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Abstract

A single founder mutation resulting in a Ser163Arg substitution in the C1QTNF5 gene product causes autosomal dominant
late-onset retinal macular degeneration (L-ORMD) in humans, which has clinical and pathological features resembling age-
related macular degeneration. We generated and characterised a mouse ‘‘knock-in’’ model carrying the Ser163Arg mutation
in the orthologous murine C1qtnf5 gene by site-directed mutagenesis and homologous recombination into mouse
embryonic stem cells. Biochemical, immunological, electron microscopic, fundus autofluorescence, electroretinography and
laser photocoagulation analyses were used to characterise the mouse model. Heterozygous and homozygous knock-in mice
showed no significant abnormality in any of the above measures at time points up to 2 years. This result contrasts with
another C1qtnf5 Ser163Arg knock-in mouse which showed most of the features of L-ORMD but differed in genetic
background and targeting construct.
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Introduction

Late-onset retinal macular degeneration (L-ORMD) is a fully

penetrant autosomal dominant disorder associated with a late-

onset macular degeneration resembling age-related macular

degeneration (AMD) [1,2,3]. L-ORMD shows disease onset in

the fifth to sixth decade with impaired dark adaptation

associated with both punctate and diffuse sub-retinal pigment

epithelium (RPE) deposits, leading to central and later

peripheral visual loss and, at late stages, a pan-retinal atrophy

often with choroidal neovascularisation (CNV) and disciform

scarring. The most striking and consistent pathological feature is

a thick (#50 mm) extracellular sub-RPE deposit, worst in the

macula but extending to the extreme retinal periphery [2,3].

The deposits resemble basal laminar deposits that can be seen

both in aged and in AMD eyes, with wide-spaced collagen, RPE

basal processes penetrating the deposits and appearances

consistent with exocytosis of packets of fibrillar material into

the deposits [3]. An unusual phenotypic feature is the presence

of long ciliary zonules, which extend from the ciliary epithelium

to the anterior lens [4,5].

L-ORMD is caused by a single founder Ser163Arg mutation in

the Complement 1q Tumour Necrosis Factor 5 (C1QTNF5) gene

[1]. C1QTNF5 (formerly called CTRP5) encodes a short-chain

collagen which is strongly expressed in RPE, ciliary epithelium

and adipose tissue [1,4,6]. The protein is predicted to contain an

N-terminal secretory signal, a short helical collagen repeat and a

C-terminal globular complement 1q (gC1q) domain which

facilitates trimerisation [1,7,8]. The functional consequences of

a Ser163Arg mutation in the gC1q domain has been reported to

involve destabilisation of the protein as a result of an abnormal

surface charge [7,8]. Similar to the closely-related collagens VIII

and X, C1QTNF5 appears to be secreted into the adjacent

extracellular matrix but its function is currently unknown.

C1QTNF5 protein interacts with the CUB domains of the

Membrane type Frizzled Related Protein (MFRP) [8]. MFRP is

expressed as a dicistronic transcript with C1QTNF5 [1] and is

mutated in human autosomal recessive nanophthalmos and also

in the mouse, in the Mfrp rd6 mutant, which is associated with

retinal degeneration [9,10]. Recently, Park et al. reported that the

expression of C1QTNF5 is increased in mtDNA-depleted

myocytes and that it stimulates the phosphorylation of AMP-

activated protein kinase [11]. These authors also showed that

serum C1QTNF5 has significantly higher expression in obese/

diabetic mice than in controls.

In order to investigate the pathogenic role of the C1QTNF5

Ser163Arg mutation in vivo, we generated a C1qtnf5 Ser163Arg

knock-in mouse model of L-ORMD by homologous recombi-

nation into mouse embryonic stem cells and analysed the

consequences of the mutation on retinal function and mor-

phology.
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Results

Generation of C1qtnf5 Ser163Arg mice
Both human C1QTNF5 and mouse C1qtnf5 proteins contain

243 amino acids with 94% identity. In humans, the Ser163Arg

mutation is caused by a single point mutation in codon 163

(AGC.AGG) changing the encoded serine to an arginine residue.

In the mouse, serine is also encoded by an AGC codon, therefore

the same point mutation (AGC.AGG) in mouse C1qtnf5

introduces the mutation found in L-ORMD patients. The

targeting strategy and C1qtnf5 Ser163Arg targeting construct are

described in detail in Materials and Methods and summarised in

Figure 1. The targeting vector contained long (6.8 kb) and short

(1.4 kb) genomic fragments from the Mfrp/C1qtnf5 locus together

with a neomycin resistance (neo) cassette flanked by flippase (Flp)

recombination target (FRT) sites in order to remove the neo

cassette following successful targeting (Figure 1B). LoxP sites were

also introduced, which can be used in the future for deleting the

second and final exon of C1qtnf5, creating a C1qtnf5 null mouse.

The linearized construct was electroporated into mouse 129SV

embryonic stem (ES) cells and 271 G418 (neo) resistant clones

were isolated. These were initially screened by polymerase chain

reaction (PCR) amplification, which identified 10 potentially

targeted clones, which were further characterised by PCR,

Southern blotting and sequencing (data not shown). Four ES cell

clones with the C1qtnf5 Ser163Arg neo allele present were fully

validated and 3 of these were injected into C57BL/6J mouse

blastocysts to generate chimaeric mice. Two highly chimaeric

males (with 85% and 98% chimaerism) were each mated with two

Flp recombinase deleter C57BL/6J females to remove the neo

cassette. Two mice (one male and one female) were found to be

mosaic for the Ser163Arg mutation in the F1 progeny. The two

mosaic mice were each mated with wild-type mice, which gave rise

to 15 pups. The 15 animals were screened by PCR to determine

whether complete excision of the neomycin cassette had occurred

at the targeted C1qtnf5 locus. Five animals were heterozygous for

the C1qtnf5 Ser163Arg mutation and were validated by Southern

blotting and sequencing (Figure 1C, D). Intercrossing of

heterozygous C1qtnf5+/Ser163Arg mice on a 129SV background

generated wild-type, heterozygous C1qtnf5+/Ser163Arg and homo-

zygous C1qtnf5Ser163Arg/Ser163Arg mice. Both heterozygous

(C1qtnf5+/Ser163Arg) and homozygous (C1qtnf5Ser163Arg/Ser163Arg)

mice were fertile, with normal weight and lifespan, and did not

show evidence of systemic disease.

