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Abstract  1 

The annual flood pulse in the Okavango Delta (Botswana), has a major influence on water 2 

chemistry and habitat. We explore spatial and temporal patterns in a suite of chemical variables, 3 

analysed from 98 sample points, across four regions, taken at different stages of the flood cycle. 4 

The major pattern in water chemistry is characterised by an increasing gradient in ionic 5 

concentration from deep-water sites in the Panhandle to more shallow, distal regions to the south. 6 

Concentrations of cations, anions, dissolved organic carbon, and SiO2 are significantly higher in 7 

the seasonally inundated floodplains than in permanently flooded regions. Several variables 8 

(including Na and total nitrogen) significantly increase from low flood to high flood, while others 9 

(including HCO3, SiO2, and Cl) increase in concentration, initially between low flood and flood 10 

expansion, before declining at maximum flood extent. Redundancy analysis (RDA) revealed that 11 

hydrological variables (water depth, flow velocity, flood frequency, and hydroperiod class) 12 

significantly explain 17% variation in surface water chemistry. Predictions of increasing flood 13 

volume in the near future may result in a  decline in alkalinity and dilution of DOC. Our study 14 

provides an important baseline from which to monitor future change in the Delta. 15 

Keywords: floodplains; multivariate techniques; water chemistry; wetlands 16 

 17 

Introduction 18 

Wetlands provide vital ecosystem services for human populations worldwide through the 19 

provision of freshwater, food and biodiversity, and the mitigation of climate change (Millennium 20 

Ecosystem Assessment 2005). Yet these ecosystems are particularly vulnerable to threats from 21 

human impact through increasing economic development and population growth.  For example, 22 

over the last 100 years, biodiversity of inland waters has been especially impacted by habitat 23 

change and excessive nutrient loading (Jenkins 2003). Over the next 100 years, climate change is 24 
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expected to exacerbate these problems, although in some regions, such as southwest Africa, 1 

climate change scenarios are still highly uncertain (Hughes et al. 2010). 2 

The Okavango Delta (hereafter referred to as the Delta) in northern Botswana is one of the 3 

largest wetlands in Africa, and one of the few where human impact is minimal. The Delta is a low-4 

gradient alluvial fan, and occupies the lowest region of the Kalahari Basin. The Delta is fed by 5 

rivers with their source in the highlands of Angola, and both the rivers and the Delta together form 6 

the Okavango River Basin (Fig. 1). The Delta is a flood-pulse ecosystem (Junk et al. 1989), 7 

controlled mainly by an annual pulse of water, turning dry floodplains into productive aquatic 8 

environments (Mendelsohn et al. 2010). Every year, precipitation falling in the highlands of 9 

Angola during October, flow down the Cubango and Cuito rivers, which join to form the 10 

Okavango River at the border between Angola and Namibia. This flood pulse reaches the northern 11 

part of the Delta (in Botswana) in February–May, before slowly expanding out, and reaching the 12 

distal regions by July–August. Maximum flood extent occurs towards the end of the dry season 13 

between July–September, and declines again during the summer, between October–March. 14 

The flood pulse is ultimately forced by climate, although as it expands out in the Delta 15 

there is strong spatial variability, due to the Delta’s flat topography and vegetation-controlled 16 

channel-floodplain interactions (Wolski and Murray-Hudson 2006a). Currently, technological 17 

modifications of the Delta are few, but threats are real. For example, dam building upstream for 18 

hydroelectricity and agriculture in Angola and Namibia have the potential to alter the volume of 19 

water flowing into the Delta (Mendelsohn et al. 2010). Increasing tourism, on the other hand, may 20 

increase habitat disturbance, while population growth in villages and towns brings with it the 21 

possibility of deteriorating water quality (Masamba and Mazvimavi 2008). There is substantial 22 

seasonal, inter-annual, and decadal variation in size of the flood and the extent of inundated area 23 

(Mazvimavi and Wolski 2006). This variation is mainly due to variation in flow of the Okavango 24 

River (9 x 10
9
m

3
/yr), but also to local summer rainfall (6 x 10

9
m

3
/yr) and to a lesser extent the 25 
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nature of the previous year’s flood (McCarthy et al. 2003). Rainfall falls mainly during December, 1 

January, and February and is higher in the north (c. 550 mm/yr) than in the south (450 mm/yr). 2 

Approximately 2% of water leaves the Delta through rivers in the south; the remainder is lost 3 

through evaporation (74%) and transpiration processes (24%) (Mendelsohn et al. 2010). 4 

Hydrology and wetland chemistry are closely linked (Mitsch and Gosselink 2000). However, 5 

while the hydrology of the Delta has been comprehensively studied (see Milzow et al. 2009 for a 6 

review), there have been considerably fewer investigations into how the flood pulse in the Delta 7 

impacts nutrients (Mubyana et al. 2003; Lindholm et al. 2007) and inorganic chemistry (Sawula 8 

and Martins 1991). Previous studies focussed only on very short time periods (Ashton et al. 2003), 9 

or were restricted to the Jao / Boro river system (Sawula and Martins 1991; Cronberg et al. 10 

1996a,b). Here we report on a large, comprehensive, surface water chemistry dataset that covers 11 

four important regions in the Delta, sampled over a complete flood cycle. Given the importance of 12 

the Delta in terms of biodiversity (Ramberg et al. 2006) and ecosystem services (Mendelsohn et 13 

al. 2010) it is important to characterise baseline information on surface water chemistry across 14 

different regions, and at different stages, of the hydrological cycle. This information is 15 

fundamental for the detection and monitoring of future ecosystem change. The first aim of this 16 

study was to characterise variation in surface water chemistry in relation to (i) the different regions 17 

of the Delta, (ii) different stages of the flood cycle over a period of one year, and (iii) between 18 

habitats which were either seasonally or permanently flooded. The second aim was to explore the 19 

influence of four hydrological variables linked to the flood pulse (water depth, flow velocity, flood 20 

frequency and hydroperiod class) on surface water chemistry, using multiple regression 21 

techniques.  22 

Methods 23 

Regional descriptions and site selection 24 
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Study sites were selected across four regions in the Delta (Fig. 1). The upper Panhandle 1 

(UPH) in the north is a fault-bounded, flat-bottomed valley dominated by fluvial input from the 2 

Okavango River. Downstream from the UPH is the region known as the lower Panhandle (LPH), 3 

where the Okavango River meanders across the floodplain. South of the LPH, the Okavango River 4 

spreads out into channels, which get progressively smaller with distance. The main distributary 5 

(Maunachira / Khwai) is an eastern extension of the Okavango River, with many large, flow-6 

through lagoons such as Xakanaxa (XAK). Several secondary distributaries branch off from the 7 

Okavango River, including the Jao / Boro (BOR) river system to the west of Chief’s Island (Fig. 8 

1).  Fifty sites were selected to capture a strong hydrological gradient, and built on previous 9 

aquatic research undertaken in the Delta (Ashton et al. 2003; Dallas and Mosepele 2007).  10 

Sample collection and analysis of chemical response variables 11 

Ninety-eight sample points were analysed for water chemistry. These consisted of 23 12 

sample points visited only once in the study. The remaining 75 sample points were from 27 sites 13 

visited on more than one occasion, during different stages of the flood-pulse cycle: low flood (28 14 

Nov–10 Dec 2006; n=28); flood expansion (23 Apr–6 May 2007; n=23); high flood (24 Jul–7 Aug 15 

2007; n=26); and flood recession (2 Oct–12 Oct 2007; n=21). Across the regions, 15 sample 16 

points were analysed from UPH, 17 from LPH, 31 from XAK, and 35 from BOR. Sample points 17 

were further characterised by the dominant habitat, including marginal vegetation in channels 18 

(MV-IC), marginal vegetation in lagoons (MV-L), floating vegetation (FV), inundated floodplains 19 

(IF), and isolated, seasonally flooded pools (SP) (after Dallas and Mosepele 2007). The first three 20 

habitat types are permanently wet (WET), while IF and SP experience wet-dry cycles 21 

(WET/DRY). Sample point co-ordinates are given in Online Resource 1(i). 22 

pH, conductivity (S/cm), and dissolved oxygen (DO) (mg/L) were analysed in situ. pH 23 

and conductivity were measured using a portable Fisher Scientific accumet AP85 portable 24 

waterproof pH/conductivity meter. A YSI 550 dissolved oxygen instrument was used to measure 25 
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DO and water temperature (temp) (C). Field equipment was calibrated before each trip. Total 1 

suspended solids (TSS) were determined by filtering Delta water (at least 1L) and measuring the 2 

residue weight on GF/C filter papers after being dried at 105°C for 24 h (mg/L). 250 ml of water 3 

was filtered through a GF/C filter into acid-washed bottles for non-metal (HCO3, Cl, NO3, SO4, 4 

dissolved organic carbon (DOC)) analyses. A second 250 ml of water was also filtered using 5 

cellulose nitrate papers for cation analyses (Na, K, Mg, Ca) and immediately acidified with three 6 

drops of concentrated HNO3. A final 250 ml of water was filtered using cellulose nitrate filter 7 

papers for silica analysis. All filtered samples were stored on ice in acid-washed plastic sample 8 

bottles, then transported to the Okavango Research Institute where they were either analysed 9 

immediately on their return, or frozen until analyses could be carried out. HCO3 was determined 10 

within 48 h of sample collection. DOC and anions were analysed within 7 days, while TN and TP 11 

were determined within three weeks of collection. Metals were analysed within 2 months after 12 

collection. 13 

Mg (mg/L) and Ca (mg/L) levels were determined by flame atomic absorption 14 

spectrometry using a Varion Spectra 220 instrument. Lanthanum was used as a releasing agent to 15 

reduce interferences during Ca analysis (Eaton et al. 1995). Na (mg/L) and K (mg/L) were 16 

determined by flame photometry using a Sherwood Flame Photometer 410 instrument. HCO3 17 

