is important to note

that precisely at ν = 1/2+ 1/2, independent of the relative

densities of CBs and CFs (so long as it is symmetric between

layers), at mean-field level, both species experience zero total

magnetic field. For the mixed CF-CB state with CF pairing,

the number of CFs present may be uncertain. As mentioned

above in the introduction, a pair of CFs in opposite layers can

transform into a pair of CBs in opposite layers. It is easy to
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see from Eqs. 27 and 28 that this process leaves the effective

field seen by all species unchanged.

In contrast to the formula for the mixed fluid states given

in Ref. 34, the present form (Eq. 25) with gk according to

Eq. 26 allows for an efficient numerical calculation. In our

present approach, as explained below, the antisymmetry of

the wavefunction is a natural result of the determinant (requir-

ing ∝ N3
1 numerical operations), whereas the wavefunctions

from Ref. 34 require explicit antisymmetrization, an opera-

tion that requires much computation power with an operation

count scaling exponentially with the system size.

We emphasize again that while Ref. 34 considered a lim-

ited family of wavefunctions without CF pairing, the current

approach (Eq. 25) allows for the handling of both nontrivial

CF pairing and CF-CB mixtures simultaneously.

We now focus upon the question of whether, or under which

circumstances, Eq. 25 is a valid lowest Landau level wave-

function. First, to test the requirement of antisymmetry, con-

sider the interchange of 2 particles in the same layer, e.g.

zi ↔ z j, thus in all columns k:

{

gB(zi,wk)↔ gB(z j,wk), rows i, j

gB(zl ,wk)→ gB(zl ,wk), ∀ rows l /∈ {i, j} (29a)

{

gF(zi,wk)↔ gF(z j,wk), rows i, j

gF(zl ,wk)→ gF(zl ,wk), ∀ rows l /∈ {i, j} (29b)

In other words, exchanging two particles amounts to inter-

changing two rows of the matrix (G)i j.

The second condition to be checked is whether the proposed

wavefunction is properly homogeneous, implying that it is an

angular momentum eigenstate as required for the ground state

of any rotationally invariant system. This condition is known

to be true for both limiting cases — the 111 and the paired

CF states. For it to remain true for the mixed CF-CB state,

it is sufficient to require that (gF)i j and (gB)i j be of identical

order in all variables. To check this it is sufficient to count

the order (or number of zeros) that occur for a given vari-

able in gi j. For example, let us choose to look at the vari-

able z1. For i 6= 1 we have gB(zi,w j) = Jzw
i Jwz

j /(zi − w j).

The variable z1 occurs only inside of Jwz
j and occurs only

once. Therefore, it is first order in z1. Similarly for i 6= 1, in

gF(zi,w j) = g(zi,w j)J
zz
i Jww

j the variable z1 occurs only inside

of Jzz
i and occurs only one time, so that it is also first order.

Let us now look at the term i = 1. In this instance, we have

gB(z1,w j) = Jzw
1 Jwz

j /(z1 −w j) which has z1 occuring N times

in Jzw
1 , once in Jzw

j and once in the denominator, resulting in a

total order N. For gF(z1,w j) = g(z1,w j)J
zz
1 Jww

j there are N−1

powers of z1 in Jzz
1 and additional l powers in g(z1,w j) if we

have l-wave pairing (See Eq. 17), giving a total number of

powers of z1 equal to N − 1+ l. Thus, in order for this to

match the degree of gB(z1,w j), we must choose l = +1 or

px + ipy pairing of the Fermions. It is clear that choosing any

other pairing symmetry would result in a wavefunction that is

nonhomogeneous (therefore not an angular momentum eigen-

state) upon mixing fermions with bosons. While we cannot

rule out some first order phase transition between some other

pairing symmetry for the CFs and a coherent CB phase, it ap-

pears to us that px+ ipy is the only symmetry compatible with

coexistence of CBs and CFs.

III. NUMERICAL RESULTS

In this section, we present a numerical study of the vari-

ational wavefunctions discussed previously. In particular we

focus upon Eq. 25, which includes Eq. 14 as an important

special case. As our trial wavefunctions are given as varia-

tional states, we first need to optimize the variational param-

eters (gk,cB) to obtain the optimal trial state for each layer

separation d. Given an explicit expression for a trial wave-

function at layer separation d, Monte-Carlo may be used to

numerically evaluate observables such as the ground state en-

ergy, which we compare to similar results calculated using

exact diagonalization methods. We also evaluate the overlap

of the trial states (25) with the exact groundstate wavefunc-

tions. We find that our trial wavefunctions provide extremely

accurate representations of the exact ground states.

To avoid complications associated with system boundaries,

except in section III D 3 below, we choose always to work

with the spherical geometry50 with a monopole of Nφ ≡ 2q

flux quanta at its center. We give each electron not only a

positional coordinate, but also a layer index which may be ei-

ther ↑ or ↓. N electrons are put on the surface of the sphere

where half of them occupy each layer (N = 2N1 = 2N↑ = 2N↓).

We assume the limit of no tunnelling between the two layers,

therefore, these can be thought of as distinguishable electrons.

We focus upon filling fraction ν = 1
2
+ 1

2
which corresponds

to Nφ = 2N1 − 1 = N − 1. This is precisely the flux at which

the 111 state occurs. Note, however, that for a single layer the

composite Fermion liquid state with no effective flux occurs

at Nφ = 2(N1 − 1), which differs from what we consider by

a single flux quantum. This difference in “shift” means that

we are actually considering a crossover from the 111 state to

a Fermi liquid state with one additional flux quantum. It turns

out that this one additional flux quantum is appropriate here

since precisely such a shift is induced by the l = +1 nature

of the p-wave pairing (that we determined as the appropriate

pairing channel in an earlier publication13).

On the sphere, the explicit form of the trial wavefunctions

(25) is defined by the expansion of the pair wavefunction

(16b), where the basis functions φk become the monopole har-

monics Yq,n,m, with q = 1
2

corresponding to p-wave pairing, as

explained in detail in Appendix A.

The interaction between electrons is taken to be the

Coulomb potential

V↑↑(r) = V↓↓(r) = e2 [εr]−1 (30)

V↑↓(r) = V↓↑(r) = e2
[

ε
√

r2 +d2
]−1

(31)

where r is the chord distance between the electrons, ε is a

dielectric constant, and d represents the distance between the

layers (measured in units of the magnetic length ℓ0). Note that

for simplicity, finite well width is not taken into account.

Since our Hamiltonian is rotationally symmetric on the

sphere, we can decompose all states into angular momentum

eigenstates. Our exact diagonalization calculations determine



8

ν N Nφ D(L = 0) [Etrial −EG]/EG |〈Ψtrial|ΨG〉|2
5+5 9 29+9 < 1.4×10−3 > 0.984(4)

1
2 +

1
2 6+6 11 97 + 155 < 1.9×10−3 > 0.978(4)

7+7 13 884+715 < 2.2×10−3 > 0.965(9)

6 15 6 5×10−4 0.99289

7 18 10 5×10−4 0.99273
1
3 8 21 31 5×10−4 0.99082

9 24 84 5×10−4 0.98816

10 27 319 6×10−4 0.984(3)
11 30 1160 7×10−4 0.984(2)

8 16 8 4×10−5 0.9987(2)
2
5 10 21 52 2×10−4 0.9955(7)

12 26 418 2×10−4 0.994(2)

TABLE I: Hilbert space dimensions of the L = 0 subspace for the

examined bilayer systems and several reference states. For bilayer

states two values are indicated corresponding to the fraction of states

with odd and even parity under layer exchange. The respective sub-

space containing the ground state is typeset in bold. Data on the

exact energies of single layer states was collected from [51]. The last

column indicates overlaps of the respectively appropriate trial wave-

functions with the exact ground states (data from Ref. 52 or from our

calculations, where errors are indicated).

the ground state to be in the angular momentum L = 0 sector.

The trial ground state wavefunctions are also L = 0. In addi-

tion to rotational symmetry, the Hamiltonian exhibits a sym-

metry under exchange of the two layers. The ground state is

found in the subspace with parity (−1)N1 . Again, it is simple

to check that this is also the symmetry of our trial wavefunc-

tions.

Exact diagonalization calculations are performed here for

system sizes of N = 10,12 and 14 electrons for a large range

of values of the interlayer spacings d. In order to evaluate the

significance of our results it is useful to examine the size of

the Hilbert space in which the Hamiltonian resides. While the

full Hilbert space is very large (even for 10 electrons), once

the space is reduced to states of L = 0, the space is signifi-

cantly smaller. In Table I we show the dimensions of the L= 0

Hilbert space (and the dimensions of the even and odd parity

parts of that space) for the different size systems. While these

sizes may appear small we note that they are typical sizes for

L = 0 subspaces for what are considered to be relatively large

exact diagonalizations. For comparison in Table I we show the

dimensions of the L = 0 spaces for a number of other typical

quantum Hall calculations in the literature.

For a given interlayer spacing d, we first perform exact di-

agonalization to find the ground state, and then determine how

“close” we can get to this state with a variational wavefunc-

tion. The variational wavefunction is a function of the param-

eters {gk} (for both Eq. 25 and Eq. 14) and one additional

parameter cB (which we can think of as being set to zero in

Eq. 14). While it is clear that with enough variational parame-

ters one can fit any result, the actual number of variational pa-

rameters we use is quite small. First of all gk can be assumed

to be a function of |k| only. More accurately, on the sphere the

orbital states are indexed by the quantum numbers n (the shell

index) and m (the z component of the angular momentum in

the shell), and by rotational invariance of the ground state we

can assume that the variational parameters are independent of

m (as detailed in Appendix A). In other words, there is a single

parameter per composite fermion shell (or composite fermion

Landau level); we label these parameters as gn. For the system

sizes available in our exact diagonalizations, no more than 5

such variational parameters are necessary to obtain satisfac-

tory trial states. Considering the dimensions of the symmetry

reduced Hilbert space (shown in Table I) which is much larger

than 5, we conclude that the agreement of our states with the

exact ground state is nontrivial.