The mRNA from the mutant C1qtnf5 Ser163Arg allele was

found by reverse transcriptase PCR (RT-PCR) to be expressed at

similar levels to the wild-type allele, showing that the introduction

of the mutant allele did not affect its expression (Figure 2A). The

expression of Mfrp, which is co-ordinately expressed as a

dicistronic partner with C1qtnf5, was also unaltered (Figure 2A).

C1qtnf5 protein levels in the eyes of both heterozygous and

homozygous C1qtnf5 Ser163Arg knock-in (KI) mice were also

similar to wild-type (Figure 2B).

Phenotypic analysis of the C1qtnf5 Ser163Arg mice
A series of experiments were carried out to characterise the

ocular phenotype of the C1qtnf5 Ser163Arg mice. Histological

evaluation by light microscopy and electron microscopy

showed the neural retina of C1qtnf5 heterozygous and

homozygous KI mice to be essentially normal from age 6 to

24 months of age, compared with those of age-matched wild-

type mice (summarised in Figure 3A). We evaluated the

integrity of the RPE and the thickness of Bruch’s membrane

(BM) in young (6 months) and old (20 months) wild-type and

Ser163Arg KI mice and focused in particular on age-related

changes in the retinal pigment epithelium (RPE) and

underlying BM. Although aged animals showed amorphous

sub-RPE deposits, there was no obvious difference in these

deposits between wild-type and Ser163Arg KI mice (Figure 3B).

The BM thickness increased with age, so there was a significant

correlation between age and BM thickness in each genotype

respectively. The values of mean BM thickness of old mice (20–

24 months) were approximately twice those from young

animals (6 months), but we did not identify a significant

difference between age-matched wild-type and Ser163Arg KI

mice (Figure 3B, C), indicating that the major cause of the

increase in BM thickness was normal ageing.

To assess any possible differences in age-related RPE pathology

between wild-type, heterozygous or homozygous mutant C1qtnf5

KI littermates with age, we applied a previously described method

for RPE pathology grading in animals between 6 and 24 months of

age [12,13]. In Figure 4, the mean sum of the observed RPE

damage per section and per animal is shown, estimated from the

analysis of three sections per animal. All three genotype groups

showed a similar range of RPE damage, that was not significantly

different between the three groups (Pearson correlation,

p = 0.0026, N = 35 r2 = 0.244). This suggests that the observed

RPE damage increases with age in all three groups and so is most

likely to be due to normal ageing and not to an effect of the

Ser163Arg KI allele. These findings are very similar to those in a

previous study, in which we also showed a significant increase of

RPE damage with age in wild-type mice over a period of 2 to 24

months [13].

Analysis of changes in the normal distribution of fluorophores

inside the retina and RPE was performed using autofluorescence-

scanning laser ophthalmoscopy (AF-SLO) in three wild-type,

C1qtnf5+/Ser163Arg and C1qtnf5Ser163Arg/Ser163Arg KI mice at 15–16

months of age respectively. There was no significant difference in

autofluorescence in inner and outer retina between wild-type and

C1qtnf5 Ser163Arg KI mice, although the number of autofluores-

cence spots in the inner and outer retina of C1qtnf5Ser163Arg/Ser163Arg

mice were slightly greater than those of wild-type mice but this was

not statistically significant (Figure 5).

The electroretinogram (ERG) was used to assess retinal

function in C1qtnf5 Ser163Arg KI mice at 10–12 and 15–18

months of age (Figure 6). Representative ERG responses from

18-month-old mutant mice are compared to responses from a

wild-type control in Figure 6A. Maximal rod photoreceptor

function was elicited with bright light stimuli in the dark-adapted

state (Figure 6A, black traces). Cone function was obtained in

dark-adapted mice by recording ERGs within a short interval

following rod-suppressing bleaching lights (Figure 6A, bottom

traces). Delayed dark adaptation following a photobleach, a

prominent feature in human L-ORMD [1,2], was studied in the

mice by determining the recovery of the rod ERG photoresponse

(a-wave) following a light exposure that completely suppressed it

(Figure 6A, gray traces overlapping the DA rod response). ERG

responses in mutant animals are similar to those in the wild-type

control. ERG a-waves and b-waves were measured convention-

ally for each of the ERG responses and summary statistics for

each group shown (Figure 6B). Rod a-wave amplitudes in

homozygous (mean 6 SD = 250653 mV) and heterozygous

(238635 mV) C1qtnf5 Ser163Arg KI mice were similar to each

other and to wild-type (276656 mV) mice (P.0.05). Cone b-wave

amplitudes in homozygous (122623 mV) and heterozygous

(109620 mV) C1qtnf5 Ser163Arg KI animals were also similar to

each other and to wild-type (115623 mV) mice (P.0.05). Recovery

C1qtnf5 Knock-In Mouse
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of the a-wave (expressed as a fraction of dark-adapted results) in

both homozygotes (0.3860.08) and heterozygotes (0.4560.10)

reached levels comparable to those of wild-type (0.4360.09) mice

(P.0.05).