(mg/L) was analysed using an auto-titrator (Mettler Toledo model DL 50). Cl (mg/L) and SO4 18 

(mg/L) were analysed by ion chromatography using a DX-120 ion chromatograph (Eaton et al. 19 

1995). An approximation of DOC (mg/L) was obtained by measuring the absorbance of the water 20 

samples at 280 nm using a Perkin Elmer Lamda 20 UV/Vis spectrophotometer (Mladenov et al. 21 

2005). Total phosphorus (TP (mg/L)), total nitrogen (TN (mg/L)), and nitrates (NO3 (mg/L)) were 22 

analysed by an air segmented flow analyser (Bran + Luebbe AA3) after persulphate digestion. 23 

SiO2 (mg/L) was measured using the heteropoly blue method at 815nm. 24 

Collation of hydrological explanatory variables 25 
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Water depth (m) and velocity (m/s) variables were measured in situ at each sample point. 1 

Water depth was usually measured using a Plastimo Echotest II handheld depth sounder. In 2 

locations with dense, submerged vegetation, water depths were instead measured using a 3 

graduated metal pole. Water flow velocities were estimated using an OTT Nautilus C 2000 4 

Electromagnetic Flow Sensor, which was designed to measure water currents in the marginal 5 

zones of river banks, shallow water, and waters with low flow velocities. Annual flood frequency 6 

and hydroperiod class variables were derived from remotely sensed images, hydrometric data, and 7 

general understanding of hydrological variability in the system. We used 16 data layers depicting 8 

maximum annual inundation extent during years 1989–2006 (excluding 1991 and 2003). The 9 

layers were obtained from Landsat (5 and ETM) images, using a classification procedure 10 

involving spectral clustering and contextual classification (Wolski and Murray-Hudson 2006a). To 11 

depict the Delta, four Landsat scenes had to be mosaicked for each coverage. Inundation layers 12 

had spatial resolution of 30 by 30 m, and 97% accuracy of determination of inundation extent 13 

(Wolski and Murray-Hudson 2006a). Dates of the imagery were selected to coincide with the 14 

period of maximum, annual inundation. The flooding in the Delta takes the form of a single, 15 

annual event with progressive transition between low inundation and high inundation taking place 16 

throughout a year. Earlier work, with weekly NOAA AVHRR images, revealed that the crest of 17 

the flood lasts approximately 1–2 months in distal parts, but 3–4 months in the proximal parts of 18 

the Delta proper, and fast recession occurs only in October (Wolski and Murray-Hudson 2006b). 19 

Based on these findings, Landsat scenes from end of August to mid-September were selected for 20 

high-resolution inundation mapping. Number of years inundation occurred was calculated for the 21 

entire Delta on a pixel-by-pixel basis, by stacking up all individual layers. Flood frequency was 22 

then obtained by dividing number of years with inundation by the total number of flood maps. 23 

Flood frequency for each of the sampling sites was obtained by averaging flood frequency from 24 

the nine surrounding pixels, corresponding to the sampling point, using neighbourhood statistics 25 
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procedure. This was done to reduce possible influence of errors resulting from image 1 

misclassification and misregistration. In the seasonally inundated parts of the Delta, annual 2 

inundation frequency can be considered as a proxy for mean duration of inundation. This results 3 

from the nature of the flood event where parts of the system are likely to be inundated longer only 4 

in high flood years, for a short term only in moderate years, and not inundated at all in low flood 5 

years. However, the relationship between the amplitude of annual water level fluctuations and 6 

flood frequency varies for different parts of the system. Available hydrometric data were not 7 

enough to formalize these relationships in strict mathematical form. Instead, a set of seven 8 

hydroperiod/amplitude classes was defined, and a hydroperiod class was attached to each of the 9 

sample points. The classification was based on flood frequency maps and hydrometric data from 10 

hydrometric stations in the vicinity of sampling points.  11 

Statistical Analyses 12 

Prior to all analyses, chemical and hydrological variables were tested for normality on the 13 

basis of frequency histograms, quantile-quantile (Q-Q) plots, and Shapiro-Wilk tests using SPSS 14 

Statistics 17.0. Differences in chemistry and hydrology were determined among (i) sample points 15 

in different regions; (ii) sample points at different stages of the flood cycle; and (iii) permanently 16 

or seasonally inundated sample points. Initially, Levene’s tests for equality of variances were 17 

undertaken to ensure that appropriate parametric and non-parametric tests were used. Variables 18 

with equal variance were analysed using either analysis of variance (ANOVA) or 2-tailed t-tests. 19 

Regional and flood cycle differences were further investigated using post-hoc tests with 20 

Bonferroni corrections. Variables with unequal variances were analysed using Kruskal-Wallis 21 

(KW) tests. KW has no equivalent post-hoc test, so where the KW test did reveal significant 22 

differences among regions, and within the flood cycle, pairwise Mann-Whitney U tests were 23 

undertaken to determine significant relationships between pairs of regions and between pairs of 24 

flood cycle stages. Pearson product moment correlations (PPMC; 2-tailed) using SPSS Statistics 25 
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17.0 revealed substantial inter-correlation among water chemistry variables (47% of variables 1 

were significantly correlated at the p=0.05 level; Online Resource 1(ii)). Main gradients in the 2 

chemistry dataset were therefore explored using principal components analysis (PCA), with 3 

symmetric scaling of the ordination scores, to both summarise our multivariate data, and to 4 

determine any underlying structure. Variables were not log transformed, but were centred and 5 

standardised as they were measured in different units (Lepš and Šmilauer 2003). Like Cronberg et 6 

al. (1996b), we have chosen to include conductivity and alkalinity because not all ionic species 7 

were measured in our study. However, we have chosen to exclude DO and temp variables from 8 

multivariate analyses because they have such a strong diurnal component, which we did not 9 

systematically take account of during our sampling. As measurements for Ca, NO3, and TSS were 10 

incomplete, these variables are also omitted (Table 1). A broken stick model was used to test the 11 

significance of PCA axes (Joliffer 1986) using BSTICK v1.0 (Line and Birks 1996). In order to 12 

assess the influence of the four hydrological, explanatory variables, we used the linear, direct 13 

gradient technique of redundancy analysis (RDA), which constrains ordination axes as linear 14 

combinations of explanatory variables. Initially, the explanatory power and significance of each 15 

hydrological variable was determined through a series of single constrained RDAs, together with 16 

Monte Carlo permutation tests (p = 0.002; n = 499). The unique contribution of each variable was 17 

then assessed through a series of partial RDAs with the remaining hydrological variables as 18 

covariables. A further, partial RDA determined the influence of flood cycle stage. To assess the 19 

influence of habitat, a similar set of analyses were undertaken, this time grouping permanently wet 20 

habitats (MV-IC+MV-L+FV; n=77) and seasonally flooded habitats (IF+SP; n=21). A major 21 

feature of spatial datasets such as ours is the influence of site proximity (e.g., Legendre 1993), and 22 

here we partial out sample point co-ordinates using RDA (ter Braak 1987). Ordination analyses 23 

were undertaken using Canoco v. 4.5 (Lepš and Šmilauer 2003).  24 

Results  25 
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Summary statistical analyses for hydrochemistry data are given in Table 1. Output from all 1 

statistical tests is given in Online Resource 1(iii-v). Unfortunately, data are not available for NO3 2 

and TSS during low flood, nor for Ca during flood expansion. In Figure 2, boxplots are shown for 3 

variables that demonstrated significant regional variability. Only conductivity showed significant 4 

differences among all the regions, with values increasing along a north-south gradient. DOC also 5 

shows significant regional variability along a north-south gradient, except between LPH and 6 

XAK. Ca concentrations were only not significant among sites in the Panhandle, and between 7 

UPH and XAK. HCO3 and SiO2 show a significant increase between Panhandle and distal regions, 8 

although there is no significant difference between UPH and LPH, nor between XAK and BOR. 9 

The reverse pattern is true for water depth. The pH of surface water is significantly higher at XAK 10 

than at BOR or LPH (Fig. 2). DO was similar across most of the Delta, except in the BOR region, 11 

where values are significantly lower. Na was significantly lower in UPH than in the other three 12 

regions. Cl was significantly lower only between LPH and BOR, and between LPH and XAK. 13 