There are several ways to evaluate the quality of a given

trial wavefunction (or the “closeness” of a trial wavefunction

to an exact wavefunction). For example, one could compare

the energy of the trial wavefunction to that of the exact ground

state energy. By the variational principle, if one obtains the

exact ground state energy, then the trial wavefunction must

be the exact ground state. Another well-known measure of

the quality of a trial wavefunction is the overlap of the trial

wavefunctions with the exact ground state. We shall adopt

these two measures of accuracy for the analysis in the main

text of the current paper.

The details of the optimization methods used to obtain the

right variational parameters for a good trial state at a given

layer separation d are explained in Appendix C. In brief, how-

ever, we proceed as follows. If we optimize for the ground

state energy E, a Monte-Carlo estimate of the Hamiltonian

operator 〈H(d)〉 is obtained in a very restricted basis of states

defined by the trial wavefunction Ψ0 to be studied, and an ini-

tial guess of variational parameters ~γ = {cB,g0,g1, . . .}. This

basis is spanned by Ψ0 and its derivatives Ψn = ∂Ψn/∂gn with

respect to gn. Diagonalizing the estimator 〈H(d)〉 yields a new

set of variational parameters, which are used as an improved

guess of ~γ . This procedure is iterated until convergence is

reached. If we optimize for the overlap with the exact ground

state wavefunction, the procedure is simpler as we can directly

evaluate the gradient of the overlap ∂/(∂γi)|〈Ψtrial|Ψexact〉|2.

Updating ~γ according to a steepest descent algorithm has

proven sufficient to optimize the overlap. For further details,

please refer to Appendix C.

In addition to the energy and the overlap with the exact

ground state, one could compare the pair correlation functions

(both inter-layer and intra-layer) of the trial wavefunction to

that of the exact ground state. Since, for pairwise interactions,

the pair correlation function completely determines the energy

of the system, again, a trial wavefunction that has the exact

ground pair correlation function must identically be the cor-

rect ground state. Such a comparison of correlation functions

is given in Appendix D.

For very large system sizes of course we are unable to per-

form exact diagonalization. Nonetheless, we are still able to

study this system by Monte-Carlo. In such cases, the varia-

tional parameters are optimized by simply attempting to min-

imize the energy of the trial state (as discussed in Appendix

C), though we are uncertain of the proximity of the results to

the exact ground state. At present, this possibility has not yet

been fully exploited, and we limit our study of bigger systems
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FIG. 1: Squared overlaps of (px + ipy)-wave paired CF trial states

(Eq. 16) with the exact ground state, for N = 5+5, 6+6 and 7+7.

For d & ℓ0 extremely high overlaps are obtained. However, for d . ℓ0

the CF-BCS trial wavefunctions are not accurate, suggesting a phase

transition around d ≈ ℓ0.

to filled shell states. This study is presented in Appendix B.

A. Paired CF results

In this section, we discuss the results for the paired CF

wavefunctions (16) with pairing in the px + ipy channel. Fig-

ure 1 shows overlaps of our trial states with the exact ground

state for several system sizes as a function of interlayer spac-

ing. (This data has been previously presented in Ref. 13). In

Figure 2, the relative errors of the trial state energies Etrial

with respect to the ground state energy EG are represented as

[Etrial(d,{gn})−EG(d)]/EG(d) for two different system sizes

of N = 10 and N = 14 particles. From these two figures, it is

clear that the paired CF states yield excellent trial states for

large d, whereas there is a layer separation dCB below which

the paired CF picture yields no good trial states. We find

dCB ≈ 0.9ℓ0 and dCB ≈ 1.1ℓ0 for 10 and 14 particles respec-

tively. For 12 electrons (not displayed), this value amounts to

dCB ≈ ℓ0 (See also Table II).

These results are surprising, since the regime where paired

CF states yield very good trial states extends from infinite

layer separation down to d ∼ ℓ0, well below the point where

experiments observe the set-in of the various phenomena that

are thought to be associated with spontaneous interlayer co-

herence and the presence of CBs or interlayer excitons. Given

the large increase in dCB between the systems with N = 10 and

N = 14 particles, it is not clear at present how this extends to

larger systems. A naı̈ve linear extrapolation with respect to

the inverse system size N−1 based on the above values yields

dCB ≈ 1.76 in the thermodynamic limit, which is rather close

to where a transition is observed experimentally.

Unfortunately extrapolation to the thermodynamic limit is

made difficult by shell filling effects. In particular, N = 12

corresponds to having two CF shells filled in each layer (the

lowest shell has two electrons per layer, and the next shell has

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

(E
tr

ia
l -

 E
g

ro
u

n
d)/

 | 
E

g
ro

u
n

d|  
[ 

%
 ] Exact GS

111-state
| 2 Fermions >
| 3 Fermions >
| 4 Fermions >
| 5 Fermions >
trial, various g

n

N=5+5

0 0.5 1 1.5 2 2.5 3
layer separation d [l

0
]

0

0.5

1

1.5

( 
E

tr
ia

l -
 E

g
ro

u
n

d)/
|E

g
ro

u
n

d|  
[ 

%
 ] Exact GS

111-state
trial, various g

n

N=7+7

FIG. 2: Relative errors in energy of (px + ipy)-wave paired CF

trial states (Eq. 16) in the bilayer for N = 5+ 5 particles (top) and

N = 7+ 7 particles (bottom). Each of the represented curves corre-

sponds to a different trial state, i.e. a different choice of parameters

{gn}. The vertical axis is the fractional energy difference of the trail

wavefunction energy with resepect to the exact ground state energy

(Etrial −Eground)/Eground. The largest errors are of order 1.4×10−3

and 2.2× 10−3 for N = 5+ 5 and N = 7+ 7 respectively, when re-

garding only those layer separations greater than d = dCB, where the

paired CF Ansatz yields “good” trial states. The encircled error bar

indicates the magnitude of Monte-Carlo error. For comparison, the

mixed fluid trial states from Ref. 34 are represented as bold lines in

the upper panel (see legend).

4 electrons per layer. See Appendix B). Thus, this particular

system size could behave differently from the N = 10 (N = 14)

case, where there is one CF-hole(electron) in the valence shell

in each layer. Indeed, at large d, shell filling effects are quite

strong, as was discussed in depth in Ref. 13. In particular, it

was found that for large enough d, the system always follows

Hund’s rule,53 maximizing the angular momentum of the va-

lence shell within each layer. Only for system sizes with filled

shells (such as N = 12), or when there is a single electron or

single hole in the valence shell in each layer (such as N = 10

and N = 14) can the Hund’s rule state be expressed as a CF-

BCS wavefunction in the form of (16). For other cases, the

large d limit of the CF-BCS states differs from the Hund’s

rule state. However, as argued in Ref. 13, this Hund’s rule

physics, involving only the
√

N particles in the valence CF

shell, should become less important as one goes to larger and
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larger systems. If one assumes that the energy gain of pairing

is roughly ∆N as is usual for BCS theory, then for any finite ∆,

the pairing energy gain will always be larger than any putative

Hund’s rule energy gain in the thermodynamic limit.

In Ref. 13 arguments and detailed numerics were given sup-

porting this picture: that for large d in the thermodynamic

limit, the CF-BCS state prevails over the Hund’s rule state.

However, for very large d, with very weak coupling between

the layers, no definite numerical conclusion could be reached.

Nonetheless, whether or not one can draw conclusions about

very large d, it is certainly the case that the numerics strongly

suggested the existence of a CF-BCS phase for a range of in-

termediate d where the Hund’s rule physics is not present.

For simplicity, in this paper, since we are concerned mostly

with the physics at smaller d (and where an incompressible

quantum liquid is observed), we will not address the Hund’s

rule physics further. To avoid this complication, we will focus

on shell fillings such that Hund’s rule is compatible with the

CF-BCS state, so no competition arises. We refer the reader

to Ref. 13 for further discussion of this issue.

B. Mixed CF-CB results

In order to obtain a complete description of the ground-state

for small layer spacing d, we need to consider the mixed fluid

description of the quantum Hall bilayer. Upon addition of

CBs to the paired CF description, one obtains the family of

mixed CF-CB states (Eq. 25). Technically this corresponds to

adding one more variational parameter to the previously dis-

cussed case of paired CFs. Consequently, using this extended

family of trial states yields at least as good results as with

composite fermions only.

Numerical simulations confirm that the mixed fluid descrip-

tion of bilayer trial wavefunctions (Eq. 25) achieves an im-

pressively precise description of the ground state for all d.

This is borne out by the numerical results shown in Fig. 3

and Fig. 4, analogous to the above Figs. 1 and 2 except that

now we have used the mixed fluid wavefunctions.

In Fig. 3 we find that over the entire range of d, the overlap

with the exact ground state is extremely high for all systems

sizes. The lowest overlaps occur at roughly d = 1.5ℓ0. As seen

in Table I these “worst case” overlaps are comparable to the

overlaps seen for the Laughlin ν = 1/3 state for Hilbert spaces

of similar size. Writing squared overlaps as 1−δ , we find that

the δ value for our worst trial wavefunctions are roughly twice

that of the Laughlin state for similar Hilbert-spaces of compa-

rable dimension. Similarly, in Fig. 4, we find that the largest

relative error for the prediction of the ground-state energy oc-

curs at intermediate distances close to d = 1.5ℓ0. These “worst

case errors” are also listed in Table I. We find that the energy

errors for our bilayer states are about 3-4 times as large as

those of the Laughlin state at ν = 1/3 for Hilbert-spaces of

comparable dimension. Given that the Laughlin state is often

referenced as a “gold-standard” for its accurate description of

the exact ground state, we find the level of accuracy of our

trial states to be quite satisfactory. (Note that the CF wave-

functions for ν = 2/5 are even more accurate than the Laugh-
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FIG. 3: Squared overlaps of the exact ground state with trial state

for mixed CB-CF fluid with interlayer (px+ ipy)-wave pairing. Over

the entire range of d, extremely high overlaps are obtained. Data is

shown for N = 5+ 5, N = 6+ 6 and N = 7+ 7. The quality of the

overlaps are comparable to that of the Laughlin state, see Table I.

lin state at ν = 1/3 for comparable Hilbert-space dimension).