Effects of photocoagulation/laser induced choroidal
neovascularisation

Wild-type and heterozygous or homozygous KI mice at 15–16

month of age were exposed to photocoagulation/laser-induced

Figure 1. Introduction of the Ser163Arg mutation into the mouse C1qtnf5 gene. A) Schematic representation of the murine Mfrp/C1qtnf5
genes. Boxes represent exons, the solid line represents intronic sequence (not drawn to scale). B) The targeting construct showing the long (6.8 kb)
homology arm (LA), short (1.4 kb) homology arm (SA) and the central fragment with the Ser163Arg mutation labelled with a *. FRT: Flippase
Recognition Target sites, Neo: the neomycin selection cassette. LoxP: sites flanking the introduced mutation and Neo gene, allowing subsequent Cre-
recombinase-mediated deletion to generate a knockout mouse. C) Southern blot performed using genomic DNA from two heterozygous mice with a
39 C1qtnf5 probe showing wild-type genomic DNA digested by AvrII, resulting in a 11.3-kb band, while genomic DNA containing the targeted
Ser163Arg mutant showed the expected 6.6-kb band following Flp-mediated excision of the neo cassette. D) Validation of the Ser163Arg point
mutation in heterozygous mice by DNA sequencing. The wild-type codon is AGC (serine), the mutant is AGG (arginine), the heterozygous mice show
both alleles, highlighted in blue. E) Genotyping of tail biopsy DNA from wild-type and mutant (C1qtnf5 Ser163Arg) mice by PCR amplification of the
native wild-type and mutant fragments. The primers anneal close to the FRT-sites flanking the neo cassette (see Figure 1 and Materials and Methods).
The wild-type allele corresponds to the lower 432 bp band and the mutant allele to the upper 548 bp band. The gel shows genotypes in a mixture of
C1qtnf5 Ser163Arg homozygous mutant (n = 9), heterozygous mutant (n = 4) and wild-type mice (n = 2). A DNA molecular weight marker V (8–587 bp;
HaeIII digested pBR322 (Roche)) is shown in the right hand lane.
doi:10.1371/journal.pone.0027433.g001

C1qtnf5 Knock-In Mouse
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CNV. The results were analysed by in vivo fluorescein angiography

and immunohistochemistry. There was no obvious difference

between the CNV laser lesions at 1 and 2 weeks post-laser in wild-

type mice compared to those in C1qtnf5 Ser163Arg KI mice

(Figure 7A). To evaluate the response of microglial cells to laser-

induced CNV, retinal and RPE/choroidal flat mounts from laser

injured wild-type and C1qtnf5 KI mice were stained with anti-Iba1

antibody for labelling of microglia. There was no significant

difference in microglial cells in the laser lesion area between wild-

type and C1qtnf5 Ser163Arg KI mice (Figure 7B).

Effects of human mutant C1QTNF5 over-expression in
mouse retina

We generated lentivirus to over-express human C1QTNF5 wild-

type and Ser163Arg mutant proteins. Initial in vitro infection of

HeLa cells showed that the wild-type protein was diffusely located

in the cytoplasm but most of the mutant protein was retained in

the endoplasm reticulum (Figure 8A), consistent with previous

observations when C1qtnf5 is over-expressed [8]. Over-expression

of wild-type and mutant C1QTNF5 in wild-type mouse retina did

not cause any pathological effects on either RPE or photoreceptors

(Figure 8B, C).

Discussion

Mouse models of human inherited retinal diseases have proved

to be invaluable tools for the analysis of disease mechanisms and,

more recently, for evaluating therapy [14,15]. The situation with

late-onset or genetically complex disorders, such as age-related

macular degeneration, has been less clear-cut due to the presence

of anatomical differences (e.g. the mouse has no macula) and the

requirement for ageing in addition to inherited and environmental

influences, such as diet, genetic background or light exposure. All

of these factors may influence both ageing and inflammatory

processes, making these disorders intrinsically more difficult to

model [16,17]. Some mouse models of inherited macular

dystrophies, including the Abca4 model of Stargardt disease,

reproduce the biochemical features of the human disease but only

manifest a very slow photoreceptor degeneration, in contrast to the

human disease [18,19]. A transgenic mouse model of Stargardt-

like macular degeneration resulting from ELOVL4 mutation on the

other hand showed both biochemical and functional features of

the human disease [20]. Other macular disease models show few

features of the corresponding human disease. For example, a

mouse model of Sorsby fundus dystrophy, with a Timp3 Ser156Cys

knock-in mutation, showed premature age-related changes in

Bruch’s membrane and RPE, which were evident at 8 months

compared with 30 months in wild-type littermates but lacked the

most striking features of the human disease, namely massive sub-

RPE deposits (resembling those found in L-ORMD), choroidal

neovascularization or retinal atrophy [21].

The lack of overt phenotypic abnormality in C1qtnf5 Ser163Arg

knock-in mice up to 24 months is therefore disappointing but by

no means unprecedented in view of the mixed success with mouse

models of late-onset macular degeneration. The lack of a macula

in the mouse seems unlikely to be a problem since L-ORMD

becomes a pan-retinal disease in the later stages. Another possible

factor is the short lifespan of the mouse compared with humans, in

whom it may take 60–70 years to develop the full disease [22].

However, very recently, Chavali et al. [23] reported a very similar

knock-in mouse model of L-ORMD in which the same Ser163Arg

mutation had been introduced. In contrast to the present study,

these mice showed most of the key features of L-ORMD - ERG

changes consistent with early dark adaptation abnormalities,

accumulation of hyperautofluorescent spots, RPE and Bruch’s

membrane abnormalities, drusen, loss of photoreceptors and

retinal vascular leakage. The Chavali et al. [23] mouse was made

using a similar targeting construct containing introduced LoxP

sites (for subsequently making a C1qtnf5 deletion knockout) and

FRT sites flanking the neomycin selection cassette but these,

together with the S163R mutation, were introduced into a

bacterial artificial chromosome (BAC) containing the Mfrp and

C1qtnf5 genes rather than our approach in which right and left

arms were PCR amplified and cloned separately into a plasmid

construct and the mutation introduced by standard site directed

mutagenesis. In our study, expression of both Mfrp and C1qtnf5

were found to be unaffected in the resultant knock-in mice

compared with wildtype (Figure 2). The expression of C1qtnf5 was

unaffected in the Chavali et al. [23] mouse whereas the expression

of Mfrp was not checked. One important difference was that

Chavali et al. targeted C57BL/6J embryonic stem (ES) cell and

maintained the resultant knock-in mice on a 100% C57BL/6J

genetic background whereas the present mouse model was

constructed using a targeted 129SV ES cell and analysed on a

mixed 129SV and C57BL/6J background.