Velocity, SO4, TSS, and nutrients (TP, TN, and NO3) did not show any significant regional 14 

differences. In Figure 3, boxplots are shown only for variables that demonstrated significant 15 

variability among different stages of the flood cycle. Only two variables (Na and Mg) differed 16 

significantly among all stages; both had highest concentrations during flood recession, and lowest 17 

concentrations during low flood. Pair-wise comparisons for Ca are limited because of 18 

measurement problems during flood expansion for this variable. However, these data indicate that 19 

Ca concentrations are significantly higher during low flood than during either high flood or flood 20 

recession. All other variables shown, exhibited some form of pair-wise significant variation. 21 

Surface water temperatures were only not different between flood expansion and flood recession, 22 

while pH was significantly different during flood expansion. K and Cl were significantly lower, 23 

and TN significantly higher, during high flood. Peak concentrations of SiO2 during flood 24 

expansion, were significantly higher than during high flood and flood recession. DO was 25 
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significantly higher during high flood than during either low flood or flood expansion. HCO3 was 1 

significantly higher was during flood recession than either low or high flood, while TP was 2 

significantly higher during flood recession than either low flood or flood expansion. Six variables 3 

exhibited no significant variability with stage of the flood cycle: conductivity, DOC, NO3, SO4, 4 

velocity, and water depth (Table 1; Online Resource 1(iv)). In Figure 4, boxplots are shown only 5 

for variables that demonstrated significant variability between either seasonally or permanently 6 

inundated habitats. Many variables exhibited no significant difference between the two habitat 7 

types, including pH, temp, DO, TP, TN, Cl, Ca, and SO4. The remaining variables, however, were 8 

significantly higher in seasonally inundated habitats, including conductivity, DOC, K, SiO2, Mg, 9 

HCO3, Na, and NO3 (Table 1; Online Resource 1(v)). In contrast, velocity and water depth were 10 

significantly lower in seasonally inundated habitats. 11 

PCA axes 1 and 2 capture 30% and 16% of variation in the chemistry dataset, respectively. 12 

Broken stick reveals axis 1 to be significant, and although the eigenvalue of axis 2 is the same as 13 

its broken stick variance, here we exercise caution and treat axis 2 as being not significant  (Table 14 

2). Main patterns in our dataset are shown in the form of a PCA biplot (Fig. 5). Axis 1 represents a 15 

significant gradient in surface water chemistry of increasing conductivity, HCO3, K, Mg, DOC, 16 

SiO2, TN, and Cl, with highest values in sample points mainly in BOR and XAK. These variables 17 

have lowest concentrations in the Panhandle region of the Delta. PPMC analyses show that most 18 

of these correlations are significant (Online Resource 1(ii)). Axis 2 is associated mainly with TP 19 

and SO4 (Fig. 5). RDA reveals that the four hydrological variables (depth, velocity, flood 20 

frequency, and hydroperiod class) significantly account for 17.0% of variation in the chemistry 21 

data (Table 3i), with axis 1 being by far the most important gradient (Fig. 6). The RDA triplot 22 

shows that axis one is dominated by a strong gradient of positively correlated variables, including 23 

conductivity, alkalinity, SiO2, DOC, nutrients, and cations, all of which are negatively correlated 24 

with hydroperiod class and water depth (Fig. 6). Measured chemical variables are generally lowest 25 
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in concentration in UPH and LPH sample points, associated with greatest water depths and 1 

hydroperiod class. Hydroperiod class and water depth are the most significant variables 2 

influencing water chemistry, even after other hydrological variables, flood extent, and site 3 

proximity are partialled out (Table 4). 4 

Discussion 5 

Interpreting the datasets collected is complicated by several factors. Not only are there 6 

regional and habitat influences on water chemistry, but the slow moving flood pulse adds an extra 7 

dimension to the complexity of the system. For example, as the flood expands in northern part of 8 

the Delta, the previous year’s flood is still receding in the south. Cronberg et al. (1996b) correlated 9 

solute concentrations with discharge measurements to account for some of this hydrological 10 

variability. Here, we took a multivariate approach, and used four explanatory variables linked to 11 

the flood pulse to model impacts on hydrochemistry across different regions of the Delta. 12 

Do significant differences exist within the surface water chemistry dataset among the different 13 

regions of the Delta, among different stages of the flood cycle, and between seasonally or 14 

permanently flooded habitats?  15 

Water depth and duration of inundation were found to influence surface water chemistry in 16 

the seasonally inundated floodplains of the Jao/Boro river system (Cronberg et al. 1996a). For that 17 

reason, we have decompiled our datasets, so that average values for each of the chemical 18 

constituents can be determined for each of the four regions during each stage of the flood cycle 19 

(Online Resource 1(vi)). Much of the comparative work, therefore, can only be done with previous 20 

work on the BOR region, although significant differences among regions in this study are also 21 

highlighted.  22 

Conductivity of the Okavango River is very low, dominated by silica and bicarbonates of 23 

Ca, Mg, Na, and K (McCarthy and Ellery 1994). These cations are generally very dilute, but show 24 

a significant increase between the Panhandle and distal regions of the Delta (Table 1; Fig. 2). The 25 
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increase in SiO2 and cations is due to evapo-transpiration processes (Dinçer et al. 1978) and an 1 

increase in area of seasonally inundated floodplains (Sawula and Martins 1991; Krah et al. 2006). 2 

Yet total concentration of dissolved ions even in the distal regions of the Delta is still very low, 3 

despite evaporation being 2–3 times greater than precipitation (Ramberg and Wolski 2008). This 4 

is because of a unique combination of processes that allows the formation of geochemical islands, 5 

and density-driven sinking of saline waters beneath them, removing solutes permanently from the 6 

surface waters. 7 

Concentrations of Mg are highest during flood expansion and recession phases, but decline 8 

during peak flood, which can be attributed to the removal and dissolution of precipitated 9 

magnesium salts (Cronberg et al. 1996a). Na however, is lowest during low flood and increases 10 

steadily throughout the year (Fig. 3).  At these concentrations, it is unlikely that Na is co-11 

precipitating out of solution, and further work needs to be done to understand these trends in 12 

relation to evaporation. Ca concentrations were significantly higher during low flood, similar to 13 

trends reported by Cronberg et al. (1996a). Ca is linked mainly to reactions of the carbonate 14 

system and dissolution of silicate materials (Sawula and Martins 1991), and it is the most 15 

abundant cation throughout the Delta: Ca >K >Na>Mg. When concentrations are converted to 16 

milliequivalents/litre (mequiv/L), the abundance order changes to Ca>Na >Mg>K, identical to the 17 

relative proportions determined by Cronberg et al. (1996b). Similar to both Sawula and Martins 18 

(1991) and Cronberg et al. (1996b), HCO3 is by far the most dominant anion (over 90%) 19 

throughout the Delta because of circumneutral pH (Wetzel 2001).  20 

The Okavango River itself is oligotrophic, and nutrients brought in by surface flow are 21 

quickly taken up by fringing vegetation along the channels in the Upper Panhandle. The seasonal 22 

floodplains link the aquatic habitats in the Delta to terrestrial habitats. Several chemical 23 

constituents were significant higher in seasonally inundated habitats, including conductivity, 24 

DOC, K, SiO2, Mg, HCO3, Na, and NO3 (Table 1; Fig. 4). Floodplains contain greater 25 
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concentrations of chemical constituents because flooding acts to mobilise ions and nutrients from 1 

previously dry soil surfaces into solution (Cronberg et al. 1996b). Nutrients in the floodplains are 2 

derived from a number of sources, including river flow (Cronberg et al. 1996b), in situ from 3 

accumulated sedimentary stores over many thousands of years (Mendelesohn et al. 2010), from 4 

wind-blown dust (Garstang et al. 1998; Krah et al. 2006), and animal faeces (Lindholm et al. 5 

2007). Lindholm et al. (2007) measured highly elevated nutrient concentrations during a period of 6 

low flood extent in a BOR floodplain, which they attributed to low dilution of stored nutrients. 7 

Further work needs to be done, however, to determine if such observations are more widely 8 

applicable, or are particular to that floodplain. Nitrogen and phosphorus are two of the most 9 

important macronutrients in wetlands, dependent on a number of factors, including oxygen 10 

content, redox potential, temperature, pH, and microbiological processes (Mitsch and Gosselink 11 

2000). Our measurements of macronutrients are rather incomplete; nitrate was not measured 12 

during low flood, and there were technical problems with analyses of phosphate, nitrite, and 13 

ammonium, and so those are not presented here. However, TN and TP have been measured in 14 

every region during each stage of the flood cycle, and these still serve as useful macronutrient 15 

indicators. Inorganic NO3 concentrations did not vary significantly with seasonal changes in 16 

hydrology (Table 1), perhaps confirming observations by Krah et al. (2006) who also did not 17 

detect any nitrate “boost” as the flood arrived and expanded. Garstang et al. (1998) suggests that 18 

this may be because most of the nitrogen has been taken up by plant growth at the end of the 19 

previous flood period or has undergone denitrification. However, TN concentrations are 20 

significantly higher during the period of high flood, perhaps because the floodwaters contain 21 

slightly higher nitrogen concentrations than wetland soils (Cronberg et al. 1996a). Mean TP 22 

concentrations are low (<0.04 mg/L), similar to levels determined by Krah et al. (2006) for a Boro 23 

floodplain, but lower than values obtained by Lindholm et al. (2007). Statistically, however, TP 24 

shows no significant regional variation (Table 1). TP concentrations do vary significantly with 25 
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stages of the flood cycle (Table 1, Fig. 3), especially during flood recession, when concentrations 1 

are highest. These findings are in contrast to previous studies, which reported the highest 2 

concentrations of TP occurred during the initial flood stage at the Boro floodplain (e.g., Krah et al. 3 