At layer separations d not too close to 1.5ℓ0, the bilayer trial

wavefunctions are even more accurate than the number quoted

above, and may exceed the accuracy of the Laughlin and even

of the ν = 2/5 trial wavefunction.

For further comparison, in the upper frame of Fig. 4 are

the energies (dark lines) of the mixed fluid wavefunctions first

introduced in Ref. 34. As discussed above, these wavefunc-

tions lack CF pairing that is included in Eqs. (16) and (25).

Although these wavefunctions clearly capture some of the

physics of the crossover from the 111 to the CF liquid, it is

clear that pairing is required in order to have a high degree of

accuracy.

Naturally, nearly exact trial states are obtained at d → 0,

where the appearance of CFs may be regarded as a pertur-

bation of the 111-state (which is obtained by the particular

choice of parameters gk = 0 and cB = 1, and which is the ex-

act ground state at d = 0). However, the admixture of CFs be-

comes important at rather small d. We see that this admixture

provides a nearly exact description of the fluctuations around

the 111 state. However, in the regime of small layer separa-

tion, an equivalent description in terms of other excitations to

the 111-state may be also suitable.5,54

It should be noted that the number of variational param-

eters required to obtain good trial states becomes maximal

at intermediate layer separations d ∼ 1.5ℓ0. However, even

at d ∼ 1.5ℓ0, only four variational parameters are required

for the system sizes we consider. In the limits of d = 0 and

d → ∞, writing the wavefunction in the form (Eq. 25) essen-

tially amounts to rephrasing a parameterless trial state, respec-

tively the 111-state and a product state of Fermi-liquids, in a

different form (the case of d → ∞ is slightly more compli-

cated, as was discussed in detail in Ref. 13). As either regime

is approached, the number of variational parameters required

to describe the physics of the ground state decreases. For ex-

ample, at d ∼ 0.5ℓ0 and d ∼ 3ℓ0 only two variational parame-
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FIG. 4: Comparison of relative errors in energy for mixed CB-CF

fluid with interlayer (px + ipy)-wave paired CF model systems with

N = 10 (top) and N = 14 electrons (bottom). As in Fig. 2, each

curve represents a different trial state. The mixed fluid states from

Ref. 34 are highlighted in bold in the upper panel. Over the entire

range of d, extremely good trial states are obtained, with a remaining

error δε < 2.2× 10−3. For intermediate d, where the states with-

out pairing |n Fermions〉 do not perform very well, considerable im-

provements are realized. Monte-Carlo errors are on the order of the

encircled error bar.

ters are used.

It is at intermediate distances of ℓ0 . d . 2ℓ0 that the mixed

fluid state is most different from both the 111-state and the CF

liquid. In this regime, the influence of CF pairing is strongest,

and the CFs tend to occupy orbitals in CF shells higher than

the Fermi momentum of a filled CF Fermi sea (as shown in

section III C, below). Although the overlap of our trial states

has a minimum seen at d ≈ 1.5ℓ0, which occurs in the regime

that we identify as a paired state, we would like to point out

that the magnitude of this overlap remains very high. In fact,

the overlap is larger than that found for paired states in the

single layer, i.e., for the Moore-Read state,32 or its generaliza-

tions for trial states in the weak-pairing phase at ν = 5/2,55

which is accepted to describe the physics of the quantum Hall

state at that filling factor. Similarly, we conclude that CF pair-

ing captures the essential physics of the quantum Hall bilayer

system at filling factor ν = 1 for intermediate layer separa-

tions d.

As a side note, we have confirmed numerically that the

mixed fluid trial states from Ref. 34 may be obtained in a

manner prescribed in the approach to the filled shell cases.

The general phenomenology that may be obtained from the

analysis of filled CF shell states is discussed in Appendix B.

C. Occupation probabilities of CF shells

With the mixed fluid wavefunctions (Eq. 25), a vast family

of trial states is available. Furthermore, the above results con-

firm that the mixed fluid wavefunctions allow for an accurate

description of ground-state properties. As a step towards an

understanding of the numerical results just presented, it is in-

teresting to characterize the most successful trial states via the

probability for an electron to occupy a given CF-LL within

such a state.

In Figures 1-4, the various trial states were shown with-

out specifying the explicit values of the variational parameters

{gn}.56 Indeed, giving the precise values of these parameters

may likely not have been very meaningful to the reader for

two reasons. First, these parameters are defined only up to an

overall global normalization. Secondly, and more importantly,

the normalization of the individual composite fermion orbitals

that the wavefunction is composed of is not well defined. If a

basis of normalized single particle orbital is projected to the

LLL using Eq. 7, we obtain a basis of many-body compos-

ite fermion orbitals that are no longer orthogonal, and which

have lost their original normalization. In particular, the pro-

jected orbitals φ̃i = φ̃i(z1, . . . ,zN) become functions of all par-

ticles’ coordinates. Their normalization ˜N could be defined

by integrating out all coordinates but one. However, in such

a definition, the normalization ˜N of a single orbital becomes

ill defined, as it also depends on the correlations in the system,

which however, are only known after a complete many-body

state has been specified.

Since the normalization of the orbitals we use is ill

defined,57 we propose a universally applicable definition of

the occupation p(k) of a CF orbital φ̃k with momentum k to

be given by

p(k) =
1

2N

∂ log〈Ψ({gk})|Ψ({gk})〉
∂ loggk

, (32)

where Ψ({gk}) is the bilayer wavefunction which is a func-

tion of the variational parameters gk, and 〈·〉 denotes the un-

normalized Monte-Carlo average. The relation (32) was suc-

cessfully deployed for pairing in a single layer by two of the

current authors,55 and may be explained with the example

of a simple one-particle two-state model with wavefunction

Ψ = g1φ1 + g2φ2, which we allow to be unnormalized. Ex-

panding the square of this wavefunction,

〈Ψ|Ψ〉= ∑
i, j=1,2

g∗i g j 〈φi|φ j〉 (33)

we can see that Eq. (32) yields the proper occupation probabil-

ities of both levels, provided that the overlap integral 〈φ1|φ2〉
vanishes. This is the case for the scalar product of wavefunc-

tions in a regular orthogonal basis. This argument generalizes



12

to the many-body case simply by applying the product-rule

for the derivative.

For the mixed bilayer states, however, we use the non-

orthogonal basis of the LLL-projected CF orbitals. Nonethe-

less, we could verify that the occupation probabilities for

states with filled CF shells (where we know the occupation

probabilities (See Appendix B)) are obtained from (32) with

very high accuracy, showing that the respective overlap inte-

grals are small, thus giving a physical meaning to these occu-

pation probabilities.

Surprisingly, applying Eq. 32 to the variational parameter

for composite bosons cB, does not yield the proper value for

the occupation probability of the CB orbital. Consequently,

we exploit the fact that this probability is complementary to

the total occupation probability of the various CF orbitals.

This allows to calculate the occupation probability of the CBs

pB as

pB = 1−∑
n

p(n), (34)

where p(n) is the probability to find an electron in CF shell n.

Let us now turn to the results obtained for the two selected

systems sizes that we discussed in the previous sections. Tak-

ing the best trial state as a reference at each d, we may extract

from our calculation the approximate separation-dependence

of the occupation probability p(n). The resulting data is dis-

played in Fig. 5.

We discuss these results going from right to left on the axis

of layer separations. Upon looking at large layer separations,

it is first noticed that the distribution at d = 3ℓ0 is that of the

CF Fermi sea. For example, in the lower panel for N = 7+7

electrons, the probability that an electron is in the lowest CF

shell is p(0)≈ 2/7 ≈ 0.28. For the next higher shell, which is

fourfold degenerate, one finds p(1) ≈ 4/7 ≈ 0.57. The third

shell accounts for the remaining probability. Upon going to

intermediate layer separation, one notices the onset of pairing

as one would expect by analogy with BCS theory: electrons

are lifted above those orbitals within the equivalent of a Fermi-

sea and occupy states at higher momentum, instead. Cor-

respondingly, the occupations in the lowest two shells drop

to allow the occupation of the higher ones (n = 3 included,

which is occupied by a single electron per layer, initially).

For N = 5+ 5, we follow an analogous trend of redistribu-

tion among the occupation of CF-levels, noting that the total

probability of finding a particle in one of the excited orbitals is

quite large, with absolute values close to 25%. Only at lower

layer separation does the occupation of the CB orbital become

important. Conversely, the occupation of CF orbitals plays an

important role down to very low layer separations.

Now, the occupation of the CB orbital pB shall be analyzed.

At large layer separation, the value obtained from (34) drops

slightly below zero. This is an inconsistency related to the

empirical character of Eq. 32. However, the error is not very

large, amounting to about 1%, which gives some confidence

into our method, though it reminds us that it is approximate.

We need to remark also, that the data is based on calculations

for a restricted number of trial states, such that more substan-

tial deviations are likely due to data that corresponds to not
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FIG. 5: Probabilities for a single electron to occupy a given orbital, as

obtained from Eq. 32. A region of strong pairing, i.e. large probabili-

ties to find an electron in an excited orbital above the would be Fermi-

momentum, is found between d ∼ 0.8 . . .1.5ℓ0. Note that the proba-

bility pB that an electron forms a CB (obtained as pB = 1−∑ p(n))
practically drops to zero, or slightly below, at d ∼ ℓ0. The kinks in

the dependence of pB(d) are close to values which are related to the

CF shell structure.

quite optimal trial states. The roughness of the curves illus-

trates this. Some of the features in the behavior of pB(d) might

also be caused by filled shell (i.e., finite size) effects, given

that kinks are featured at values close to 1− nS/N where ns

CFs yield a filled shell configuration.