Phenotypic differences in mouse models of human disease are

commonplace, as are effects of genetic backgrounds (http://

phenome.jax.org/) [24]. Many mutations causing human disease

show no clinical phenotype in the mouse, even if the targeted

protein is completely absent and an appropriate biochemical

phenotype is present(e.g. Lesch-Nyhan syndrome, Lowe syn-

drome, X-linked adrenoleukodystrophy, Fabry disease, galacto-

semia, Tay-Sachs disease) [25]. Others show mild or partial

phenotypes which vary according to the genetic background,

including cystic fibrosis, cardiomyopathy, Huntington disease,

adenomatous polyposis, glomerulonephritis, Marfan syndrome

and hypertension [25,26,27,28,29,30,31,32,33]. In some cases, the

genetic background differences led to the direct identification of

modifier genes [34,35] while in others, multiple genes appeared to

be involved [36]. Phenotypic differences in ocular mutants on

Figure 2. C1qtnf5 and Mfrp expression in C1qtnf5 Ser163Arg
knock-in (KI) mice. A) Similar expression of C1qtnf5 and Mfrp by
reverse transcriptase-PCR in RPE/choroid from wild-type (wt) and
heterozygous (wt/ki) or homozygous (ki/ki) C1qtnf5 Ser163Arg KI mice.
B) Western blot of eye cups from wild-type and C1qtnf5 heterozygous
and homozygous knock-in mice stained with anti-C1QTNF5 antibody
(top) and anti-b tubulin antibody (bottom).
doi:10.1371/journal.pone.0027433.g002

C1qtnf5 Knock-In Mouse
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Figure 3. Retinal structure and ultrastructure in C1qtnf5 knock-in (KI) and wild-type (Wt) mice. A) Retinal sections from mice of the
C1qtnf5 wild-type, Ser163 Arg heterozygous (Het) and homozygous (Mut) genotypes at the ages indicated, stained and examined by light
microscopy. B) Ultrastructures of the basal site of the RPE and Bruch’s membrane of retinas from wild-type (Wt) and C1qtnf5 Ser163Arg KI (Het, Mut)
mice at the ages of 6 months and 20 months, respectively. C) The thickness of Bruch’s membrane increased with age (Pearson correlation Wt: n = 6,
p = 0.103, r2 = 0.526; Het: n = 22, p = 0.0005, r2 = 0.459; Mut: n = 21, p = 0.0039, r2 = 0.362) but no significant difference between wild-type and C1qtnf5
Ser163Arg KI mice was found.
doi:10.1371/journal.pone.0027433.g003

C1qtnf5 Knock-In Mouse
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different genetic backgrounds are also common, including

abnormities of ocular development, early and late onset forms of

retinal degeneration and cataract [37,38][39,40][41]. Again,

direct identification of disease modifiers such as variation at the

Rpe65 locus, has proved useful [42]. It remains possible that the

phenotypic differences between the C1qtnf5 knockout mice

reported here and by Chavali et al. [23] result from differences

in the targeting construct, which might for example affect the

expression level of the mutant (or wild-type) allele, but an equally

likely interpretation is the difference in genetic background.

Further work is therefore required to clarify this difference.

Finally, over-expression of the wild-type and mutated forms of

C1QTNF5 did not appear to result in any greater RPE or outer

nuclear layer pathology than was observed following injection with

the control lentiviral construct LNT-GFP or injection with PBS.

This suggests, at least over the time points studied, that the

mutated protein does not exert a gain-of-function pathogenic

effect on either the RPE or ONL, although it is possible that if

much longer time points post-injection were studied, a subtle

phenotype might become apparent. It remains unclear whether L-

ORMD results from a gain-of-function or loss-of-function

although over-expression of C1QTNF5 in vitro does lead to ER

retention [8], as observed with lentivirus over-expression of the

mutant protein in HeLa cells (Figure 8).

Resolving phenotypic differences between our C1qtnf5 KI

mouse and that reported by Chavali et al. [23] will be difficult.

Firstly, it will require back-crossing both KI models onto C57BL/

6J or 129SV strains respectively and then repeating the phenotypic

analyses in parallel. If the difference is associated with genetic

background, it may have therapeutic implications but resolving the

mechanism will not be easy since it may be due to polygenic

factors influencing penetrance. In vitro over-expression of the

mutant protein in mouse embryonic fibroblasts from potentially

susceptible compared with non-susceptible strains could help to

clarify whether genetic background effects are due to differences in

the cellular handling of misfolded proteins, but this may vary

between tissues, and many alternative explanations are possible.

Materials and Methods

Ethics statement
All the animal experiments were performed in accordance with

the ARVO Statement for the Use of Animals in Ophthalmic and

Vision Research. Animal work was carried out with the approval

of the Home Office under project licence number PL 6003868.