2006; Lindholm et al. 2007), and as the flood expanded, concentrations declined. Lindholm et al. 4 

(2007) undertook a comparison of two years of nutrient data with different flood sizes, and 5 

concluded that local differences are overwhelmed when flood sizes are large because connectivity 6 

between river channels and floodplains is increased. It may be that our TP data are a reflection of 7 

overall flood size; however, more work needs to be done on the regional and long-term changes of 8 

this important macronutrient. TN/TP ratios are useful in determining whether P and/or N is 9 

limiting growth in freshwater ecosystems, and how susceptible that ecosystem is to developing 10 

algal blooms. For example, high levels of TP might suggest impacted ecosystems through elevated 11 

phosphorus supplies (and will give a smaller ratio, e.g., less than 10), while ratios above 15 12 

suggest potential P-limitation (Abell et al. 2010). The TN/TP ratio for BOR was 20.4, a figure 13 

very similar to that determined by Cronberg et al. (1996b), which suggests potential P limitation in 14 

this region. Ratios for the other regions were lower: 13.6 (UPH), 11.8 (LPH), 15.7 (XAK), and it 15 

is likely that the availability of N and P in these regions is close to that needed for balanced 16 

growth of primary producers, i.e., these nutrients are co-limiting (Abell et al. 2010). Threats of 17 

nutrient enrichment from increasing economic activity (e.g., tourism and aquaculture) pose serious 18 

management issues for these delicately balanced ecosystems. 19 

Dissolved organic matter (of which DOC is an important component) is formed mainly on 20 

the seasonal floodplains, with the arrival of the annual flood (Cronberg et al. 1996b), and from the 21 

decomposition of vascular plant material (Mladenov et al. 2007). Few studies have investigated 22 

DOC in the Delta, and again, these are restricted to the Jao/Boro river system and associated 23 

floodplains. Our data show that there is substantial variation in DOC concentrations throughout 24 

the Delta, which are significantly higher in BOR and significantly lower in UPH than elsewhere in 25 
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the Delta (Fig. 2). Mladenov et al. (2005) found that DOC concentrations declined just before 1 

peak flood, which may be due to a dilution effect from the increased volume of water, together 2 

with decomposition by bacterial degradation and UV light (Mladenov et al. 2007). Our study, 3 

however, shows no significant differences linked to different stages of the flood cycle, although 4 

this may be due to the differences in temporal resolution between our studies. 5 

How do hydrological variables, linked to the flood-pulse, influence variation in surface water 6 

chemistry?  7 

Cronberg et al. (1996a) concluded that spatial heterogeneity and seasonal flow was 8 

responsible for most of the variation of water chemistry in the Jao/Boro river system. Here we 9 

provide the first quantitative estimates that seasonal flow and spatial heterogeneity significantly 10 

account for 19% and 17% variation in Delta chemistry, respectively (Table 3).  The influence of 11 

biogeochemical processes that take place in seasonally inundated floodplains on surface water 12 

chemistry is very important (e.g., Cronberg et al. 1996a,b; Mladenov et al. 2005; Krah et al. 2006). 13 

By grouping the sites as seasonally or permanently flooded, we show that this habitat distinction 14 

accounts for 8% significant variation in the chemistry data (Table 3iii). This lower value may be a 15 

reflection of larger flood sizes experienced at the time of the study, diluting nutrients, and other 16 

chemical constituents in the floodplains (Lindholm et al. 2007), and the balance between the 17 

numbers of permanently and seasonally inundated sites visited in the study.  18 

The four hydrological variables significantly account for 17% of variation in the chemistry 19 

data (Table 3i). Even after taking into account variation in the flood cycle, depth and hydroperiod 20 

class are still highly important variables (Table 4iii). Water depth is likely to act as a proxy for 21 

inundation (Cronberg et al. 1996a), and chemical constituents in shallow water sample points are 22 

present in higher concentrations than deep-water sample points (Fig. 6). However, even taking 23 

into account whether sites are permanently or seasonally flooded, still leaves depth and 24 

hydroperiod class as significant explanatory variables (Table 4iv). It is to be expected that our 25 
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dataset will be subject to spatial autocorrelation, especially given the proximity of many sample 1 

points to each other (Fig. 1; Legendre 1993). This can lead to over-estimation of the interactions 2 

between the chemical variables and hydrological predictors. Variation captured by each 3 

hydrological variable taking into account proximity, declines by approximately two-thirds (Table 4 

4v). It is notable, however, that depth and hydroperiod class variables are still highly significant. 5 

The size of the flood pulse in the Delta has increased over the last five years, and is likely 6 

to continue to increase into the near future due to a quasi, 80-year, climatic oscillation (Gumbricht 7 

et al. 2004). A key question therefore remains as to how an increase in volume of water in the 8 

flood pulse will influence surface water chemistry. Here we use t-value biplots to further explore 9 

significant relationships between hydroperiod class and water depth with chemical variables. 10 

Variables that fall within the Van Dobben circles in the t-value biplot are significantly correlated 11 

either positively (solid circle) or negatively (dashed circle) with the variable under investigation 12 

(Fig. 7). Hydroperiod class has a significant, positive relationship with pH values in the Delta, but 13 

a significant, negative relationship with conductivity, HCO3, Mg, and DOC. Therefore, an 14 

increasing area of sites with higher hydroperiod class may result in a decline in DOC, 15 

conductivity, HCO3, and certain cations such as Mg, through dissolution of precipitated salts 16 

(Cronberg et al. 1996a). An increase in water depth would not have a positive effect on any of the 17 

variables that we measured, but would result in a significant decline in concentration of many 18 

variables (conductivity, HCO3, DOC, Mg, K, and SiO2). Water depth likely represents a proxy for 19 

volume of water, and so in shallow water regions, concentrations of solutes are greater. Therefore, 20 

in sites that currently experience flooding, an increase in flood size is likely to result in an overall 21 

dilution of chemical constituents (Cronberg et al. 1996a). Other factors not measured here are also 22 

likely to have a strong influence on water chemistry in the Delta, especially history of the water 23 

prior to sampling, and vegetation composition at any one location. Moreover, an increase in flood 24 

size will also result in new, dryland regions becoming inundated for the first time in many 25 
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decades, resulting in new, productive floodplains. This is a large and important uncertainty and 1 

requires much more intensive spatial and temporal monitoring in key regions. 2 

Conclusions 3 

We provide, for the first time, a quantitative assessment of factors that influence surface water 4 

chemistry in the Okavango Delta. Significant variation in surface water chemistry exists, 5 

especially between the Panhandle and distal regions of the Delta. Seasonal variation linked to 6 

different stages in the flood pulse is also very important, although influence on different chemical 7 

variables appears to be quite individualistic. It is apparent that hydroperiod class and water depth 8 

are important variables in influencing surface water chemistry across the Delta, even when taking 9 

into account influences from other hydrological variables, stage of the flood cycle, habitat, and 10 

proximity of the sites to each other. Our analyses ignore the likely increase in extent of new 11 

floodplains being wetted by expanding floodwaters, a process which is likely to continue into the 12 

near future. However, the work presented here provides an important baseline study for spatial 13 

variability in water chemistry of this internationally important wetland, from which to monitor 14 

future change associated with both natural variability and human impact. 15 
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Figure Legends 13 

Figure 1: Map of the Okavango Delta with site locations indicated on aerial photographs from 14 

each of the four study regions 15 

Figure 2: Boxplots for hydrochemical variables that show significant regional variation (see text 16 

for details). The central line is the median value, while the bottom and top of the box indicate 25
th
 17 

and 75
th

 percentiles. T-bars extend to 1.5 times the height of the box. Outliers are given as points, 18 

whereas extreme outliers (i.e. values that are more than 3x the height of the box) are given as 19 

asterisks. 20 

Figure 3: Boxplots for hydrochemical variables, that show significant variation among different 21 

stages of the flood cycle. 22 

Figure 4: Boxplots for hydrochemical variables that show significant variation between sites that 23 

are either permanently or seasonally flooded.  24 



 23 

Figure 5: PCA biplot of surface water chemistry in the Okavango Delta. Sample points have been 1 

coded according to their location in each of one of the four principal regions. Broken stick reveals 2 

that that first axis significantly explained 30% variation.  3 

Figure 6: RDA triplot showing sample points (coded according to their location), surface water 4 

chemistry variables, and 4 hydrological explanatory variables (depth, velocity, flood frequency, 5 

and hydroperiod class). 6 

Online Resource 1: PDF consisting of a number of worksheets: (i) sample point co-ordinates; (ii) 7 

PPMC analyses of chemistry data; (iii–v) statistical analyses of data showing main results from 8 

Levene’stests for equality, ANOVA, 2-tailed t-tests, Kruskal-Wallis tests, pairwise Mann-Whitney 9 

tests for (iii) regions; (iv) different stages of the flood cycle; (v) between permanently and 10 

seasonally inundated sites; and (vi) decompiled mean data for regions at different stages of the 11 

flood cycle.  12 

 13 



 

Table 1: Summary statistical analyses for hydrochemical data measured from 98 sample points. Mean values are also given for (i) each of the 4 regions, (ii) each 

stage of the flood cycle, and (iii) whether sample points were permanently inundated or not.  * = no significant difference; ND = not determined. 