D. Order Parameters

This section is devoted to discussing another means of char-

acterizing the mixed fluid trial states — we discuss the broken

symmetries of our wavefunctions and their associated order

parameters. In the present case of the bilayer system with

paired CF, two distinct symmetries, will be discussed in sec-

tions III D 1 and III D 2. In addition, we consider an additional

topological order parameter of the paired CF system in section

III D 3.
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1. Excitonic Superfluid Order

In order to consider the first of the two potential symme-

tries of our quantum states, it is useful to employ the pseu-

dospin picture. A density-balanced bilayer system has been

described as a pseudospin field with its values confined to the

x-y-plane.29 In the ground state the orientation of this pseu-

dospin field is homogeneous and (in the absence of interlayer

tunneling) a spontaneous breaking of the U(1) symmetry for

rotations of the pseudospin around the z-axis occurs such as to

select a preferred direction in the x-y-plane. The operator for

the in-plane pseudospin thus yields a measure for detecting

the symmetry of a coherent state in the bilayer system. In sec-

ond quantized notation, this order parameter describes a flip

of the pseudospin at position r, noted as F (r):

F (r)≡ Ψ
†
↑(r)Ψ↓(r) (35)

For the purpose of numerics at fixed particle number Ni per

layer, the operator needs to be modified such as to conserve

Ni. This is realized by taking the product F (r)F †(r′) at two

distant points r and r′ which now preserves the number of par-

ticles in each layer. In the limit |r− r′| → ∞, one expects to

recover the square of the expectation value of F in a corre-

sponding grand canonical ensemble. Thus we define

S = lim
|r−r′|→∞

F (r)F †(r′) (36)

For a finite sized system, we must be content to move the po-

sitions ~r and ~r′ as far apart as possible. One can visualize

the action of this operator either as the associated pseudospin

flips of two electrons in opposite layers at distant positions,

or as the exchange of the real-space positions of these two

particles. This operator can be easily calculated in our Monte-

Carlo simulations carrying out this kind of exchange in po-

sition for pairs of electrons and monitoring the effect on the

wavefunction.

For the 111-state, we have 〈111|S |111〉=−1. Conversely,

〈CFL|S |CFL〉 yields a very small value provided that the dis-

tance |r− r′| is chosen to be sufficiently large. Any finite ge-

ometry imposes a constraint on the limit in (36), but numerics

confirm that 〈CFL|S |CFL〉 ≈ 0 to within roughly a part in

10−5 for accessible system sizes. As the sign of 〈S 〉 does not

matter to distinguish the 111 and paired CF phases, we will

refer to its absolute value

S = |〈S 〉| (37)

as the excitonic superfluid order parameter. Upon calculat-

ing S for mixed fluid states with filled CF-shells, we find that

there is a monotonic relation between the order parameter S

and the fraction of electrons NB/N that have undergone a CB-

like flux attachment (See Appendix B). Furthermore, results

for several different system sizes collapse on a single curve,

such that we may estimate finite size effects to be small. We

conclude that S is indeed a suitable order parameter for the

transition between the CFL and the 111-state.

While it is true that increasing the fraction of CBs yields a

larger order parameter, this is not the only factor influencing
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FIG. 6: A plot of the excitonic superfluid order parameter S(d) for

different system sizes according to the legend (symbols with error

bars) and the fraction of bosons pB as obtained from Eq. 32 (dashed

lines). Data of system sizes N = 8+8 and N = 12+12 is based on

a set of MC calculations with energy optimization (see Appendix C)

and we have no according exact calculations available for compari-

son.

S. In particular, for our finite sized systems, nonzero values of

the order parameter can be obtained for bilayer states within

the paired CF picture, i.e. without composite bosons. Let us

discuss this feature in detail by examining S calculated in our

Monte-Carlo simulations for each of our trial states. We at-

tribute the value obtained for the best trial state at a given

d to represent the value S in the ground state at that d to a

very good approximation. The data in Fig. 6 was obtained

following this procedure. Error bars are established by taking

into account the values of S for trial states, whose energies

are within the range of Monte-Carlo errors from the best trial

state.

A non-zero excitonic superfluid order parameter (i.e., S)

for pure paired-CF states means that good trial states with-

out adding composite bosons can be found above some layer

separation dCB which is well below the value dc, where S be-

comes non-zero. While it is not easy to determine exactly

the layer separation where mixed CB-CF fluid states become

substantially better than the pure paired-CF states, it is more

straightforward to estimate the paired CF states’ maximal pos-

sible order parameter

Smax = max
{gk}

∣

∣

∣
〈ΨCF-BCS

{gk} |S |ΨCF-BCS
{gk} 〉

∣

∣

∣
, (38)

where the maximization is over only paired CF states with-

out any CBs. The fact that S can be nonzero without CBs

is itself an intriguing phenomenon. For instance, considering

N = 5+5 electrons, p-wave paired CF states yield a maximum

Smax as large as 42% the value of the CB condensate (the 111

state). Values for other system sizes are given in Table II. The

numbers indicated for Smax should be understood as estimates

of a lower limit of this value. They were obtained by optimiz-

ing CF states for successively lower layer separations, until S

ceased to increase.
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N/2 4 5 6 7 8 ∞

Smax 0.64 0.42 0.38 0.30 0.20 < 0

dCB — 0.87(3) 0.99(4) 1.13(5) — 1.76(11)

TABLE II: Scaling with system size of the maximal value of the

non-zero excitonic superfluid order parameter for paired CF states

Smax in the absence of CBs. Pure paired CF trial states are relevant

above the layer separation dCB, as discussed in section II D. The last

column indicates an (overly naive) linear extrapolation over N−1 to

the thermodynamic limit.

This data, together with the values of dCB discussed in sec-

tion III A, sheds some light on the question of whether the

paired CF state still has the symmetry of the 111-state in the

thermodynamic limit. Given that the maximal value of the

111 order parameter decreases quickly with N as summarized

in Table II, it seems that a non-zero S for paired CF states is

a vestige of finite size systems. Roughly extrapolating dCB in

the same manner confirms this assumption, as it yields a value

in the neighborhood of the onset of the excitonic superfluid

order-parameter. Presumably, the order parameter should thus

vanish in the thermodynamic limit for any state not involving

composite bosons. On a more abstract level, one may reason

that interlayer coherence is required for this order parameter

to be non-zero. It seems unlikely that in the thermodynamic

limit interlayer CF pairing alone would achieve this.

With these caveats, our theory supports a second-order tran-

sition between the excitonic superfluid (111 phase) and the

paired CF state, as can be argued from the smooth variation of

the order parameter. Furthermore, for all system sizes that we

examined, we find approximately the same behavior of S(d),
which approaches zero at approximately d ≈ 1.5ℓ0. Again,

we interpret the smooth tail of S(d) found above this value of

the layer separation as finite size effects and presume that the

order parameter should approach zero at a precise value dc in

the thermodynamic limit.

In a recent DMRG-based numerical study,30 it was shown

that the character of the low-lying excited states changes at

around d = 1.2ℓ0 for a finite system with N = 24. In light

of our results, this transition might correspond to the layer

separation which separates states where CBs do or do not play

a role. Note that the value predicted from extrapolation of our

results is dCB(N = 24)≈ 1.3ℓ0.

2. CF Pairing Order

Assuming that the paired CF phase is distinct from the ex-

citonic superfluid phase according to the above hypotheses,

there should be a second order parameter that is particular

to the paired CF phase. In analogy with BCS theory, one

would expect an order parameter of the form 〈Ψ↑(r)Ψ↓(r)〉.
However, here we consider pairing of composite fermions.

The important difference is the Jastrow factors attached to the

electrons contribute additional phase factors. Consequently, a

guess for the order parameter proceeds by unwrapping these

phases to give

exp−iarg[∏k(z−zk)
2] exp−iarg[∏k(w−wk)

2] Ψ↑(z)Ψ↓(w), (39)

where z and w encode the position r in the upper and lower

layers respectively. However, pairing is in the p-wave chan-

nel and the order parameter is expected to have a phase that

forces it to be zero at coinciding points z = w. A non-zero

value might be obtained upon examining operators that are

non-diagonal, i.e. z 6= w. Though, in such cases the order

parameter continues to have a phase that makes numerical

calculations difficult: averaging a vector rotating arbitrarily

in the plane for different configurations gives a vanishing re-

sult. One must guess the proper phase of the order parameter.

For example, exp[iarg(z−w)] would be appropriate for the

p-wave case. Thus, we obtain

℘(z,w) = exp−iarg[∏k(z−zk)
2] exp−iarg[∏k(w−wk)

2]

×exp−iarg(z−w) Ψ↑(z)Ψ↓(w). (40)

However, (40) still needs to be modified as numerics require

an order parameter that conserves the particle number in each

layer. In principle, one can multiply (40) by its hermitian con-

jugate invoking different positions ℘†(z′,w′) to obtain a can-

didate for an order parameter satisfying this requirement

P =℘(z,w)℘†(z′,w′). (41)

This is a rather complicated operator since it is a function of

the four positions z, w, z′ and w′. On the sphere, an additional

difficulty arises as a magnetic monopole charge in the cen-

ter of the sphere implies the presence of a Dirac string, i.e. a

singular point where a flux tube penetrates the surface of the

sphere in order to achieve magnetic flux conservation. This

results in Aharonov-Bohm phases for wrapping around this

point, which must be taken into account to define P properly.

We have not yet succeeded to show that a suitably modified

BCS order parameter has a non-zero expectation value for the

paired CF states. However, given the nature of our construc-

tion of the wavefunction based on BCS theory, it seems likely

that such an order parameter exists. We hope that in future

work we will be able to demonstrate its existence explicitly.

3. Pairing Topology

The distinction between the excitonic superfluid phase and

the paired CF phase should become very obvious on the torus

(or periodic boundary condition) geometry where the chiral

p-wave paired phase has a 4-fold topological ground state

degeneracy11,58 whereas the 111 phase has a unique ground

state, at least in the thermodynamic limit. One would expect

that as d is decreased through the phase transition, the four-

fold degeneracy should split, leaving a unique ground state at

small d.