Generation of C1qtnf5 Ser163Arg knock-in mice
The C1QTNF5 and MFRP genes are located immediately

adjacent to one another in both human and mouse genomes and

are expressed as a dicistronic transcript [1,4]. The mouse Mfrp/

C1qtnf5 gene is located on chromosome 9 (position 44204272-

44211776) and extends for 7.5 kb. The Mfrp/C1qtnf5 gene is

composed of 14 exons which are expressed in a 4.22 kb bicistronic

mRNA. The mouse Mfrp protein is encoded by exons 1 to 13,

while the C1qtnf5 protein is encoded by exons 13 and 14

(Figure 1A). We employed a classical approach of homologous

recombination to replace wild-type C1qtnf5 with a modified

C1qtnf5 allele. In order to make the knock-in targeting construct,

three genomic fragments were PCR amplified using 129SV

genomic DNA as template: the long (59) homology arm which

contained exons 7 to 13 and part of exon 14; the short (39)

homology arm containing the 39 end of exon 14 and the region

located downstream of the Mfrp/C1qtnf5 gene; and a central

fragment, containing a portion of exon 14. The Ser163Arg

mutation (base change AGC to AGG) in C1qtnf5 exon 14 was then

introduced by site-directed mutagenesis into the central fragment

Figure 4. Retinal pigment epithelium (RPE) damage scores in C1qtnf5 wild-type and Ser163 Arg mutant mice. RPE damage was scored
in wild-type and C1qtnf5 Ser163Arg knock-in (KI) mice at ages between 6 and 24 months old and no signficant difference was found between any of
the genotypes (n (wt) = 6, n(het) = 15, n(mut) = 14). Overall, there is a signficant correlation of RPE damage with age (Pearson correlation
n(wt,het,mut) = 35, p = 0.0026, r2 = 0.244).
doi:10.1371/journal.pone.0027433.g004

C1qtnf5 Knock-In Mouse
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(Figure 1). The above three PCR fragments were cloned into the

targeting vector G139 (provided by genOway, Lyon, France) and

the linearized construct (Figure 1) was transfected into mouse

129SV ES cells according to genOway’s standard electroporation

procedures (i.e. 56106 ES cells in presence of 40 mg of linearized

plasmid, 260volt, 500 mF). Positive selection was started 48 hours

after electroporation by addition of 200 mg/ml of G418. G418-

resistant clones were screened for the correct homologous

recombination event by PCR and southern blotting. Three ES

clones were used to inject into C57BL/6J blastocysts and a total of

19 chimeric mice were produced from the three injection sessions.

Two highly chimeric males (displaying 85% and 98% chimerism)

were each mated with two Flp-deleter C57BL/6J females to get

heterozygous mice carrying the mutated C1qtnf5 allele devoid of

the neo selection cassette. Agouti F1 progeny were screened for

assessing the Flp-mediated excision event of the neo cassette on the

C1qtnf5 targeted allele by PCR and southern blotting, using

genomic DNA isolated from tail biopsies (Figure 1C, E). As there

was mosaicism for the Flp C1qtnf5 allele in the F1 mice, the mosaic

animals were then crossed with wild-type C57BL/6J mice to

generate a pure line of Flp excised heterozygous C1qtnf5 knock-in

mice. The resultant germline C1qtnf5 Ser163Arg mutant mice

were then inter-crossed to produce stocks of heterozygous and

homozygous mice on a mixed 129Sv and C57BL/6J genetic

background. Genotyping was performed by PCR amplification of

a 432 nucleotide base pair (bp) fragment corresponding to the

wild-type allele and a 548 bp fragment for the mutant (Ser163Arg)

allele using the following primers:-

Forward primer WRI1-F; GAGATGAGTAGTTCCTGA-

GATGACCACAAGG

Reverse primer WRI1-R; TTGGCAAACCTGGGTGTGT-

TATCG

The annealing temperature was 65uC (30 secs) and amplifica-

tion was continued for 35 cycles.

For in vivo procedures, the mice were anesthetized by a single

intraperitoneal (i.p.) injection of a mixture of medetomidine

Figure 5. Fundus autofluorescence (AF) in C1qtnf5 wild-type and Ser163Arg knock-in mice. A) Representative fundus images of inner and
outer retina obtained by AF-SLO imaging from wild-type, heterozygous and homozygous mutant C1qtnf5 S163 KI mice at 16–18 months of age. No
obvious difference in clearly demarcated autofluorescent areas or punctuated pattterns in the fundus images were observed in any of the three
gentotypes. Wt: wild-type mice, Het: heterozygous KI mice, Mut: homozygous KI mice. B,C) Semiquantitative analysis of the inner (B) and outer (C)
retinal background autofluorescence. The mean background autofluorescence (AF-pixel above threshold) for the right and left eye per animal is
shown for each genotype (n = 3 animals per genotype). No significant difference in background autofluorescence in the inner retina (B, Kruskal-Wallis
with Dunn’s multiple comparison test, p = 0.393) or in the outer retina (C, Kruskal-Wallis with Dunn’s multiple comparison test, p = 0.067) was
observed between any of the three gentoytpes.
doi:10.1371/journal.pone.0027433.g005
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hydrochloride (1 mg/kg body weight; Domitor; Pfizer Animal

Health, New York, NY), and ketamine (60 mg/kg body weight) in

water. Whenever necessary, the pupils were dilated with 1 drop of

1% tropicamide.

Autofluorescence Scanning Laser Ophthalmoscopy (AF-
SLO) and semi-quantitative assessment of background
autofluorescence

Autofluorescence imaging was performed using a HRA2

scanning laser ophthalmoscope with a 55u angle lense as described

previously [13]. We used the autofluorescent mode of the HRA2

to scan the retina with a 488 nm laser that provides the excitation

light to stimulate emission of autofluorescence from any possible

fluorophores in the retina, including for example lipofuscin in the

RPE, which will then be detected by a camera and result in the

autofluorescent photographs shown [8]. These photographs are

taken systematically withe the optic disc positioned at the centre of

the image and the image is focussed either on the inner retinal

vasculature or the outer retina respectively. Projection images of

30 frames per fundus are shown and were visually evaluated for

brighter spots or areas in the image which would indicate the

appearance of autofluorescence. Additionally, in an attempt to

semi-quantitatively evaluate the diffuse background autofluores-

cence of the AF-SLO fundus photographs, all images were

converted into 16-bit greyscale images and Image J software was

used to analyse the area of pixels above a set threshold for all

images. The mean of AF-pixel per fundus photograph above the

threshold was calculated for each animal (n = 3 per genotype)

using the values obtained for the right and the left eye.