  Min Max Mean SD UPH LPH XAK BOR low expand high recede WET-DRY WET 

Depth m 0.00 5.00 1.43 0.96 2.09 2.24 0.93 1.17 1.27* 1.35* 1.88* 1.15* 0.77 1.61 

Velocity m/S 0.00 1.56 0.15 0.26 0.25* 0.11* 0.16* 0.10* 0.11* 0.20* 0.14* 0.14* 0.05 0.17 

pH pH units 4.97 7.89 6.64 0.45 6.60 6.52 6.98 6.49 6.82 6.61 6.48 6.66 6.70* 6.62* 

Temp C 13.60 35.00 23.47 4.65 22.46* 21.83* 23.92* 24.76* 28.12 23.92 17.24 24.87 22.83* 23.65* 

DO mg/L 0.39 10.37 3.49 2.13 4.19 3.70 4.59 2.15 3.10 2.74 4.63 3.37 3.63* 3.45* 

Conductivity S/cm 19.30 119.10 61.72 23.59 36.27 43.64 70.77 80.14 67.90* 62.12* 52.16* 65.50* 84.91 55.39 

TSS mg/L 0.00 10.00 2.34 2.11 3.26* 2.17* 2.11* 1.06* ND* 3.37* 3.51* 1.99* 2.38* 2.34* 

DOC mg/L 2.73 23.62 8.03 4.28 4.14 7.56 8.36 10.31 8.06* 9.08* 6.45* 8.92* 9.93 7.51 

HCO3 mg/L 3.50 168.30 57.30 22.57 38.70 43.92 62.74 67.46 50.36 63.71 50.84 68.37 72.28 53.21 

K mg/L 0.33 6.90 2.28 1.34 0.94 1.37 3.29 2.81 2.64 2.93 1.26 2.42 3.08 2.07 

Na mg/L 0.10 7.19 2.01 1.43 1.03 1.57 2.19 2.41 0.97 1.28 2.36 3.86 2.87 1.78 

SiO2 mg/L 3.00 32.34 11.35 6.48 8.18 8.93 11.09 14.00 11.42 15.74 9.44 8.76 13.90 10.65 

Cl mg/L 0.11 4.24 0.66 0.61 0.51 0.42 1.38 0.86 0.64 1.12 0.40 0.53 0.71* 0.65* 

TP mg/L 0.00 0.25 0.04 0.03 0.04* 0.05* 0.04* 0.03* 0.03 0.03 0.04 0.06 0.04* 0.04* 

TN mg/L 0.08 1.94 0.62 0.34 0.53* 0.63* 0.56* 0.71* 0.52 0.61 0.77 0.56 0.74* 0.58* 

NO3 mg/L 0.00 0.71 0.20 0.15 0.16* 0.19* 0.13* 0.27* ND* 0.21* 0.20* 0.19* 0.17 0.32 

SO4 mg/L 0.01 2.58 0.35 0.60 0.28* 0.21* 1.01* 0.25* 0.58* 0.38* 0.19* 0.23* 0.55* 0.30* 

Mg mg/L 0.14 2.00 0.92 0.47 0.56 0.70 1.02 1.14 0.44 1.13 0.85 1.43 1.24 0.83 

Ca mg/L 3.20 15.46 7.68 3.37 5.27 5.24 7.23 10.24 10.42 ND 5.67 6.44 8.53* 7.36* 

table
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Table 2: Principal components analysis (PCA) of surface water chemistry. 

      

Axes 1 2 3 4 

Total 

variance 

      

Eigenvalues  (EVs) 0.304 0.155 0.105 0.094 1 

Cum. % var. 30.4 46.0 56.5 65.9  

Broken stick 

variances 0.221 0.155 0.121 0.099  

 

 



 

Table 3: Redundancy analysis (RDA) of surface water chemistry with (i) four hydrological variables; (ii) flood extent; (iii) habitat type; (iv) site 

locations as explanatory variables. 

 

Table 3i: 4 hydrological variables Axes 1 2 3 4 Total variance 

 Eigenvalues: 0.134 0.027 0.007 0.002 1 

 Cum. % variance of species data: 13.4 16.1 16.8 17.0  

 ∑ canonical EVs; p = 0.002     0.17 

      

Table 3ii: flood extent      

 Eigenvalues: 0.110 0.058 0.024 0.265 1 

 Cum. % var. spp data: 11.0 16.8 19.1 45.9  

 ∑ canonical EVs; p = 0.002     0.19 

      

Table 3iii: habitat      

 Eigenvalues: 0.085 0.239 0.155 0.103 1 

 Cum. % variance of species data: 8.5 32.4 48.0 58.2  

 ∑ canonical EVs; p = 0.002     0.085 

      

Table 3iv: location co-ordinates      

 Eigenvalues: 0.147 0.026 0.180 0.155 1 

 Cum. % variance of species data: 14.7 17.3 35.3 50.8  

∑ canonical EVs; p = 0.002     0.173 

 

 



 

Table 4: (i) % variation explained by each of the four hydrological variables; (ii) unique variation explained by each variable with the remaining 

three variables as co-variables; (iii) variation explained by hydrological variables with flood extent as co-variables; (iv) variation explained by 

hydrological variables with habitat as co-variables; (v) variation explained by hydrological variables with locational co-ordinates as co-variables.  

p≤0.05; n=499 permutations). 

 

 

 

Hydrological  

Variables 

(i)  (ii)  (iii)  (iv)  (v)  

% var p % var p % var p % var p % var p 

Depth 9.6 0.002 5.5 0.002 8.2 0.002 4.6 0.002 3.0 0.006 

Velocity 1.7 0.088 1.7 0.056 1.9 0.030 1.1 0.310 1.5 0.072 

Flood Frequency 3.6 0.010 2.6 0.012 4.3 0.002 1.1 0.332 2.0 0.036 

Hydroperiod Class 7.9 0.002 5.5 0.002 8.8 0.002 3.3 0.002 3.6 0.002 
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Online Resource 1(i)

ESM-1(i): locational co-ordinates; 2=low flood; 3=flood expansion; 4=high flood; 5=flood recession
Code lat long Code lat long Code lat long Code lat long
UPH1-2 18.3391 21.8371 LPH1-2 18.8425 22.4043 XAK1-2 19.1830 23.3974 BOR1-2 19.6116 23.2188
UPH1-3 18.3391 21.8371 LPH2-2 18.8791 22.3912 XAK1-3 19.1831 23.3977 BOR10-2 19.5333 23.1829
UPH1-4 18.3391 21.8371 LPH2-4 18.8791 22.3912 XAK1-5 19.1827 23.3983 BOR10-3 19.5333 23.1829
UPH3-3 18.4097 21.8870 LPH2-5 18.8791 22.3912 XAK10-2 19.1253 23.3791 BOR10-4 19.5334 23.1831
UPH4-4 18.4109 21.8811 LPH3-2 18.8790 22.3911 XAK12-2 19.2401 23.3569 BOR10-5 19.5334 23.1831
UPH4-2 18.4109 21.8811 LPH3-5 18.8790 22.3911 XAK12-3 19.2401 23.3569 BOR11-2 19.5289 23.1825
UPH4-3 18.4109 21.8811 LPH3-4 18.8788 22.3913 XAK12-4 19.2401 23.3569 BOR13-3 19.5385 23.1181
UPH5-2 18.4275 21.9812 LPH4-2 18.9555 22.3763 XAK12-5 19.2401 23.3569 BOR13-5 19.5385 23.1181
UPH5-3 18.4275 21.9812 LPH4-4 18.9555 22.3763 XAK13-3 19.1915 23.4520 BOR14-3 19.5269 23.1506
UPH5-4 18.4275 21.9812 LPH4-5 18.9555 22.3763 XAK13-4 19.1915 23.4520 BOR14-4 19.5271 23.1507
UPH7-3 18.4270 21.9714 LPH5-2 18.9606 22.3826 XAK13-5 19.1915 23.4520 BOR14-5 19.5271 23.1507
UPH7-4 18.4270 21.9714 LPH5-4 18.9606 22.3826 XAK14-3 19.1830 23.4409 BOR15-3 19.5380 23.1841
UPH8-3 18.4118 21.8891 LPH5-5 18.9606 22.3826 XAK15-3 19.1773 23.4380 BOR16-3 19.5759 23.2016
UPH8-4 18.4118 21.8891 LPH6-4 18.9176 22.4095 XAK16-3 19.1726 23.4408 BOR17-4 19.5390 23.1133
UPH9-3 18.4284 21.9194 LPH6-5 18.9176 22.4095 XAK18-4 19.1957 23.4413 BOR17-5 19.5390 23.1133