In figure 7 we show several energy spectra of exact

diagonalizations59 on the bilayer torus for different shaped

unit cells and different (even) number of electrons. This data
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FIG. 7: We display the spectrum of the Coulomb Hamiltonian on

the bilayer torus for different system sizes and geometries as a func-

tion of the layer separation d. The lefthand view shows N = 6+ 6

particles on a torus with hexagonal unit-cell, and the righthand view

shows N = 7+7 particles in the hexagonal (top) and square (bottom)

unit cells. The location in the Brillouin zone of the lowest four energy

eigenstates is shown in the respective insets. The data is suggestive of

an approximate fourfold degeneracy of these four lowest-lying states

for intermediate d. Strong finite size effects are concluded from the

marked difference of the spectra in the hexagonal and square unit

cells for N = 14 particles, which precludes strong conclusions about

the thermodynamic limit.

certainly suggests that the lowest four states are separated

from the higher energy states by a clear gap, and at large

enough d, these states become degenerate. Although sugges-

tive, these data should be viewed with some caution. What

one would like to see numerically is that at any d larger than

a critical value, the four lowest energy states should become

increasingly degenerate as the system becomes larger. How-

ever, this convergence (if present) is not easily seen numer-

ically because of discrete shell filling effects. For example,

in the case of the hexagonal lattice for N = 14, at d = ∞ the

Fermi liquid state is already four-fold degenerate. Thus, for

this system size and geometry, observation of a four-fold de-

generacy should not be taken necessarily as evidence of pair-

ing. Nonetheless, this data is suggestive that a phase exists

with the topological order that is characteristic of pairing, i.e.,

having a fourfold groundstate degeneracy.

IV. DISCUSSION

Perhaps the most crucial question to be answered is the

phase diagram at zero temperature with respect to variations

of the layer spacing d. We know for certain that the 111 state

is the ground state at very small d and that two noninteract-

ing composite fermion Fermi liquids are the ground state for

infinite d. We believe our work sheds substantial light on the

intermediate values of d.

Our work (and also that previously presented in Ref. 13)

supports the notion that at large but finite values of d the sys-

tem is in a (px+ ipy)-wave paired state of composite fermions.

It has been suggested in Refs. 3 and 12 that even for infinitely

weak coupling between the layers there should be an instabil-

ity to a paired phase. From our numerical work it is certainly

not possible to determine if the transition to a paired phase oc-

curs at finite or infinite d. However, it appears true in our work

that the paired trial wavefunction is a notably better ground

state than the unpaired wavefunction even at reasonably large

values of d & 2. Since this appears true even when the inter-

layer interaction is weak, and since this phase appears adia-

batically connected to the Fermi liquid, we should conclude

that this is a weak-pairing phase, rather than a strong pair-

ing phase.58 This conclusion is supported by the fact that, at

least at d > 1, the occupancy of the orbitals with small (angu-

lar) momentum (i.e., the inner shells) is higher than the occu-

pancy of orbitals with higher momentum (the outer shells) —

this behavior is characteristic of a weak-pairing phase.58 Fi-

nally, the conclusion of a weak pairing phase is supported by

the topological degeneracies observed on the torus discussed

in section III D 3 above.

At smaller distances between the layers, as discussed

above, we found clear evidence of the order parameter (a bro-

ken U(1) symmetry) associated with the 111, or excitonic su-

perfluid phase. We analyzed this order parameter and found

that it approaches zero smoothly at values close to d = 1.5ℓ0

with a tail at larger d attributed to finite size effects. This

smooth behavior suggests a second order transition into the

excitonic superfluid phase. Interestingly, we found that the

order parameter can be nonzero even for our paired px + ipy

CF-wavefunctions (with no additional CBs added to the wave-

function). Our current belief is that this is a finite size effect,

and in the thermodynamic limit, this order parameter would

become nonzero only when the wavefunction has a nonzero

density of composite bosons. At small layer spacings where

there is a finite value to the excitonic superfluid order param-

eter, we find that our wavefunctions with mixed CB-CF and

with pairing of the CFs provide exceedingly good trial states.

It is an interesting question, which we have not been able to

fully answer, whether there is a distinct (pairing) order pa-

rameter associated with the CF-pairing in the presence of the

condensed CBs.

There are a number of further issues which may be crucially

relevant to experiment which we have not yet mentioned at all

and we will now address briefly.

Finite Temperature and Low Energy Excitations: Our trial

wavefunction approach is not particularly well suited to stud-

ies at finite temperature. Nonetheless, one could attempt to

find trial wavefunctions for the low lying excited states which

would then be thermally occupied at low but finite T . Cer-

tainly, the excitonic superfluid (111) phase as well as the

px + ipy paired CF phase would have low energy Goldstone

modes associated with superfluid counterflow (this is essen-

tially a necessary result of having quantized Hall drag). Other

excitations of these phases should be gapped, and would be

less important at low T . At some higher characteristic temper-

ature, the order parameters would be destroyed altogether. It is

very possible, that the characteristic temperature for the paired
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CF phase would be extremely low, particularly when the spac-

ing between the layers is large. Like a superconductor, above

this temperature, the putative paired CF system would behave

like a CF-Fermi liquid with some additional (weak) correla-

tions between the layers. Of course since this is a two dimen-

sional system, vortex unbinding physics will be important and

strictly speaking there is no long range order above zero tem-

perature, and the transition from super to normal would be

smeared to a crossover.

The picture of a mixed CF-CB fluid at small layer spacing

discussed in this paper adds a number of possibilities to the

finite T phase diagram. For example, one might imagine hav-

ing a mixture of CFs and CBs where one or the other species

is condensed (but not both). The case where the CFs are not

condensed, but the CBs are condensed corresponds with the

picture from Ref. 34 of a mixed CF-CB fluid where the CFs

fill a Fermi sea, but do not pair (See Appendix B). Such a

phase could have low energy excitations associated with ex-

citations of the fermions around the Fermi surface. We note

however that the phase remains incompressible with respect

to “symmetric” density perturbations that change the total lo-

cal charge in both layers.54 To understand this incompress-

ibility we simply note that when the total density compresses,

the bosons would then feel an effective (Chern-Simons) mag-

netic field (See Eq. 28), which they can only accommodate by

forming vortices — a gapped excitation. Another way to real-

ize this is to note that motion of density the entire system (both

layers) remains subject to Kohn’s theorem and must only have

an excitation at the cyclotron mode in the long wavelength

limit.

Conversely, if one considers a density gain in one layer and

a compensating density loss in the opposite layer, the bosons

would feel no net field. Although such a density change would

presumably pay the price of the capacitive energy between the

two layers, at long wavelengths such a mode may still be low

energy. Indeed, the superfluid Goldstone mode is of this form.

One might further ask whether there might be any novel low

energy modes in the mixed CF-CB phase associated with mo-

tion of CFs in one direction and CBs in the opposite direction

so as to preserve overall uniformity of charge. For example,

we may consider the case where a current of CFs occurs in the

same direction in both layers, such that ρ
↑
F = ρ

↓
F and ρ

↑
B = ρ

↓
B

and the total density in each layer ρ
↑
B +ρ

↑
F = ρ

↓
B +ρ

↓
F is a con-

stant. In this case, there is no capacitive energy, and examin-

ing Eqs. 27 and 28 we see that there is no net field seen by the

bosons, and there is no net field seen by the fermions. While

naively it would appear that such a motion would yield very

low energy modes, it is also possible that the pairing interac-

tion would couple the motion of the bosons and the fermions,

gapping such a mode even if the fermions are uncondensed.

Layer Imbalance: In principle our theory can be general-

ized to situations where there are unequal densities in the two

layers. It is well known that the 111 wavefunction can easily

accommodate layer imbalance.60 In the paired-CF phase, on

the other hand, this type of perturbation (like a Zeeman field

in a traditional superconductor) is clearly pair breaking since

the ↑ and ↓ Fermi surfaces would be of different sizes (Al-

though in principle more exotic types of pairing could be con-

structed to accommodate such differences). A much more in-

teresting question to ask is what happens in the regime where

there are both CFs and CBs. The intermediate wavefunctions

discussed in this paper (Eq. 25) do not appear to generalize

obviously to cases where there are unequal numbers of parti-

cles in the two layers (as this would result in a determinant

of a non-square matrix). We recall that in Ref. 34, mixed

CF-CB wavefunctions were constructed which are identical

to those discussed here (with no CF-pairing), where the anti-

symmetrization over all particles was done explicitly. There is

no particular difficulty in generalizing that form to cases with

layer imbalance, although such explicit antisymmetrization is

difficult to handle numerically except in very small systems.

Nonetheless, we can at least in principle consider such gener-

alizations as trial wavefunctions, and we can further consider

allowing pairing of the CFs. Because of the pairing interac-

tion, one might guess that the CFs would be stabilized by hav-

ing equal numbers of CFs in both layers (as discussed above),

and that the density difference would be accommodated by

moving CBs between the layers. The fact that experimentally,

layer imbalance appears to stabilize the excitonic superfluid

phase,22 suggests further that the transition to this phase coin-

cides with the appearance of CBs.

Spin: In the experiments of Ref. 61 it has been suggested,

that at least in certain samples, the system becomes spin po-

larized at low d but is partially polarized at larger d. The tran-

sition is thought to occur near the phase transition to the exci-

tonic phase. Although all of the trial wavefunctions discussed

here have been for fully polarized systems, they can certainly

be generalized to nontrivial spin configurations. (One should

not confuse the actual spin with the iso-spin, or layer index).

For example, one could trivially consider having a Fermi sea

with some spin down and some spin up CFs. Once one con-

siders pairing of this (partially polarized) Fermi sea, there be-

come many different possibilities,58 some analogous to super-

fluid Helium 3. Other exotic possibilities could also occur.