Figure 6. Electroretinography in wild-type and C1qtnf5 Ser163Arg knock-in mice. A, Dark-adapted (DA) ERGs evoked by 2.2 log scot-
cd.s.m22 flashes (black traces) in 19-month-old heterozygote and homozygote, C1qtnf5 Ser163Arg knock-in mice compared to responses from a
representative, wild-type (WT) control. DA cone function (bottom grey traces) was isolated in dark-adapted mice by recording ERGs within a short
interval following a rod-suppressing bleaching light; recovery of the rod-mediated ERG response (grey traces overlapping DA rod traces) was
assessed by recording ERGs 10 minutes following this bleach. B, Summary statistics of ERG parameters, showing a-wave (rods, left panel) and b-wave
(cones, middle panel) in wild-type (WT), C1qtnf5 Ser163Arg heterozygous (Heter) and homozygous (Homoz) knock-in mice. Recovery of the a-wave
(photoresponse) after the bleaching exposure is shown (right panel) and expressed as a fraction of the dark-adapted amplitude. The results for both
eyes (right eye symbols are slightly displaced to the left) are plotted; circles are the 10–12 month old mice and hexagons are 15–18 month old mice.
The grey line in each panel represents 2SD below the mean for WT mice.
doi:10.1371/journal.pone.0027433.g006
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Figure 7. Laser-induced choroidal neovascularization in wild-type and C1qtnf5 Ser163 Arg knock-in mice. A, Fundus images from the
early and late phase of in vivo fundus fluorescein angiography at 1 and 2 weeks after photocoagulation/laser induced choroidal neovascularization
(CNV) in 15–16 month old wild-type and C1qtnf5 KI mice. Wt: wild-type mice, Het: heterozygous KI mice, Mut: homozygous KI mice. B, The microglia
in laser lesions on RPE flat mounts resulting from CNV laser treated C1qtnf5 KI mice after 2 weeks were labelled with anti-Iba1 (green) and co-labelled
with anti-lectin (blood vessels) antibodies. Scale bar, 250 mm. C,D, Quantitative analysis of area of hyperfluorescence in the fundus images from 1
week old animals (C) and 2 week old animals (D) as a measure for CNV lesion size. No significant difference between the hyperfluorescent areas were
observed at 1 week (Kruskal-Wallis with Dunn’s mutliple comparison test, p = 0.911) or 2 weeks (Kruskal-Wallis with Dunn’s mutliple comparison test,
p = 0.638). The number of animals for both time points were n (wt) = 4, n (het) = 12, n(mut) = 10.
doi:10.1371/journal.pone.0027433.g007
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Figure 8. Effects of Lentiviral expression of wild-type or Ser163Arg mutant C1qtnf5 in mouse retinas. (A) HeLa cells were infected with
lentivirus contain wild-type C1QTNF5 (LNT.C1QTNF5-WT) or Ser163Arg mutant C1QTNF5 (LNT.C1QTNF5-Mut). At 72 hr post-infection, cells were
stained with anti-CTRP5 (green) and the endoplasmic reticulum (ER) marker anti-BiP (red) antibodies. Cells infected with LNT.CTRP5 or LNT. CTRP5-
Mut both showed intracellular staining surrounding the nucleus (a, d) suggesting that both proteins enter the secretory pathway. While the staining
on LNT-CTRP5 infected cells is rather diffuse (a), the LNT-CTRP5-Mut showed punctate staining (d) that co-localised with the ER marker BiP (e, f, shown
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Electroretinography (ERG)
ERGs were recorded according to previous methodology [43].

Briefly, C1qtnf5 Ser163Arg KI (n = 12; 6 heterozygotes and 6

homozygotes) mice and age-matched wild-type mice (n = 25) were

dark adapted (.12 hours) and anesthetized with ketamine HCl

(65 mg/kg) and xylazine (5 mg/kg) intramuscularly under dim red

light. Pupils were dilated with 1% tropicamide and 2.5%

phenylephrine. Medium energy (10-ms duration) and high energy

(1-ms duration) flash stimulators with unattenuated luminances of

0.8 and 3.6 log scot-cd ? s ? m22, respectively, were used. Neutral

density (Wratten 96; Eastman Kodak Company, Rochester, NY)

and blue (Wratten 47A; Eastman Kodak Company) filters served

to attenuate and spectrally shape the stimuli. Dark-adapted ERGs

were obtained with a single blue 2.2 log scot-cd ? s ? m22 flash.

After a 2 minute wait, a series of three white flashes (3.6 log scot-

cd.s.m22) were presented in the dark at ,5-sec intervals which

completely suppresses the murine, rod-dominated ERG a-wave.

The bright blue stimulus was presented again within 30 seconds of

this bleaching light and this elicits an ERG dominated by a cone-

mediated b-wave. Next, the extent of recovery of the dark-adapted

(DA) rod mediated a-wave was assessed 10 minutes later by

recording a further response to the bright blue stimulus. The b-

wave amplitudes were measured conventionally, from baseline or

a-wave trough to positive peak; a-wave amplitudes were measured

from baseline to the trough of the a-wave.

Laser-induced choroidal neovascularisation (CNV)
Laser-induced CNV and quantification with fundus fluorescein

angiography (FFA) were performed as described previously [44].