LPH8-4 18.8653 22.4198 XAK19-4 19.1870 23.4313 BOR18-4 19.5700 23.2045
LPH9-4 18.9611 22.4069 XAK19-5 19.1870 23.4313 BOR19-4 19.5465 23.1867

XAK2-2 19.1460 23.3836 BOR19-5 19.5465 23.1867
XAK2-5 19.1454 23.3835 BOR2-2 19.5660 23.2032
XAK3-2 19.1866 23.3966 BOR2-3 19.5660 23.2032
XAK4-3 19.1753 23.4199 BOR2-4 19.5660 23.2032
XAK4-5 19.1753 23.4199 BOR2-5 19.5660 23.2032
XAK5-2 19.1878 23.4337 BOR20-5 19.5454 23.1847
XAK5-4 19.1878 23.4337 BOR3-2 19.5558 23.2002
XAK5-5 19.1878 23.4337 BOR4-2 19.5500 23.1794
XAK6-2 19.1919 23.4321 BOR5-2 19.5344 23.1948
XAK7-2 19.1889 23.4524 BOR6-2 19.5394 23.0474
XAK7-3 19.1889 23.4524 BOR7-2 19.5437 23.0478
XAK7-4 19.1889 23.4524 BOR8-2 19.5397 23.0896
XAK9-2 19.2019 23.4607 BOR8-3 19.5397 23.0896
XAK9-4 19.2019 23.4607 BOR8-4 19.5397 23.0896

BOR9-2 19.5494 23.1775
BOR9-3 19.5494 23.1775
BOR9-4 19.5494 23.1775
BOR9-5 19.5494 23.1775
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Online Resource 1(ii)

Significant Pearson Product Moment Correlations between measured hydrochemical variables and location co-ordinates. 
* correlation is significant at the 0.05 level (2-tailed); ** correlation is significant at the 0.01 level (2-tailed).

pH Temp DO Conduct DOC HCO3 K Na SiO2 Cl Mg Ca Depth Veloc
Temp 0.225*  
DO 0.369**   
Conductivity  0.313** -0.395**  
DOC  0.209* -0.361** 0.546**  
HCO3   -0.247* 0.607** 0.445**  
K  0.454** -0.297** 0.589** 0.411** 0.390**  
Na      0.311**   
SiO2  0.207* -0.233* 0.378** 0.391**  0.511**   
Cl  0.216* -0.286** 0.389** 0.294** 0.238* 0.498**  0.372**  
TP        0.222*  -0.229*
TN -0.292**   0.229* 0.221* 0.286**   0.241*  
SO4 0.234* 0.206*      -0.200*   
Mg -0.207*  -0.251* 0.456** 0.290** 0.553** 0.349** 0.687** 0.268** 0.201*  
Ca  0.504** -0.395** 0.651**   0.549**   0.397** -0.257*  
Depth  -0.295**  -0.522** -0.316** -0.379** -0.527** -0.230* -0.226*  -0.274**   
Veloc               
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Online Resource 1(iii)

!"#"$"%
&'(')*')+ ,-. ,-/ &)01

&23%4-%
&52(6"* ,-

7"($%
&52(6" 8 &)01

9: .804 3 94 .495 pH 3.172 3 1.057 5.942 .001
Temp 4.907 3 94 .003 DO 105.939 3 35.313 9.969 .000
;< 1.620 3 94 .190 HCO3 12577.021 3 4192.340 10.699 .000
Conductivity 4.511 3 94 .005 K 60.424 3 20.141 16.712 .000
DOC 3.658 3 94 .015 TP 0.005 3 .002 1.611 .192
:=<> 1.167 3 94 .326 TN 0.522 3 .174 1.499 .220
? 1.503 3 94 .219 Mg 4.477 3 1.492 8.171 .000
Na 14.136 3 94 .000
SiO2 5.926 3 94 .001 @4*'%:4+%A"*'*
Cl 4.238 3 94 .007
A@ 1.267 3 94 .290

;"9"$,"$'%
B(6)(CD" EFG%HIJF<K ELG%HIJF<K

7"($%;)--%EFM
LG &',1%I6646 &)01

NOP%
=4$-),"$+"%
F$'"6#(D

AK 2.096 3 94 .106 !4Q"6%
R42$,

S99"6%
R42$,

K<> 4.894 3 57 .004 9: R<H !@: -0.029 0.125 1.000 -0.365 0.307
A&& 6.329 3 83 .001 S@: -0.109 0.130 1.000 -0.460 0.242
SO4 21.348 3 94 .000 TU? -0.411 0.104 0.001 -0.691 -0.131
70 2.234 3 94 .089 !@: R<H 0.029 0.125 1.000 -0.307 0.365
Ca 18.685 3 71 .000 S@: -0.079 0.149 1.000 -0.482 0.323
Depth 13.611 3 94 .000 TU? -0.382 0.127 0.021 -0.725 -0.039
Velocity 5.749 3 94 .001 S@: R<H 0.109 0.130 1.000 -0.242 0.460

!@: 0.079 0.149 1.000 -0.323 0.482
TU? -0.302 0.133 0.150 -0.660 0.055

TU? R<H 0.411 0.104 0.001 0.131 0.691
!@: 0.382 0.127 0.021 0.039 0.725
S@: 0.302 0.133 0.150 -0.055 0.660

;< R<H !@: -1.553 0.556 0.038 -3.053 -0.054
S@: -2.043 0.581 0.004 -3.608 -0.477
TU? -2.401 0.464 0.000 -3.652 -1.150

!@: R<H 1.553 0.556 0.038 0.054 3.053
S@: -0.489 0.667 1.000 -2.286 1.308
TU? -0.848 0.568 0.833 -2.379 0.683

S@: R<H 2.043 0.581 0.004 0.477 3.608
!@: 0.489 0.667 1.000 -1.308 2.286
TU? -0.359 0.592 1.000 -1.954 1.237

TU? R<H 2.401 0.464 0.000 1.150 3.652
!@: 0.848 0.568 0.833 -0.683 2.379
S@: 0.359 0.592 1.000 -1.237 1.954

:=<> R<H !@: 23.537 5.852 0.001 7.765 39.309
S@: 28.761 6.109 0.000 12.296 45.226
TU? 5.300 4.882 1.000 -7.858 18.459

!@: R<H -23.537 5.852 0.001 -39.309 -7.765
S@: 5.224 7.012 1.000 -13.675 24.124
TU? -18.236 5.974 0.018 -34.338 -2.135

S@: R<H -28.761 6.109 0.000 -45.226 -12.296
!@: -5.224 7.012 1.000 -24.124 13.675
TU? -23.461 6.226 0.002 -40.241 -6.680

TU? R<H -5.300 4.882 1.000 -18.459 7.858
!@: 18.236 5.974 0.018 2.135 34.338
S@: 23.461 6.226 0.002 6.680 40.241
!@: 0.439 0.126 0.005 0.099 0.780
S@: 0.579 0.132 0.000 0.224 0.935
TU? 0.189 0.105 0.456 -0.095 0.473
R<H -0.439 0.126 0.005 -0.780 -0.099
S@: 0.140 0.151 1.000 -0.268 0.548
TU? -0.250 0.129 0.332 -0.598 0.097
R<H -0.579 0.132 0.000 -0.935 -0.224
!@: -0.140 0.151 1.000 -0.548 0.268
TU? -0.390 0.134 0.028 -0.753 -0.028
R<H -0.189 0.105 0.456 -0.473 0.095
!@: 0.250 0.129 0.332 -0.097 0.598
S@: 0.390 0.134 0.028 0.028 0.753

?62*V(D%W(DD)*%A"*'  

A"39 =4$,2+' ;<= K( &)</ =D NO3 TSS &<X =( ;"9'Y B"D4+  
=Y)M&52(6" 5.497 53.604 49.075 13.917 19.346 10.026 7.604 .604 5.012 29.798 25.834 .967

,- 3 3 3 3 3 3 3 3 3 3 3 3
U*Z391%&)01 .139 .000 .000 .003 .000 .018 .055 .895 .171 .000 .000 .809

BOR / XAK
=4$,2+' ;<= K( &)</ =D =( ;"9'Y

7($$MWY)'$"Z%S 268 203 527 496 486 166 412
&)01%E/M'()D",G .000 .000 .842 .550 .464 .005 .092

BOR / LPH
=4$,2+' ;<= K( &)</ =D =( ;"9'Y

7($$MWY)'$"Z%S 27 112 231 130 141 32 167
&)01%E/M'()D",G .000 .000 .195 .001 .002 .000 .011

BOR / UPH
=4$,2+' ;<= K( &)</ =D =( ;"9'Y

7($$MWY)'$"Z%S 9 0 131 122 192 38 94
&)01%E/M'()D",G .000 .000 .005 .003 .136 .006 .000

LPH / XAK
=4$,2+' ;<= K( &)</ =D =( ;"9'Y

7($$MWY)'$"Z%S 99 184 193 121 161 61 118
&)01%E/M'()D",G .000 .087 .129 .002 .027 .000 .002

LPH / UPH
=4$,2+' ;<= K( &)</ =D =( ;"9'Y

7($$MWY)'$"Z%S 72 71 59 89 90 53 127
&)01%E/M'()D",G .036 .031 .010 .141 .157 .336 .985

UPH / XAK
=4$,2+' ;<= K( &)</ =D =( ;"9'Y

7($$MWY)'$"Z%S 45 14 80 110 190 53 44
&)01%E/M'()D",G .000 .000 .000 .004 .319 .078 .000

%

Test of Homogeneity of Variances for Regions ANOVA of variables with equal variances