For example, one might imagine two Fermi seas, each pair-

ing in the a p-wave channel. Or one could have unpolarized

pairing in an s-wave channel. However, these exotic possi-

bilities may not be experimentally relevant since the “super-

fluid” phase appears to be polarized,61 suggesting that, as the

spacing between layers is reduced, an unpolarized Fermi sea

condenses into a polarized state (possibly as a first order tran-

sition).

Tunneling: The wavefunctions we have constructed here

are not only antisymmetric between electrons within a single

layer, but are also antisymmetric between electrons in oppo-

site layers. As such these wavefunctions are not particularly

destabilized (or frustrated) by small amounts of interlayer tun-

neling that destroys the layer index as a good quantum num-

ber. One should expect, however, that tunneling between the

two layers is quite suppressed for the CFs since the CF has

to carry its Jastrow factor with it, thereby requiring relaxation

of all of the surrounding particles. In other words, for a CF

to tunnel, the entire correlation-hole complex needs to tun-

nel with it. (In yet another language, the effective magnetic

fields in Eq. 27 are changed when a CF moves from one layer

to another). In constrast, tunneling of CBs is expected to be
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quite large, since the CB has an identical correlation hole in

each layer. Indeed, once the CBs are at finite density, we have

found that there is a nonzero expectation of the excitonic su-

perfluid (111) order parameter which means essentially that

it is uncertain which layer any CB is actually in and the zero

bias tunneling is resonantly enhanced. With this considera-

tion, we might expect that tunneling between the two layers

will stabilize the CBs and destabilize the CFs. When there are

CBs present, tunneling between the layers will also have the

effect of gapping the Goldstone mode, since a particular phase

relation is preferred between the two layers.

Transport: Several marked transport phenomena are ob-

served in the bilayer systems.18–23 As discussed above, res-

onantly enhanced interlayer tunneling current is a signature of

the excitonic superfluid (or 111) order parameter. In essence,

a nonzero value of this order parameter indicates that in the

ground state, each electron is superposed between two lay-

ers and therefore tunneling occurs very strongly, controlled

by the relative phase between the two layers, analogous to the

Josephson effect.

The other two dramatic transport observations are quan-

tized Hall drag ρD
xy = h/e2 and superfluid counterflow (which

are very closely related to each other). In the interlayer-

exciton superfluid (or 111) phase, both phenomena can be un-

derstood by the presence of composite bosons. One argues

that superfluid counterflow derives from coherent transport of

CBs or charge-neutral interlayer excitons. As these objects

have no charge, they also do not couple to the magnetic field

and generate no Hall voltage.4

The above reasoning is based on considerations regarding

the CB condensate. Although our results show that the “pure”

CB condensate or 111 state occurs only at layer spacing d = 0,

we expect the transport features of this phase to remain qual-

itatively similar to those of the pure 111 state for any suf-

ficiently small d where the excitonic order parameter (111)

remains nonzero.34

Crucially, we note that the two phenomena of quantized

Hall drag and superfluid counterflow would also be observed

in a px+ ipy paired CF phase, identical to that of the 111 phase

— although such a CF superconductor would be lacking the

strong interlayer tunneling as discussed above. [The fact that

such a p-wave superconductor shows quantized Hall drag and

superfluid counterflow is easily derived using the technique

of Ref. 58 (See also Ref. 11) to handle (px + ipy)-wave su-

perconductivity, along with a Chern-Simons transformation to

account for the fact that we are pairing composite fermions].

It might be interesting to study the Hall drag at interlayer

separations just above the onset of interlayer tunneling. If ex-

periments were to identify an intervening regime, which has

quantized Hall drag, but no resonant tunneling, this would be

an indicator of the px + ipy paired CF phase. Presumably one

would want to examine this transition in high Zeeman field

where no spin transition would complicate experiments. One

should be cautioned, however, that our analysis of transport is

very crude. A more accurate analysis would necessarily in-

volve understanding the effects of disorder as well as possible

edge mode transport, which has been completely neglected in

this work.

V. CONCLUSION

In conclusion, we have derived a composite particle de-

scription for the ground state wavefunction of the quantum

Hall bilayer system at filling factor ν = 1
2
+ 1

2
. This ground

state is properly described by interlayer p-wave pairing of

composite fermions above a layer separation dCB. More pre-

cisely, this pairing instability occurs in the positive p-wave or

px + ipy channel. Below dCB, a mixed fluid phase with coexis-

tence of composite bosons and composite fermions develops,

and CBs successively replace paired CFs upon diminishing d.

We should emphasize that positive p-wave pairing is the only

pairing channel that is consistent with such a coexistence.

The precision of the composite particle description has the

same order of magnitude as other important trial states in the

literature of the quantum Hall effect, notably as the Laughlin-

state at ν = 1
3
. The agreement between the trial states and the

exact ground state was checked using energies, overlaps and

correlation functions, and was found to be in good agreement.

We analyzed the order parameter of the broken U(1) sym-

metry of the excitonic superfluid (the 111-state order parame-

ter), and found it to approach zero smoothly at values close to

d = 1.5ℓ0 with a tail attributed to finite size effects. We also

found this order parameter to be non-zero for the pure paired-

CF-phase. Though we cannot exclude the contrary with ab-

solute certainty, we believe that this is a phenomenon occur-

ring only in finite size systems. From the shape of the order

parameter, we conclude that the phase transition between the

111-excitonic-superfluid phase and the paired CF phase is of

second order. The precise value of the layer separation where

this transition occurs cannot be inferred from our numerics,

since the order parameter continues to be non-zero at all layer

separations in small systems. The transition from the p-wave

paired CF phase to an excitonic superfluid phase might also

be roughly identified by the splitting of a 4 fold degeneracy

on the torus, indicative of the paired CF phase — although

our finite size torus data needs to be viewed with some cau-

tion.
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Appendix A: Paired CF wavefunctions on the sphere

The geometry chosen for our numerical calculations is the

sphere, which has the benefit of avoiding boundary effects for

finite-size systems. For our purposes, the most suitable coor-

dinates are the spinor coordinates

u = cos(θ/2)e−iφ/2 and v = sin(θ/2)eiφ/2. (A1)
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FIG. 8: Definition of the different angles for Eq. A5 taken from

Ref. 65, adapted to our notations. Points R and R′ indicate the posi-

tions of two electrons, and a third reference point can be chosen as

the north pole N of the sphere. Generally, the reference point is given

by the singular point of the section for a given representation of the

monopole harmonics.64

In the following, it is convenient to change notations such as

to write particle coordinates with two indices: the upper index

indicates the pseudospin and designates the layer to which it

belongs, whereas the lower index indicates the particle num-

ber. Thus, (uσ
i ,v

σ
i ) ≡ Ωσ

i describes the location of particle

i with pseudopsin σ . The external magnetic field is repre-

sented by a magnetic monopole of strength Nφ in the center

of the sphere, and it is useful to work in the Haldane gauge.50

In particular, using the formalism of the stereographic pro-

jection between the plane and the sphere,62 one then obtains

wavefunctions on the sphere which can be expressed entirely

in terms of u’s and v’s and contain no additional phase fac-

tors. Our purposes require the translation of Jastrow factors

to the new spinor coordinates on the sphere. A coordinate z

translates to pseudospin up (↑) and a coordinate w translates

to pseudospin down (↓), e.g.,

(zi −wk)→ (Ω↑
i −Ω

↓
k)∼ (u↑i v

↓
k −u

↓
kv

↑
i ). (A2)

Furthermore, the knowledge of a complete set of eigenstates

φi is required to describe (16) on the sphere. These eigenstates

are given by the monopole harmonics63–65 written as Yq,l,m

for a total flux Nφ = 2q, and the angular momentum quantum

numbers l = |q|+n and |m| ≤ l. These orbitals are organized

in a shell structure related to the Landau levels on the plane.

The LL-index takes integer values n = 0,1,2, etc. Contrarily

to the plane, the degeneracy dn of these ‘Landau levels’ is not

constant but increasing with n as

dn = 2(|q|+n)+1. (A3)

In the thermodynamic limit, q → ∞, whereas n remains finite,

such that the constant LL-degeneracy of the plane is recov-

ered.

The proper pair correlation function on the sphere might

be deduced entirely from the requirements of its antisymme-

try and the condition imposed on the flux-count for the re-

sulting bilayer wave function (16) to be commensurable with

the 111-state. Nonetheless, let us discuss the symmetry of

this two-point function (before projection to the LLL) in more

general terms. A general pair wavefunction on the sphere may

be expanded in terms of monopole harmonics, such that

g
(

Ω
↑
i ,Ω

↓
j

)

= g
(

Ω
↑
i −Ω

↓
j

)

=

∑
n

∑
m

gn,mY1
2 ,

1
2+n,m(Ω

↑
i )Y1

2 ,
1
2+n,−m

(Ω↓
j). (A4)

Here, the pair (k,−k) has been replaced by its analogue on

the sphere [(n,m),(n,−m)]. Rotational invariance of (A4) im-

poses that gn,m ≡ gn independent of m. In the case of p-wave

pairing, we must deal with a slightly more complicated case,

since the pair correlation function is then not rotationally in-

variant, but rather acquires a phase. This is reflected by a

less restrictive condition |gn,m|= gn. The angular behavior of

(A4) may then be analyzed according to Eq. 25 from Ref. 65.

This equation expresses the sum over the angular momentum

quantum number m of a product of two monopole harmonics

in terms of an amplitude depending solely upon their distance

on the sphere, and a phase depending on several angles. For

our purposes, we need to set q = q′, and then take into account

the relationship for the complex conjugation of the monopole

harmonics, (Eq. 1 in Ref. 65) in order to deduce the relation-

ship

∑
m

(−1)q+mYq,l,m(θ
′,φ ′)Yq,l,−m(θ ,φ)

=

√

2l +1

4π
Yq,l,q(θ12,0)eiq(φ+φ ′)e−iq(γ−γ ′+π). (A5)

This equation holds independently for each shell n. The an-

gles φ ,φ ′,γ and γ ′ occurring in this expression are named ac-

cording to our own conventions and indicated in Fig. 8. The

third point of this triangle is a reference point, that is given by

the singular point of the section on which the monopole har-

monics are defined. The phase δϕ , accumulated when taking

the two particles around each other with a small angular sep-

aration, may be deduced from the last term in (A5). For a half

rotation (i.e. changing the position of both particles), both γ
and γ ′ vary by π , but with different signs, whereas φ and φ ′

merely change roles. We then have δϕ = 2πq. Thus, pair

wavefunctions expanded in monopole harmonics Yq,l,m corre-

spond to 2q-wave pairing, following the analogy with (17).