Three laser lesions per eye were delivered two to three disc

diameters from the papillae with a slit lamp–mounted diode laser

system (wavelength 680 nm; laser settings: 210-mW power, 100-

ms duration, and 100-mm spot diameter; Keeler, Ltd., Windsor,

UK). After 1 and 2 weeks, in vivo FFA was performed by i.p.

injection of 200 ml of 2% fluorescein in PBS and imaging of the

fundus at 90 seconds (early) and 7 min (late phase) after

fluorescein injection using a small animal fundus camera with

appropriate filters (Kowa Genesis,Tokyo, Japan). The pixel area of

CNV-associated hyperfluorescence was quantified for each lesion

using image-analysis software (Image J, US National Institutes of

Health, Bethesda, Maryland, USA, http://rsb.info.nih.gov/ij/).

Endothelial cells were labelled with TRITC-conjugated lectin BS-I

(Bandeirea simplicifolia agglutinin, BS-I) at a 1:10 dilution (final

concentration = 0.1mg/ml, L5264 Sigma Aldrich, Steinheim,

Germany).

Histopathology
Semithin and ultrastructural analyses were performed as

previously described [13]. Briefly, eyes were enucleated and fixed

in 3% glutaraldehyde and 1% paraformaldehyde in 0.08 M

sodium cacodylate-HCl (pH 7.4) for at least 30 hours at 4uC. The

cornea and lens were removed and the eye cups oriented and

postfixed in 1% aqueous osmium tetroxide for 2 hours, dehydrat-

ed by an ascending ethanol series (50%–100%) and propylene

oxide, and infiltrated overnight with a 1:1 mixture of propylene

oxide. After 8 hours in full resin, the eyes were embedded in fresh

resin and incubated overnight at 60uC. Semithin (0.7 mm) and

ultrathin (70 nm) sections were cut in the inferior–superior axis

passing through the optic nerve head with a microtome (Ultracut

S; Leica, Wetzlar, Germany). Semithin sections were stained with

a 1% mixture of toluidine blue-borax in 50% ethanol and images

taken using brightfield microscopy (Oberserver.Z1 Axio, Carl

Zeiss Microimaging, Jena, Germany). Ultrathin sections sequen-

tially contrasted with saturated ethanolic uranyl acetate and lead

citrate for imaging in a transmission electron microscope (TEM

model 1010; JEOL, Tokyo Japan) operating at 80 kV. Images

were captured with a CCD camera calibrated against a 2160-

lines/mm grating (Gatan Orius; Agar Scientific, Stansted, UK) in

digital micrograph format and exported as .tiff files into Image J

for quantification (Image J, US National Institutes of Health,

Behtesda, Maryland, USA, http://rsb.info.nih.gov/ij/). The

thickness of Bruch’s membrane (BM), defined from the basal

lamina of the RPE cell to the basal lamina of the choroidal vessel,

was measured in a uniform, randomized way to prevent a

potential bias in the observer’s choice. The average BM thickness

in each eye was obtained from single images taken at a standard

magnification of 5000, positioned approximately 1 mm on each

side of the optic nerve. After the calibration of Image J, BM was

rotated to the horizontal or vertical, and a grid was superimposed

on the image. Ten measurements were taken at points where grid

lines passed across BM to yield an average value. Finally, the

average measurements for superior and inferior field were added,

and a mean value 6 SD was obtained for BM thickness in each

animal.

Pathology grading
To evaluate pathological effects of the Ser163Arg allele in

C1qtnf5 knock-in mice between 6 and 24 months of age and in

lentivirus treated C57BL/6 mice between 5 and 16 weeks post

injection, we assessed the respective sections (semithins for the

knock-in line and cryosections for the lentivirus treated mice)

under bright field microscopy using a 1006 objective and a 106
ocular lens, and counted the number of separate individual

pathological events, such as cell lysis, pyknosis, swelling, thinning,

proliferation and thickening of RPE from the superior to the

inferior end of the retina, in each section. From the individual

sums of damage per section we calculated the mean sum of RPE

alterations from three sections per animal to obtain a represen-

tative measure of the RPE damage score per animal, according to

a scheme described by Hollyfield et al. [12] that we have also used

in previous studies [13]. Similarly, we evaluated retinal damage by

counting the drop-out of cells from the outer nuclear layer (ONL)

towards the RPE, and thinning of the ONL, to assess retinal

damage in virus treated eyes. This provided a mean disease score

for the ONL of the retina. For the virus-injected eyes, the area

directly around the injection sites was excluded to prevent

injection-related damage which might influence the RPE or

ONL damage scores.

Immunocytochemistry
86104 HeLa cells were plated in DMEM+10% FCS+antibio-

tic/antimycotic (D10) in 96-well plates and incubated overnight.

by white arrow heads) suggesting that the mutant form of the protein is retained in the cell and cannot exit the ER correctly. Controls showed that
there was no contribution to the fluorescent signals from the respective anti-rabbit secondary antibodies (g, h, i, j, k, l). Scale bar = 20 mm.
(B) Haematoxylin and eosin stained retinal sections from C57BL/6 mouse eyes at 5 weeks after subretinal injection of either LNT.C1QTNF5-WT,
LNT.C1QTNF5-Mut, LNT.GFP or PBS. No obvious differences could be observed between the four groups despite some injection related trauma (not
shown here). (C) RPE and outer nuclear layer (ONL) disease scoring was assessed on randomized images and showed no significant difference
between the any of the four treated groups, n = 4 per group (One-way ANOVA, all p-values p.0.05). Scale bar = 100 mm.
doi:10.1371/journal.pone.0027433.g008
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On the following day, cells were infected with either