Multiple Comparisons with 

70 R<H

!@:

S@:

TU?
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Online Resource 1(iv)

!"#"$"%
&'(')*')+ df &),-

&./%01%
&2.(3"* 41 5"($%&2.(3" 6 &),-

pH 6.155 94 .001 7"/8 1697.574 3 565.858 133.778 .000
7"/8 2.219 94 .091 9: 52.939 3 17.646 4.298 .007
9: 1.284 94 .284 9:; 108.391 3 36.130 2.041 .113
Conduct 6.403 94 .001 Conductivity 3824.507 3 1274.836 2.390 .074
9:; 1.688 94 .175 <;:= 5870.121 3 1956.707 4.224 .008
<;:= 1.699 94 .173 TSS 16.117 2 8.058 1.904 0.158
K 9.524 94 .000 >:= .002 2 .001 .050 .951
Na 25.342 94 .000 5, 12.839 3 4.280 45.687 .000
SiO2 9.980 94 .000 ?"@0+ .115 3 .038 .573 .634
Cl 15.966 94 .000  
TP 7.116 94 .000
TN 2.745 94 .047
NO3 0.103 58 .902
TSS 2.733 59 .073 expand 4.196 0.579 0.000 2.636 5.756
SO4 9.277 94 .000 high 10.881 0.555 0.000 9.386 12.376
Mg 2.643 94 .054 recede 3.250 0.602 0.000 1.627 4.873
Ca 26.486 71 .000 low -4.196 0.579 0.000 -5.756 -2.636
9"8'A 5.174 94 .002 high 6.685 0.584 0.000 5.112 8.258
Veloc 1.012 94 .391 recede -0.945 0.629 0.816 -2.640 0.749
Flood 0.703 94 .553 low -10.881 0.555 0.000 -12.376 -9.386
Hydroperiod 0.473 94 .702 expand -6.685 0.584 0.000 -8.258 -5.112

recede -7.630 0.607 0.000 -9.266 -5.995
low -3.250 0.602 0.000 -4.873 -1.627
expand 0.945 0.629 0.816 -0.749 2.640

high 7.630 0.607 0.000 5.995 9.266
expand 0.360 0.570 1.000 -1.177 1.897
high -1.536 0.547 0.036 -3.009 -0.063
recede -0.270 0.593 1.000 -1.869 1.329
low -0.360 0.570 1.000 -1.897 1.177
high -1.896 0.575 0.008 -3.446 -0.346
recede -0.631 0.620 1.000 -2.301 1.039
low 1.536 0.547 0.036 0.063 3.009
expand 1.896 0.575 0.008 0.346 3.446
recede 1.265 0.598 0.222 -0.346 2.877
low 0.270 0.593 1.000 -1.329 1.869
expand 0.631 0.620 1.000 -1.039 2.301
high -1.265 0.598 0.222 -2.877 0.346
expand -13.345 6.056 0.180 -29.668 2.979

high -0.475 5.805 1.000 -16.121 15.170
recede -18.007 6.301 0.032 -34.990 -1.025
low 13.345 6.056 0.180 -2.979 29.668
high 12.869 6.107 0.226 -3.590 29.329
recede -4.663 6.580 1.000 -22.398 13.072
low 0.475 5.805 1.000 -15.170 16.121
expand -12.869 6.107 0.226 -29.329 3.590
recede -17.532 6.349 0.042 -34.645 -0.419
low 18.007 6.301 0.032 1.025 34.990
expand 4.663 6.580 1.000 -13.072 22.398
high 17.532 6.349 0.042 0.419 34.645
expand -0.688 0.086 0.000 -0.921 -0.456
high -0.409 0.083 0.000 -0.631 -0.186
recede -0.993 0.090 0.000 -1.234 -0.751
low 0.688 0.086 0.000 0.456 0.921
high 0.279 0.087 0.011 0.045 0.514
recede -0.304 0.094 0.010 -0.556 -0.052
low 0.409 0.083 0.000 0.186 0.631
expand -0.279 0.087 0.011 -0.514 -0.045
recede -0.584 0.090 0.000 -0.827 -0.340
low 0.993 0.090 0.000 0.751 1.234
expand 0.304 0.094 0.010 0.052 0.556
high 0.584 0.090 0.000 0.340 0.827

 

8< B >( &):C ;@ 7D 7> TSS &:E ;(
;A)F&2.(3" 11.402 28.196 54.992 10.261 15.219 10.719 12.476 59.638 4.387 26.092
41 3 3 3 3 3 3 3 3 3 2
&),-%GCF'()@"4H .010 .000 .000 .016 .002 .013 .006 .000 .223 .000

low/expand 8< B >( &):C ;@ 7D 7> 7&&
5($$FIA)'$"J%K 256 266 166 236 258 313 277 0
&),-%GCF'()@"4H .208 .284 .003 .104 .226 .864 .394 .000

low/high 8< B >( &):C ;@ 7D 7> 7&& ;(
5($$FIA)'$"J%K 256 77 101 303 191 266 202 0 102
&),-%GCF'()@"4H .208 .000 .000 .207 .002 .058 .003 .000 .000

low/recede 8< B >( &):C ;@ 7D 7> 7&& ;(
5($$FIA)'$"J%K 177 211 3 208 224 137 227 0 102
&),-%GCF'()@"4H .031 .148 .000 .132 .242 .003 .263 .000a .000

expand/high 8< B >( &):C ;@ 7D 7> 7&&
5($$FIA)'$"J%K 260 143 162 175 150 239 182 245
&),-%GCF'()@"4H .326 .001 .004 .008 .002 .161 .012 .199

expand/recede 8< B >( &):C ;@ 7D 7> 7&&
5($$FIA)'$"J%K 229 176 0 119 160 144 224 117
&),-%GCF'()@"4H .971 .184 .000 .007 .088 .035 .884 .465

high/recede 8< B >( &):C ;@ 7D 7> 7&& ;(
5($$FIA)'$"J%K 200 87 122 259 173 188 145 86 199
&),-%GCF'()@"4H .129 .000 .001 .813 .037 .078 .007 .021 .127

Test of Homogeneity of Variances for Flood extent ANOVA of variables with equal variances

9"8"$4"$'%
?(3)(L@"

(I) flood 
extent

<;:= low

expand

MNO%
;0$1)4"$+"%

K88"3%
P0.$4

expand

high

recede

high

recede

Post hoc tests: multiple comparisons with Bonferroni

Pair-wise MW-U comparisons

(J) flood 
extent

5"($%
9)11"3"$+"%GQFRH &'4-%S3303

high

recede

7"/8

expand

high

&),-

9:

Kruskal Wallis Test

5, low

low

expand

low

recede
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Online Resource 1(iv)

!"#"$"%
&'(')*')+ df &),-

&./%01%
&2.(3"* 41 5"($%&2.(3" 6 &),-

pH 6.155 94 .001 7"/8 1697.574 3 565.858 133.778 .000
7"/8 2.219 94 .091 9: 52.939 3 17.646 4.298 .007
9: 1.284 94 .284 9:; 108.391 3 36.130 2.041 .113
Conduct 6.403 94 .001 Conductivity 3824.507 3 1274.836 2.390 .074
9:; 1.688 94 .175 <;:= 5870.121 3 1956.707 4.224 .008
<;:= 1.699 94 .173 TSS 16.117 2 8.058 1.904 0.158
K 9.524 94 .000 >:= .002 2 .001 .050 .951
Na 25.342 94 .000 5, 12.839 3 4.280 45.687 .000
SiO2 9.980 94 .000 ?"@0+ .115 3 .038 .573 .634
Cl 15.966 94 .000  
TP 7.116 94 .000
TN 2.745 94 .047
NO3 0.103 58 .902
TSS 2.733 59 .073 expand 4.196 0.579 0.000 2.636 5.756
SO4 9.277 94 .000 high 10.881 0.555 0.000 9.386 12.376
Mg 2.643 94 .054 recede 3.250 0.602 0.000 1.627 4.873
Ca 26.486 71 .000 low -4.196 0.579 0.000 -5.756 -2.636
9"8'A 5.174 94 .002 high 6.685 0.584 0.000 5.112 8.258
Veloc 1.012 94 .391 recede -0.945 0.629 0.816 -2.640 0.749
Flood 0.703 94 .553 low -10.881 0.555 0.000 -12.376 -9.386
Hydroperiod 0.473 94 .702 expand -6.685 0.584 0.000 -8.258 -5.112

recede -7.630 0.607 0.000 -9.266 -5.995
low -3.250 0.602 0.000 -4.873 -1.627
expand 0.945 0.629 0.816 -0.749 2.640