The choice of q = 1
2

for the mixed fluid bilayer wavefunctions

is consistent with the phase of the pair wavefunction found in

the 111-state. Analogously, this may also be concluded from

the flux-count argument introduced at the end of section II D:

naturally, an orbital Yq,l,m adds a number Nφ = 2q flux to this

count. Thus, with q = 1
2
, we recover the previous result that a

mixed CF-CB fluid requires positive p-wave pairing of com-

posite fermions.

To summarize, we have outlined how to write the mixed

fluid wave function with paired CF on the sphere. Taking into

account the above considerations, the explicit expression upon
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adding the projection to the LLL43 is:

ΨCF−CB
(

{gn}
)

= det

[

Jzw
i Jwz

j

u
↑
i v

↓
j −u

↓
jv

↑
i

+ (A6)

Jzz
i Jww

j ∑
n,m

(−1)q+mgnỸ1
2 ,

1
2+n,m(Ω

↑
i )Ỹ1

2 ,
1
2+n,−m

(Ω↓
j)

]

.

As a reminder, arguments (Ωσ
i ) denote the coordinates parti-

cle i with pseudospin σ . Jastrow factors must be expressed

following the replacement rule (A2).

Appendix B: Numerical results for mixed CF-CB states with

filled CF shells

The analysis of the mixed fluid bilayer states with CF pair-

ing presented in section III has shown that, in general, the

ground state features non-trivial CF pairing. However, the

precise shape of the pairing potential must be found by op-

timization over a small set of variational parameters. Since

this requires a considerable numerical effort, it is interesting

to analyze a particular subclass of the mixed fluid states: those

with filled CF shells. Using the term ‘shells’, we refer to the

spherical geometry, as discussed in Appendix A. These filled

shell states are obtained following the choice of parameters

(26) for the gn, i.e. choosing very large coefficients up to a

reduced Fermi momentum (kF)F to force the respective num-

ber of electrons into CF orbitals. Remaining electrons then

occupy CB states.

Given the degeneracy of CF shells on the sphere (A3), with

q = 1
2

for the mixed fluid states, there are a small number of

possible filled shell states for each system size N. Explicitly,

the series of possible CF numbers per layer for ns filled CF

shells is given by

N1F(ns) = ns(ns +1) = 2,6,12,20, . . . . (B1)

Though these filled shell states are known not to be ground

states of the bilayer system, they represent intermediate states

between the 111-state and the CFL, and are better approxima-

tions of the ground state than either of the latter two states for

intermediate layer separations.

As an example, |2 Fermions〉 as described in Ref. 34 is such

a filled shell state without CF pairing. In order to show that

our calculation reproduces exactly the state |2 Fermions〉 for

large g0, and gn = 0,∀n ≥ 1, we have calculated the over-

lap of that state with a special case of our trial states (with

g0 large and all other gn = 0), and find it to be precisely

equal to one within the numerical precision of our calculation:

|〈2 Fermions|ΨCF-CB(g0 → ∞)〉|2 = 0.9999999±10−6, for an

overlap integral evaluated with 5×105 Monte-Carlo samples.

The agreement we have found supports our claim that we

can indeed generate precisely the mixed CF-CB states intro-

duced in Ref. 34 using our single determinant wavefunctions.

This agreement further supports our interpretation of the gn

as controlling the occupation probability of the respective CF

shell. Note that when choosing gn to be large, this means that

the respective CF states are inert (i.e., the orbitals are fully

filled and they do not participate in nontrivial pairing). It then

does not matter whether the pair correlation function is chosen

symmetric or antisymmetric.

In the case of filled CF shells, one can argue that our paired

CF description and the mixed fluid picture from Ref. 34 are

identical. However, we also find perfect agreement for the

state where all electrons occupy CF orbitals, |5 Fermions〉,
which is not a filled shell configuration: the overlap of the cor-

responding trial state with the explicitly constructed CFL state

|5 Fermions〉 was found to be |〈5 Fermions|ΨCF-CB(g0,g1 →
∞)〉|2 = 0.999991 ± 3 × 10−5 (evaluated over 106 Monte-

Carlo samples). As opposed to the previous case, in order

to obtain this agreement, it is required that the pair correla-

tion function gF be chosen antisymmetric (see Appendix A).

As pointed out in the main text, and discussed previously in

Ref. 13, this agreement is possible only for cases where the

CF-sea deviates from a filled shell configuration by at most

one electron per layer.

Since the fraction of CFs and CBs is known for the mixed

fluid states, these represent a testing ground for the validity

of Eq. 32. Numerical evaluation indeed confirms that the cor-

rect fraction of CFs p(ns) = NF(ns)/N1 is obtained from (32)

within about one percent error (See Table III). Typically, when

calculating a Fermi liquid state, ∑ns
p(ns) is slightly larger

than one but remains within the same error margin.

Having clarified that the filled CF shell states represent a

subclass of the mixed fluid states in Ref. 34 but with the ad-

vantage that the representation (A6) is computationally easier

to evaluate, we may study this class of states up to very large

system sizes.

We have studied larger systems, focusing our attention to

system sizes of the sequence (B1). For a system size corre-

sponding to ns filled shells, we may construct ns +1 different

trial states, notably the 111-state and the states with 1,2, . . . ,ns

filled shells. The state with all shells filled (i.e. the CF Fermi

liquid) gives us a criterion to test whether the parameters gn

have been chosen large enough to transform all particles to

composite fermions. Such a state features no interlayer cor-

relations and, consequently, its interlayer correlation function

should be constant. All one needs to do is to tune the gn un-

til this situation is reached. Empirically, we have found that

values gn & 1000 satisfy this criterion.

The biggest system analyzed in this way had N = 42+ 42

particles. As the the exact ground state energy is not known

for such large systems, we only compared the different filled

shell states. At zero layer separation, the 111 state is the ex-

act ground state. Interestingly, states with a small number of

CFs have a very large overlap with the 111-state, such that

MC simulations have difficulty in resolving their difference in

energy. However, there is a general tendency that states in-

cluding CFs have lower energy at increasing d. This suggests

that a finite fraction of CF could eventually be favorable at

any finite d in the thermodynamic limit. Going from small to

larger layer separations, states with subsequently more filled

CF-LLs clearly become the most favorable trial states.

The layer separations d×
ns

, where we observed the level

crossings between a first state with ns − 1 filled CF shells
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N1 1 filled shell 2 filled shells 3 filled shells δ [∑ p]
p(0) δ p0 p(0) δ p0 p(1) δ p1 p(0) δ p0 p(1) δ p1 p(2) δ p2

5 0.400974 +0.24 0.400877 +0.22 0.604851 +0.81 N/A +0.57

6 0.334152 +0.25 0.334157 +0.25 0.678183 +1.73 N/A +1.23

7 0.286419 +0.25 0.286421 +0.25 0.581292 +1.73 0.285971 +0.09 0.575032 +0.63 0.142858 ±0.0 +0.94

8 0.250619 +0.25 0.250620 +0.25 0.508638 +1.73 0.250559 +0.22 0.500022 ±0.0 0.258746 +3.5 +0.93

12 0.167082 +0.25 0.167082 +0.25 0.339134 +1.74 0.167082 +0.25 0.339158 +1.75 0.522862 +4.57 +2.91

TABLE III: Occupations p(n) calculated according to Eq. 32 for filled shell states. At a given system size N1 = N/2, values for

sample calculations of all possible filled shell states are indicated. The deviations of p(n) from the expected occupation probabilities

δ pn = [p(n)/(N1F(n)/N1)]−1 are indicated in percent. The last column gives the percent deviation from 1 for the sum of occupation proba-

bilities of the state with the maximal number of filled shells.

and a second one with ns shells filled are spread out over a

large interval of layer separations ranging from d×
0 . 0.05ℓ0

to d×
5 ∼ 1.5. As stated before, neither of the filled shell states

describes the ground state of the system at the point of their

level crossing. Nonetheless, the d×
ns

provide an estimate of the

range of NF/N that would best characterize the ground state at

this layer separation in the absence of CF-pairing. From this

kind of reasoning, we can infer that

NF(ns −1)

N
.

NF

N

∣

∣

∣

∣

d×ns

.
NF(ns)

N
. (B2)

Collecting data from level crossings d×
ns

at different system

sizes, we established Fig. 9, where we have represented the

complementary ratio of composite bosons NB/N = 1−NF/N.

For the filled shell states, the ratio NB/N is related to the order

parameter S = |〈S 〉| via a monotonically growing function

(See the inset of Fig. 9).

Given that CF pairing predominantly lowers the energy of

states that contain a substantial fraction of CFs, the range for

NB/N indicated in Fig. 9 should be seen as an estimate for the

upper bound of the fraction of bosons. This is most drastically

illustrated by the occupation probability of CB orbitals pB (for

N = 5+ 5 particles) that is given for reference in this figure.

At small layer separations, where the mixed fluid description

is at work, this curve is within the error bars deduced from the

filled shell analysis. However, once the paired regime is ap-

proached, the true occupation of boson orbitals drops rapidly

and the estimate made here clearly overestimates the actual

value.