LNT.CTRP5-WT or LNT.CTRP5-Mut in D10. At 72 h post-

infection, cells well fixed with ice-cold methanol, washed with PBS

containing 0.05% Tween-20 (PBS-T). Cells were blocked with 3%

BSA in PBS-T for 1 hr at room temperature (RT) before they

were incubated with rabbit-anti-CTRP5 (1:250 in block solution,

antibody provided by A.F. Wright [8]) for 1 hr at RTuC. Cells

were washed 4 times in PBS-T and then incubated with goat anti-

rabbit-Alexa488 (1:400 in block, Invitrogen, Paisley, UK) for

45 minutes at RT. For double labelling with the ER-marker BiP,

the cells were then washed 4 times in PBS and re-blocked for 1 hr

before incubation with the rabbit anti-BiP (1:100 in block, G8918,

Sigma, Gillingham, UK) antibody for 1 hr at RT. After 4

additional wash steps, the goat anti-rabbit-Alexa546 antibody

(1:400 in block, Invitrogen, Paisley, UK) was applied for 45 mins,

the cells washed again 4 times before they were counterstained

with Hoechst (1:1000 in PBS-T) and washed once more. For

imaging, the wells were kept hydrated with blocking solution in the

96-well plate and imaged with Q-Capture software (Q Imaging,

Maidenhead, UK) on an inverted Axio Oberver.Z1 microscope

(Carl Zeiss, Jena, Germany).

Reverse transcriptase-polymerase chain reaction (RT-PCR)
Total RNAs from mouse eye cup tissues were extracted using

RNAeasy Mini kit (QIAGEN) according to the manufacturer’s

instructions. Two micrograms of the resulting RNA was reverse

transcribed with random primers using a Transcriptor High Fidelity

cDNA Synthesis Kit (Roche). The cDNAs of C1qtnf5 and Mfrp were

then amplified using platinum Taq DNA polymerase (Invitrogen) as

previous described [45]. PCR primers were manufactured by Sigma

Aldrich. Primer sequences are available on request.

Western blotting
Eyecups from wild-type, heterozygous and homozygous C1qtnf5

Ser163Arg knock-in mice were lysed in a buffer containing

50 mM Tris-Cl pH 7.5, 150 mM NaCl, 1% NP-40, 0.5%

deoxycholate, 0.05% SDS, 2 mM EDTA, 1 mM sodium-vana-

date, 5 mM sodium-fluoride and 10 mM iodoacetamide with a

protease inhibitor cocktail (Roche). The lysates were centrifuged

for 10 min at 13,000 rpm and the post-nuclear supernatants were

collected. Equal amounts of protein were electrophoresed on 10%

SDS-polyacrylamide gels and transferred to a nitrocellulose

membrane. The primary antibodies were used at 1:1,000 dilution

for anti-C1QTNF5 and 1:2,000 dilution for antib-tubulin

antibodies. HRP-conjugated secondary antibodies were used at

1:5,000 dilution. The membrane-bound antibodies were detected

by ECL (Amersham Biosciences).

Lentivirus production
Second generation HIV-1-based self-inactivating lentiviral vec-

tors pseudotyped with the vesicular stomatitis virus glycoprotein

envelope contained either the murine C1qtnf5 wild type or the

murine C1qtnf5 Ser163Arg mutant cDNA or the GFP reporter gene

(Lenti.GFP). All vectors contain deletions in the 39 long-terminal

repeats, making them self-inactivating, and include the central

polypurine tract (cPPT), which is necessary for second-strand DNA

synthesis, and may enhance the nuclear transport of the provirus.

All cDNAs are driven by the spleen focus-forming virus (SFFV)

promoter and each vector contains the woodchuck hepatitis virus

post-transcriptional regulatory element (WPRE) to stabilize mRNA

and increase expression. Vectors were produced using transient

triple transfection of 293T cells as described previously [46]. At 28–

72 hr post-transfection, supernatant was harvested and filtered

through a 0.45 mm filter. The virus particles were concentrated by

ultracentrifugation at 90,000 g for 2 hr and the pelleted virus was

resuspended in OptiMEM and stored at 280uC. Virus was titred

using a Reverse Transcriptase activity ELISA kit (Roche Diagnos-

tics, Burgess Hill, UK) according to the manufacturer’s instructions.

Transgene expression was detected by immunocytochemistry on

infected HeLa cells. Cells were infected with 1 ml of virus in a 24 well

plate. Three days post-infection, cells were washed and fixed with

ice-cold methanol and stained with a polyclonal rabbit anti-human

C1QTNF5 antibody [8] and goat anti-rabbit AlexaFluor546

antibody. Cells were counterstained with Hoechst, imaged using a

Zeiss Axioplan II fluorescent microscope and analysed using

QCapture Pro software (QIMaging, Maidenhead,UK).

Subretinal injections
Subretinal administration of vectors was performed in anesthe-

tized 12 to 16-week-old C57BL/6 mice (Harlan UK Ltd.), under

direct retinoscopy through an operating microscope as previously

described [47]. A 1.5-cm 34-gauge hypodermic needle (Hamilton,

UK) was used to inject 2 microlitres of virus suspension (titer of 108

particles/ml) into the subretinal space to produce a bullous retinal

detachment in the superior hemisphere and a second in the

inferior hemisphere. Mice received C1qtnf5-wild type virus in one

eye and C1qtnf5-Ser163Arg mutant virus in the other eye. Control

mice received PBS or titre-matched Lenti.GFP. Retinal vessels

remained patent during and following the injections. All animals

received chloramphenicol 1% eye ointment to the cornea.

Statistical analysis
Statistical analyses were performed using GraphPad Prism 5 for

Windows (GraphPad Software Inc, La Jolla, USA). Changes in the

thickness of Bruch’s membrane or in RPE damage with age were

assessed using Pearson correlation statistics, a parametric measure

of association for two continuous random variables. Differences in

autofluorsecence were assessed using a Kruskal-Wallis with Dunn’s

multiple comparison test. RPE and outer nuclear layer disease

scoring was assessed on randomized images using a one-way

analysis of variance.
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