high 7.630 0.607 0.000 5.995 9.266
expand 0.360 0.570 1.000 -1.177 1.897
high -1.536 0.547 0.036 -3.009 -0.063
recede -0.270 0.593 1.000 -1.869 1.329
low -0.360 0.570 1.000 -1.897 1.177
high -1.896 0.575 0.008 -3.446 -0.346
recede -0.631 0.620 1.000 -2.301 1.039
low 1.536 0.547 0.036 0.063 3.009
expand 1.896 0.575 0.008 0.346 3.446
recede 1.265 0.598 0.222 -0.346 2.877
low 0.270 0.593 1.000 -1.329 1.869
expand 0.631 0.620 1.000 -1.039 2.301
high -1.265 0.598 0.222 -2.877 0.346
expand -13.345 6.056 0.180 -29.668 2.979

high -0.475 5.805 1.000 -16.121 15.170
recede -18.007 6.301 0.032 -34.990 -1.025
low 13.345 6.056 0.180 -2.979 29.668
high 12.869 6.107 0.226 -3.590 29.329
recede -4.663 6.580 1.000 -22.398 13.072
low 0.475 5.805 1.000 -15.170 16.121
expand -12.869 6.107 0.226 -29.329 3.590
recede -17.532 6.349 0.042 -34.645 -0.419
low 18.007 6.301 0.032 1.025 34.990
expand 4.663 6.580 1.000 -13.072 22.398
high 17.532 6.349 0.042 0.419 34.645
expand -0.688 0.086 0.000 -0.921 -0.456
high -0.409 0.083 0.000 -0.631 -0.186
recede -0.993 0.090 0.000 -1.234 -0.751
low 0.688 0.086 0.000 0.456 0.921
high 0.279 0.087 0.011 0.045 0.514
recede -0.304 0.094 0.010 -0.556 -0.052
low 0.409 0.083 0.000 0.186 0.631
expand -0.279 0.087 0.011 -0.514 -0.045
recede -0.584 0.090 0.000 -0.827 -0.340
low 0.993 0.090 0.000 0.751 1.234
expand 0.304 0.094 0.010 0.052 0.556
high 0.584 0.090 0.000 0.340 0.827

 

8< B >( &):C ;@ 7D 7> TSS &:E ;(
;A)F&2.(3" 11.402 28.196 54.992 10.261 15.219 10.719 12.476 59.638 4.387 26.092
41 3 3 3 3 3 3 3 3 3 2
&),-%GCF'()@"4H .010 .000 .000 .016 .002 .013 .006 .000 .223 .000

low/expand 8< B >( &):C ;@ 7D 7> 7&&
5($$FIA)'$"J%K 256 266 166 236 258 313 277 0
&),-%GCF'()@"4H .208 .284 .003 .104 .226 .864 .394 .000

low/high 8< B >( &):C ;@ 7D 7> 7&& ;(
5($$FIA)'$"J%K 256 77 101 303 191 266 202 0 102
&),-%GCF'()@"4H .208 .000 .000 .207 .002 .058 .003 .000 .000

low/recede 8< B >( &):C ;@ 7D 7> 7&& ;(
5($$FIA)'$"J%K 177 211 3 208 224 137 227 0 102
&),-%GCF'()@"4H .031 .148 .000 .132 .242 .003 .263 .000a .000

expand/high 8< B >( &):C ;@ 7D 7> 7&&
5($$FIA)'$"J%K 260 143 162 175 150 239 182 245
&),-%GCF'()@"4H .326 .001 .004 .008 .002 .161 .012 .199

expand/recede 8< B >( &):C ;@ 7D 7> 7&&
5($$FIA)'$"J%K 229 176 0 119 160 144 224 117
&),-%GCF'()@"4H .971 .184 .000 .007 .088 .035 .884 .465

high/recede 8< B >( &):C ;@ 7D 7> 7&& ;(
5($$FIA)'$"J%K 200 87 122 259 173 188 145 86 199
&),-%GCF'()@"4H .129 .000 .001 .813 .037 .078 .007 .021 .127

Test of Homogeneity of Variances for Flood extent ANOVA of variables with equal variances

9"8"$4"$'%
?(3)(L@"

(I) flood 
extent

<;:= low

expand

MNO%
;0$1)4"$+"%

K88"3%
P0.$4

expand

high

recede

high

recede

Post hoc tests: multiple comparisons with Bonferroni

Pair-wise MW-U comparisons

(J) flood 
extent

5"($%
9)11"3"$+"%GQFRH &'4-%S3303

high

recede

7"/8

expand

high

&),-

9:

Kruskal Wallis Test

5, low

low

expand

low

recede
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Online Resource 1(v)

! "#$% & '(
"#$%)*+,
&-#./'0

12 2.203 .141 .696 96 .488

3/41 2.496 .117 -.716 96 .476

56 1.661 .201 .331 96 .741

789':;& .881 .350 5.903 96 .000

567 .047 .830 2.353 96 .021

276< 4.888 .029 3.642 96 .000

= .841 .361 3.221 96 .002

>- 9.613 .003 3.233 96 .002

"#6+ .415 .521 2.069 96 .041

3? .143 .706 .113 96 .910

3> .924 .339 1.951 96 .054

>6< 8.771 .004  

TSS .106 .746 .006 85 .936

7. .003 .955 .398 96 .692

"6@ 11.355 .001 1.702 96 .092

A$ 2.913 .091 3.747 96 .000

7- 1.432 .235 1.219 73 .227

5/1&B 3.454 .066 -3.802 96 .000

C/.8; 5.877 .017 -2.007 96 .048

A-99,DB#&9/E)3/F&

276< >- "6@ C/.8;
A-99,DB#&9/E)G 459 492 783 509
"#$%)*+,&-#./'0 .002 .006 .825 .006

FOR NO3, TSS
H/I/9/)
"&-&#F&#; '(J '(+ "#$%

>6< 8.771 1 59 .004
3"" .106 1 85 .746

2KLM3K3 > A/-9)N-9O
D/&5PE 13 43.46
D/& 48 27.63
38&-. 61

>6<
7B#,"Q:-P/ 8.144
'( 1
"#$%)*+,&-#./'0 .004

Test Statistics

&,&/F&)(8P)RQ:-.#&E)8()A/-9F

M9'/1/9'/9&)"-41./F)3/F&

H/I/9/SF)3/F&)(8P)RQ:-.#&E)
8()C-P#-9;/F

>6<
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Online Resource 1(vi)

Mean hydrochemical data for each of the 4 regions decomposed by field visit. ND = not determined

 Depth Veloc pH Temp DO Conduct DOC HCO3 K Na SiO2 Cl TP TN SO4 TSS Mg Ca
UPH-low 1.47 0.06 6.35 27.45 3.82 40.43 4.9 42.62 2.33 1.04 13.83 0.47 0.03 0.11 0.38 ND 0.16 8.02
UPH-expand 2.25 0.44 6.33 23.84 2.58 38.26 4.71 37.12 0.64 0.95 7.4 0.52 0.05 0.34 0.17 3.17 0.84 ND
UPH-high 2.25 0.09 6.49 17.53 6.67 30.98 2.9 38.55 0.53 1.15 5.88 0.51 0.03 1.06 0.36 5.34 0.41 3.62
UPH-recede ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND

LPH-low 1.96 0.04 6.71 26.82 3.19 49.35 5.82 27.88 1.88 1.12 19.28 0.49 0.03 0.49 0.25 ND 0.3 6.95
LPH-expand ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND
LPH-high 3.09 0.16 6.38 16.11 3.99 33.25 4.26 42.96 0.6 1.55 3.89 0.21 0.05 0.73 0.1 3.93 0.77 4.44
LPH-recede 1.32 0.13 6.54 24.85 3.81 52.47 13.94 61.31 1.94 2.03 5.63 0.65 0.08 0.62 0.32 2.34 1.01 4.67

XAK-low 1.21 0.22 7.15 29.74 4.36 63.14 8.41 50.77 2.69 1.15 10.76 0.58 0.03 0.61 1.21 ND 0.41 8.14
XAK-expand 0.96 0.1 7.05 21.45 4.43 53.9 7.51 73.95 3.49 1.28 12.22 1.01 0.03 0.44 0.67 3.76 1.11 ND
XAK-high 0.77 0.14 6.52 15.66 5.36 72.76 7.81 67.23 2.11 3.21 13.38 0.46 0.04 0.74 0.16 3.06 0.97 6.8
XAK-recede 0.89 0.23 6.8 25.29 4.11 64.1 6.38 58.26 3 4 8.45 0.49 0.04 0.4 0.12 2.11 1.45 6.47

BOR-low 0.95 0.07 6.73 27.57 1.82 87.72 9.64 62.35 3.02 0.73 7.72 0.79 0.03 0.56 0.27 ND 0.61 14.52
BOR-expand 0.97 0.11 6.02 26.47 1.18 91.23 14.46 76.72 4.38 1.56 26.57 1.76 0.02 1.03 0.28 2.15 1.39 ND
BOR-high 1.57 0.15 6.53 19.43 3.28 63.92 9.4 51.05 1.56 3.1 13.07 0.44 0.03 0.63 0.19 2.39 1.08 7.05
BOR-recede 1.26 0.07 6.61 24.51 2.43 74.85 8 81.63 2.22 4.88 10.99 0.49 0.07 0.65 0.26 1.65 1.68 7.53

	  