Appendix C: Numerical Methods

As stated in section III, the aim of our numerical simu-

lations of the bilayer states (25) was to show that they po-

tentially represent the ground state. However, to achieve an

explicit representation of the ground state at a given layer

separation d, one must find the corresponding set of varia-

tional parameters {gn,cB}d ≡ γd that yields an optimal trial

state (assuming a time reversal invariant interaction, all LLL

wavefunctions can be written as polynomials with real coeffi-

cients, so {gn} were considered real). This was realized either

by maximizing the overlap with the exact ground state, or by
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FIG. 9: Intersections of the energy levels of filled CF shell states al-

low deduction of estimates for the range of the most favorable frac-

tion of CB at the layer separation d× of the point of intersection. The

results for various system sizes as small as N1 = 5 and as large as

N1 = 42 electrons are represented collectively in this plot, and show

a good coherence. Note that CF are formed in the system at very

small d. A rough linear extrapolation of these results suggests that

the ratio NB/N would vanish at approximately d = 1.7ℓ0. However,

CF-pairing changes these figures, as highlighted by the occupation

probability pB for N1 = 5 that is given for comparison. The inset

shows the monotonic relationship between the order parameter S and

the fraction of bosons for data from various filled shell states at dif-

ferent N.

minimizing the energy. Both operations represent non-trivial

optimization problems.

In general, optimization algorithms require a large number

of function evaluations before obtaining a good ‘guess’ of the

optimal solution. Furthermore, our calculations were based

upon Monte-Carlo simulations, a statistical method which

yields statistical errors vanishing only as the inverse square

root of the number of samples. This means that any optimiza-

tion method is bound to make a trade-off between the uncer-

tainty it allows for the precision of function evaluations and

the number of such evaluations it requires.

Monte-Carlo sampling to evaluate expectation values is

used in both methods below. Naı̈vely, each set γ = {gn,cB}
requires a separate Monte-Carlo simulation, though it is possi-

ble by using correlated sampling to simulate at the same time

many choices of these parameters. A prerequisite for corre-
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lated sampling is that correlations in the simulated wavefunc-

tions are similar, such that the ensemble of samples used is

similarly relevant to all of them. With this approach, it is easy,

for example, to numerically evaluate local derivatives with re-

spect to the variational parameters. Best results for our cal-

culations were achieved by using a self-consistent sampling

function F — an expression obtained as a Jastrow product

form exploiting the correlation functions66 h
γ
σσ ′ calculated in

the same run (let the superscript γ be a reference of a distinct

trial state). This yields

F = ∏
i< j

h
γ
↑↑(zi − z j)∏

i< j

h
γ
↓↓(wi −w j)∏

i, j

h
γ
↑↓(zi −w j), (C1)

where h↑↑(r) = h↓↓(r) by symmetry. The most important part

in this Ansatz are the interlayer correlations h↑↓, as the in-

tralayer correlations are rather similar for all possible choices

of the parameters γ .

1. Energy optimization

Due to the statistical errors that underly the Monte-Carlo

simulations, computation time increases as the inverse square

of the required precision, such that any optimization scheme

using local derivatives of the energy is difficult. Iterative com-

parison of neighboring states in correlated sampling is a slow

route to optimization. As the results shown in section III un-

veil, the difficulty of finding a good optimization scheme suit-

able for our case is also due to the inherently good correlations

common to all trial functions: further improvement only con-

cerns rather small relative differences in energy.

To meet these challenges, we successfully deployed a rather

subtle optimization method67 based on iterated diagonaliza-

tion of the Hamiltonian in the space spanned by the present

trial state |Ψ0〉 and its derivatives with respect to the varia-

tional parameters |Ψi〉 = ∂
∂γi

|Ψ0〉. The trial-state represen-

tation for the next iteration can be represented as the Taylor

expansion

|Ψ〉=
nc

∑
i=0

ci|Ψi〉, (C2)

where ci is the proposed change in the parameters. The values

ci may be obtained as the solution of the generalized eigen-

value problem in this non-orthogonal and incomplete basis

H|Ψ〉= ESc, (C3)

where S is the overlap matrix Si j = 〈Ψi|Ψ j〉. Even better re-

sults were obtained using a slightly different basis which was

additionally chosen to be semi-orthogonalized with respect to

|Ψ0〉, such that 〈Ψ0|Ψi〉= 0, i = 1, . . . ,nc. The stabilisation of

this procedure is discussed in Ref. 67.

2. Optimization of Overlaps

Where the exact ground state is known from exact diago-

nalization, we may revert to a simpler method of singling out

the optimal trial wavefunction of the form (25), namely op-

timizing the overlap with the exact wavefunction. Here, the

main difficulty lies in the evaluation of the overlap between

the trial states and the exact ground state: the trial wavefunc-

tions are known in real-space, results from exact diagonaliza-

tion are given in the second quantized notations of occupation

in momentum space

|Ψexact〉=
D(Lz=0)

∑
α=1

aα c
†
m1(α)↑ · · ·c

†
mN1

(α)↑c
†
m1(α)↓ · · ·c

†
mN1

(α)↓|0〉,

(C4)

with α denoting a many-body basis state in the Hilbert

subspace at Lz = 0 of dimension D(Lz = 0) ≫ D(L = 0),
and corresponding amplitudes aα . Converting trial states

Ψtrial({zi,wi}) into the second quantized basis is difficult, so

overlaps are calculated in real space with a Monte-Carlo eval-

uation of the integral over many configurations σ = ({zi,wi})

〈Ψexact|Ψtrial〉=
∫

dσ Ψ∗
exact(σ)Ψ

γ
trial(σ) (C5)

based on Ψexact({zi,wi}) = 〈{zi,wi}|Ψexact〉. Each evalua-

tion of Ψexact(σ) requires the evaluation of D(Lz = 0) Slater

determinants of size N1, which is the most time-consuming

operation. It is therefore advised to generate a sequence of

Monte-Carlo samples from the exact wavefunction only once,

and subsequently use it to calculate overlaps with various trial

wavefunctions via correlated sampling.

The optimization step of finding the value for the parame-

ters γopt which yields the highest overlap turns out to be rather

simple. The Fletcher-Reeves method (a steepest descent algo-

rithm) was found to yield satisfactory results.

Appendix D: Analysis of correlation functions

In the main text of the paper, we analyzed the energies of

trial states and their overlaps with the exact trial state as a mea-

sure of their performance. Alternatively, one may use a com-

parison of the correlation functions as a gauge for capturing

the physics of the exact solution. The correlation functions

provide more information about the system, which makes

them a more comprehensive measure, but also more difficult

to interpret than a single number as the energy. We define the

pair correlation functions66 as

hσσ ′(θ) =
Nσσ ′

〈ρσ 〉〈ρσ ′〉 〈ρσ (~r)ρσ ′(~r′)〉 (D1)

where ρσ (~r) is the density in layer σ at position ~r, and θ is

defined as the great circle angle between positions ~r and ~r′.
The normalization is chosen such that h(r → ∞) =Nσσ ′ , with

Nσσ ′ = [(N/2)−δσσ ′ ]/(N/2). (D2)

This choice accounts for the different number of interacting

particle pairs in the interlayer and intralayer correlations.

Let us first discuss some of the physics revealed by the cor-

relation functions in the bilayer (see also Ref. 30). Some cor-

relation functions are shown in Fig. 10 for N = 5+5 electrons.
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The top panel of Fig. 10 shows both the correlation functions

at d = 0 and d = 0.5ℓ0. Note that for d as small as d = 0.5ℓ0,

the correlation hole for small r in the intralayer correlation

function h↓↓ is noticeably enlarged with respect to the 111-

state, the exact ground state at d = 0. The correlation hole in

the interlayer correlation function h↑↓ is reduced accordingly,

with h↑↓(0)> 0. We find that the observed change in the cor-

relation functions can be understood by exclusively consid-

ering the admixture of CF to the 111-state: the mixed fluid

wavefunctions (25) perfectly reproduce these correlations.

With growing d, the anti-correlations described by the cor-

relation hole in h↑↓ continue to decrease and the correlation

hole in h↓↓ expands to its full size. For choices of gn that

correspond to sufficiently large numerical values such that the

correlation hole in h↓↓ has reached its full size, the shape of the

intralayer correlation function is relatively insensitive to the

precise values of these parameters. This means that intralayer

correlations are coded into the Jastrow factors regardless of

the specific (projected) CF orbital. In contrast, the interlayer

correlation function h↑↓ has a strong dependence on the shape

of gn.

In in section III A of the main text, we highlighted that

paired states without an admixture of CB correlations repro-

duce exact ground states down to d ∼ ℓ0. As an example for

a correlation function h↑↓ in this regime, the bottom panel of

Fig. 10, showing d = 1.25ℓ0, features a strong anti-correlation

of electrons in both layers. This correlation hole can thus be

explained entirely in terms of CF-pairing, which seems coun-

terintuitive as one would expect pairing to enhance correla-

tions between the layers. With regard to the shape of the pair

wavefunctions (17) where g(z,w) ∝ (z−w) for p-wave pair-

ing, we can more clearly understand this feature. By virtue

of this property, px + ipy pairing introduces interlayer anti-

correlations on short length scales. As the pair wavefunction

is forced to have a maximum and to decay for r →∞, g is guar-

anteed to describe a bound state of pairs with some finite typ-

ical distance between the bound particles. Correspondingly,

the correlation hole in h↑↓ is accompanied with an enhanced

correlation around r ≈ 2ℓ0.

In the regime of intermediate layer separation shown in the

bottom panel of Fig. 10, the overlap with the exact ground

state is not quite perfect [the state shown was optimized on

the overlap, attaining a value of 0.987(3) for d = 1.25ℓ0].

Optimization over either the overlap or the energy results in

highly accurate correlation functions at short distances, while

the large r behavior is weighted lower and may not be fully

reproduced. However, as shown in Fig. 10, the correlations

of the paired CF-CB states are extremely close to the exact

correlation functions. For these variational state, some of the

accuracy at short distances can be traded for a better repro-

duction of the large r behavior.

As a prominent reference case, we might cite the correlation

function of the Laughlin state. Though the Laughlin state is

a very accurate description of the ground state at filling factor

ν = 1/3, its correlation function still deviates noticeably from

the correlation of the exact ground state at large r, as shown

in Fig. 11.
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